1
|
Quiroz TS, Nieto PA, Tobar HE, Salazar-Echegarai FJ, Lizana RJ, Quezada CP, Santiviago CA, Araya DV, Riedel CA, Kalergis AM, Bueno SM. Excision of an unstable pathogenicity island in Salmonella enterica serovar Enteritidis is induced during infection of phagocytic cells. PLoS One 2011; 6:e26031. [PMID: 22039432 PMCID: PMC3198454 DOI: 10.1371/journal.pone.0026031] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 09/15/2011] [Indexed: 12/28/2022] Open
Abstract
The availability of the complete genome sequence of several Salmonella enterica serovars has revealed the presence of unstable genetic elements in these bacteria, such as pathogenicity islands and prophages. This is the case of Salmonella enterica serovar Enteritidis (S. Enteritidis), a bacterium that causes gastroenteritis in humans and systemic infection in mice. The whole genome sequence analysis for S. Enteritidis unveiled the presence of several genetic regions that are absent in other Salmonella serovars. These regions have been denominated “regions of difference” (ROD). In this study we show that ROD21, one of such regions, behaves as an unstable pathogenicity island. We observed that ROD21 undergoes spontaneous excision by two independent recombination events, either under laboratory growth conditions or during infection of murine cells. Importantly, we also found that one type of excision occurred at higher rates when S. Enteritidis was residing inside murine phagocytic cells. These data suggest that ROD21 is an unstable pathogenicity island, whose frequency of excision depends on the environmental conditions found inside phagocytic cells.
Collapse
Affiliation(s)
- Tania S. Quiroz
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pamela A. Nieto
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Hugo E. Tobar
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisco J. Salazar-Echegarai
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo J. Lizana
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carolina P. Quezada
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Carlos A. Santiviago
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Daniela V. Araya
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A. Riedel
- Facultad de Ciencias Biológicas y Facultad de Medicina, Millennium Institute on Immunology and Immunotherapy, Universidad Andrés Bello, Santiago, Chile
| | - Alexis M. Kalergis
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Reumatología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M. Bueno
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
- * E-mail:
| |
Collapse
|
2
|
Joseph P, Ratnayake-Lecamwasam M, Sonenshein AL. A region of Bacillus subtilis CodY protein required for interaction with DNA. J Bacteriol 2005; 187:4127-39. [PMID: 15937175 PMCID: PMC1151725 DOI: 10.1128/jb.187.12.4127-4139.2005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus subtilis CodY protein is the best-studied member of a novel family of global transcriptional regulators found ubiquitously in low-G+C gram-positive bacteria. As for many DNA-binding proteins, CodY appears to have a helix-turn-helix (HTH) motif thought to be critical for interaction with DNA. This putative HTH motif was found to be highly conserved in the CodY homologs. Site-directed mutagenesis was used to identify amino acids within this motif that are important for DNA recognition and binding. The effects of each mutation on DNA binding in vitro and on the regulation of transcription in vivo from two target promoters were tested. Each of the mutations had similar effects on binding to the two promoters in vitro, but some mutations had differential effects in vivo.
Collapse
Affiliation(s)
- Pascale Joseph
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
3
|
Sapunaric FM, Levy SB. Substitutions in the interdomain loop of the Tn10 TetA efflux transporter alter tetracycline resistance and substrate specificity. Microbiology (Reading) 2005; 151:2315-2322. [PMID: 16000721 DOI: 10.1099/mic.0.27997-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cysteine replacement of Asp190, Glu192 and Ser201 residues in the cytoplasmic interdomain loop of the TetA(B) tetracycline efflux antiporter from Tn10 reduces tetracycline resistance [Tamura, N., Konishi, S., Iwaki, S., Kimura-Someya, T., Nada, S. & Yamaguchi, A. (2001). J Biol Chem 276, 20330-20339]. It was found that these Cys substitutions altered the substrate specificity of TetA(B), increasing the relative resistance to doxycycline and minocycline over that to tetracycline by three- to sixfold. Substitutions of Asp190 and Glu192 by Ala, Asn and Gln also impaired the ability of TetA(B) to mediate tetracycline resistance while Ser201Ala and Ser201Thr substitutions did not. A Leu9Phe substitution in the first transmembrane helix of TetA(B) suppressed the Ser201Cys mutation, undoing the alterations in resistance and specificity. That the interdomain loop might contact substrate during transport, as is suggested from its role in substrate specificity, is unexpected considering that the primary sequence in the loop is not conserved among a group of otherwise homologous TetA proteins. However, in the interdomain loop of 11 of 14 homologous TetA efflux proteins, computational analysis revealed a short alpha-helix, which includes some residues affecting activity and substrate specificity. Perhaps this conserved secondary structure accounts for the role of the non-conserved interdomain loop in TetA function.
Collapse
Affiliation(s)
- Frédéric M Sapunaric
- The Center for Adaptation Genetics and Drug Resistance and Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA 02111, USA
| | - Stuart B Levy
- The Center for Adaptation Genetics and Drug Resistance and Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA 02111, USA
| |
Collapse
|
4
|
Adler J, Lewinson O, Bibi E. Role of a conserved membrane-embedded acidic residue in the multidrug transporter MdfA. Biochemistry 2004; 43:518-25. [PMID: 14717607 DOI: 10.1021/bi035485t] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
According to the current topology model of the Escherichia coli multidrug transporter MdfA, it contains a membrane-embedded negatively charged residue, Glu26, which was shown to play an important role in substrate recognition. To further elucidate the role of this substrate recognition determinant, various Glu26 replacements were characterized. Surprisingly, studies with neutral MdfA substrates showed that, unlike many enzymatic systems where the size and chemical properties of binding site residues are relatively defined, MdfA tolerates a variety of changes at position 26, including size, hydrophobicity, and charge. Moreover, although efficient transport of positively charged substrates requires a negative charge at position 26 (Glu or Asp), neutralization of this charge does not always abrogate the interaction of MdfA with cationic drugs, thus demonstrating that the negative charge does not play an essential role in the multidrug transport mechanism. Collectively, these results suggest a link between the broad substrate specificity profile of multidrug transporters and the structural and chemical promiscuity at their substrate recognition pockets.
Collapse
Affiliation(s)
- Julia Adler
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
5
|
Lewis GS, Jewell JE, Phang T, Miller KW. Mutational and sequence analysis of transmembrane segment 6 orientation in TetA proteins. Biochem Biophys Res Commun 2003; 305:1067-72. [PMID: 12767939 DOI: 10.1016/s0006-291x(03)00904-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The packing orientations of the 8 transmembrane (TM) segments that line the central, aqueous transport channel within tetracycline resistance proteins (TetA) have been established. However, the orientations of the remaining 4 segments, TMs 3, 6, 9, and 12, located at the periphery, and away from the transport channel, have not yet been determined. In this study, the packing orientation of TM6 within the class C TetA protein encoded by plasmid pBR322 was evaluated by substitution mutagenesis and analysis of sequence conservation and amphipathicity. The combined data support a model in which the conserved and polar face of the TM6 alpha-helix containing Asn170 and Asn173 orients towards channel-lining TM segments, and the relatively non-conserved and hydrophobic face of TM6 points towards membrane lipids.
Collapse
Affiliation(s)
- G Shane Lewis
- Department of Molecular Biology, University of Wyoming, P.O. Box 3944, Laramie, WY 82071-3944, USA
| | | | | | | |
Collapse
|
6
|
McMurry LM, Aldema-Ramos ML, Levy SB. Fe(2+)-tetracycline-mediated cleavage of the Tn10 tetracycline efflux protein TetA reveals a substrate binding site near glutamine 225 in transmembrane helix 7. J Bacteriol 2002; 184:5113-20. [PMID: 12193628 PMCID: PMC135328 DOI: 10.1128/jb.184.18.5113-5120.2002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
TetA specified by Tn10 is a class B member of a group of related bacterial transport proteins of 12 transmembrane alpha helices that mediate resistance to the antibiotic tetracycline. A tetracycline-divalent metal cation complex is expelled from the cell in exchange for a entering proton. The site(s) where tetracycline binds to this export pump is not known. We found that, when chelated to tetracycline, Fe(2+) cleaved the backbone of TetA predominantly at a single position, glutamine 225 in transmembrane helix 7. The related class D TetA protein from plasmid RA1 was cut at exactly the same position. There was no cleavage with glycylcycline, an analog of tetracycline that does not bind to TetA. The Fe(2+)-tetracycline complex was not detectably transported by TetA. However, cleavage products of the same size as with Fe(2+) occurred with Co(2+), known to be cotransported with tetracycline. The known substrate Mg (2+)-tetracycline interfered with cleavage by Fe(2+). These findings suggest that cleavage results from binding at a substrate-specific site. Fe(2+) is known to be able to cleave amide bonds in proteins at distances up to approximately 12 A. We conclude that the alpha carbon of glutamine 225 is probably within 12 A of the position of the Fe(2+) ion in the Fe(2+)-tetracycline complex bound to the protein.
Collapse
Affiliation(s)
- Laura M McMurry
- Center for Adaptation Genetics and Drug Resistance and Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA.
| | | | | |
Collapse
|
7
|
Lewis GS, Jewell JE, Phang T, Miller KW. Mutational analysis of tetracycline resistance protein transmembrane segment insertion. Arch Biochem Biophys 2002; 404:317-25. [PMID: 12147271 DOI: 10.1016/s0003-9861(02)00287-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The tetracycline resistance proteins (TetA) of gram-negative bacteria are secondary active transport proteins that contain buried charged amino acids that are important for tetracycline transport. Earlier studies have shown that insertion of TetA proteins into the cytoplasmic membrane is mediated by helical hairpin pairs of transmembrane (TM) segments. However, whether helical hairpins direct spontaneous insertion of TetA or are required instead for its interaction with the cellular secretion (Sec) machinery is unknown. To gain insight into how TetA proteins are inserted into the membrane, we have investigated how tolerant the class C TetA protein encoded by plasmid pBR322 is to placement of charged residues in TM segments. The results show that the great majority of charge substitutions do not interfere with insertion even when placed at locations that cannot be shielded internally within helical hairpins. The only mutations that frequently block insertion are proline substitutions, which may interfere with helical hairpin folding. The ability of TetA to broadly tolerate charge substitutions indicates that the Sec machinery assists in its insertion into the membrane. The results also demonstrate that it is feasible to engineer charged residues into the interior of TetA proteins for the purpose of structure-function analysis.
Collapse
Affiliation(s)
- G Shane Lewis
- Department of Molecular Biology, University of Wyoming, P.O. Box 3944, Laramie, WY 82071-3944, USA
| | | | | | | |
Collapse
|
8
|
Görke B, Rak B. Efficient transcriptional antitermination from the Escherichia coli cytoplasmic membrane. J Mol Biol 2001; 308:131-45. [PMID: 11327758 DOI: 10.1006/jmbi.2001.4590] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The BglG protein is a transcriptional antiterminator acting within the beta-glucoside operon of Escherichia coli by binding to a specific sequence motif in the growing mRNA. Binding of BglG prevents formation of the terminator stem-loop structure, thereby causing the RNA polymerase to continue transcription. Activity of BglG is modulated in a complex way by antagonistically acting phosphorylations in response to the availability of beta-glucosidic substrates and to the catabolic state of the cell. The enzymes responsible for these phosphorylations are members of the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) that represents a central carbohydrate uptake and signal transduction system. As these enzymes are believed to all form higher-order complexes associated with the cytoplasmic membrane, we tested whether or not BglG would remain active when artificially anchored to its presumptive site of regulation, the inner membrane. We show that the membrane-anchored protein indeed efficiently catalyzes transcriptional antitermination. Moreover, the membrane-attached BglG remains regulated by the PTS. Thus, a membrane-bound regulatory RNA binding protein can potentially interact fast enough with its target within the nascent transcript and cause the transcriptional machinery to proceed, before transcriptional termination would occur. Consequently, there is no principal necessity for an RNA-binding transcriptional regulator like BglG to leave the inner membrane, a potential regulatory site, and migrate to the site of transcription, the nucleoid.
Collapse
Affiliation(s)
- B Görke
- Institut für Biologie III, Universität, Schänzlestr. 1, D-79104 Freiburg, Germany
| | | |
Collapse
|
9
|
Yerushalmi H, Schuldiner S. A model for coupling of H(+) and substrate fluxes based on "time-sharing" of a common binding site. Biochemistry 2000; 39:14711-9. [PMID: 11101285 DOI: 10.1021/bi001892i] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Both prokaryotic and eukaryotic cells contain an array of membrane transport systems maintaining the cellular homeostasis. Some of them (primary pumps) derive energy from redox reactions, ATP hydrolysis, or light absorption, whereas others (ion-coupled transporters) utilize ion electrochemical gradients for active transport. Remarkable progress has been made in understanding the molecular mechanism of coupling in some of these systems. In many cases carboxylic residues are essential for either binding or coupling. Here we suggest a model for the molecular mechanism of coupling in EmrE, an Escherichia coli 12-kDa multidrug transporter. EmrE confers resistance to a variety of toxic cations by removing them from the cell interior in exchange for two protons. EmrE has only one membrane-embedded charged residue, Glu-14, which is conserved in more than 50 homologous proteins. We have used mutagenesis and chemical modification to show that Glu-14 is part of the substrate-binding site. Its role in proton binding and translocation was shown by a study of the effect of pH on ligand binding, uptake, efflux, and exchange reactions. The studies suggest that Glu-14 is an essential part of a binding site, which is common to substrates and protons. The occupancy of this site by H(+) and substrate is mutually exclusive and provides the basis of the simplest coupling for two fluxes.
Collapse
Affiliation(s)
- H Yerushalmi
- Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | | |
Collapse
|
10
|
Schnabel EL, Jones AL. Distribution of tetracycline resistance genes and transposons among phylloplane bacteria in Michigan apple orchards. Appl Environ Microbiol 1999; 65:4898-907. [PMID: 10543801 PMCID: PMC91659 DOI: 10.1128/aem.65.11.4898-4907.1999] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/1999] [Accepted: 09/01/1999] [Indexed: 11/20/2022] Open
Abstract
The extent and nature of tetracycline resistance in bacterial populations of two apple orchards with no or a limited history of oxytetracycline usage were assessed. Tetracycline-resistant (Tc(r)) bacteria were mostly gram negative and represented from 0 to 47% of the total bacterial population on blossoms and leaves (versus 26 to 84% for streptomycin-resistant bacteria). A total of 87 isolates were screened for the presence of specific Tc(r) determinants. Tc(r) was determined to be due to the presence of Tet B in Pantoea agglomerans and other members of the family Enterobacteriacae and Tet A, Tet C, or Tet G in most Pseudomonas isolates. The cause of Tc(r) was not identified in 16% of the isolates studied. The Tc(r) genes were almost always found on large plasmids which also carried the streptomycin resistance transposon Tn5393. Transposable elements with Tc(r) determinants were detected by entrapment following introduction into Escherichia coli. Tet B was found within Tn10. Two of eighteen Tet B-containing isolates had an insertion sequence within Tn10; one had IS911 located within IS10-R and one had Tn1000 located upstream of Tet B. Tet A was found within a novel variant of Tn1721, named Tn1720, which lacks the left-end orfI of Tn1721. Tet C was located within a 19-kb transposon, Tn1404, with transposition genes similar to those of Tn501, streptomycin (aadA2) and sulfonamide (sulI) resistance genes within an integron, Tet C flanked by direct repeats of IS26, and four open reading frames, one of which may encode a sulfate permease. Two variants of Tet G with 92% sequence identity were detected.
Collapse
Affiliation(s)
- E L Schnabel
- Department of Botany and Plant Pathology, Michigan State University, East Lansing, Michigan 48824-1312, USA
| | | |
Collapse
|
11
|
Nelson ML, Levy SB. Reversal of tetracycline resistance mediated by different bacterial tetracycline resistance determinants by an inhibitor of the Tet(B) antiport protein. Antimicrob Agents Chemother 1999; 43:1719-24. [PMID: 10390229 PMCID: PMC89350 DOI: 10.1128/aac.43.7.1719] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Active efflux is a useful strategy by which bacteria evade growth inhibition by antibiotics. Certain semisynthetic tetracycline (TC) analogs, substituted at the 13th carbon at C-6 on ring C of the TC molecule, blocked TC efflux as revealed in everted membrane vesicles from class B TC-resistant (Tcr) Escherichia coli (M. L. Nelson, B. H. Park, J. S. Andrews, V. A. Georgian, R. C. Thomas, and S. B. Levy, J. Med. Chem. 36:370-377, 1993). A representative C-13-substituted analog, 13-cyclopentylthio-5-OH-TC (13-CPTC), was shown to competitively inhibit TC translocation by the Tet(B) protein, blocking the uptake of TC into vesicles and therefore the efflux of TC from whole cells. Against Tcr E. coli, 13-CPTC, when used in combination with doxycycline, produced synergistic inhibition of growth. 13-CPTC was shown to increase the uptake of [3H]TC into the resistant cells. 13-CPTC alone was a potent growth inhibitor against TC-susceptible (Tcs) and Tcr Staphylococcus aureus and enterococci specifying class K or class L efflux-dependent TC resistance mechanisms or, unexpectedly, the class M ribosomal protection mechanism. These findings indicate that derivatives of TC, identified by their ability to block the Tet(B) efflux protein, can restore TC activity against Tcr bacteria bearing either of the two known resistance mechanisms. Blocking drug efflux and increasing intracellular drug concentrations constitute an effective approach to reversing TC resistance and may be generally applicable to other antibiotics rendered ineffective by efflux proteins.
Collapse
Affiliation(s)
- M L Nelson
- Center for Adaptation Genetics and Drug Resistance, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | |
Collapse
|
12
|
Jewell JE, Orwick J, Liu J, Miller KW. Functional importance and local environments of the cysteines in the tetracycline resistance protein encoded by plasmid pBR322. J Bacteriol 1999; 181:1689-93. [PMID: 10049405 PMCID: PMC93563 DOI: 10.1128/jb.181.5.1689-1693.1999] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The properties of the cysteines in the pBR322-encoded tetracycline resistance protein have been examined. Cysteines are important but not essential for tetracycline transport activity. None of the cysteines reacted with biotin maleimide, suggesting that they are shielded from the aqueous phase or reside in a negatively charged local environment.
Collapse
Affiliation(s)
- J E Jewell
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071, USA
| | | | | | | |
Collapse
|
13
|
Kim MH, Lu M, Lim EJ, Chai YG, Hersh LB. Mutational analysis of aspartate residues in the transmembrane regions and cytoplasmic loops of rat vesicular acetylcholine transporter. J Biol Chem 1999; 274:673-80. [PMID: 9873001 DOI: 10.1074/jbc.274.2.673] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The vesicular acetylcholine transporter (VAChT) is responsible for the transport of the neurotransmitter acetylcholine (ACh) into synaptic vesicles using an electrochemical gradient to drive transport. Rat VAChT has a number of aspartate residues within its predicted transmembrane domains (TM) and cytoplasmic loops, which may play important structural or functional roles in acetylcholine transport. In order to identify functional charged residues, site-directed mutagenesis of rVAChT was undertaken. No effect on ACh transport was observed when any of the five aspartate residues in the cytoplasmic loop were converted to asparagine. Similarly, changing Asp-46 (D46N) in TM1 or Asp-255 (D255N) in TM6 had no effect on ACh transport or vesamicol binding. However, replacement of Asp-398 in TM10 with Asn completely eliminated both ACh transport and vesamicol binding. The conservative mutant D398E retained transport activity, but not vesamicol binding, suggesting this residue is critical for transport. Mutation of Asp-193 in TM4 did not affect ACh transport activity; however, vesamicol binding was dramatically reduced. With mutant D425N of TM11 transport activity for ACh was completely blocked, without an effect on vesamicol binding. Activity was not restored in the conservative mutant D425E, suggesting the side chain as well as the negative charge of Asp-425 is important for substrate binding. These mutants, as well as mutant D193N, clearly dissociated ACh binding and transport from vesamicol binding. These data suggest that Asp-398 in TM10 and Asp-425 in TM11 are important for ACh binding and transport, while Asp-193 and Asp-398 in TM4 and TM10, respectively, are involved in vesamicol binding.
Collapse
Affiliation(s)
- M H Kim
- Department of Biochemistry, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | | | | | |
Collapse
|
14
|
Magalhães VD, Schuman W, Castilho BA. A new tetracycline resistance determinant cloned from Proteus mirabilis. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1443:262-6. [PMID: 9838156 DOI: 10.1016/s0167-4781(98)00210-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The chromosomal inducible Tcr determinant from Proteus mirabilis was cloned and the nucleotide sequence of both the structural and repressor genes determined. The deduced amino acid sequence of the structural protein shows the highest similarity to TetA(H) from Pasteurella multocida (78.4%), followed by TetA(B) from Tn10 (50.9%). Based on this analysis, we suggest that this new determinant can be assigned to a new class, TetJ.
Collapse
Affiliation(s)
- V D Magalhães
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Botucatú, 862 3 degrees andar, São Paulo, SP 04023-062, Brazil
| | | | | |
Collapse
|
15
|
Guffanti AA, Cheng J, Krulwich TA. Electrogenic antiport activities of the Gram-positive Tet proteins include a Na+(K+)/K+ mode that mediates net K+ uptake. J Biol Chem 1998; 273:26447-54. [PMID: 9756879 DOI: 10.1074/jbc.273.41.26447] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two Gram-positive Tet proteins, TetA(L) from Bacillus subtilis and TetK from a Staphylococcus aureus plasmid, have previously been suggested to have multiple catalytic modes and roles. These include: tetracycline (Tc)-metal/H+ antiport for both proteins (Yamaguchi, A., Shiina, Y., Fujihira, E., Sawai, T., Noguchi, N., and Sasatsu, M. (1995) FEBS Lett. 365, 193-197; Cheng, J. Guffanti, A. A., Wang, W., Krulwich, T. A., and Bechhofer, D. H. (1996) J. Bacteriol. 178, 2853-2860); Na+(K+)/H+ antiport for both proteins (Cheng et al. (1996)); and an electrical potential-dependent K+ leak mode for TetK and highly truncated segments thereof that can facilitate net K+ uptake (Guay, G. G., Tuckman, M., McNicholas, P., and Rothstein, D. M. (1993) J. Bacteriol. 175, 4927-4929). Studies of membrane vesicles from Escherichia coli expressing low levels of complete and 3'-truncated versions of tetA(L) or tetK, now show that the full-length versions of both transporters catalyze electrogenic antiport and that demonstration of electrogenicity depends upon use of a low chloride buffer for the assay. The K+ uptake mode, assayed via 86Rb+ uptake, was also catalyzed by both full-length TetA(L) and TetK. This mode does not represent a potential-dependent leak. Such a leak was not demonstrable in energized membrane vesicles. Rather, Rb+ uptake occurred in right-side-out vesicles when the intravesicular space contained either Na+ or K+ but not choline. If an outwardly directed gradient of Na+ or K+ was present, Rb+ uptake occurred without energization in vesicles from cells transformed with a plasmid containing tetA(L) or tetK but not a control plasmid. Experiments in which a comparable exchange was carried out in low chloride buffers to which oxonol was added confirmed that the exchange was electrogenic. Thus, the K+ uptake mode is proposed to be a mode of the electrogenic monovalent cation/H+ antiport activity of TetA(L) and TetK in which K+ takes the place of the external protons. Truncated TetK and TetA(L) failed to catalyze either Tc-metal/H+ or Na+/H+ antiport in energized everted vesicles. Truncated TetK, but not TetA(L), did, however, exhibit modest, electrogenic Na+(K+)/Rb+ exchange as well as a small, potential-dependent leak of Rb+. The C-terminal halves of the TetA(L) and TetK proteins are thus required both for proton-coupled active transport activities of the multifunctional transporter and, perhaps, for minimizing cation leakiness.
Collapse
Affiliation(s)
- A A Guffanti
- Department of Biochemistry, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | |
Collapse
|
16
|
Kennan RM, McMurry LM, Levy SB, Rood JI. Glutamate residues located within putative transmembrane helices are essential for TetA(P)-mediated tetracycline efflux. J Bacteriol 1997; 179:7011-5. [PMID: 9371447 PMCID: PMC179641 DOI: 10.1128/jb.179.22.7011-7015.1997] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The tetA(P) gene from Clostridium perfringens encodes a unique membrane protein that is responsible for the active efflux of tetracycline from resistant cells. The novel TetA(P) protein has neither the typical structure nor the conserved motifs that are found in tetracycline efflux proteins from classes A through H or classes K and L. Site-directed mutagenesis of selected residues within TetA(P) was performed to elucidate their role in tetracycline efflux. Glutamate residues 52 and 59, negatively charged residues located within putative transmembrane helix 2, could not be replaced by either glutamine or aspartate and so were essential for tetracycline efflux. Replacement of Glu89, which was located at the end of helix 3, by aspartate but not by glutamine allowed TetA(P) function, indicating the importance of a carboxyl group at this position. After mutation of the Asp67 residue, located within cytoplasmic loop 1, no immunoreactive protein was detected. It is concluded that negatively charged residues that appear to be located within or near the membrane are important for the function of TetA(P).
Collapse
Affiliation(s)
- R M Kennan
- Department of Microbiology, Monash University, Clayton, Australia.
| | | | | | | |
Collapse
|
17
|
Someya Y, Yamaguchi A. Mercaptide formed between the residue Cys70 and Hg2+ or Co2+ behaves as a functional positively charged side chain operative in the Arg70-->Cys mutant of the metal-tetracycline/H+ antiporter of Escherichia coli. Biochemistry 1996; 35:9385-91. [PMID: 8755716 DOI: 10.1021/bi961026z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The bacterial tetracycline/H+ antiporter (TetA) mediates active efflux of a chelation complex of tetracycline with a divalent cation such as Mg2+, Co2+, or Mn2+ [Yamaguchi, A., Udagawa, T., & Sawai, T. (1990a) J. Biol. Chem. 265, 4809-4813]. The positive charge of Arg70 in the antiporter is important for the transport function [Yamaguchi, A., Someya, Y., & Sawai, T. (1992c) J. Biol. Chem. 267, 19155-19162]. Out of six site-directed mutants of Arg70, only the Lys70 mutant retained moderate transport activity, whereas the Ser70, Ala70, Trp70, Leu70, and Asp70 mutants had no or extremely low transport activity. In this study, we constructed the Cys70 mutant and found that the Cys70 mutant showed, unexpectedly, a significant activity comparable to that of the Lys70 mutant in the presence of Co2+ ions, whereas it showed very low activity as well as the Ala70 mutant in the presence of Mg2+ or Mn2+ ions. Hg2+, which is known to be a cysteine specific modifier but has no ability to form a complex with tetracycline, caused a dramatic increase in the Vmax value of Co(2+)-dependent tetracycline transport mediated by the Cys70 mutant without affecting the k(m) value, whereas activities of the wild-type and the Lys70 and Ala70 mutants were not affected by Hg2+, Hg2+ alone without Co2+ could not support the transport activity at all, because Hg2+ does not form a chelation complex with tetracycline. These observations suggest that a mercaptide formed between the SH group of Cys70 and Hg2+ or Co2+ works as a positively charged side chain like that of Arg or Lys. When the SH group of the Cys70 mutant was masked with modification by sulfhydryl reagents, the residual activity was no longer affected by Hg2+. Inversely, when the Cys70 mutant was preincubated with Hg2+, it was protected from the inactivation by sulfhydryl reagents. These observations also confirm the mercaptide formation between the Cys70 and a divalent cation as a functional side chain.
Collapse
Affiliation(s)
- Y Someya
- Department of Cell Membrane Biology, Institute of Scientific and Industrial Research, Osaka University, Japan
| | | |
Collapse
|
18
|
Chapter 8 Multidrug resistance in prokaryotes: Molecular mechanisms of drug efflux. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s1383-8121(96)80049-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
19
|
Merickel A, Rosandich P, Peter D, Edwards RH. Identification of residues involved in substrate recognition by a vesicular monoamine transporter. J Biol Chem 1995; 270:25798-804. [PMID: 7592763 DOI: 10.1074/jbc.270.43.25798] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
To identify the residues involved in substrate recognition by recently cloned vesicular monoamine transporters (VMAT1 and VMAT2), we have mutagenized the conserved residues in a cytoplasmic loop between transmembrane domains two and three of VMAT2. Although studies of related bacterial antibiotic resistance proteins indicate an important functional role for this region, we found no effect of these mutations on VMAT2 activity. However, replacement of aspartate 33 in the first predicted transmembrane domain with an asparagine (D33N) eliminates transport. D33N shows normal levels of expression and normal binding at equilibrium to the potent inhibitor reserpine. However, in contrast to wild-type VMAT2, serotonin inhibits reserpine binding to D33N very poorly, indicating a specific defect in substrate recognition. Replacement of three serine residues in transmembrane domain three with alanine (Stmd3A) shows a similarly selective but even more profound defect in substrate recognition. The results suggest that by analogy to receptors and plasma membrane transporters for monoamines, the cationic amino group of the ligand interacts with an asparte in the first transmembrane domain of VMAT2 and hydroxyl groups on the catechol or indole ring interact with a group of serines in the third transmembrane domain. Importantly, D33N and Stmd3A retain coupling to the proton electrochemical gradient as measured by the delta microH(+)-induced acceleration of reserpine binding. This indicates that substrate recognition can be separated from coupling to the driving force.
Collapse
Affiliation(s)
- A Merickel
- Interdepartmental Program in Neuroscience, UCLA School of Medicine 90024-1769, USA
| | | | | | | |
Collapse
|
20
|
McNicholas P, McGlynn M, Guay GG, Rothstein DM. Genetic analysis suggests functional interactions between the N- and C-terminal domains of the TetA(C) efflux pump encoded by pBR322. J Bacteriol 1995; 177:5355-7. [PMID: 7665527 PMCID: PMC177333 DOI: 10.1128/jb.177.18.5355-5357.1995] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Genetic analysis of the tetA(C) gene of pBR322 indicates the importance of two-cytoplasmic loops in the TetA(C) protein (P. McNicholas, I. Chopra, and D. M. Rothstein, J. Bacteriol. 174:7926-7933, 1992). In this study, we characterized second-site suppressor mutations that suggest a functional interaction between these two cytoplasmic regions of the protein.
Collapse
Affiliation(s)
- P McNicholas
- Department of Microbial Genetics and Biochemistry, Lederle Laboratories, Pearl River, New York 10965, USA
| | | | | | | |
Collapse
|
21
|
Allen NE. Biochemical mechanisms of resistance to non-cell wall antibacterial agents. PROGRESS IN MEDICINAL CHEMISTRY 1995; 32:157-238. [PMID: 8577918 DOI: 10.1016/s0079-6468(08)70454-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- N E Allen
- Infectious Disease Research, Eli Lilly and Company, Indianapolis, IN 46285, USA
| |
Collapse
|
22
|
Cheng J, Guffanti AA, Krulwich TA. The chromosomal tetracycline resistance locus of Bacillus subtilis encodes a Na+/H+ antiporter that is physiologically important at elevated pH. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)46994-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
23
|
McMurry LM, George AM, Levy SB. Active efflux of chloramphenicol in susceptible Escherichia coli strains and in multiple-antibiotic-resistant (Mar) mutants. Antimicrob Agents Chemother 1994; 38:542-6. [PMID: 8203852 PMCID: PMC284495 DOI: 10.1128/aac.38.3.542] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The multiple-antibiotic resistance (mar) locus (min 34) regulates a resistance to chloramphenicol in Escherichia coli that does not involve acetyltransferase. Transport studies showed that wild-type cells had an apparent endogenous active efflux of chloramphenicol which depended on the proton motive force. This efflux was not altered by a 39-kb chromosomal deletion which included the mar locus. Nevertheless, mutations at the mar locus led to a stronger net chloramphenicol efflux. Therefore, a gene encoding the putative efflux system cannot be at the mar locus but may be positively influenced by that locus.
Collapse
Affiliation(s)
- L M McMurry
- Center for Adaptation Genetics and Drug Resistance, Tufts University School of Medicine, Boston, Massachusetts 02111
| | | | | |
Collapse
|
24
|
Sloan J, McMurry LM, Lyras D, Levy SB, Rood JI. The Clostridium perfringens Tet P determinant comprises two overlapping genes: tetA(P), which mediates active tetracycline efflux, and tetB(P), which is related to the ribosomal protection family of tetracycline-resistance determinants. Mol Microbiol 1994; 11:403-15. [PMID: 8170402 DOI: 10.1111/j.1365-2958.1994.tb00320.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The complete nucleotide sequence and mechanism of action of the tetracycline-resistance determinant, Tet P, from Clostridium perfringens has been determined. Analysis of the 4.4 kb of sequence data revealed the presence of two open reading frames, designated as tetA(P) and tetB(P). The tetA(P) gene appears to encode a 420 amino acid protein (molecular weight 46,079) with twelve transmembrane domains. This gene was shown to be responsible for the active efflux of tetracycline from resistant cells. Although there was some amino acid sequence similarity between the putative TetA(P) protein and other tetracycline efflux proteins, analysis suggested that TetA(P) represented a different type of efflux protein. The tetB(P) gene would encode a putative 652 amino acid protein (molecular weight 72,639) with significant sequence similarity to Tet(M)-like cytoplasmic proteins that specify a ribosomal-protection tetracycline-resistance mechanism. In both C. perfringens and Escherichia coli, tetB(P) encoded low-level resistance to tetracycline and minocycline whereas tetA(P) only conferred tetracycline resistance. The tetA(P) and tetB(P) genes appeared to be linked in an operon, which represented a novel genetic arrangement for tetracycline-resistance determinants. It is proposed that tetB(P) evolved from the conjugative transfer into C. perfringens of a tet(M)-like gene from another bacterium.
Collapse
Affiliation(s)
- J Sloan
- Department of Microbiology, Monash University, Clayton, Australia
| | | | | | | | | |
Collapse
|
25
|
Kim EH, Aoki T. The transposon-like structure of IS26-tetracycline, and kanamycin resistance determinant derived from transferable R plasmid of fish pathogen, Pasteurella piscicida. Microbiol Immunol 1994; 38:31-8. [PMID: 8052160 DOI: 10.1111/j.1348-0421.1994.tb01741.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Tetracycline (pp-tet), and kanamycin (pp-kan) resistance genes were cloned from a transferable R plasmid of fish pathogen Pasteurella piscicida, and complete nucleotide sequences were determined. The pp-tet was a class D Tet determinant constructed with the tetA resistance gene of 1,182 bp encoding a protein with a deduced molecular mass of 41 kDa and the tetR repressor gene of 654 bp encoding a product of 24 kDa. The pp-tet was highly homologous to the tet(D) of plasmid RA1 isolated from Aeromonas hydrophila with two nucleotide differences in the tetR, and of plasmid pIP173 from Salmonella ordonez with two nucleotide differences in the tetA. The pp-kan contained 813 bp encoding a 31 kDa protein of 271 amino acids, and was classified into type aph-Ic. It was identical to the aphA7 in the IAB operon of pBWH77, in which was originally found an isolate of Klebsiella pneumoniae, in its nucleotide sequences and hybrid promoter construction. The genes were connected by an insertion sequence IS26 of 820 bp, and were flanked by repeated copies in direct orientation at the 3' flanking region of the pp-tetA and in inverted orientation at the 3' flanking region of the pp-kan. The genetic elements are organized like a complex transposon by close linkage of the IS26 and the pp-tet and -kan.
Collapse
Affiliation(s)
- E H Kim
- Department of Biological Resources, Faculty of Agriculture, Miyazaki University, Japan
| | | |
Collapse
|
26
|
Yamaguchi A, O'yauchi R, Someya Y, Akasaka T, Sawai T. Second-site mutation of Ala-220 to Glu or Asp suppresses the mutation of Asp-285 to Asn in the transposon Tn10-encoded metal-tetracycline/H+ antiporter of Escherichia coli. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)74208-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
27
|
Affiliation(s)
- B Poolman
- Department of Microbiology, University of Groningen, Haren, The Netherlands
| | | |
Collapse
|
28
|
Allard JD, Bertrand KP. Sequence of a class E tetracycline resistance gene from Escherichia coli and comparison of related tetracycline efflux proteins. J Bacteriol 1993; 175:4554-60. [PMID: 8331085 PMCID: PMC204899 DOI: 10.1128/jb.175.14.4554-4560.1993] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We determined the nucleotide sequence of the class E tetA gene on plasmid pSL1456 from Escherichia coli SLH1456A. The deduced amino acid sequence of the class E TetA protein shows 50 to 56% identity with the sequences of five related TetA proteins (classes A through D and G). Hydrophobicity profiles identify 12 putative transmembrane segments with similar boundaries in all six TetA sequences. The N-terminal alpha domain of the six sequences is more highly conserved than the C-terminal beta domain; the central hydrophilic loop connecting the alpha and beta domains is the least conserved region. Amino acid residues that have been shown to be important for class B (Tn10) TetA function are conserved in all six TetA sequences. Unlike the class B tetA gene, the class D and E tetA genes do not exhibit a negative gene dosage effect when present on multicopy plasmids derived from pACYC177.
Collapse
Affiliation(s)
- J D Allard
- Department of Microbiology, Washington State University, Pullman 99164
| | | |
Collapse
|
29
|
Brighty KE, Kohlbrenner W, McGuirk PR. Chapter 15. Recent Developments in Antibacterial Resistance Mechanisms. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 1993. [DOI: 10.1016/s0065-7743(08)60885-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|