1
|
Yang J, Banas VS, Rivera GSM, Wencewicz TA. Siderophore Synthetase DesD Catalyzes N-to-C Condensation in Desferrioxamine Biosynthesis. ACS Chem Biol 2023; 18:1266-1270. [PMID: 37207292 DOI: 10.1021/acschembio.3c00167] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Desferrioxamine siderophores are assembled by the nonribosomal-peptide-synthetase-independent siderophore (NIS) synthetase enzyme DesD via ATP-dependent iterative condensation of three N1-hydroxy-N1-succinyl-cadaverine (HSC) units. Current knowledge of NIS enzymology and the desferrioxamine biosynthetic pathway does not account for the existence of most known members of this natural product family, which differ in substitution patterns of the N- and C-termini. The directionality of desferrioxamine biosynthetic assembly, N-to-C versus C-to-N, is a longstanding knowledge gap that is limiting further progress in understanding the origins of natural products in this structural family. Here, we establish the directionality of desferrioxamine biosynthesis using a chemoenzymatic approach with stable isotope incorporation and dimeric substrates. We propose a mechanism where DesD catalyzes the N-to-C condensation of HSC units to establish a unifying biosynthetic paradigm for desferrioxamine natural products in Streptomyces.
Collapse
Affiliation(s)
- Jinping Yang
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Victoria S Banas
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Gerry S M Rivera
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Timothy A Wencewicz
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, United States
| |
Collapse
|
2
|
Production and Potential Genetic Pathways of Three Different Siderophore Types in Streptomyces tricolor Strain HM10. FERMENTATION 2022. [DOI: 10.3390/fermentation8080346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Siderophores are iron-chelating low-molecular-weight compounds that bind iron (Fe3+) with a high affinity for transport into the cell. The newly isolated strain Streptomyces tricolor HM10 secretes a pattern of secondary metabolites. Siderophore molecules are the representatives of such secondary metabolites. S. tricolor HM10 produces catechol, hydroxamate, and carboxylate types of siderophores. Under 20 μM FeCl3 conditions, S. tricolor HM10 produced up to 6.00 µg/mL of catechol siderophore equivalent of 2,3-DHBA (2,3-dihydroxybenzoic acid) after 4 days from incubation. In silico analysis of the S. tricolor HM10 genome revealed three proposed pathways for siderophore biosynthesis. The first pathway, consisting of five genes, predicted the production of catechol-type siderophore similar to petrobactin from Bacillus anthracis str. Ames. The second proposed pathway, consisting of eight genes, is expected to produce a hydroxamate-type siderophore similar to desferrioxamine B/E from Streptomyces sp. ID38640, S. griseus NBRC 13350, and/or S. coelicolor A3(2). The third pathway exhibited a pattern identical to the carboxylate xanthoferrin siderophore from Xanthomonas oryzae. Thus, Streptomyces strain HM10 could produce three different types of siderophore, which could be an incentive to use it as a new source for siderophore production in plant growth-promoting, environmental bioremediation, and drug delivery strategy.
Collapse
|
3
|
Yang J, Banas VS, Patel KD, Rivera GSM, Mydy LS, Gulick AM, Wencewicz TA. An acyl-adenylate mimic reveals the structural basis for substrate recognition by the iterative siderophore synthetase DesD. J Biol Chem 2022; 298:102166. [PMID: 35750210 PMCID: PMC9356276 DOI: 10.1016/j.jbc.2022.102166] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/13/2022] [Accepted: 06/16/2022] [Indexed: 11/18/2022] Open
Abstract
Siderophores are conditionally essential metabolites used by microbes for environmental iron sequestration. Most Streptomyces strains produce hydroxamate-based desferrioxamine (DFO) siderophores composed of repeating units of N1-hydroxy-cadaverine (or N1-hydroxy-putrescine) and succinate. The DFO biosynthetic operon, desABCD, is highly conserved in Streptomyces; however, expression of desABCD alone does not account for the vast structural diversity within this natural product class. Here, we report the in vitro reconstitution and biochemical characterization of four DesD orthologs from Streptomyces strains that produce unique DFO siderophores. Under in vitro conditions, all four DesD orthologs displayed similar saturation steady-state kinetics (Vmax = 0.9–2.5 μM⋅min−1) and produced the macrocyclic trimer DFOE as the favored product, suggesting a conserved role for DesD in the biosynthesis of DFO siderophores. We further synthesized a structural mimic of N1-hydroxy-N1-succinyl-cadaverine (HSC)-acyl-adenylate, the HSC-acyl sulfamoyl adenosine analog (HSC-AMS), and obtained crystal structures of DesD in the ATP-bound, AMP/PPi-bound, and HSC-AMS/Pi-bound forms. We found HSC-AMS inhibited DesD orthologs (IC50 values = 48–53 μM) leading to accumulation of linear trimeric DFOG and di-HSC at the expense of macrocyclic DFOE. Addition of exogenous PPi enhanced DesD inhibition by HSC-AMS, presumably via stabilization of the DesD–HSC-AMS complex, similar to the proposed mode of adenylate stabilization where PPi remains buried in the active site. In conclusion, our data suggest that acyl-AMS derivatives may have utility as chemical probes and bisubstrate inhibitors to reveal valuable mechanistic and structural insight for this unique family of adenylating enzymes.
Collapse
Affiliation(s)
- Jinping Yang
- Department of Chemistry, Washington University in St Louis, St Louis, Missouri, USA
| | - Victoria S Banas
- Department of Chemistry, Washington University in St Louis, St Louis, Missouri, USA
| | - Ketan D Patel
- Department of Structural Biology, Jacobs School of Medicine & Biomedical Sciences at the University at Buffalo, Buffalo, New York, USA
| | - Gerry S M Rivera
- Department of Chemistry, Washington University in St Louis, St Louis, Missouri, USA
| | - Lisa S Mydy
- Department of Structural Biology, Jacobs School of Medicine & Biomedical Sciences at the University at Buffalo, Buffalo, New York, USA
| | - Andrew M Gulick
- Department of Structural Biology, Jacobs School of Medicine & Biomedical Sciences at the University at Buffalo, Buffalo, New York, USA.
| | - Timothy A Wencewicz
- Department of Chemistry, Washington University in St Louis, St Louis, Missouri, USA.
| |
Collapse
|
4
|
Chemistry and Biomedical Applications of Fungal Siderophores. Fungal Biol 2021. [DOI: 10.1007/978-3-030-53077-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
5
|
Mukosera GT, Liu T, Manaen M, Zhu L, Power G, Schroeder H, Blood AB. Deferoxamine produces nitric oxide under ferricyanide oxidation, blood incubation, and UV-irradiation. Free Radic Biol Med 2020; 160:458-470. [PMID: 32828952 PMCID: PMC11059783 DOI: 10.1016/j.freeradbiomed.2020.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/03/2020] [Accepted: 08/09/2020] [Indexed: 11/29/2022]
Abstract
Deferoxamine (DFO), an iron chelator, is used therapeutically for the removal of excess iron in multiple clinical conditions such as beta thalassemia and intracerebral hemorrhage. DFO is also used as an iron chelator and hypoxia-mimetic agent in in vivo and in vitro basic research. Here we unexpectedly discover DFO to be a nitric oxide (NO) precursor in experiments where it was intended to act as an iron chelator. Production of NO from aqueous solutions of DFO was directly observed by ozone-based chemiluminescence using a ferricyanide-based assay and was confirmed by electron paramagnetic resonance (EPR). DFO also produced NO following exposure to ultraviolet light, and its incubation with sheep adult and fetal blood resulted in considerable formation of iron nitrosyl hemoglobin, as confirmed by both visible spectroscopy and EPR. These results suggest that experiments using DFO can be confounded by concomitant production of NO, and offer new insight into some of DFO's unexplained clinical side effects such as hypotension.
Collapse
Affiliation(s)
- George T Mukosera
- Lawrence D Longo Center for Perinatal Biology and Department of Pediatrics, Loma Linda University, 11175 Campus Street, Loma Linda, CA, 92354, USA
| | - Taiming Liu
- Lawrence D Longo Center for Perinatal Biology and Department of Pediatrics, Loma Linda University, 11175 Campus Street, Loma Linda, CA, 92354, USA
| | - Meshach Manaen
- Lawrence D Longo Center for Perinatal Biology and Department of Pediatrics, Loma Linda University, 11175 Campus Street, Loma Linda, CA, 92354, USA
| | - Lingchao Zhu
- Department of Chemistry, University of California-Riverside 501 Big Springs Road, Riverside, CA 92521, USA
| | - Gordon Power
- Lawrence D Longo Center for Perinatal Biology and Department of Pediatrics, Loma Linda University, 11175 Campus Street, Loma Linda, CA, 92354, USA
| | - Hobe Schroeder
- Lawrence D Longo Center for Perinatal Biology and Department of Pediatrics, Loma Linda University, 11175 Campus Street, Loma Linda, CA, 92354, USA
| | - Arlin B Blood
- Lawrence D Longo Center for Perinatal Biology and Department of Pediatrics, Loma Linda University, 11175 Campus Street, Loma Linda, CA, 92354, USA.
| |
Collapse
|
6
|
Rapid detection of the aspergillosis biomarker triacetylfusarinine C using interference-enhanced Raman spectroscopy. Anal Bioanal Chem 2020; 412:6351-6360. [PMID: 32170382 PMCID: PMC7442771 DOI: 10.1007/s00216-020-02571-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/20/2020] [Accepted: 03/02/2020] [Indexed: 11/02/2022]
Abstract
Triacetylfusarinine C (TAFC) is a siderophore produced by certain fungal species and might serve as a highly useful biomarker for the fast diagnosis of invasive aspergillosis. Due to its renal elimination, the biomarker is found in urine samples of patients suffering from Aspergillus infections. Accordingly, non-invasive diagnosis from this easily obtainable body fluid is possible. Within our contribution, we demonstrate how Raman microspectroscopy enables a sensitive and specific detection of TAFC. We characterized the TAFC iron complex and its iron-free form using conventional and interference-enhanced Raman spectroscopy (IERS) and compared the spectra with the related compound ferrioxamine B, which is produced by bacterial species. Even though IERS only offers a moderate enhancement of the Raman signal, the employment of respective substrates allowed lowering the detection limit to reach the clinically relevant range. The achieved limit of detection using IERS was 0.5 ng of TAFC, which is already well within the clinically relevant range. By using an extraction protocol, we were able to detect 1.4 μg/mL TAFC via IERS from urine within less than 3 h including sample preparation and data analysis. We could further show that TAFC and ferrioxamine B can be clearly distinguished by means of their Raman spectra even in very low concentrations.
Collapse
|
7
|
Wang ZJ, Zhou H, Zhong G, Huo L, Tang YJ, Zhang Y, Bian X. Genome Mining and Biosynthesis of Primary Amine-Acylated Desferrioxamines in a Marine Gliding Bacterium. Org Lett 2020; 22:939-943. [PMID: 31994894 DOI: 10.1021/acs.orglett.9b04490] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Genome mining of Fulvivirga sp. W222 revealed a desferrioxamine-like biosynthetic gene cluster containing an unknown gene fulF that is conserved in many Bacteroidetes species. A series of primary amine-acylated desferrioxamine G1 analogues, fulvivirgamides, were identified, and fulvivirgamides A2, B2, B3, and B4 (1-4) were purified and characterized. The function of FulF, which is a novel acyltransferase for the acylation of the primary amine of Desferrioxamine G1, was verified by heterologous expression and feeding experiments.
Collapse
Affiliation(s)
- Zong-Jie Wang
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology , Shandong University , Qingdao , Shandong 266237 , China
| | - Haibo Zhou
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology , Shandong University , Qingdao , Shandong 266237 , China
| | - Guannan Zhong
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology , Shandong University , Qingdao , Shandong 266237 , China
| | - Liujie Huo
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology , Shandong University , Qingdao , Shandong 266237 , China
| | - Ya-Jie Tang
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology , Shandong University , Qingdao , Shandong 266237 , China
| | - Youming Zhang
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology , Shandong University , Qingdao , Shandong 266237 , China
| | - Xiaoying Bian
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology , Shandong University , Qingdao , Shandong 266237 , China
| |
Collapse
|
8
|
Pham TN, Loupias P, Dassonville-Klimpt A, Sonnet P. Drug delivery systems designed to overcome antimicrobial resistance. Med Res Rev 2019; 39:2343-2396. [PMID: 31004359 DOI: 10.1002/med.21588] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/13/2019] [Accepted: 03/31/2019] [Indexed: 02/06/2023]
Abstract
Antimicrobial resistance has emerged as a huge challenge to the effective treatment of infectious diseases. Aside from a modest number of novel anti-infective agents, very few new classes of antibiotics have been successfully developed for therapeutic use. Despite the research efforts of numerous scientists, the fight against antimicrobial (ATB) resistance has been a longstanding continued effort, as pathogens rapidly adapt and evolve through various strategies, to escape the action of ATBs. Among other mechanisms of resistance to antibiotics, the sophisticated envelopes surrounding microbes especially form a major barrier for almost all anti-infective agents. In addition, the mammalian cell membrane presents another obstacle to the ATBs that target intracellular pathogens. To negotiate these biological membranes, scientists have developed drug delivery systems to help drugs traverse the cell wall; these are called "Trojan horse" strategies. Within these delivery systems, ATB molecules can be conjugated with one of many different types of carriers. These carriers could include any of the following: siderophores, antimicrobial peptides, cell-penetrating peptides, antibodies, or even nanoparticles. In recent years, the Trojan horse-inspired delivery systems have been increasingly reported as efficient strategies to expand the arsenal of therapeutic solutions and/or reinforce the effectiveness of conventional ATBs against drug-resistant microbes, while also minimizing the side effects of these drugs. In this paper, we aim to review and report on the recent progress made in these newly prevalent ATB delivery strategies, within the current context of increasing ATB resistance.
Collapse
Affiliation(s)
- Thanh-Nhat Pham
- Université de Picardie Jules Verne, AGIR: Agents Infectieux, Résistance et Chimiothérapie, Amiens, France
| | - Pauline Loupias
- Université de Picardie Jules Verne, AGIR: Agents Infectieux, Résistance et Chimiothérapie, Amiens, France
| | | | - Pascal Sonnet
- Université de Picardie Jules Verne, AGIR: Agents Infectieux, Résistance et Chimiothérapie, Amiens, France
| |
Collapse
|
9
|
Schwabe R, Anke MK, Szymańska K, Wiche O, Tischler D. Analysis of desferrioxamine-like siderophores and their capability to selectively bind metals and metalloids: development of a robust analytical RP-HPLC method. Res Microbiol 2018; 169:598-607. [PMID: 30138722 DOI: 10.1016/j.resmic.2018.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 08/06/2018] [Accepted: 08/08/2018] [Indexed: 10/28/2022]
Abstract
The Actinobacterium Gordonia rubripertincta CWB2 (DSM 46758) produces hydroxamate-type siderophores (188 mg L-1) under iron limitation. Analytical reversed-phase HPLC allowed determining a single peak of ferric iron chelating compounds from culture broth which was confirmed by the Fe-CAS assay. Elution profile and its absorbance spectrum were similar to those of commercial (des)ferrioxamine B which was used as reference compound. This confirms previously made assumptions and shows for the first time that the genus Gordonia produces desferrioxamine-like siderophores. The reversed-phase HPLC protocol was optimized to separate metal-free and -loaded oxamines. This allowed to determine siderophore concentrations in solutions as well as metal affinity. The metal loading of oxamines was confirmed by ICP-MS. As a result, it was demonstrated that desferrioxamine prefers trivalent metal ions (Fe3+ > Ga3+ > V3+ > Al3+) over divalent ones. In addition, we aimed to show the applicability of the newly established reversed-phase HPLC protocol and to increase the re-usability of desferrioxamines as metal chelators by immobilization on mesocellular silica foam carriers. The siderophores obtained from strain CWB2 and commercial desferrioxamine B were successfully linked to the carrier with a high yield (up to 95%) which was verified by the HPLC method. Metal binding studies demonstrated that metals can be bound to non-immobilized and to the covalently linked desferrioxamines, but also to the carrier material itself. The latter was found to be unspecific and, therefore, the effect of the carrier material remains a field of future research. By means of a reversed CAS assay for various elements (Nd, Gd, La, Er, Al, Ga, V, Au, Fe, As) it was possible to demonstrate improved Ga3+- and Nd3+-binding to desferrioxamine loaded mesoporous silica carriers. The combination of the robust reversed-phase HPLC method and various CAS assays provides new avenues to screen for siderophore producing strains, and to control purification and immobilization of siderophores.
Collapse
Affiliation(s)
- Ringo Schwabe
- Institute of Biological Sciences, Environmental Microbiology Group, TU Bergakademie Freiberg, Leipziger Straße 29, 09599, Freiberg, Germany.
| | - Marlene Kirstin Anke
- Institute of Biological Sciences, Environmental Microbiology Group, TU Bergakademie Freiberg, Leipziger Straße 29, 09599, Freiberg, Germany.
| | - Katarzyna Szymańska
- Department of Chemical Engineering and Process Design, Silesian University of Technology, Ks. M. Strzody 7, 44-100, Gliwice, Poland.
| | - Oliver Wiche
- Institute of Biological Sciences, Biology and Ecology Group, TU Bergakademie Freiberg, Leipziger Straße 29, 09599, Freiberg, Germany.
| | - Dirk Tischler
- Institute of Biological Sciences, Environmental Microbiology Group, TU Bergakademie Freiberg, Leipziger Straße 29, 09599, Freiberg, Germany; Microbial Biotechnology, Ruhr University Bochum, Universitätsstr. 150, 44801, Bochum, Germany.
| |
Collapse
|
10
|
Li Y, Zhang C, Liu C, Ju J, Ma J. Genome Sequencing of Streptomyces atratus SCSIOZH16 and Activation Production of Nocardamine via Metabolic Engineering. Front Microbiol 2018; 9:1269. [PMID: 29963027 PMCID: PMC6011815 DOI: 10.3389/fmicb.2018.01269] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 05/24/2018] [Indexed: 11/25/2022] Open
Abstract
The Actinomycetes are metabolically flexible microorganisms capable of producing a wide range of interesting compounds, including but by no means limited to, siderophores which have high affinity for ferric iron. In this study, we report the complete genome sequence of marine-derived Streptomyces atratus ZH16 and the activation of an embedded siderophore gene cluster via the application of metabolic engineering methods. The S. atratus ZH16 genome reveals that this strain has the potential to produce 26 categories of natural products (NPs) barring the ilamycins. Our activation studies revealed S. atratus SCSIO ZH16 to be a promising source of the production of nocardamine-type (desferrioxamine) compounds which are important in treating acute iron intoxication and performing ecological remediation. We conclude that metabolic engineering provides a highly effective strategy by which to discover drug-like compounds and new NPs in the genomic era.
Collapse
Affiliation(s)
- Yan Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chunyan Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chengxiong Liu
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, China
| | - Jianhua Ju
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Junying Ma
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
Razmilic V, Castro JF, Andrews B, Asenjo JA. Analysis of metabolic networks of Streptomyces leeuwenhoekii C34 by means of a genome scale model: Prediction of modifications that enhance the production of specialized metabolites. Biotechnol Bioeng 2018; 115:1815-1828. [PMID: 29578590 DOI: 10.1002/bit.26598] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 03/03/2018] [Accepted: 03/19/2018] [Indexed: 11/08/2022]
Abstract
The first genome scale model (GSM) for Streptomyces leeuwenhoekii C34 was developed to study the biosynthesis pathways of specialized metabolites and to find metabolic engineering targets for enhancing their production. The model, iVR1007, consists of 1,722 reactions, 1,463 metabolites, and 1,007 genes, it includes the biosynthesis pathways of chaxamycins, chaxalactins, desferrioxamines, ectoine, and other specialized metabolites. iVR1007 was validated using experimental information of growth on 166 different sources of carbon, nitrogen and phosphorous, showing an 83.7% accuracy. The model was used to predict metabolic engineering targets for enhancing the biosynthesis of chaxamycins and chaxalactins. Gene knockouts, such as sle03600 (L-homoserine O-acetyltransferase), and sle39090 (trehalose-phosphate synthase), that enhance the production of the specialized metabolites by increasing the pool of precursors were identified. Using the algorithm of flux scanning based on enforced objective flux (FSEOF) implemented in python, 35 and 25 over-expression targets for increasing the production of chaxamycin A and chaxalactin A, respectively, that were not directly associated with their biosynthesis routes were identified. Nineteen over-expression targets that were common to the two specialized metabolites studied, like the over-expression of the acetyl carboxylase complex (sle47660 (accA) and any of the following genes: sle44630 (accA_1) or sle39830 (accA_2) or sle27560 (bccA) or sle59710) were identified. The predicted knockouts and over-expression targets will be used to perform metabolic engineering of S. leeuwenhoekii C34 and obtain overproducer strains.
Collapse
Affiliation(s)
- Valeria Razmilic
- Department of Chemical Engineering and Biotechnology, Centre for Biotechnology and Bioengineering (CeBiB), Universidad de Chile, Santiago, Chile
| | - Jean F Castro
- Department of Chemical Engineering and Biotechnology, Centre for Biotechnology and Bioengineering (CeBiB), Universidad de Chile, Santiago, Chile
| | - Barbara Andrews
- Department of Chemical Engineering and Biotechnology, Centre for Biotechnology and Bioengineering (CeBiB), Universidad de Chile, Santiago, Chile
| | - Juan A Asenjo
- Department of Chemical Engineering and Biotechnology, Centre for Biotechnology and Bioengineering (CeBiB), Universidad de Chile, Santiago, Chile
| |
Collapse
|
12
|
Streptomyces metabolites in divergent microbial interactions. ACTA ACUST UNITED AC 2016; 43:143-8. [DOI: 10.1007/s10295-015-1680-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 08/27/2015] [Indexed: 12/11/2022]
Abstract
Abstract
Streptomyces and related bacteria produce a wide variety of secondary metabolites. Of these, many compounds have industrial applications, but the question of why this group of microorganism produces such various kinds of biologically active substances has not yet been clearly answered. Here, we overview the results from our studies on the novel function and role of Streptomyces metabolites. The diverged action of negative and positive influences onto the physiology of various microorganisms infers the occurrence of complex microbial interactions due to the effect of small molecules produced by Streptomyces. The interactions may serve as a basis for the constitution of biological community.
Collapse
|
13
|
Hiraoka S, Machiyama A, Ijichi M, Inoue K, Oshima K, Hattori M, Yoshizawa S, Kogure K, Iwasaki W. Genomic and metagenomic analysis of microbes in a soil environment affected by the 2011 Great East Japan Earthquake tsunami. BMC Genomics 2016; 17:53. [PMID: 26764021 PMCID: PMC4712596 DOI: 10.1186/s12864-016-2380-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 01/06/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Great East Japan Earthquake of 2011 triggered large tsunami waves, which flooded broad areas of land along the Pacific coast of eastern Japan and changed the soil environment drastically. However, the microbial characteristics of tsunami-affected soil at the genomic level remain largely unknown. In this study, we isolated microbes from a soil sample using general low-nutrient and seawater-based media to investigate microbial characteristics in tsunami-affected soil. RESULTS As expected, a greater proportion of strains isolated from the tsunami-affected soil than the unaffected soil grew in the seawater-based medium. Cultivable strains in both the general low-nutrient and seawater-based media were distributed in the genus Arthrobacter. Most importantly, whole-genome sequencing of four of the isolated Arthrobacter strains revealed independent losses of siderophore-synthesis genes from their genomes. Siderophores are low-molecular-weight, iron-chelating compounds that are secreted for iron uptake; thus, the loss of siderophore-synthesis genes indicates that these strains have adapted to environments with high-iron concentrations. Indeed, chemical analysis confirmed the investigated soil samples to be rich in iron, and culture experiments confirmed weak cultivability of some of these strains in iron-limited media. Furthermore, metagenomic analyses demonstrated over-representation of denitrification-related genes in the tsunami-affected soil sample, as well as the presence of pathogenic and marine-living genera and genes related to salt-tolerance. CONCLUSIONS Collectively, the present results would provide an example of microbial characteristics of soil disturbed by the tsunami, which may give an insight into microbial adaptation to drastic environmental changes. Further analyses on microbial ecology after a tsunami are envisioned to develop a deeper understanding of the recovery processes of terrestrial microbial ecosystems.
Collapse
Affiliation(s)
- Satoshi Hiraoka
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, the University of Tokyo, Chiba, 277-8568, Japan.
| | - Asako Machiyama
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, Tokyo, 113-0032, Japan.
| | - Minoru Ijichi
- Atmosphere and Ocean Research Institute, the University of Tokyo, Chiba, 277-8564, Japan.
| | - Kentaro Inoue
- Atmosphere and Ocean Research Institute, the University of Tokyo, Chiba, 277-8564, Japan.
| | - Kenshiro Oshima
- Center for Omics and Bioinformatics, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8561, Japan.
| | - Masahira Hattori
- Center for Omics and Bioinformatics, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8561, Japan.
| | - Susumu Yoshizawa
- Atmosphere and Ocean Research Institute, the University of Tokyo, Chiba, 277-8564, Japan.
| | - Kazuhiro Kogure
- Atmosphere and Ocean Research Institute, the University of Tokyo, Chiba, 277-8564, Japan.
| | - Wataru Iwasaki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, the University of Tokyo, Chiba, 277-8568, Japan.
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, Tokyo, 113-0032, Japan.
- Atmosphere and Ocean Research Institute, the University of Tokyo, Chiba, 277-8564, Japan.
| |
Collapse
|
14
|
Locatelli FM, Goo KS, Ulanova D. Effects of trace metal ions on secondary metabolism and the morphological development of streptomycetes. Metallomics 2016; 8:469-80. [DOI: 10.1039/c5mt00324e] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
15
|
Mortazavi M, Akbarzadeh A. Improvement of Desferrioxamine B Production of Streptomyces pilosus ATCC 19797 With Use of Protease Inhibitor and Minerals Related to Its Activity. Indian J Clin Biochem 2012; 27:274-7. [PMID: 26405387 DOI: 10.1007/s12291-012-0197-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Accepted: 02/22/2012] [Indexed: 10/28/2022]
Abstract
The relationship between protease and Desferal production was assayed. Experiments were performed using a cultivation of Streptomyces pilosus ATCC 19797 in soybean broth medium containing 2% soybean flour and 2% mannitol. The metabolism of the trihydroxamic acid sidrophore desferrioxamine B and protease production by a S. pilosus in nine continues days after culture were investigated as well as the effect of protease inhibitors was examined. It is found that the Desferal formation decreased with increased protease production. Also the effect of protease inhibitors and minerals in determined day of protease production in the culture medium by S. pilosus has been investigated.
Collapse
Affiliation(s)
- Mehri Mortazavi
- Department of Pilot Biotechnology, Pasteur Institute of Iran, No. 358, 12 Farvardin Street, Pasteur Avenue, Pasteur Square, 13169-43551 Tehran, Iran
| | - Azim Akbarzadeh
- Department of Pilot Biotechnology, Pasteur Institute of Iran, No. 358, 12 Farvardin Street, Pasteur Avenue, Pasteur Square, 13169-43551 Tehran, Iran
| |
Collapse
|
16
|
Nakouti I, Sihanonth P, Hobbs G. A new approach to isolating siderophore-producing actinobacteria. Lett Appl Microbiol 2012; 55:68-72. [PMID: 22537552 DOI: 10.1111/j.1472-765x.2012.03259.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS This study was conducted to investigate the application of 2,2'-dipyridyl as a new approach to isolating siderophore-producing actinobacteria. METHODS AND RESULTS Isolation of actinobacteria from soil was conducted by a soil dilution plate technique using starch-casein agar. Iron starvation was fostered by the incorporation of the iron chelator 2,2'-dipyridyl in the isolation medium. Pretreatment of the samples at an elevated temperature (40°C) ensured that the majority of nonsporulating bacteria were excluded. The survivors of this treatment were largely actinobacteria. Of the viable cultures grown in the presence of 2,2'-dipyridyl, more than 78-88% (average of three separate studies) were reported to produce siderophore-like compounds compared to 13-18% (average of three separate studies) when grown on the basic media in the absence of the chelating agent. The most prolific producers as assessed by the chrome azurol sulphate (CAS) assay were further characterized and found to belong to the genus Streptomyces. CONCLUSIONS Selective pressure using 2,2'-dipyridyl as an iron-chelating agent in starch-casein media increased the isolation of siderophore-producing actinobacteria compared to the unamended medium. SIGNIFICANCE AND IMPACT OF THE STUDY The study described represents a new approach to the isolation of siderophore-producing actinobacteria using a novel procedure that places a selection on cell population based upon the incorporation of a chelating agent in the medium.
Collapse
Affiliation(s)
- I Nakouti
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | | | | |
Collapse
|
17
|
Mining microbial genomes for new natural products and biosynthetic pathways. Microbiology (Reading) 2008; 154:1555-1569. [DOI: 10.1099/mic.0.2008/018523-0] [Citation(s) in RCA: 185] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
18
|
The intracellular pathogen Rhodococcus equi produces a catecholate siderophore required for saprophytic growth. J Bacteriol 2007; 190:1631-7. [PMID: 18156254 DOI: 10.1128/jb.01570-07] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Little is known about the iron acquisition systems of the soilborne facultative intracellular pathogen Rhodococcus equi. We previously reported that expression of iupABC, encoding a putative siderophore ABC transporter system, is iron regulated and required for growth at low iron concentrations. Here we show that disruption of iupA leads to the concomitant accumulation of catecholates and a chromophore with absorption maxima at 341 and 528 nm during growth under iron-replete conditions. In contrast, the wild-type strain produces these compounds only in iron-depleted medium. Disruption of iupU and iupS, encoding nonribosomal peptide synthetases, prevented growth of the corresponding R. equi SID1 and SID3 mutants at low iron concentrations. However, only R. equi SID3 did not produce the chromophore produced by the wild-type strain during growth at low iron concentrations. The phenotype of R. equi SID3, but not that of R. equi SID1, could be rescued by coculture with the wild type, allowing growth at low iron concentrations. This strongly suggests that the product of the iupS gene is responsible for the synthesis of a diffusible compound required for growth at low iron concentrations. Transcription of iupU was constitutive, but that of iupS was iron regulated, with an induction of 3 orders of magnitude during growth in iron-depleted compared to iron-replete medium. Neither mutant was attenuated in vivo in a mouse infection model, indicating that the iupU- and iupS-encoded iron acquisition systems are primarily involved in iron uptake during saprophytic life.
Collapse
|
19
|
Wei X, Sayavedra-Soto LA, Arp DJ. Characterization of the ferrioxamine uptake system of Nitrosomonas europaea. MICROBIOLOGY-SGM 2007; 153:3963-3972. [PMID: 18048911 DOI: 10.1099/mic.0.2007/010603-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The chemolithoautotroph Nitrosomonas europaea has two genes predicted to encode outer-membrane (OM) ferrioxamine transporters. Expression of the ferrioxamine uptake system required induction, as shown by the shorter lag phase in ferrioxamine-containing cultures when ferrioxamine-exposed cells were used as an inoculum. The two OM ferrioxamine siderophore transporters encoded by foxA(1) (NE1097) and foxA(2) (NE1088) were produced only in cells grown in Fe-limited ferrioxamine-containing medium. The inactivation of foxA(1), singly or in combination with foxA(2), prevented growth in Fe-limited medium containing excess desferrioxamine (DFX). The foxA(2)-disrupted single mutant grew poorly in the regular Fe-limited (0.2 microM) medium with 10 microM DFX, but grew well when the Fe level was raised to 1.0 microM with 10 microM DFX. For efficient acquisition of Fe-loaded ferrioxamine, N. europaea needs both ferrioxamine transporters FoxA(1) and FoxA(2). FoxA(1) probably regulates its own production, and it controls the production of FoxA(2) as well.
Collapse
Affiliation(s)
- Xueming Wei
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331-2902, USA
| | - Luis A Sayavedra-Soto
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331-2902, USA
| | - Daniel J Arp
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331-2902, USA
| |
Collapse
|
20
|
Tunca S, Barreiro C, Sola-Landa A, Coque JJR, Martín JF. Transcriptional regulation of the desferrioxamine gene cluster of Streptomyces coelicolor is mediated by binding of DmdR1 to an iron box in the promoter of the desA gene. FEBS J 2007; 274:1110-22. [PMID: 17257267 DOI: 10.1111/j.1742-4658.2007.05662.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Streptomyces coelicolor and Streptomyces pilosus produce desferrioxamine siderophores which are encoded by the desABCD gene cluster. S. pilosus is used for the production of desferrioxamine B which is utilized in human medicine. We report the deletion of the desA gene encoding a lysine decarboxylase in Streptomyces coelicolor A3(2). The DeltadesA mutant was able to grow on lysine as the only carbon and nitrogen source but its desferrioxamine production was blocked, confirming that the L-lysine decarboxylase encoded by desA is a dedicated enzyme committing L-lysine to desferrioxamine biosynthesis. Production of desferrioxamine was restored by complementation with the whole wild-type desABCD cluster, but not by desA alone, because of a polar effect of the desA gene replacement on expression of the downstream des genes. The transcription pattern of the desABCD cluster in S. coelicolor showed that all four genes were coordinately induced under conditions of iron deprivation. The transcription start point of the desA gene was identified by primer extension analysis at a thymine located 62 nucleotides upstream of the translation start codon. The -10 region of the desA promoter overlaps the 19-nucleotide palindromic iron box sequence known to be involved in iron regulation in Streptomyces. Binding of DmdR1 divalent metal-dependent regulatory protein to the desA promoter region of both S. coelicolor and S. pilosus was shown using electrophoretic mobility-shift assays, validating the conclusion that iron regulation of the desABCD cluster is mediated by the regulatory protein DmdR1. We conclude that the genes involved in desferrioxamine production are under transcriptional control exerted by the DmdR1 regulator in the presence of iron and are expressed under conditions of iron limitation.
Collapse
Affiliation(s)
- Sedef Tunca
- Instituto de Biotecnología, INBIOTEC, León, Spain
| | | | | | | | | |
Collapse
|
21
|
Barona-Gómez F, Lautru S, Francou FX, Leblond P, Pernodet JL, Challis GL. Multiple biosynthetic and uptake systems mediate siderophore-dependent iron acquisition in Streptomyces coelicolor A3(2) and Streptomyces ambofaciens ATCC 23877. Microbiology (Reading) 2006; 152:3355-3366. [PMID: 17074905 DOI: 10.1099/mic.0.29161-0] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Siderophore-mediated iron acquisition has been well studied in many bacterial pathogens because it contributes to virulence. In contrast, siderophore-mediated iron acquisition by saprophytic bacteria has received relatively little attention. The independent identification of the des and cch gene clusters that direct production of the tris-hydroxamate ferric iron-chelators desferrioxamine E and coelichelin, respectively, which could potentially act as siderophores in the saprophyte Streptomyces coelicolor A3(2), has recently been reported. Here it is shown that the des cluster also directs production of desferrioxamine B in S. coelicolor and that very similar des and cch clusters direct production of desferrioxamines E and B, and coelichelin, respectively, in Streptomyces ambofaciens ATCC 23877. Sequence analyses of the des and cch clusters suggest that components of ferric-siderophore uptake systems are also encoded within each cluster. The construction and analysis of a series of mutants of S. coelicolor lacking just biosynthetic genes or both the biosynthetic and siderophore uptake genes from the des and cch clusters demonstrated that coelichelin and desferrioxamines E and B all function as siderophores in this organism and that at least one of these metabolites is required for growth under defined conditions even in the presence of significant quantities of ferric iron. These experiments also demonstrated that a third siderophore uptake system must be present in S. coelicolor, in addition to the two encoded within the cch and des clusters, which show selectivity for coelichelin and desferrioxamine E, respectively. The ability of the S. coelicolor mutants to utilize a range of exogenous xenosiderophores for iron acquisition was also examined, showing that the third siderophore-iron transport system has broad specificity for tris-hydroxamate-containing siderophores. Together, these results define a complex system of multiple biosynthetic and uptake pathways for siderophore-mediated iron acquisition in S. coelicolor and S. ambofaciens.
Collapse
Affiliation(s)
| | - Sylvie Lautru
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | - Francois-Xavier Francou
- CNRS, Institut de Génétique et Microbiologie, UMR 8621, Université Paris-Sud 11, 91405 Orsay Cedex, France
| | - Pierre Leblond
- Laboratoire de Génétique et Microbiologie, UMR INRA 1128 IFR 110, Faculté des Sciences et Techniques, Université Henri Poincaré Nancy 1, Boulevard des Aiguillettes, BP239, 54506 Vandoeuvre-les-Nancy Cedex, France
| | - Jean-Luc Pernodet
- CNRS, Institut de Génétique et Microbiologie, UMR 8621, Université Paris-Sud 11, 91405 Orsay Cedex, France
| | - Gregory L Challis
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
22
|
Miranda-Casoluengo R, Duffy PS, O'Connell EP, Graham BJ, Mangan MW, Prescott JF, Meijer WG. The iron-regulated iupABC operon is required for saprophytic growth of the intracellular pathogen Rhodococcus equi at low iron concentrations. J Bacteriol 2005; 187:3438-44. [PMID: 15866930 PMCID: PMC1112021 DOI: 10.1128/jb.187.10.3438-3444.2005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2004] [Accepted: 02/09/2005] [Indexed: 11/20/2022] Open
Abstract
Rhodococcus equi is a facultative intracellular pathogen which proliferates rapidly in both manure-enriched soil and alveolar macrophages. Although both environments are characterized by extremely low concentrations of free iron, very little is known regarding the strategies employed by R. equi to thrive under these conditions. This paper reports the characterization of an R. equi transposome mutant that fails to grow at low iron concentrations. The transposome was shown to be inserted into iupA, the first gene of the iupABC operon encoding an ABC transport system highly similar to siderophore uptake systems. Disruption of the iupA gene also resulted in a failure of R. equi to utilize heme and hemoglobin as a source of iron. Introduction of the iupABC operon in trans restored the wild-type phenotype of the mutant strain. iupABC transcripts were 180-fold more abundant in R. equi grown in iron-depleted medium than in organisms grown in iron-replete medium. Proliferation of the iupABC mutant strain in macrophages was comparable to that of the wild-type strain. Furthermore, the iupABC mutant was not attenuated in mice, showing that the iupABC operon is not required for virulence.
Collapse
Affiliation(s)
- Raúl Miranda-Casoluengo
- Department of Industrial Microbiology, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Ireland
| | | | | | | | | | | | | |
Collapse
|
23
|
Barona-Gómez F, Wong U, Giannakopulos AE, Derrick PJ, Challis GL. Identification of a Cluster of Genes that Directs Desferrioxamine Biosynthesis in Streptomyces coelicolor M145. J Am Chem Soc 2004; 126:16282-3. [PMID: 15600304 DOI: 10.1021/ja045774k] [Citation(s) in RCA: 198] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Desferrioxamines are a structurally related family of tris-hydroxamate siderophores that form strong hexadentate complexes with ferric iron. Desferrioxamine B has been used clinically for the treatment of iron overload in man. We have unambiguously identified desferrioxamine E as the major desferrioxamine siderophore produced by Streptomyces coelicolor M145 and have identified a cluster of four genes (desA-D) that directs desferrioxamine biosynthesis in this model actinomycete. On the basis of comparative sequence analysis of the proteins encoded by these genes, we propose a plausible pathway for desferrioxamine biosynthesis. The desferrioxamine biosynthetic pathway belongs to a new and rapidly emerging family of pathways for siderophore biosynthesis, widely distributed across diverse species of bacteria, which is biochemically distinct from the better known nonribosomal peptide synthetase (NRPS) pathway used in many organisms for siderophore biosynthesis.
Collapse
|
24
|
Fluckinger M, Haas H, Merschak P, Glasgow BJ, Redl B. Human tear lipocalin exhibits antimicrobial activity by scavenging microbial siderophores. Antimicrob Agents Chemother 2004; 48:3367-72. [PMID: 15328098 PMCID: PMC514737 DOI: 10.1128/aac.48.9.3367-3372.2004] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human tear lipocalin (TL; also known as Lcn1) is a secretory protein present in large amounts in fluids that cover epithelial surfaces such as tears and respiratory secretions. It is supposed to act as a physiological scavenger of hydrophobic, potentially harmful molecules, but there is evidence that it also inhibits bacterial growth. In the present study, we reconsidered the possibility that TL might interfere with microbial growth by scavenging of siderophores, as described for human neutrophil gelatinase-associated lipocalin (NGAL). Indeed, our experiments revealed that TL binds to microbial siderophores with high affinities. In contrast to NGAL, which was shown to have some specificity for bacterial catecholate-type siderophores, TL binds to a broad array of siderophores, including bacterial catecholate-type enterobactin and hydroxamate-type desferrioxamine B, and all major classes of fungal siderophores. By adding exogenous TL, bacterial and fungal growth could be inhibited under iron-limiting conditions. Thus, TL might be a novel member of the innate immune system especially involved in mucosal defense against fungal infections.
Collapse
Affiliation(s)
- Maria Fluckinger
- Department of Molecular Biology, Innsbruck Medical University, Peter-Mayr Strasse 4b, A-6020 Innsbruck, Austria
| | | | | | | | | |
Collapse
|
25
|
Flores FJ, Martín JF. Iron-regulatory proteins DmdR1 and DmdR2 of Streptomyces coelicolor form two different DNA-protein complexes with iron boxes. Biochem J 2004; 380:497-503. [PMID: 14960152 PMCID: PMC1224170 DOI: 10.1042/bj20031945] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2003] [Revised: 02/11/2004] [Accepted: 02/12/2004] [Indexed: 11/17/2022]
Abstract
In high G+C Gram-positive bacteria, the control of expression of genes involved in iron metabolism is exerted by a DmdR [divalent (bivalent) metal-dependent regulatory protein] in the presence of Fe2+ or other bivalent ions. The dmdR1 and dmdR2 genes of Streptomyces coelicolor were overexpressed in Escherichia coli and the DmdR1 and DmdR2 proteins were purified to homogeneity. Electrophoretic mobility-shift assays showed that both DmdR1 and DmdR2 bind to the 19-nt tox and desA iron boxes forming two different complexes in each case. Increasing the concentrations of DmdR1 or DmdR2 protein shifted these complexes from their low-molecular-mass form to the high-molecular-mass complexes. Formation of the DNA-protein complexes was prevented by the bivalent metal chelating agent 2,2'-dipyridyl and by antibodies specific against the DmdR proteins. Cross-linking with glutaraldehyde of pure DmdR1 or DmdR2 proteins showed that DmdR1 forms dimers, whereas DmdR2 is capable of forming dimers and probably tetramers. Ten different iron boxes were found in a search for iron boxes in the genome of S. coelicolor. Most of them correspond to putative genes involved in siderophore biosynthesis. Since the nucleotide sequence of these ten boxes is identical (or slightly different) with the synthetic DNA fragment containing the desA box used in the present study, it is proposed that DmdR1 and DmdR2 bind to the iron boxes upstream of at least ten different genes in S. coelicolor.
Collapse
Affiliation(s)
- Francisco J Flores
- Universidad de León, Facultad de Ciencias Biológicas y Ambientales, Area de Microbiología, 24071 León, Spain
| | | |
Collapse
|
26
|
Pierwola A, Krupinski T, Zalupski P, Chiarelli M, Castignetti D. Degradation pathway and generation of monohydroxamic acids from the trihydroxamate siderophore deferrioxamine B. Appl Environ Microbiol 2004; 70:831-6. [PMID: 14766561 PMCID: PMC348822 DOI: 10.1128/aem.70.2.831-836.2004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Siderophores are avid ferric ion-chelating molecules that sequester the metal for microbes. Microbes elicit siderophores in numerous and different environments, but the means by which these molecules reenter the carbon and nitrogen cycles is poorly understood. The metabolism of the trihydroxamic acid siderophore deferrioxamine B by a Mesorhizobium loti isolated from soil was investigated. Specifically, the pathway by which the compound is cleaved into its constituent monohydroxamates was examined. High-performance liquid chromatography and mass-spectroscopy analyses demonstrated that M. loti enzyme preparations degraded deferrioxamine B, yielding a mass-to-charge (m/z) 361 dihydroxamic acid intermediate and an m/z 219 monohydroxamate. The dihydroxamic acid was further degraded to yield a second molecule of the m/z 219 monohydroxamate as well as an m/z 161 monohydroxamate. These studies indicate that the dissimilation of deferrioxamine B by M. loti proceeds by a specific, achiral degradation and likely represents the reversal by which hydroxamate siderophores are thought to be synthesized.
Collapse
Affiliation(s)
- Agnes Pierwola
- Department of Biology, Loyola University of Chicago, Chicago, Illinois 60626, USA
| | | | | | | | | |
Collapse
|
27
|
Piao Y, Kawaraichi N, Asegawa R, Kiatpapan P, Ono H, Yamashita M, Murooka Y. Molecular analysis of promoter elements from Propionibacterium freudenreichii. J Biosci Bioeng 2004; 97:310-6. [PMID: 16233635 DOI: 10.1016/s1389-1723(04)70211-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2004] [Accepted: 02/24/2004] [Indexed: 10/26/2022]
Abstract
Propionibacterium freudenreichii is a commercially important microorganism that is used in the production of cheeses, cobalamin (vitamin B(12)), and propionic acid. Although a host-vector system in propionibacteria has been developed, there is little information available on the genetic background of the bacteria. To obtain genetic information to facilitate genetic engineering in propionibacteria, we cloned promoter regions from P. freudenreichii using Escherichia coli as a host at the first screening and a promoter-probe vector, pCVE1, which consists of the cholesterol oxidase (choA) gene from Streptomyces sp. as a reporter gene. Finally, nine clones with strong promoter activities in P. freudenreichii were screened by monitoring the choA gene expression and determining if the nucleotide sequences of the cloned DNA fragment were aligned. The initiation sites of these transcripts were determined by primer extension analysis. The putative consensus sequences corresponding to a -35 and -10 hexamer were found to be specific for P. freudenreichii, but not E. coli or other bacteria. Moreover, a new consensus heptamerous sequence between the -35 and -10 regions, termed the -16 region, was also found. It is possible that the putative consensus heptamer is functional and essential to promoter activity in P. freudenreichii. These results should provide new opportunities for controlled gene expression in P. freudenreichii.
Collapse
Affiliation(s)
- Yongzhe Piao
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
In eukaryotes, the Src homology domain 3 (SH3) is a very important motif in signal transduction. SH3 domains recognize poly-proline-rich peptides and are involved in protein-protein interactions. Until now, the existence of SH3 domains has not been demonstrated in prokaryotes. However, the structure of the C-terminal domain of DtxR clearly shows that the fold of this domain is very similar to that of the SH3 domain. In addition, there is evidence that the C-terminal domain of DtxR binds to poly-proline-rich regions. Other bacterial proteins have domains that are structurally similar to the SH3 domain but whose functions are unknown or differ from that of the SH3 domain. The observed similarities between the structures of the C-terminal domain of DtxR and the SH3 domain constitute a perfect system to gain insight into their function and information about their evolution. Our results show that the C-terminal domain of DtxR shares a number of conserved key hydrophobic positions not recognizable from sequence comparison that might be responsible for the integrity of the SH3-like fold. Structural alignment of an ensemble of such domains from unrelated proteins shows a common structural core that seems to be conserved despite the lack of sequence similarity. This core constitutes the minimal requirements of protein architecture for the SH3-like fold.
Collapse
Affiliation(s)
- J Alejandro D'Aquino
- Department of Chemistry and Biochemistry and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454, USA
| | | |
Collapse
|
29
|
Flores FJ, Rincón J, Martín JF. Characterization of the iron-regulated desA promoter of Streptomyces pilosus as a system for controlled gene expression in actinomycetes. Microb Cell Fact 2003; 2:5. [PMID: 12801423 PMCID: PMC161790 DOI: 10.1186/1475-2859-2-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2003] [Accepted: 05/19/2003] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND: The bioavailability of iron is quite low since it is usually present as insoluble complexes. To solve the bioavailability problem microorganisms have developed highly efficient iron-scavenging systems based on the synthesis of siderophores that have high iron affinity. The systems of iron assimilation in microorganisms are strictly regulated to control the intracellular iron levels since at high concentrations iron is toxic for cells. Streptomyces pilosus synthesizes the siderofore desferrioxamine B. The first step in desferrioxamine biosynthesis is decarboxylation of L-lysine to form cadaverine, a desferrioxamine B precursor. This reaction is catalyzed by the lysine decarboxylase, an enzyme encoded by the desA gene that is repressed by iron. RESULTS: The binding of the DmdR (acronym for divalent metal dependent repressor) to the desA promoter in presence of Fe2+ or other divalent ions has been characterized. A 51 bp DNA fragment of the desA promoter containing the 9 bp inverted repeat was sufficient for binding of the DmdR repressor, as observed by the electrophoretic mobility shift assay. The desA mobility shift was prevented by neutralizing DmdR with anti-DmdR antibodies or by chelating the divalent metal in the binding reaction with 2,2'-dipyridyl. Binding to the desA promoter was observed with purified DmdR repressors of Streptomyces coelicolor or Rhodococcus fascians suggesting that there is a common mechanism of iron-regulation in actinomycetes. The complete desA promoter region was coupled using transcriptional fusions to the amy reporter gene (encoding alpha-amylase) in low copy or multicopy Streptomyces vectors. The iron-regulated desA promoter was induced by addition of the iron chelating agent 2,2'-dipyridyl resulting in a strong expression of the reporter gene. CONCLUSIONS: The iron-regulated desA promoter can be used for inducible expression of genes in Streptomyces species, as shown by de-repression of the promoter when coupled to a reporter gene.
Collapse
Affiliation(s)
- Francisco J Flores
- Area de Microbiología, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24071 León, Spain
| | - Javier Rincón
- Institute of Biotechnology INBIOTEC, Science Park of León, Avda. del Real, n° 1, 24006 León, Spain
| | - Juan F Martín
- Area de Microbiología, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24071 León, Spain
- Institute of Biotechnology INBIOTEC, Science Park of León, Avda. del Real, n° 1, 24006 León, Spain
| |
Collapse
|
30
|
Chen CS, White A, Love J, Murphy JR, Ringe D. Methyl groups of thymine bases are important for nucleic acid recognition by DtxR. Biochemistry 2000; 39:10397-407. [PMID: 10956029 DOI: 10.1021/bi0009284] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The expression of diphtheria toxin is controlled by the diphtheria toxin repressor (DtxR). Under conditions of high iron concentration, DtxR binds the tox operator to inhibit transcription. To study how DNA binding specificity is achieved by this repressor, we solved the crystal structure of the nickel(II) activated DtxR(C102D) mutant complexed with a 43mer DNA duplex containing the DtxR consensus binding sequence. Structural analysis of this complex and comparison with a previously determined DtxR(C102D)-Ni(II)-tox operator ternary complex revealed unusual van der Waals interactions between Ser37/Pro39 of the repressor helix-turn-helix (HTH) motif and the methyl groups of specific thymine bases in the consensus binding sequence. Gel mobility shift assays utilizing deoxyuridine modified duplex DNA probes proved the importance of these interactions: the four methyl groups shown to interact with Ser37/Pro39 in the crystal structure contribute a total of 3.4 kcal/mol to binding energy. Thus, in addition to making base-specific hydrogen-bonding interactions to the DNA through its Gln43 residue, DtxR also recognizes methyl groups at certain positions in the DNA sequence with its Ser37 and Pro39 side chains, to achieve binding specificity toward its cognate operator sequences.
Collapse
Affiliation(s)
- C S Chen
- Department of Biochemistry, Program in Bioorganic Chemistry, The Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454-9110, USA
| | | | | | | | | |
Collapse
|
31
|
Que Q, Helmann JD. Manganese homeostasis in Bacillus subtilis is regulated by MntR, a bifunctional regulator related to the diphtheria toxin repressor family of proteins. Mol Microbiol 2000; 35:1454-68. [PMID: 10760146 DOI: 10.1046/j.1365-2958.2000.01811.x] [Citation(s) in RCA: 214] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Bacillus subtilis yqhN gene encodes a metalloregulatory protein distantly related to the Corynebacterium diphtheriae diphtheria toxin repressor (DtxR). While DtxR mediates the iron-dependent repression of iron uptake, we demonstrate that yqhN (herein renamed mntR) encodes a manganese modulated regulator of manganese transport. An mntR mutant strain is sensitive to both manganese and cadmium, suggesting that the transport of these metals is derepressed. We selected Tn10 insertions that suppress the Mn(II) sensitivity of the mntR mutant or that increase the Cd(II) tolerance of wild-type cells, and in both cases we recovered insertions in mntH (formerly ydaR). MntH is a member of the NRAMP family of proton-coupled, metal ion transporters. MntR also regulates expression of a Mn(II) ABC transporter (MntABCD). The MntH and MntABCD transporters are both selectively repressed by Mn(II) and this regulation requires MntR. In high Mn(II) conditions, MntR functions as a Mn(II)-dependent repressor of mntH transcription. In contrast, MntR acts as a positive regulator of the mntABCD operon under low Mn(II) growth conditions. Biochemical studies demonstrate that MntR binding to the mntH control region requires Mn(II), while interaction with the mntABCD control region does not depend on Mn(II).
Collapse
Affiliation(s)
- Q Que
- Section of Microbiology, Wing Hall, Cornell University, Ithaca, NY 14853-8101, USA
| | | |
Collapse
|
32
|
Dussurget O, Timm J, Gomez M, Gold B, Yu S, Sabol SZ, Holmes RK, Jacobs WR, Smith I. Transcriptional control of the iron-responsive fxbA gene by the mycobacterial regulator IdeR. J Bacteriol 1999; 181:3402-8. [PMID: 10348851 PMCID: PMC93806 DOI: 10.1128/jb.181.11.3402-3408.1999] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Exochelin is the primary extracellular siderophore of Mycobacterium smegmatis, and the iron-regulated fxbA gene encodes a putative formyltransferase, an essential enzyme in the exochelin biosynthetic pathway (E. H. Fiss, Y. Yu, and W. R. Jacobs, Jr., Mol. Microbiol. 14:557-569, 1994). We investigated the regulation of fxbA by the mycobacterial IdeR, a homolog of the Corynebacterium diphtheriae iron regulator DtxR (M. P. Schmitt, M. Predich, L. Doukhan, I. Smith, and R. K. Holmes, Infect. Immun. 63:4284-4289, 1995). Gel mobility shift experiments showed that IdeR binds to the fxbA regulatory region in the presence of divalent metals. DNase I footprinting assays indicated that IdeR binding protects a 28-bp region containing a palindromic sequence of the fxbA promoter that was identified in primer extension assays. fxbA regulation was measured in M. smegmatis wild-type and ideR mutant strains containing fxbA promoter-lacZ fusions. These experiments confirmed that fxbA expression is negatively regulated by iron and showed that inactivation of ideR results in iron-independent expression of fxbA. However, the levels of its expression in the ideR mutant were approximately 50% lower than those in the wild-type strain under iron limitation, indicating an undefined positive role of IdeR in the regulation of fxbA.
Collapse
MESH Headings
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Base Sequence
- Binding Sites
- Cations, Divalent/pharmacology
- DNA Footprinting
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Gene Expression Regulation, Bacterial/drug effects
- Genes, Bacterial/genetics
- Genes, Reporter
- Hydroxymethyl and Formyl Transferases/genetics
- Iron/pharmacology
- Mutation
- Mycobacterium/drug effects
- Mycobacterium/enzymology
- Mycobacterium/genetics
- Promoter Regions, Genetic/genetics
- Protein Binding/drug effects
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- Repressor Proteins
- Response Elements/genetics
- Sequence Homology, Amino Acid
- Transcription, Genetic/drug effects
- Transcription, Genetic/genetics
- beta-Galactosidase/genetics
- beta-Galactosidase/metabolism
Collapse
Affiliation(s)
- O Dussurget
- TB Center, Public Health Research Institute, New York, New York 10016, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Zaya N, Roginsky A, Williams J, Castignetti D. Evidence that a deferrioxamine B degrading enzyme is a serine protease. Can J Microbiol 1998; 44:521-7. [PMID: 9734303 DOI: 10.1139/w98-031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Siderophores are organic biomolecules synthesized by a wide variety of microbes. The molecules sequester ferric ion from environments where it is present at extremely low concentrations. Siderophores are of consequence with respect to microbial nutrition, pathogenicity, virulence, and microbe-plant interactions. How siderophores are degraded and returned to the carbon and nitrogen cycles is not well understood. The catalytic activity of an enzyme from a bacterium that degrades the siderophore deferrioxamine B has been examined. While the degradation of deferrioxamine B is sensitive to sulfhydryl and metal moiety inhibitors, the data presented is most consistent with the hypothesis that the enzyme uses a hydroxyl moiety (serine peptidase) to catalyze the degradation of deferrioxamine B. If sulfhydryl and metal inhibitors are simultaneously present at concentrations that when alone only partially inhibit the enzyme, the enzyme is unable to catalyze deferrioxamine B dissimilation. Analysis of the inhibitor experiments conducted led to the conclusion that the deferrioxamine B degrading enzyme is a serine-peptidase-like enzyme that needs calcium ions and sulfhydryl groups to be fully activated or stabilized. The knowledge of the catalytic moieties of the enzyme will be exploited to purify the enzyme.
Collapse
Affiliation(s)
- N Zaya
- Biology Department, Loyola University of Chicago, IL 60626, USA
| | | | | | | |
Collapse
|
34
|
Crosa JH. Signal transduction and transcriptional and posttranscriptional control of iron-regulated genes in bacteria. Microbiol Mol Biol Rev 1997; 61:319-36. [PMID: 9293185 PMCID: PMC232614 DOI: 10.1128/mmbr.61.3.319-336.1997] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Iron is an essential element for nearly all living cells. Thus, the ability of bacteria to utilize iron is a crucial survival mechanism independent of the ecological niche in which the microorganism lives, because iron is scarce both in potential biological hosts, where it is bound by high-affinity iron-binding proteins, and in the environment, where it is present as part of insoluble complex hydroxides. Therefore, pathogens attempting to establish an infection and environmental microorganisms must all be able to utilize the otherwise unavailable iron. One of the strategies to perform this task is the possession of siderophore-mediated iron uptake systems that are capable of scavenging the hoarded iron. This metal is, however, a double-edged sword for the cell because it can catalyze the production of deadly free hydroxyl radicals, which are harmful to the cells. It is therefore imperative for the cell to control the concentration of iron at levels that permit key metabolic steps to occur without becoming a messenger of cell death. Early work identified a repressor, Fur, which as a complex with iron repressed the expression of most iron uptake systems as well as other iron-regulated genes when the iron concentration reached a certain level. However, later work demonstrated that this regulation by Fur was not the only answer under low-iron conditions, there was a need for activation of iron uptake genes as well as siderophore biosynthetic genes. Furthermore, it was also realized that in some instances the actual ferric iron-siderophore complex induced the transcription of the cognate receptor and transport genes. It became evident that control of the expression of iron-regulated genes was more complex than originally envisioned. In this review, I analyze the processes of signal transduction, transcriptional control, and posttranscriptional control of iron-regulated genes as reported for the ferric dicitrate system in Escherichia coli; the pyochelin, pyoverdin, and enterobactin systems in Pseudomonas species; the irgB system in Vibrio cholerae; and the plasmid-mediated anguibactin system in Vibrio anguillarum. I hope that by using these diverse paradigms, I will be able to convey a unifying picture of these mechanism and their importance in the maintenance and prosperity of bacteria within their ecological niches.
Collapse
Affiliation(s)
- J H Crosa
- Department of Molecular Microbiology and Immunology, Oregon Health Sciences University, Portland 97201, USA.
| |
Collapse
|
35
|
Heidrich C, Hantke K, Bierbaum G, Sahl HG. Identification and analysis of a gene encoding a Fur-like protein of Staphylococcus epidermidis. FEMS Microbiol Lett 1996; 140:253-9. [PMID: 8764488 DOI: 10.1111/j.1574-6968.1996.tb08345.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
A gene (fur) for a Fur-like protein was identified on a 1.1 kb chromosomal DNA fragment of Staphylococcus epidermidis BN 280; the fur gene is followed by an open reading frame coding for the N-terminus of a putative superoxide dismutase. Within the -35 promoter region of both genes, as sequence motif was detected with low similarity to Fur-binding regulatory DNA segments, the so-called Fur boxes. Fur titration in Escherichia coli strain H1717 demonstrated that the E. coli Fur protein binds to the Fur box of the promoter region of the S. epidermidis fur gene. The S. epidermidis Fur protein was expressed in E. coli as indicated by the formation of inactive dimers with the chimeric repressor CI(N)-Fur(C) (Stojiljkovic, I. and Hantke. K. (1995) Mol. Gen. Genet. 247, 199-205), but was not able to complement the Fur mutation in E. coli H1681.
Collapse
Affiliation(s)
- C Heidrich
- Institut für Medizinische Mikrobiologie und Immunologie, Universität Bonn, Germany
| | | | | | | |
Collapse
|
36
|
Haapalainen M, Karp M, Metzler MC. Isolation of strong promoters from Clavibacter xyli subsp. cynodontis using a promoter probe plasmid. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1305:130-4. [PMID: 8597597 DOI: 10.1016/0167-4781(95)00203-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
To isolate promoters from Clavibacter xyli subsp. cynodontis (C. xyli subsp. cynodontis), we constructed a new promoter probe plasmid and made a C. xyli subsp. cynodontis promoter probe library. Two promoters gave over 2500-times stronger expression than the parental plasmid. The promoters were sequenced and compared to other bacterial promoters. These C. xyli subsp. cynodontis promoter regions are GC-rich and do not resemble E. coli promoters, but do resemble a few individual promoters found in streptomycetes.
Collapse
|
37
|
Rowland BM, Taber HW. Duplicate isochorismate synthase genes of Bacillus subtilis: regulation and involvement in the biosyntheses of menaquinone and 2,3-dihydroxybenzoate. J Bacteriol 1996; 178:854-61. [PMID: 8550523 PMCID: PMC177735 DOI: 10.1128/jb.178.3.854-861.1996] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Bacillus subtilis has duplicate isochorismate synthase genes, menF and dhbC. Isochorismate synthase is involved in the biosynthesis of both the respiratory chain component menaquinone (MK) and the siderophore 2,3-dihydroxybenzoate (DHB). Several menF and dhbC deletion mutants were constructed to identify the contribution made by each gene product to MK and DHB biosynthesis. menF deletion mutants were able to produce wild-type levels of MK and DHB, suggesting that the dhbC gene product is able to compensate for the lack of MenF. However, a dhbC deletion mutant produced wild-type levels of MK but was DHB deficient, indicating that MenF is unable to compensate for the lack of DhbC. A menF dhbC double-deletion mutant was both MK and DHB deficient. Transcription analysis showed that expression of dhbC, but not of menF, is regulated by iron concentration. A dhbA'::lacZ fusion strain was constructed to examine the effects of mutations to the iron box sequence within the dhb promoter region. These mutations abolished the iron-regulated transcription of the dhb genes, suggesting that a Fur-like repressor protein exists in B. subtilis.
Collapse
Affiliation(s)
- B M Rowland
- Department of Microbiology, Immunology, and Molecular Genetics, Albany Medical College, New York 12208, USA
| | | |
Collapse
|
38
|
Günter-Seeboth K, Schupp T. Cloning and sequence analysis of the Corynebacterium diphtheriae dtxR homologue from Streptomyces lividans and S. pilosus encoding a putative iron repressor protein. Gene 1995; 166:117-9. [PMID: 8529874 DOI: 10.1016/0378-1119(95)00628-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The iron-regulated promoter involved in desferrioxamine B synthesis of Streptomyces pilosus contains a region homologous to the iron repressor (DtxR)-binding site of the diphtheria toxin gene promoter in Corynebacterium diphtheriae [Günter et al., J. Bacteriol. 175 (1993) 3295-3302]. Here, we report the cloning and sequencing of the putative Streptomyces iron repressor gene, homologous to dtxR of C. diphtheriae. The N-terminal 139 amino acids of the deduced protein are 73% identical to DtxR.
Collapse
|
39
|
Schmitt MP, Predich M, Doukhan L, Smith I, Holmes RK. Characterization of an iron-dependent regulatory protein (IdeR) of Mycobacterium tuberculosis as a functional homolog of the diphtheria toxin repressor (DtxR) from Corynebacterium diphtheriae. Infect Immun 1995; 63:4284-9. [PMID: 7591059 PMCID: PMC173608 DOI: 10.1128/iai.63.11.4284-4289.1995] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The DtxR protein from Corynebacterium diphtheriae is an iron-dependent repressor that regulates transcription from the tox, IRP1, and IRP2 promoters. A gene from virulent Mycobacterium tuberculosis H37Rv was recently shown to encode a protein, here designated iron-dependent regulator (IdeR), that is almost 60% homologous to DtxR from C. diphtheriae. A 750-bp PCR-derived DNA fragment carrying the M. tuberculosis ideR allele was subcloned to both high- and low-copy-number vectors. In Escherichia coli, transcription from the C. diphtheriae tox, IRP1, and IRP2 promoters was strongly repressed by ideR under high-iron conditions, and ideR restored normal iron-dependent expression of the corynebacterial siderophore in the C. diphtheriae dtxR mutant C7(beta)hm723. The M. tuberculosis IdeR protein was overexpressed in E. coli and purified to near homogeneity by nickel affinity chromatography. Gel mobility shift experiments revealed that IdeR bound to a DNA fragment that carried the C. diphtheriae tox promoter/operator sequence. DNAse I footprint analysis demonstrated that IdeR, in the presence of Cd2+, Co2+, Fe2+, Mn2+, Ni2+, or Zn2+, protected an approximately 30-bp region on DNA fragments carrying the tox, IRP1, or IRP2 promoter/operator sequences. IdeR reacted very weakly in Western blots (immunoblots) with antiserum against the C. diphtheriae DtxR protein, suggesting that the immunodominant epitopes of DtxR may be located in its poorly conserved carboxyl-terminal domain.
Collapse
Affiliation(s)
- M P Schmitt
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA
| | | | | | | | | |
Collapse
|
40
|
Bourn WR, Babb B. Computer assisted identification and classification of streptomycete promoters. Nucleic Acids Res 1995; 23:3696-703. [PMID: 7478999 PMCID: PMC307268 DOI: 10.1093/nar/23.18.3696] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Short sequences that were over represented in a database of Streptomyces promoter region sequences were identified. These sequences and others that were selected on the basis of the characteristics of known promoters, were tested to determine if they were found predominantly at particular distances from the transcription start site. In several cases obvious clusters were recorded. This has allowed the objective identification of potential promoter core sequences. In some cases these may define novel promoter classes. 150 Streptomyces promoters have been listed and grouped on this basis. A new and extended consensus sequence for the Streptomyces E.coli sigma 70-like promoters was determined. It showed differences from that of E.coli, both in sequence and in the spacing between the -35 and -10 regions.
Collapse
Affiliation(s)
- W R Bourn
- Department of Microbiology, University of Cape Town, Rondebosch, South Africa
| | | |
Collapse
|
41
|
Affiliation(s)
- J L Doull
- Department of Biology, Mount St. Vincent University, Halifax, N.S, Canada
| | | |
Collapse
|
42
|
Oguiza JA, Tao X, Marcos AT, Martín JF, Murphy JR. Molecular cloning, DNA sequence analysis, and characterization of the Corynebacterium diphtheriae dtxR homolog from Brevibacterium lactofermentum. J Bacteriol 1995; 177:465-7. [PMID: 7814338 PMCID: PMC176612 DOI: 10.1128/jb.177.2.465-467.1995] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A homolog of the Corynebacterium diphtheriae dtxR gene was isolated from Brevibacterium lactofermentum. The product of the B. lactofermentum dtxR gene was immunoreactive with polyclonal anti-DtxR antibodies and functioned as an iron-activated repressor capable of regulating the expression of beta-galactosidase from a diphtheria tox promoter/operator transcriptional fusion in recombinant Escherichia coli. The extents of induction by increasing concentrations of the chelator 2,2'-dipyridyl were identical in cells expressing DtxR from either C. diphtheriae or B. lactofermentum.
Collapse
Affiliation(s)
- J A Oguiza
- Area of Microbiology, Faculty of Biology, University of León, Spain
| | | | | | | | | |
Collapse
|
43
|
Feistner GJ. Metabolism of polyamines and basic amino acids in Erwinia amylovora: application of liquid chromatography/electrospray mass spectrometry to proferrioxamine precursor feeding and inhibition studies. BIOLOGICAL MASS SPECTROMETRY 1994; 23:793-803. [PMID: 7841214 DOI: 10.1002/bms.1200231212] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Erwinia amylovora, the etiological agent of fire blight, produces a family of proferrioxamine siderophores, which may be essential for the pathogen to establish itself in its hosts. If so, then control of fire blight may perhaps be possible via interference with proferrioxamine biosynthesis. Proof of this hypothesis requires prior knowledge of the corresponding biosynthetic pathways in E. amylovora. As a first step towards understanding proferrioxamine biosynthesis, it was of interest to investigate the ability of the fire blight bacterium to utilize various potential biosynthetic pathways for diamines. Feeding of lysine, ornithine and diaminobutyric acid gave rise to highly elevated levels of cadaverine, putrescine and diaminopropane, respectively, indicating that the corresponding decarboxylase activities are all present in E. amylovora. The conclusion for lysine decarboxylase was confirmed with (15N2)lysine, which was converted to (15N2)cadaverine. Arginine did not increase putrescine levels substantially, but (13C6)arginine nevertheless gave rise to (13C4)putrescine while suppressing excretion of non-labeled putrescine. A serendipitous result of this study was the finding that the growth of E. amylovora can be inhibited with 5-hydroxylysine and 1,4-diamino-2-butanone. The mechanism of inhibition appears complex and is not yet understood. For 5-hydroxylysine, preliminary investigations point to a competitive inhibition of lysine decarboxylase. However, the growth inhibition cannot be reversed by providing cadaverine, the decarboxylation product of lysine.
Collapse
Affiliation(s)
- G J Feistner
- Beckman Research Institute of the City of Hope, Duarte, California 91010
| |
Collapse
|
44
|
Fiss EH, Yu S, Jacobs WR. Identification of genes involved in the sequestration of iron in mycobacteria: the ferric exochelin biosynthetic and uptake pathways. Mol Microbiol 1994; 14:557-69. [PMID: 7885234 DOI: 10.1111/j.1365-2958.1994.tb02189.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Mycobacteria produce two siderophores, mycobactin and exochelin. Mycobacterium smegmatis mutants defective in the production of exochelin were isolated using agar medium containing chrome azural S for the sensitive detection of siderophores. Cosmids of genomic libraries from M. smegmatis and Mycobacterium bovis BCG were screened for complementation of the mutation. Subcloning of the complementing M. smegmatis cosmid identified a 4.3 kb fragment required for restoring exochelin biosynthesis. Sequencing of the DNA revealed four open reading frames whose genes were named fxuA, fxuB, fxuC, and fxbA. FxuA, FxuB, and FxuC share amino acid sequence homology with the iron permeases FepG, FepC, and FepD from Escherichia coli, respectively. Deletion analysis identified fxbA as the gene required to restore exochelin biosynthesis in our mutant. Although fxbA does not share amino acid sequence homology with any of the published sequences for siderophore biosynthetic genes, it does show limited homology with the phosphoribosylglycineamide formyltransferases (GAR enzymes) and methionyl-tRNA formyltransferase over a limited region of the sequence, suggesting that fxbA may code for an enzyme which adds a formyl group in the synthesis of exochelin. A fusion of fxbA with the E. coli lacZ gene demonstrated regulation of gene expression by iron. The ability of M. smegmatis mutants to produce mycobactin in the absence of exochelin supports the hypothesis that exochelin is not a precursor of mycobactin and suggests that the siderophores have independent biosynthetic pathways. In addition, complementation of the M. smegmatis mutant with the BCG cosmid restored the synthesis of the M. smegmatis exochelin, demonstrating the use of M. smegmatis as a surrogate host for analysis of exochelins from slow-growing mycobacteria.
Collapse
Affiliation(s)
- E H Fiss
- Department of Microbiology and Immunology, Howard Hughes Medical Institute, Albert Einstein College of Medicine, Bronx, New York 10461
| | | | | |
Collapse
|
45
|
Tao X, Schiering N, Zeng HY, Ringe D, Murphy JR. Iron, DtxR, and the regulation of diphtheria toxin expression. Mol Microbiol 1994; 14:191-7. [PMID: 7830565 DOI: 10.1111/j.1365-2958.1994.tb01280.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In recent years considerable advances have been made in the understanding of the molecular basis of iron-mediated regulation of diphtheria toxin expression. The tox gene has been shown to be regulated by the heavy metal ion-activated regulatory element DtxR. In the presence of divalent heavy metal ions, DtxR becomes activated and binds to a 9 bp interrupted palindromic sequence. The consensus-binding site has been determined by both the sequence analysis of DtxR-responsive operators cloned from genomic libraries of Corynebacterium diphtheriae as well as by in vitro genetic methods using cyclic amplification of selected targets (CASTing). It is now clear that DtxR functions as a global iron-sensitive regulatory element in the control of gene expression in C. diphtheriae. In addition, the metal ion-activation domain of DtxR is being characterized by both mutational analysis and determination of the X-ray structure at 3.0 A resolution.
Collapse
Affiliation(s)
- X Tao
- Evans Department of Clinical Research, Boston University Medical Center Hospital, Massachusetts 02118
| | | | | | | | | |
Collapse
|
46
|
Tao X, Murphy JR. Determination of the minimal essential nucleotide sequence for diphtheria tox repressor binding by in vitro affinity selection. Proc Natl Acad Sci U S A 1994; 91:9646-50. [PMID: 7937822 PMCID: PMC44870 DOI: 10.1073/pnas.91.20.9646] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The expression of diphtheria toxin in lysogenic toxigenic strains of Corynebacterium diphtheriae is controlled by the heavy metal ion-activated regulatory protein DtxR. In the presence of divalent heavy metal ions, DtxR specifically binds to the diphtheria tox operator and protects a 27-bp interrupted palindromic sequence from DNase I digestion. To determine the consensus DNA sequence for DtxR binding, we have used gel electrophoresis mobility-shift assay and polymerase chain reaction (PCR) amplification for in vitro affinity selection of DNA binding sequences from a universe of 6.9 x 10(10) variants. After 10 rounds of in vitro affinity selection, each round coupled with 30 cycles of PCR amplification, we isolated and characterized a family of DNA sequences that function as DtxR-responsive genetic elements both in vitro and in vivo. Moreover, these DNA sequences were found to bind activated DtxR with an affinity similar to that of the wild-type tox operator. The DNA sequence analysis of 21 unique in vitro affinity-selected binding sites has revealed the minimal essential nucleotide sequence for DtxR binding to be a 9-bp palindrome separated by a single base pair.
Collapse
Affiliation(s)
- X Tao
- Department of Biochemistry, Boston University School of Medicine, MA 02118
| | | |
Collapse
|
47
|
Schmitt MP, Holmes RK. Cloning, sequence, and footprint analysis of two promoter/operators from Corynebacterium diphtheriae that are regulated by the diphtheria toxin repressor (DtxR) and iron. J Bacteriol 1994; 176:1141-9. [PMID: 8106325 PMCID: PMC205166 DOI: 10.1128/jb.176.4.1141-1149.1994] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
DtxR is an iron-dependent sequence-specific DNA-binding protein that binds to the tox operator, an inverted-repeat nucleotide sequence located upstream from the diphtheria toxin gene. In this study, two additional iron-regulated promoter/operator sequences (IRP1 and IRP2) that are controlled by DtxR were cloned from the chromosome of Corynebacterium diphtheriae and characterized. Operon fusions to lacZ were used to analyze expression from IRP1 and IRP2 in Escherichia coli. Transcription from both promoters was strongly repressed in high-iron medium in the presence of the cloned dtxR gene; however, transcription in the absence of dtxR was 50- to 100-fold greater, regardless of the iron concentration. Purified DtxR altered the electrophoretic mobility of DNA fragments carrying IRP1 or IRP2, and the nucleotide sequences of the two promoter/operator regions indicated that they are both homologous with the tox operator. DtxR protected an approximately 30-bp region on both IRP1 and IRP2 from DNase I digestion. A 19-bp consensus DtxR-binding site was derived from a comparison of the various DtxR-regulated operator/promoter sequences. Footprinting experiments using hydroxyl radicals and dimethyl sulfate demonstrated that DtxR interacted with these operators in a symmetrical manner, probably as a dimer or multimer. The deduced amino acid sequence of an open reading frame (ORF1) located downstream from IRP1 was homologous with a family of periplasmic proteins involved in iron transport in gram-negative bacteria and with the ferrichrome receptor, FhuD, from Bacillus subtilis. These findings suggest that ORF1 encodes a membrane-associated lipoprotein that may serve as the receptor for a ferric-siderophore complex in C. diphtheriae.
Collapse
Affiliation(s)
- M P Schmitt
- Department of Microbiology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | | |
Collapse
|