1
|
Huang YY, Price MN, Hung A, Gal-Oz O, Tripathi S, Smith CW, Ho D, Carion H, Deutschbauer AM, Arkin AP. Barcoded overexpression screens in gut Bacteroidales identify genes with roles in carbon utilization and stress resistance. Nat Commun 2024; 15:6618. [PMID: 39103350 DOI: 10.1038/s41467-024-50124-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 06/28/2024] [Indexed: 08/07/2024] Open
Abstract
A mechanistic understanding of host-microbe interactions in the gut microbiome is hindered by poorly annotated bacterial genomes. While functional genomics can generate large gene-to-phenotype datasets to accelerate functional discovery, their applications to study gut anaerobes have been limited. For instance, most gain-of-function screens of gut-derived genes have been performed in Escherichia coli and assayed in a small number of conditions. To address these challenges, we develop Barcoded Overexpression BActerial shotgun library sequencing (Boba-seq). We demonstrate the power of this approach by assaying genes from diverse gut Bacteroidales overexpressed in Bacteroides thetaiotaomicron. From hundreds of experiments, we identify new functions and phenotypes for 29 genes important for carbohydrate metabolism or tolerance to antibiotics or bile salts. Highlights include the discovery of a D-glucosamine kinase, a raffinose transporter, and several routes that increase tolerance to ceftriaxone and bile salts through lipid biosynthesis. This approach can be readily applied to develop screens in other strains and additional phenotypic assays.
Collapse
Affiliation(s)
- Yolanda Y Huang
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Department of Microbiology and Immunology, University at Buffalo, State University of New York, Buffalo, NY, USA.
| | - Morgan N Price
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Allison Hung
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, CA, USA
| | - Omree Gal-Oz
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Surya Tripathi
- Department of Plant and Microbial Biology, University of California-Berkeley, Berkeley, CA, USA
| | - Christopher W Smith
- Department of Microbiology and Immunology, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Davian Ho
- Department of Bioengineering, University of California-Berkeley, Berkeley, CA, USA
| | - Héloïse Carion
- Department of Bioengineering, University of California-Berkeley, Berkeley, CA, USA
| | - Adam M Deutschbauer
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California-Berkeley, Berkeley, CA, USA
| | - Adam P Arkin
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Department of Bioengineering, University of California-Berkeley, Berkeley, CA, USA.
| |
Collapse
|
2
|
Liu P, Zhang H, Wang Y, Chen X, Jin L, Xu L, Xiao M. Screening and characterization of an α-L-fucosidase from Bacteroides fragilis NCTC9343 for synthesis of fucosyl-N-acetylglucosamine disaccharides. Appl Microbiol Biotechnol 2020; 104:7827-7840. [PMID: 32715363 DOI: 10.1007/s00253-020-10759-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 06/18/2020] [Accepted: 06/29/2020] [Indexed: 11/30/2022]
Abstract
Fucosyl-N-acetylglucosamine disaccharides are present in many biologically important oligosaccharides, such as human milk oligosaccharides, Lewis carbohydrate antigens, and glycans on cell-surface glycoconjugate receptors, and thus have vast potential for infant formulas, prebiotics, and pharmaceutical applications. In this work, in order to screen biocatalysts for enzymatic synthesis of fucosyl-N-acetylglucosamine disaccharides, we performed sequence analysis of 12 putative and one known α-L-fucosidases of Bacteroides fragilis NCTC9343 and constructed a phylogenetic tree of the nine GH29 α-L-fucosidases. After that, five GH29A α-L-fucosidases were cloned, and four of them were successfully heterogeneous expressed and screened for transglycosylation activity, and a GH29A α-L-fucosidase (BF3242) that synthesized a mix of Fuc-α-1,3/1,6-GlcNAc disaccharides using pNPαFuc as donor and GlcNAc as acceptor was characterized. The effects of initial substrate concentration, pH, temperature, and reaction time on its transglycosylation activity were studied in detail. Under the optimum conditions of 0.05 U/mL enzyme, 20 mM pNPαFuc, and 500 mM GlcNAc in sodium buffer (pH 7.5) at 37 °C for 45 min, BF3242 efficiently synthesized Fuc-α-1,3/1,6-GlcNAc at a maximum yield of 79.0% with the ratio of 0.48 for 1,3/1,6. The molecular dynamics simulation analysis revealed that Loop-4 (His220-Ser245) in the putative 3D model of BF3242 displayed significant changes throughout the thermal simulations, might being responsible for the changes in the ratio of two regioisomeric products at different temperatures. This work provided not only a potential synthetic tool for enzymatic synthesis of fucosyl-N-acetylglucosamine disaccharides but also a possibility for the formation of regioisomeric products in glycosidase-catalyzed transglycosylation. KEY POINTS: • Sequence analysis of α-L-fucosidases of Bacteroides fragilis NCTC9343 • Obtainment of an α-L-fucosidase with high transglycosylation activity • Explanation why temperature affected the ratio of two regioisomeric products.
Collapse
Affiliation(s)
- Peng Liu
- State Key Lab of Microbial Technology, National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Huaqin Zhang
- State Key Lab of Microbial Technology, National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Yuying Wang
- State Key Lab of Microbial Technology, National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Xiaodi Chen
- State Key Lab of Microbial Technology, National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, 266237, People's Republic of China.,Department of Clinical Laboratory Medicine, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan, 250001, People's Republic of China
| | - Lan Jin
- State Key Lab of Microbial Technology, National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Li Xu
- State Key Lab of Microbial Technology, National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, 266237, People's Republic of China.
| | - Min Xiao
- State Key Lab of Microbial Technology, National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, 266237, People's Republic of China.
| |
Collapse
|
3
|
Moens F, De Vuyst L. Inulin-type fructan degradation capacity of Clostridium cluster IV and XIVa butyrate-producing colon bacteria and their associated metabolic outcomes. Benef Microbes 2018; 8:473-490. [PMID: 28548573 DOI: 10.3920/bm2016.0142] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Four selected butyrate-producing colon bacterial strains belonging to Clostridium cluster IV (Butyricicoccus pullicaecorum DSM 23266T and Faecalibacterium prausnitzii DSM 17677T) and XIVa (Eubacterium hallii DSM 17630 and Eubacterium rectale CIP 105953T) were studied as to their capacity to degrade inulin-type fructans and concomitant metabolite production. Cultivation of these strains was performed in bottles and fermentors containing a modified medium for colon bacteria, including acetate, supplemented with either fructose, oligofructose, or inulin as the sole energy source. Inulin-type fructan degradation was not a general characteristic among these strains. B. pullicaecorum DSM 23266T and E. hallii DSM 17630 could only ferment fructose and did not degrade oligofructose or inulin. E. rectale CIP 105953T and F. prausnitzii DSM 17677T fermented fructose and could degrade both oligofructose and inulin. All chain length fractions of oligofructose were degraded simultaneously (both strains) and both long and short chain length fractions of inulin were degraded either simultaneously (E. rectale CIP 105953T) or consecutively (F. prausnitzii DSM 17677T), indicating an extracellular polymer degradation mechanism. B. pullicaecorum DSM 23266T and E. hallii DSM 17630 produced high concentrations of butyrate, CO2, and H2 from fructose. E. rectale CIP 105953T produced lactate, butyrate, CO2, and H2, from fructose, oligofructose, and inulin, whereas F. prausnitzii DSM 17677T produced butyrate, formate, CO2, and traces of lactate from fructose, oligofructose, and inulin. Based on carbon recovery and theoretical metabolite production calculations, an adapted stoichiometrically balanced metabolic pathway for butyrate, formate, lactate, CO2, and H2 production by members of both Clostridium cluster IV and XIVa butyrate-producing bacteria was constructed.
Collapse
Affiliation(s)
- F Moens
- 1 Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - L De Vuyst
- 1 Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| |
Collapse
|
4
|
Johnson RJ, Rivard C, Lanaspa MA, Otabachian-Smith S, Ishimoto T, Cicerchi C, Cheeke PR, Macintosh B, Hess T. Fructokinase, Fructans, Intestinal Permeability, and Metabolic Syndrome: An Equine Connection? J Equine Vet Sci 2013; 33:120-126. [PMID: 23439477 PMCID: PMC3576823 DOI: 10.1016/j.jevs.2012.05.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Fructose is a simple sugar present in honey and fruit, but can also exist as a polymer (fructans) in pasture grasses. Mammals are unable to metabolize fructans, but certain gram positive bacteria contain fructanases and can convert fructans to fructose in the gut. Recent studies suggest that fructose generated from bacteria, or directly obtained from the diet, can induce both increased intestinal permeability and features of metabolic syndrome, especially the development of insulin resistance. The development of insulin resistance is driven in part by the metabolism of fructose by fructokinase C in the liver, which results in oxidative stress in the hepatocyte. Similarly, the metabolism of fructose in the small bowel by intestinal fructokinase may lead to increased intestinal permeability and endotoxemia. While speculative, these observations raise the possibility that the mechanism by which fructans induce laminitis could involve intestinal and hepatic fructokinase. Further studies are indicated to determine the role of fructanases, fructose and fructokinase in equine metabolic syndrome and laminitis.
Collapse
Affiliation(s)
- Richard J Johnson
- Division of Renal Diseases and Hypertension, University of Colorado, Aurora, Colorado, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Fuse H, Fukamachi H, Inoue M, Igarashi T. Identification and functional analysis of the gene cluster for fructan utilization in Prevotella intermedia. Gene 2013; 515:291-7. [DOI: 10.1016/j.gene.2012.12.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 12/04/2012] [Accepted: 12/06/2012] [Indexed: 10/27/2022]
|
6
|
Constitutive high-level expression of a codon-optimized β-fructosidase gene from the hyperthermophile Thermotoga maritima in Pichia pastoris. Appl Microbiol Biotechnol 2012; 97:1201-12. [PMID: 22821437 DOI: 10.1007/s00253-012-4270-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 06/24/2012] [Accepted: 06/25/2012] [Indexed: 10/28/2022]
Abstract
Enzymes for use in the sugar industry are preferred to be thermotolerant. In this study, a synthetic codon-optimized gene encoding a highly thermostable β-fructosidase (BfrA, EC 3.2.1.26) from the bacterium Thermotoga maritima was expressed in the yeast Pichia pastoris. The gradual increase of the transgene dosage from one to four copies under the control of the constitutive glyceraldehyde 3-phosphate dehydrogenase promoter had an additive effect on BfrA yield without causing cell toxicity. Maximal values of cell biomass (115 g/l, dry weight) and overall invertase activity (241 U/ml) were reached at 72 h in fed-batch fermentations using cane sugar as the main carbon source for growth. Secretion driven by the Saccharomyces cerevisiae α-factor signal peptide resulted in periplasmic retention (44 %) and extracellular release (56 %) of BfrA. The presence of N-linked oligosaccharides did not influence the optimal activity, thermal stability, kinetic properties, substrate specificity, and exo-type action mode of the yeast-secreted BfrA in comparison to the native unglycosylated enzyme. Complete inversion of cane sugar at initial concentration of 60 % (w/v) was achieved by periplasmic BfrA in undisrupted cells reacting at pH 5.5 and 70 °C, with average productivity of 4.4 g of substrate hydrolyzed per grams of biomass (wet weight) per hour. The high yield of fully active glycosylated BfrA here attained by recombinant P. pastoris in a low-cost fermentation process appears to be attractive for the large-scale production of this thermostable enzyme useful for the manufacture of inverted sugar syrup.
Collapse
|
7
|
Dipasquale L, Gambacorta A, Siciliano RA, Mazzeo MF, Lama L. Purification and biochemical characterization of a native invertase from the hydrogen-producing Thermotoga neapolitana (DSM 4359). Extremophiles 2009; 13:345-54. [DOI: 10.1007/s00792-008-0222-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Accepted: 12/16/2008] [Indexed: 10/21/2022]
|
8
|
Müller M, Steller J. Comparative studies of the degradation of grass fructan and inulin by strains ofLactobacillus paracasei subsp. paracaseiandLactobacillus plantarum. ACTA ACUST UNITED AC 2008. [DOI: 10.1111/j.1365-2672.1995.tb05021.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Gniechwitz D, Reichardt N, Blaut M, Steinhart H, Bunzel M. Dietary fiber from coffee beverage: degradation by human fecal microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:6989-96. [PMID: 17658822 DOI: 10.1021/jf070646b] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Arabinogalactans and galactomannans from coffee beverages are part of the dietary fiber complex. Chemical structures and fermentability of soluble dietary fiber obtained from a standard filter coffee beverage (Coffea arabica, origin Colombia, medium roasted) by human intestinal bacteria were investigated. One cup (150 mL) of filter coffee contained approximately 0.5 g of soluble dietary fiber (enzymatic-gravimetric methodology), 62% of which were polysaccharides. The remainder was composed of Maillard reaction products and other nonidentified substances. Galactomannans and type II arabinogalactans were present in almost equal proportions. Coffee dietary fiber was readily fermented by human fecal slurries, resulting in the production of short-chain fatty acids (SCFA). After 24 h of fermentation, 85% of total carbohydrates were degraded. In general, arabinosyl units from the polysaccharide fraction were degraded at a slower rate than mannosyl and galactosyl units. In the process of depolymerization arabinogalactans were debranched and the ratio of (1-->3)-linked to (1-->6)-linked galactosyl residues decreased. Structural units composed of (1-->5)-linked arabinosyl residues were least degradable, whereas terminally linked arabinosyl residues were easily utilized. The impact of coffee fiber on numerically dominant population groups of the intestinal microbiota was investigated by fluorescence in situ hybridization combined with flow cytometry (FISH-FC). After 24 h of fermentation, an increase of about 60% of species belonging to the Bacteroides-Prevotella group was observed. The growth of bifidobacteria and lactobacilli was not stimulated.
Collapse
Affiliation(s)
- Diana Gniechwitz
- Institute of Biochemistry and Food Chemistry, Department of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | | | | | | | | |
Collapse
|
10
|
Van der Meulen R, Makras L, Verbrugghe K, Adriany T, De Vuyst L. In vitro kinetic analysis of oligofructose consumption by Bacteroides and Bifidobacterium spp. indicates different degradation mechanisms. Appl Environ Microbiol 2006; 72:1006-12. [PMID: 16461642 PMCID: PMC1392924 DOI: 10.1128/aem.72.2.1006-1012.2006] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The growth of pure cultures of Bacteroides thetaiotaomicron LMG 11262 and Bacteroides fragilis LMG 10263 on fructose and oligofructose was examined and compared to that of Bifidobacterium longum BB536 through in vitro laboratory fermentations. Gas chromatography (GC) analysis was used to determine the different fractions of oligofructose and their degradation during the fermentation process. Both B. thetaiotaomicron LMG 11262 and B. fragilis LMG 10263 were able to grow on oligofructose as fast as on fructose, succinic acid being the major metabolite produced by both strains. B. longum BB536 grew slower on oligofructose than on fructose. Acetic acid and lactic acid were the main metabolites produced when fructose was used as the sole energy source. Increased amounts of formic acid and ethanol were produced when oligofructose was used as an energy source at the cost of lactic acid. Detailed kinetic analysis revealed a preferential metabolism of the short oligofructose fractions (e.g., F2 and F3) for B. longum BB536. After depletion of the short fractions, the larger oligofructose fractions (e.g., F4, GF4, F5, GF5, and F6) were metabolized, too. Both Bacteroides strains did not display such a preferential metabolism and degraded all oligofructose fractions simultaneously, transiently increasing the fructose concentration in the medium. This suggests a different mechanism for oligofructose breakdown between the strain of Bifidobacterium and both strains of Bacteroides, which helps to explain the bifidogenic nature of inulin-type fructans.
Collapse
Affiliation(s)
- Roel Van der Meulen
- Research Group of Industrial Microbiology, Fermentation Technology and Downstream Processing (IMDO), Department of Applied Biological Sciences and Engineering, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | | | | | | | | |
Collapse
|
11
|
Ryan SM, Fitzgerald GF, van Sinderen D. Transcriptional regulation and characterization of a novel beta-fructofuranosidase-encoding gene from Bifidobacterium breve UCC2003. Appl Environ Microbiol 2005; 71:3475-82. [PMID: 16000751 PMCID: PMC1169055 DOI: 10.1128/aem.71.7.3475-3482.2005] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An operon involved in fructooligosaccharide breakdown was identified in the genome of Bifidobacterium breve UCC2003. This 2.6-kb transcriptional unit was comprised of three genes that encoded a putative permease, a conserved hypothetical protein, and a beta-fructofuranosidase. Active transcription of the operon was observed when B. breve UCC2003 was grown on sucrose or Actilight, while transcription appeared to be repressed when the organism was grown on glucose, fructose, a combination of glucose and sucrose, or a combination of fructose and sucrose. The beta-fructofuranosidase encoded by this operon was purified and biochemically characterized. The optimum pH and temperature for catalytic activity were determined to be pH 6.0 and 37 degrees C, respectively, and there was a dependence on bivalent cations, particularly manganese. The Km and Vmax values for sucrose hydrolysis were determined to be 25 +/- 2 mM and 24 +/- 3 micromol min(-1) mg(-1), respectively. Interestingly, the enzyme was shown to specifically catalyze cleavage of the beta(2-1) glycosidic bond between glucose and its neighboring fructose moiety in sucrose and other fructooligosaccharides with a relatively low degree of polymerization, and there was no detectable activity towards the beta(2-1) glycosidic bond between two fructose moieties within the same substrate. To our knowledge, such an enzymatic activity has not previously been described in bifidobacteria or other gram-positive bacteria.
Collapse
Affiliation(s)
- Sinéad M Ryan
- Alimentary Pharmabiotic Centre, National University of Ireland Cork, Western Road, Cork, Ireland.
| | | | | |
Collapse
|
12
|
Reid SJ, Abratt VR. Sucrose utilisation in bacteria: genetic organisation and regulation. Appl Microbiol Biotechnol 2005; 67:312-21. [PMID: 15660210 DOI: 10.1007/s00253-004-1885-y] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2004] [Revised: 12/14/2004] [Accepted: 12/14/2004] [Indexed: 10/25/2022]
Abstract
Sucrose is the most abundant disaccharide in the environment because of its origin in higher plant tissues, and many Eubacteria possess catalytic enzymes, such as the sucrose-6-phosphate hydrolases and sucrose phosphorylases, that enable them to metabolise this carbohydrate in a regulated manner. This review describes the range of gene architecture, uptake systems, catabolic activity and regulation of the sucrose-utilisation regulons that have been reported in the Eubacteria to date. Evidence is presented that, although there are many common features to these gene clusters and high conservation of the proteins involved, there has been a certain degree of gene shuffling. Phylogenetic analyses of these proteins supports the hypothesis that these clusters have been acquired through horizontal gene transfer via mobile elements and transposons, and this may have enabled the recipient bacteria to colonise sucrose-rich environmental niches.
Collapse
Affiliation(s)
- Sharon J Reid
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag Rondebosch, Cape Town 7701, South Africa.
| | | |
Collapse
|
13
|
Menéndez C, Hernández L, Banguela A, Paı́s J. Functional production and secretion of the Gluconacetobacter diazotrophicus fructose-releasing exo-levanase (LsdB) in Pichia pastoris. Enzyme Microb Technol 2004. [DOI: 10.1016/j.enzmictec.2003.11.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Song EK, Kim H, Sung HK, Cha J. Cloning and characterization of a levanbiohydrolase from Microbacterium laevaniformans ATCC 15953. Gene 2002; 291:45-55. [PMID: 12095678 DOI: 10.1016/s0378-1119(02)00630-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
An extracellular levanbiohydrolase gene, levM, from Microbacterium laevaniformans ATCC 15953 was cloned and its nucleotide sequence was determined. Nucleotide sequence analysis of this gene revealed a 1863 bp open reading frame coding for a protein of 621 amino acids. The deduced amino acid sequence of the levM gene exhibited 28-47% sequence identities with levanases, levanfructotransferases, and inulinases. The LevM was overexpressed by using a T7 promoter in Escherichia coli BL21 (DE3) and purified 24-fold from culture supernatant. The molecular weight of this enzyme was 68,800 Da based on the sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The optimum pH and temperature of this enzyme for levan degradation was pH 6.0 and 30 degrees C, respectively. Thin-layer and high-performance liquid chromatography analyses proved that the enzyme produced mostly levanbiose from levan in an exo-acting manner. The recombinant enzyme also hydrolyzed inulin, 1-kestose, and nystose, indicating that the enzyme cleaves not only beta-2,6-linkage of levan but also beta-2,1-linkage of fructooligosaccharides. This is the first report on a gene encoding a levanbiohydrolase that produces levanbiose as a major degradation product.
Collapse
Affiliation(s)
- Eun-Kyung Song
- Division of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 609-735, South Korea
| | | | | | | |
Collapse
|
15
|
Paludan-Müller C, Gram L, Rattray FP. Purification and characterisation of an extracellular fructan beta-fructosidase from a Lactobacillus pentosus strain isolated from fermented fish. Syst Appl Microbiol 2002; 25:13-20. [PMID: 12086179 DOI: 10.1078/0723-2020-00101] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Lactobacillus pentosus B235, which was isolated as part of the dominant microflora from a garlic containing fermented fish product, was grown in a chemically defined medium with inulin as the sole carbohydrate source. An extracellular fructan beta-fructosidase was purified to homogeneity from the bacterial supernatant by ultrafiltration, anion exchange chromatography and hydrophobic interaction chromatography. The molecular weight of the enzyme was estimated to be approximately 126 kDa by gel filtration and by SDS-PAGE. The purified enzyme had the highest activity for levan (a beta(2-->6)-linked fructan), but also hydrolysed garlic extract, (a beta(2-->1)-linked fructan with beta(2-->6)-linked fructosyl sidechains), 1,1,1-kestose, 1,1-kestose, 1-kestose, inulin (beta(2-->1)-linked fructans) and sucrose at 60, 45, 39, 12, 9 and 3%, respectively, of the activity observed for levan. Melezitose, raffinose and stachyose were not hydrolysed by the enzyme. The fructan beta-fructosidase was inhibited by p-chloromercuribenzoate, EDTA, Fe2+, Cu2+, Zn2+ and Co2+, whereas Mn2+ and Cu2+ had no effect. The sequence of the first 20 N-terminal amino acids was: Ala-Thr-Ser-Ala-Ser-Ser-Ser-Gln-Ile-Ser-Gln-Asn-Asn-Thr-Gln-Thr-Ser-Asp-Val-Val. The enzyme had temperature and pH optima at 25 degrees C and 5.5, respectively. At concentrations of up to 12% NaCl no adverse effect on the enzyme activity was observed.
Collapse
Affiliation(s)
- Christine Paludan-Müller
- Danish Institute for Fisheries Research, Department of Seafood Research, Søltofts Plads, Technical University of Denmark, Lyngby.
| | | | | |
Collapse
|
16
|
Kuwahara T, Sarker MR, Ugai H, Akimoto S, Shaheduzzaman SM, Nakayama H, Miki T, Ohnishi Y. Physical and genetic map of the Bacteroides fragilis YCH46 chromosome. FEMS Microbiol Lett 2002; 207:193-7. [PMID: 11958939 DOI: 10.1111/j.1574-6968.2002.tb11050.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The chromosome of Bacteroides fragilis strain YCH46 was shown to be a single circular DNA molecule of about 5.3 Mb having 16 NotI, seven AscI, and six I-CeuI sites. A physical map of the chromosome was constructed by four independent experimental approaches: linking clone analysis, cross-Southern hybridization, partial restriction digestion, and two-dimensional pulsed-field gel electrophoresis. Six rRNA operons and 10 known genes were localized on the physical map.
Collapse
Affiliation(s)
- Tomomi Kuwahara
- Department of Bacteriology, School of Medicine, The University of Tokushima, Tokushima 770-8503, Kuramoto-cho, Japan
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Bayley DP, Rocha ER, Smith CJ. Analysis of cepA and other Bacteroides fragilis genes reveals a unique promoter structure. FEMS Microbiol Lett 2000; 193:149-54. [PMID: 11094294 DOI: 10.1111/j.1574-6968.2000.tb09417.x] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
There is little known about the sequences that mediate the initiation of transcription in Bacteroides fragilis, thus transcriptional start sites for 13 new genes were determined and a total of 23 promoter regions upstream of the start sites were aligned and similarities were noted. A region at about -7 contained a consensus sequence of TAnnTTTG and upstream in the region centered at about -33, another TTTG motif was found in the majority of promoters examined. Canonical, Escherichia coli, -10 and -35 consensus sequences were not readily apparent. Mutations within the -7 motif indicated the TTTG residues were essential since changes in this sequence reduced the promoter activity to that of a no promoter control in a chloramphenicol acetyl transferase transcriptional fusion model system. Additional fusion studies indicated that the -33 region was also necessary for full activity.
Collapse
Affiliation(s)
- D P Bayley
- Department of Microbiology and Immunology, 600 Moye Blvd., East Carolina University School of Medicine, Greenville, NC 27858-4354, USA
| | | | | |
Collapse
|
18
|
Pessoni RA, Figueiredo-Ribeiro RC, Braga MR. Extracellular inulinases from Penicillium janczewskii, a fungus isolated from the rhizosphere of Vernonia herbacea (Asteraceae). J Appl Microbiol 1999; 87:141-7. [PMID: 10432595 DOI: 10.1046/j.1365-2672.1999.00805.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Extracellular inulinases from Penicillium janczewskii were obtained from the filtrate of 12 day-old cultures supplemented with inulin from Vernonia herbacea. Crude filtrates and partially-purified enzyme preparations (peaks I and II) were active on inulin, sucrose and raffinose. The apparent M(r) of the enzymes from peaks I and II were 48 and 66 kDa, respectively. The apparent K(m) (mmol l-1) values of peak I were 0.43 for inulin and 18.7 for sucrose; for peak II they were 0.87 and 18.5 for inulin and sucrose, respectively. Their temperature and pH optima were 55 degrees C and 5.0, respectively. Both peaks catalysed the hydrolysis of beta-(2,1) fructans more rapidly than beta-(2,6) fructans. Free fructose was the predominant product released from inulin, indicating that these enzymes display exo-inulinase activity. In view of these characteristics, the yield and the high specific activity towards beta-(2,1) fructans, inulinases from P. janczewskii can be utilized for the preparation of fructose syrup from inulin.
Collapse
Affiliation(s)
- R A Pessoni
- Seção de Fisiologia e Bioquímica de Plantas, Instituto de Botânica de São Paulo, Brazil
| | | | | |
Collapse
|
19
|
Chávez FP, Pons T, Delgado JM, Rodríguez L. Cloning and sequence analysis of the gene encoding invertase (INV1) from the yeast Candida utilis. Yeast 1998; 14:1223-32. [PMID: 9791893 DOI: 10.1002/(sici)1097-0061(19980930)14:13<1223::aid-yea301>3.0.co;2-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The gene INV1 encoding invertase from the yeast Candida utilis has been cloned using a homologous PCR hybridization probe, amplified with two sets of degenerate primers designed considering sequence comparisons between yeast invertases. The cloned gene was sequenced and found to encode a polypeptide of 533 amino acids that contain a 26 amino-acid signal peptide and 12 potential N-glycosylation sites. The nucleotide sequences of the 5' and 3' non-coding regions were found to contain motifs probably involved in initiation, regulation and termination of gene transcription. The amino-acid sequence shows significant identity with other yeast, bacterial and plant beta-fructofuranosidases. The INV1 gene from C. utilis was able to complement functionally the suc2 mutation of S. cerevisiae.
Collapse
Affiliation(s)
- F P Chávez
- Bioindustry Division, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | | | | | | |
Collapse
|
20
|
Abstract
A novel endo-levanase producing bacterium belonging to the Bacillus family has been isolated from soil. The enzyme was characterized and found to have no exo-beta-fructofuranosidase activity. The endo-levanase gene was cloned and sequenced. Homology searches have shown that the C-terminal domain of the enzyme is homologous to a number of known beta-fructofuranosidases, including exo-levanase from Bacillus subtilis and yeast invertases. The N-terminal region of the endo-levanase which is homologous to the C-terminal sequence of the B. subtilis levanase appears to be a levan-binding domain.
Collapse
|
21
|
Baggio L, Morrison M. The NAD(P)H-utilizing glutamate dehydrogenase of Bacteroides thetaiotaomicron belongs to enzyme family I, and its activity is affected by trans-acting gene(s) positioned downstream of gdhA. J Bacteriol 1996; 178:7212-20. [PMID: 8955404 PMCID: PMC178635 DOI: 10.1128/jb.178.24.7212-7220.1996] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Previous studies have suggested that regulation of the enzymes of ammonia assimilation in human colonic Bacteroides species is coordinated differently than in other eubacteria. The gene encoding an NAD(P)H-dependent glutamate dehydrogenase (gdhA) in Bacteroides thetaiotaomicron was cloned and expressed in Escherichia coli by mutant complementation from the recombinant plasmid pANS100. Examination of the predicted GdhA amino acid sequence revealed that this enzyme possesses motifs typical of the family I-type hexameric GDH proteins. Northern blot analysis with a gdhA-specific probe indicated that a single transcript with an electrophoretic mobility of approximately 1.6 kb was produced in both B. thetaiotaomicron and E. coli gdhA+ transformants. Although gdhA transcription was unaffected, no GdhA enzyme activity could be detected in E. coli transformants when smaller DNA fragments from pANS100, which contained the entire gdhA gene, were analyzed. Enzyme activity was restored if these E. coli strains were cotransformed with a second plasmid, which contained a 3-kb segment of DNA located downstream of the gdhA coding region. Frameshift mutagenesis within the DNA downstream of gdhA in pANS100 also resulted in the loss of GdhA enzyme activity. Collectively, these results are interpreted as evidence for the role of an additional gene product(s) in modulating the activity of GDH enzyme activity. Insertional mutagenesis experiments which led to disruption of the gdhA gene on the B. thetaiotaomicron chromosome indicated that gdhA mutants were not glutamate auxotrophs, but attempts to isolate similar mutants with insertion mutations in the region downstream of the gdhA gene were unsuccessful.
Collapse
Affiliation(s)
- L Baggio
- Department of Animal Sciences, University of Nebraska, Lincoln 68583, USA
| | | |
Collapse
|
22
|
Otto BR, Kusters JG, Luirink J, de Graaf FK, Oudega B. Molecular characterization of a heme-binding protein of Bacteroides fragilis BE1. Infect Immun 1996; 64:4345-50. [PMID: 8926109 PMCID: PMC174377 DOI: 10.1128/iai.64.10.4345-4350.1996] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
An iron-repressible 44-kDa outer membrane protein plays a crucial role in the acquisition of heme by the anaerobic bacterium Bacteroides fragilis. The DNA sequence of the gene encoding the 44-kDa protein (hupA) was determined. The hupA gene encodes a protein of 431 amino acid residues with a calculated molecular mass of 48,189 Da. The hupA gene is preceded by an open reading frame of 480 bp that probably encodes a protein with a calculated molecular mass of 18,073 Da. hupA and this open reading frame are likely organized in an operon, and a sequence homologous to the Escherichia coli consensus Fur box was present in the putative promoter region of the operon. Heme-binding studies showed that HupA binds heme. Analysis of the deduced amino acid sequence revealed signature heme-binding consensus motifs, characteristic of heme lyases. Subcellular localization studies in E. coli revealed that HupA was mainly found in the cytoplasmic membrane but not in the outer membrane of E. coli. This suggested that B. fragilis uses another strategy for the translocation of this outer membrane protein across its cell envelope than E. coli does. HupA did not have significant homology with other putative bacterial heme receptors.
Collapse
Affiliation(s)
- B R Otto
- Department of Molecular Microbiology, Institute of Molecular Biological Sciences, Biocentrum Amsterdam, Vrije Universiteit, The Netherlands.
| | | | | | | | | |
Collapse
|
23
|
Norman JM, Giffard PM. Biochemical studies on LevJ, a fructanase from Actinomyces naeslundii T14V. Arch Oral Biol 1996; 41:565-70. [PMID: 8937647 DOI: 10.1016/0003-9969(96)00017-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The Actinomyces naeslundii T14V gene levJ encodes a sucrase with fructanase activity and may be responsible for the fructanase activity observed bound to the surface of A. naeslundii T14V cells. A large proportion of LevJ expressed in Escherichia coli was translocated to the periplasm, and translocation and enzymatic activity were not affected by deletion of a putative cell-wall anchor sequence. The pH optimum of the enzyme was found to be between 5.5 and 6.5 whether the substrate was sucrose or inulin, although inulinase activity was more sensitive than sucrose activity to perturbation of the pH from the optimum. The relation between LevJ inulinase activity and pH was similar to that of A. naeslundii whole cells. LevJ exhibited standard saturation kinetics with sucrose, and the K(m) was calculated to be 89 mM, but it was not possible to calculate a K(m) for inulin. Evidence for inhibition of inulinase activity but not sucrase activity by high concentrations of inulin was obtained.
Collapse
Affiliation(s)
- J M Norman
- Centre for Molecular Biotechnology, School of Life Science, Queensland University of Technology, Australia
| | | |
Collapse
|
24
|
Norman JM, Bunny KL, Giffard PM. Characterization of levJ, a sucrase/fructanase-encoding gene from Actinomyces naeslundii T14V, and comparison of its product with other sucrose-cleaving enzymes. Gene X 1995; 152:93-8. [PMID: 7828936 DOI: 10.1016/0378-1119(94)00695-o] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A library of Actinomyces naeslundii T14V DNA was constructed in plasmid pUC18 and from this several sucrose-positive clones were isolated. Evidence was obtained that all these clones contained the same gene. One clone, which carried a plasmid that was named pPNG102, was chosen for further study. It was found that the enzyme specified by this plasmid hydrolyzed sucrose, raffinose, inulin and levan, but not dextran, and did not synthesize fructan or glucan from sucrose. The sequence of the insert in pPNG102 was determined and was found to contain a large ORF that specifies a polypeptide of 99,319 Da with similarity to other sucrases. This gene was named levJ. The deduced amino acid (aa) sequence contained both a potential signal sequence and potential C-terminal cell envelope attachment domain. Alignments revealed an internal 331-aa domain not present in other levanases and sucrases. A neighbour-joining tree showed that sucrases of eukaryotic origin form a cluster with eubacterial sucrase/fructanases, and this cluster does not include other eubacterial sucrases. It is postulated that certain eukaryotic sucrase-encoding genes are of eubacterial origin.
Collapse
Affiliation(s)
- J M Norman
- Centre for Molecular Biotechnology, School of Life Science, Queensland University of Technology, Brisbane, Australia
| | | | | |
Collapse
|
25
|
Podglajen I, Breuil J, Collatz E. Insertion of a novel DNA sequence, 1S1186, upstream of the silent carbapenemase gene cfiA, promotes expression of carbapenem resistance in clinical isolates of Bacteroides fragilis. Mol Microbiol 1994; 12:105-14. [PMID: 8057831 DOI: 10.1111/j.1365-2958.1994.tb00999.x] [Citation(s) in RCA: 119] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A small number of isolates of Bacteroides fragilis, an anaerobic pathogen of the human intestinal flora, carries a copy (or copies) of the carbapenemresistance gene, cfiA, which may be silent or expressed. We have studied the mechanism of activation of the frequently silent gene in in vitro-selected mutants and in clinical isolates. In both types of strains, activation was observed as the consequence of the insertion, at several possible sites, of a novel 1.3 kb insertion sequence, IS1186, immediately upstream of the carbapenemase gene. IS1186 has two open reading frames, on opposite strands, with coding capacities for a 41.2 kDa (ORF1) and a 22.5kDa (ORF2) protein. The 41.2kDa protein has homology with some proteins predicted from open reading frames of IS elements or DNA direct repeats of aerobic, but not anaerobic, Gram-negative bacteria. Upon insertion, transcription of cfiA was found to be driven from a promoter identified on the right end of IS1186. In one instance, insertion occurred into the putative ribosome-binding site of cfiA, leaving intact the tetranucleotide AGAA which is concluded to be a fully functional ribosome-binding site. Between 3 and 14 copies of IS1186 were detected per genome and the element was found, within the species B. fragilis, almost exclusively in the subgroup carrying the cifA gene.
Collapse
Affiliation(s)
- I Podglajen
- Laboratoire de Microbiologie Médicale, Université Paris VI, France
| | | | | |
Collapse
|
26
|
Bezzate S, Steinmetz M, Aymerich S. Cloning, sequencing, and disruption of a levanase gene of Bacillus polymyxa CF43. J Bacteriol 1994; 176:2177-83. [PMID: 8157587 PMCID: PMC205337 DOI: 10.1128/jb.176.8.2177-2183.1994] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The Bacillus polymyxa CF43 lelA gene, expressing both sucrose and fructan hydrolase activities, was isolated from a genomic library of B. polymyxa screened in Bacillus subtilis. The gene was detected as expressing sucrose hydrolase activity; B. subtilis transformants did not secrete the lelA gene product (LelA) into the extracellular medium. A 1.7-kb DNA fragment sufficient for lelA expression in Escherichia coli was sequenced. It contains a 548-codon open reading frame. The deduced amino acid sequence shows 54% identity with mature B. subtilis levanase and is similar to other fructanases and sucrases (beta-D-fructosyltransferases). Multiple-sequence alignment of 14 of these proteins revealed several previously unreported features. LelA appears to be a 512-amino-acid polypeptide containing no canonical signal peptide. The hydrolytic activities of LelA on sucrose, levan, and inulin were compared with those of B. subtilis levanase and sucrase, confirming that LelA is indeed a fructanase. The lelA gene in the chromosome of B. polymyxa was disrupted with a chloramphenicol resistance gene (cat) by "inter-gramic" conjugation: the lelA::cat insertion on a mobilizable plasmid was transferred from an E. coli transformant to B. polymyxa CF43, and B. polymyxa transconjugants containing the lelA::cat construct replacing the wild-type lelA gene in their chromosomes were selected directly. The growth of the mutant strain on levan, inulin, and sucrose was not affected.
Collapse
Affiliation(s)
- S Bezzate
- Institut National de la Recherche Agronomique, Thiverval-Grignon, France
| | | | | |
Collapse
|