1
|
Maeda K, Sumita T, Nishi O, Sushida H, Higashi Y, Nakagawa H, Suzuki T, Iwao E, Fanani MZ, Nishiya Y, Iida Y. Adaptive evolution of sesquiterpene deoxyphomenone in mycoparasitism by Hansfordia pulvinata associated with horizontal gene transfer from Aspergillus species. mBio 2025; 16:e0400724. [PMID: 40111082 PMCID: PMC11980549 DOI: 10.1128/mbio.04007-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 02/20/2025] [Indexed: 03/22/2025] Open
Abstract
Leaf mold caused by the ascomycete fungus Cladosporium fulvum is a devastating disease of tomato plants. The mycoparasitic fungus Hansfordia pulvinata is an effective biocontrol agent that parasitizes C. fulvum hyphae on leaves and secretes 13-deoxyphomenone, an eremophilane-type sesquiterpene, which was also identified as a sporulation-inducing factor in Aspergillus oryzae. Here, we identified deoxyphomenone biosynthesis (DPH) gene clusters conserved in both H. pulvinata and Aspergillus section Flavi, including A. oryzae and A. flavus. Functional disruption of DPH1 orthologous genes encoding sesquiterpene cyclase in H. pulvinata, A. oryzae, and its close relative A. flavus revealed that deoxyphomenone in H. pulvinata had exogenic antifungal activity against C. fulvum and controlled endogenic sporulation in Aspergillus species. Complete DPH clusters, highly similar to those in H. pulvinata, were exclusive to Aspergillus section Flavi, while species in other Aspergillus sections contained fragmented DPH clusters. A comparative genomics analysis revealed that these DPH gene clusters share a common origin and are horizontally transferred from an ancestor of Aspergillus to H. pulvinata. Our results suggest that after horizontal transfer, H. pulvinata maintained the DPH cluster as the inhibitory effect of deoxyphomenone on spore germination and mycelial growth contributed to its mycoparasitism on the host fungus C. fulvum. IMPORTANCE Tomato leaf mold disease caused by C. fulvum poses a significant economic threat to tomato production globally. Breeders have developed tomato cultivars with Cf resistance genes. C. fulvum frequently evolves new races that overcome these genetic defenses, complicating control efforts. Additionally, the pathogen has developed resistance to chemical fungicides, prompting the need for sustainable alternatives like biocontrol agents. The mycoparasitic fungus H. pulvinata is crucial as an effective agent against C. fulvum. Clarifying the mechanism of mycoparasitism is significant, as it enhances its application as a biocontrol agent against plant pathogens. This study revealed how H. pulvinata produces deoxyphomenone, an antifungal compound, through horizontal gene transfer from Aspergillus species. It is hypothesized that mycoparasitism could be one of the mechanisms that facilitated horizontal gene transfer between fungi. These insights facilitate the development of eco-friendly, sustainable agricultural practices by reducing dependence on chemical fungicides and promoting natural pathogen control methods.
Collapse
Affiliation(s)
- Kazuya Maeda
- Laboratory of Plant Pathology, Setsunan University, Hirakata, Osaka, Japan
- Laboratory of Environmental Microbiology, Setsunan University, Neyagawa, Osaka, Japan
| | - Takuya Sumita
- National Agriculture and Food Research Organization (NARO), Tsu, Mie, Japan
| | - Oumi Nishi
- National Agriculture and Food Research Organization (NARO), Tsu, Mie, Japan
| | - Hirotoshi Sushida
- National Agriculture and Food Research Organization (NARO), Tsu, Mie, Japan
- Institute of Food Research, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Yumiko Higashi
- National Agriculture and Food Research Organization (NARO), Tsu, Mie, Japan
| | - Hiroyuki Nakagawa
- Research Center for Advanced Analysis, Core Technology Research Headquarters, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Tomoko Suzuki
- Department of Chemical Biological Sciences, Japan Women’s University, Bunkyo-ku, Tokyo, Japan
| | - Eishin Iwao
- Laboratory of Plant Pathology, Setsunan University, Hirakata, Osaka, Japan
| | - Much Zaenal Fanani
- Laboratory of Plant Pathology, Setsunan University, Hirakata, Osaka, Japan
| | - Yoshiaki Nishiya
- Laboratory of Environmental Microbiology, Setsunan University, Neyagawa, Osaka, Japan
| | - Yuichiro Iida
- Laboratory of Plant Pathology, Setsunan University, Hirakata, Osaka, Japan
- National Agriculture and Food Research Organization (NARO), Tsu, Mie, Japan
| |
Collapse
|
2
|
Zhai Z, Zhang M, Yin R, Zhao S, Shen Z, Yang Y, Zhang X, Wang J, Qin Y, Xu D, Zhou L, Lai D. CRISPR/Cas9-assisted gene editing reveals that EgPKS, a polyketide synthase, is required for the biosynthesis of preussomerins in Edenia gomezpompae SV2. World J Microbiol Biotechnol 2025; 41:103. [PMID: 40069470 DOI: 10.1007/s11274-025-04313-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 02/27/2025] [Indexed: 03/29/2025]
Abstract
Edenia gomezpompae, an endophytic fungus derived from plants, produced a diverse array of preussomerins, a type of spirobisnaphthalenes featuring two spiroketal groups, which exhibited significant antibacterial, antifungal, and cytotoxic activities. Structurally, the biosynthesis of preussomerins might be related to the biosynthesis of 1,8-dihydroxynaphthalene (DHN), a precursor of DHN-melanin. However, the absence of efficient gene-editing tools for E. gomezpompae has hindered the biosynthetic study of preussomerins. In this study, we developed a CRISPR/Cas9-based gene editing system for E. gomezpompae SV2 that was isolated from the stem of Setaria viridis, by utilizing the endogenous U6 snRNA promoter to drive sgRNA expression. Using this system, we successfully disrupted the polyketide synthase (PKS)-encoding gene, Egpks, a putative 1,3,6,8-tetrahydroxynaphthalene synthase gene involved in the biosynthesis of DHN-melanin, with an editing efficiency up to 92% and a knockout efficiency of 71% when employing the U6 snRNA-3 promoter. Furthermore, the disrupted mutant (∆Egpks) displayed white hyphae and lost the ability to produce preussomerins. These results provided a foundational tool for genetic manipulation in E. gomezpompae and revealed the role of EgPKS in the biosynthesis of preussomerin-type spirobisnaphthalenes.
Collapse
Affiliation(s)
- Ziqi Zhai
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Mengwei Zhang
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Ruya Yin
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Siji Zhao
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Zhen Shen
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Yonglin Yang
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Xuan Zhang
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Jianing Wang
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Yifei Qin
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Dan Xu
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Ligang Zhou
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Daowan Lai
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
3
|
Vy TTP, Inoue Y, Asuke S, Chuma I, Nakayashiki H, Tosa Y. The ACE1 secondary metabolite gene cluster is a pathogenicity factor of wheat blast fungus. Commun Biol 2024; 7:812. [PMID: 38965407 PMCID: PMC11224330 DOI: 10.1038/s42003-024-06517-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 06/27/2024] [Indexed: 07/06/2024] Open
Abstract
Wheat blast caused by Pyricularia oryzae pathotype Triticum is now becoming a very serious threat to global food security. Here, we report an essential pathogenicity factor of the wheat blast fungus that is recognized and may be targeted by a rice resistance gene. Map-based cloning of Pwt2 showed that its functional allele is the ACE1 secondary metabolite gene cluster of the wheat blast fungus required for its efficient penetration of wheat cell walls. ACE1 is required for the strong aggressiveness of Triticum, Eleusine, and Lolium pathotypes on their respective hosts, but not for that of Oryza and Setaria pathotypes on rice and foxtail millet, respectively. All ACE1 alleles found in wheat blast population are recognized by a rice resistance gene, Pi33, when introduced into rice blast isolates. ACE1 mutations for evading the recognition by Pi33 do not affect the aggressiveness of the rice blast fungus on rice but inevitably impair the aggressiveness of the wheat blast fungus on wheat. These results suggest that a blast resistance gene already defeated in rice may be revived as a durable resistance gene in wheat by targeting an Achilles heel of the wheat blast fungus.
Collapse
Affiliation(s)
- Trinh T P Vy
- Graduate School of Agricultural Science, Kobe University, Kobe, 657-8501, Japan
| | - Yoshihiro Inoue
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Soichiro Asuke
- Graduate School of Agricultural Science, Kobe University, Kobe, 657-8501, Japan
| | - Izumi Chuma
- Obihiro University of Agriculture and Veterinary Medicine, Obihiro, 080-8555, Japan
| | - Hitoshi Nakayashiki
- Graduate School of Agricultural Science, Kobe University, Kobe, 657-8501, Japan
| | - Yukio Tosa
- Graduate School of Agricultural Science, Kobe University, Kobe, 657-8501, Japan.
| |
Collapse
|
4
|
Fernandes C, Casadevall A, Gonçalves T. Mechanisms of Alternaria pathogenesis in animals and plants. FEMS Microbiol Rev 2023; 47:fuad061. [PMID: 37884396 DOI: 10.1093/femsre/fuad061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/18/2023] [Accepted: 10/25/2023] [Indexed: 10/28/2023] Open
Abstract
Alternaria species are cosmopolitan fungi darkly pigmented by melanin that infect numerous plant species causing economically important agricultural spoilage of various food crops. Alternaria spp. also infect animals, being described as entomopathogenic fungi but also infecting warm-blooded animals, including humans. Their clinical importance in human health, as infection agents, lay in the growing number of immunocompromised patients. Moreover, Alternaria spp. are considered some of the most abundant and potent sources of airborne sensitizer allergens causing allergic respiratory diseases, as severe asthma. Among the numerous strategies deployed by Alternaria spp. to attack their hosts, the production of toxins, carrying critical concerns to public health as food contaminant, and the production of hydrolytic enzymes such as proteases, can be highlighted. Alternaria proteases also trigger allergic symptoms in individuals with fungal sensitization, acting as allergens and facilitating antigen access to the host subepithelium. Here, we review the current knowledge about the mechanisms of Alternaria pathogenesis in plants and animals, the strategies used by Alternaria to cope with the host defenses, and the involvement Alternaria allergens and mechanisms of sensitization.
Collapse
Affiliation(s)
- Chantal Fernandes
- CNC-UC - Center for Neuroscience and Cell Biology of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Wolfe Street, Room E5132, Baltimore, Maryland 21205, USA
| | - Teresa Gonçalves
- CNC-UC - Center for Neuroscience and Cell Biology of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
- FMUC - Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
| |
Collapse
|
5
|
Gupta NC, Yadav S, Arora S, Mishra DC, Budhlakoti N, Gaikwad K, Rao M, Prasad L, Rai PK, Sharma P. Draft genome sequencing and secretome profiling of Sclerotinia sclerotiorum revealed effector repertoire diversity and allied broad-host range necrotrophy. Sci Rep 2022; 12:21855. [PMID: 36528657 PMCID: PMC9759525 DOI: 10.1038/s41598-022-22028-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 10/07/2022] [Indexed: 12/23/2022] Open
Abstract
White mold commonly known as Sclerotinia sclerotiorum causes stem rot disease and has emerged as one of the major fungal pathogens of oilseed Brassica across the world. In the present study, consistently virulent S. sclerotiorum isolate "ESR-01" was sequenced and an assembly size of ~ 41 Mb with 328 scaffolds having N50 of 447,128 was obtained. Additionally, 27,450 single nucleotide polymorphisms (SNPs) were identified from 155 scaffolds against S. sclerotiorum 1980 isolate, with an average SNP density of ~ 1.5 per kb genome. 667 repetitive elements were identified and approximately comprised 7% of the total annotated genes. The DDE_1 with 454 in numbers was found to be the most abundant and accounts for 68% of the total predicted repetitive elements. In total, 3844 simple sequence repeats are identified in the 328 scaffolds. A total of 9469 protein-coding genes were predicted from the whole genome assembly with an average gene length of 1587 bp and their distribution as 230.95 genes per Mb in the genome. Out of 9469 predicted protein-coding genes, 529 genes were observed encoding the CAZymes (Carbohydrate-Active enzymes) capable of degradation of the complex polysaccharides. Glycosyltransferase (GT) families were most abundant (49.71%) among the predicted CAZymes and GT2 (23%), GT4 (20%), and glycoside hydrolase (GH) 23% with GH18 (11%) were the prominent cell wall degrading enzyme families in the ESR-01 secretome. Besides this, 156 genes essential for the pathogen-host interactions were also identified. The effector analysis in the whole genome proteomics dataset revealed a total of 57 effector candidates (ECs) and 27 of them were having their analogs whereas the remaining 30 were novel ones. Eleven selected ECs were validated experimentally by analyzing the expression profile of the ESR-01 isolate of S. sclerotiorum. Together, the present investigation offers a better understanding of the S. sclerotiorum genome, secretome, and its effector repertoire which will help in refining the present knowledge on S. sclerotiorum-Brassica interactions and necrotrophic lifestyle of the phytopathogen in general.
Collapse
Affiliation(s)
- Navin C Gupta
- ICAR-National Institute for Plant Biotechnology, New Delhi, India.
| | - Sunita Yadav
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Shaweta Arora
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Dwijesh C Mishra
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Neeraj Budhlakoti
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Kishore Gaikwad
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Mahesh Rao
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Lakshman Prasad
- ICAR-Indian Agricultural Research Institute, Pusa, New Delhi, India
| | - Pramod K Rai
- ICAR-Directorate of Rapeseed-Mustard Research, Bharatpur, Rajasthan, India
| | - Pankaj Sharma
- ICAR-Directorate of Rapeseed-Mustard Research, Bharatpur, Rajasthan, India.
| |
Collapse
|
6
|
Hou YH, Yang ZH, Wang JZ, Yang QZ. Characterization of a thermostable alkaline feruloyl esterase from Alternaria alternata and its synergism in dissolving pulp production. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
7
|
Courtial J, Helesbeux JJ, Oudart H, Aligon S, Bahut M, Hamon B, N'Guyen G, Pigné S, Hussain AG, Pascouau C, Bataillé-Simoneau N, Collemare J, Berruyer R, Poupard P. Characterization of NRPS and PKS genes involved in the biosynthesis of SMs in Alternaria dauci including the phytotoxic polyketide aldaulactone. Sci Rep 2022; 12:8155. [PMID: 35581239 PMCID: PMC9114375 DOI: 10.1038/s41598-022-11896-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/25/2022] [Indexed: 11/17/2022] Open
Abstract
Alternaria dauci is a Dothideomycete fungus, causal agent of carrot leaf blight. As a member of the Alternaria genus, known to produce a lot of secondary metabolite toxins, A. dauci is also supposed to synthetize host specific and non-host specific toxins playing a crucial role in pathogenicity. This study provides the first reviewing of secondary metabolism genetic basis in the Alternaria genus by prediction of 55 different putative core genes. Interestingly, aldaulactone, a phytotoxic benzenediol lactone from A. dauci, was demonstrated as important in pathogenicity and in carrot partial resistance to this fungus. As nothing is known about aldaulactone biosynthesis, bioinformatic analyses on a publicly available A. dauci genome data set that were reassembled, thanks to a transcriptome data set described here, allowed to identify 19 putative secondary metabolism clusters. We exploited phylogeny to pinpoint cluster 8 as a candidate in aldaulactone biosynthesis. This cluster contains AdPKS7 and AdPKS8, homologs with genes encoding a reducing and a non-reducing polyketide synthase. Clusters containing such a pair of PKS genes have been identified in the biosynthesis of resorcylic acid lactones or dihydroxyphenylacetic acid lactones. AdPKS7 and AdPKS8 gene expression patterns correlated with aldaulactone production in different experimental conditions. The present results highly suggest that both genes are responsible for aldaulactone biosynthesis.
Collapse
Affiliation(s)
- Julia Courtial
- Univ Angers, Institut Agro, INRAE, IRHS, SFR 4207 QuaSaV, 49000, Angers, France
| | - Jean-Jacques Helesbeux
- Substances d'Origine Naturelle et Analogues Structuraux, SFR4207 QUASAV, Université d'Angers, Angers, France
| | - Hugo Oudart
- Univ Angers, Institut Agro, INRAE, IRHS, SFR 4207 QuaSaV, 49000, Angers, France
| | - Sophie Aligon
- Univ Angers, Institut Agro, INRAE, IRHS, SFR 4207 QuaSaV, 49000, Angers, France
| | | | - Bruno Hamon
- Univ Angers, Institut Agro, INRAE, IRHS, SFR 4207 QuaSaV, 49000, Angers, France
| | - Guillaume N'Guyen
- Univ Angers, Institut Agro, INRAE, IRHS, SFR 4207 QuaSaV, 49000, Angers, France
| | - Sandrine Pigné
- Univ Angers, Institut Agro, INRAE, IRHS, SFR 4207 QuaSaV, 49000, Angers, France
| | - Ahmed G Hussain
- Univ Angers, Institut Agro, INRAE, IRHS, SFR 4207 QuaSaV, 49000, Angers, France.,Laboratory of Virology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Claire Pascouau
- Univ Angers, Institut Agro, INRAE, IRHS, SFR 4207 QuaSaV, 49000, Angers, France
| | | | - Jérôme Collemare
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584CT, Utrecht, The Netherlands
| | - Romain Berruyer
- Univ Angers, Institut Agro, INRAE, IRHS, SFR 4207 QuaSaV, 49000, Angers, France.
| | - Pascal Poupard
- Univ Angers, Institut Agro, INRAE, IRHS, SFR 4207 QuaSaV, 49000, Angers, France
| |
Collapse
|
8
|
Abstract
Contamination of food and feed with toxin-producing fungi is a major threat in agriculture and for human health. The filamentous fungus Alternaria alternata is one of the most widespread postharvest contaminants and a weak plant pathogen. It produces a large variety of secondary metabolites with alternariol and its derivatives as characteristic mycotoxin. Other important phyto- and mycotoxins are perylene quinones (PQs), some of which have anticancer properties. Here, we discovered that the PQ altertoxin (ATX) biosynthesis shares most enzymes with the 1,8-dihydroxynaphthalene (1,8-DHN) melanin pathway. However, melanin was formed in aerial hyphae and spores, and ATXs were synthesized in substrate hyphae. This spatial separation is achieved through the promiscuity of a polyketide synthase, presumably producing a pentaketide (T4HN), a hexaketide (AT4HN), and a heptaketide (YWA1) as products. T4HN directly enters the altertoxin and DHN melanin pathway, whereas AT4HN and YWA1 can be converted only in aerial hyphae, which probably leads to a higher T4HN concentration, favoring 1,8-DHN melanin formation. Whereas the production of ATXs was strictly dependent on the CmrA transcription factor, melanin could still be produced in the absence of CmrA to some extent. This suggests that different cues regulate melanin and toxin formation. Since DHN melanin is produced by many fungi, PQs or related compounds may be produced in many more fungi than so far assumed.
Collapse
|
9
|
Paraguay-Delgado F, Hermida-Montero LA, Morales-Mendoza JE, Durán-Barradas Z, Mtz-Enriquez AI, Pariona N. Photocatalytic properties of Cu-containing ZnO nanoparticles and their antifungal activity against agriculture-pathogenic fungus. RSC Adv 2022; 12:9898-9908. [PMID: 35424965 PMCID: PMC8963260 DOI: 10.1039/d2ra00863g] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/16/2022] [Indexed: 12/02/2022] Open
Abstract
In this work, nanoparticles (NPs) of ZnO, ZnO with Cu incorporated at 2 and 30 wt%, and CuO were prepared by the hydrothermal method. X-ray diffraction pattern (DRX) analysis showed that ZnO with high Cu incorporation (30 wt%) generates the formation of a composite oxide (ZnO/CuO), while X-ray photoelectron spectroscopy (XPS) of the Cu (2 wt%) sample indicated that Cu is incorporated as a dopant (ZnO/Cu2%). The samples with Cu incorporated had enhanced visible light absorption. Methyl orange (MO) dye was used to perform photocatalytic tests under UV radiation. The antifungal activity of the NPs was tested against four agricultural phytopathogenic fungi: Neofusicoccum arbuti, Alternaria alternata, Fusarium solani, and Colletotrichum gloeosporioides. The ZnO/Cu2% nanoparticles showed adequate photocatalytic and high antifungal activity in comparison to pure oxides and the composite sample. In this work, nanoparticles (NPs) of ZnO, ZnO with Cu incorporated at 2 and 30 wt%, and CuO were prepared by the hydrothermal method.![]()
Collapse
Affiliation(s)
- F Paraguay-Delgado
- Centro de Investigación en Materiales Avanzados SC (CIMAV), Laboratorio Nacional de Nanotecnología Miguel de Cervantes No. 120 31136 Chihuahua Chih México
| | - L A Hermida-Montero
- Centro de Investigación en Materiales Avanzados SC (CIMAV), Laboratorio Nacional de Nanotecnología Miguel de Cervantes No. 120 31136 Chihuahua Chih México
| | - J E Morales-Mendoza
- Centro de Investigación en Materiales Avanzados SC (CIMAV), Laboratorio Nacional de Nanotecnología Miguel de Cervantes No. 120 31136 Chihuahua Chih México
| | - Z Durán-Barradas
- Red de Manejo Biotecnológico de Recursos, Instituto de Ecología A. C Carretera Antigua a Coatepec 351, El Haya, 91073 Xalapa Veracruz México
| | - Arturo I Mtz-Enriquez
- Centro de Investigación y de Estudios Avanzados del IPN Unidad Saltillo Av. Industria Metalúrgica 1062, Parque Industrial Ramos Arizpe 25900 Coahuila México
| | - Nicolaza Pariona
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C Carretera Antigua a Coatepec 351, El Haya 91073 Xalapa Veracruz México
| |
Collapse
|
10
|
Fernandes C, Mota M, Barros L, Dias MI, Ferreira ICFR, Piedade AP, Casadevall A, Gonçalves T. Pyomelanin Synthesis in Alternaria alternata Inhibits DHN-Melanin Synthesis and Decreases Cell Wall Chitin Content and Thickness. Front Microbiol 2021; 12:691433. [PMID: 34512569 PMCID: PMC8430343 DOI: 10.3389/fmicb.2021.691433] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/26/2021] [Indexed: 12/15/2022] Open
Abstract
The genus Alternaria includes several of fungi that are darkly pigmented by DHN-melanin. These are pathogenic to plants but are also associated with human respiratory allergic diseases and with serious infections in immunocompromised individuals. The present work focuses on the alterations of the composition and structure of the hyphal cell wall of Alternaria alternata occuring under the catabolism of L-tyrosine and L-phenylalanine when cultured in minimal salt medium (MM). Under these growing conditions, we observed the released of a brown pigment into the culture medium. FTIR analysis demonstrates that the produced pigment is chemically identical to the pigment released when the fungus is grown in MM with homogentisate acid (HGA), the intermediate of pyomelanin, confirming that this pigment is pyomelanin. In contrast to other fungi that also synthesize pyomelanin under tyrosine metabolism, A. alternata inhibits DHN-melanin cell wall accumulation when pyomelanin is produced, and this is associated with reduced chitin cell wall content. When A. alternata is grown in MM containing L-phenylalanine, a L-tyrosine percursor, pyomelanin is synthesized but only at trace concentrations and A. alternata mycelia display an albino-like phenotype since DHN-melanin accumulation is inhibited. CmrA, the transcription regulator for the genes coding for the DHN-melanin pathway, is involved in the down-regulation of DHN-melanin synthesis when pyomelanin is being synthetized, since the CMRA gene and genes of the enzymes involved in DHN-melanin synthesis pathway showed a decreased expression. Other amino acids do not trigger pyomelanin synthesis and DHN-melanin accumulation in the cell wall is not affected. Transmission and scanning electron microscopy show that the cell wall structure and surface decorations are altered in L-tyrosine- and L-phenylalanine-grown fungi, depending on the pigment produced. In summary, growth in presence of L-tyrosine and L-phenylalanine leads to pigmentation and cell wall changes, which could be relevant to infection conditions where these amino acids are expected to be available.
Collapse
Affiliation(s)
- Chantal Fernandes
- CNC—Center for Neuroscience and Cell Biology of Coimbra, Coimbra, Portugal
| | - Marta Mota
- CNC—Center for Neuroscience and Cell Biology of Coimbra, Coimbra, Portugal
- FMUC—Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Lillian Barros
- Mountain Research Center (CIMO), Polytechnic Institute of Bragança, Bragança, Portugal
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Polytechnic Institute of Bragança, Bragança, Portugal
| | - Maria Inês Dias
- Mountain Research Center (CIMO), Polytechnic Institute of Bragança, Bragança, Portugal
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Polytechnic Institute of Bragança, Bragança, Portugal
| | - Isabel C. F. R. Ferreira
- Mountain Research Center (CIMO), Polytechnic Institute of Bragança, Bragança, Portugal
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Polytechnic Institute of Bragança, Bragança, Portugal
| | - Ana P. Piedade
- Centre for Mechanical Engineering, Materials and Processes, Department of Mechanical Engineering, University of Coimbra, Coimbra, Portugal
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Teresa Gonçalves
- CNC—Center for Neuroscience and Cell Biology of Coimbra, Coimbra, Portugal
- FMUC—Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
11
|
Wang X, Lu D, Tian C. Analysis of melanin biosynthesis in the plant pathogenic fungus Colletotrichum gloeosporioides. Fungal Biol 2021; 125:679-692. [PMID: 34420695 DOI: 10.1016/j.funbio.2021.04.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 04/04/2021] [Accepted: 04/19/2021] [Indexed: 11/25/2022]
Abstract
Melanin is recognized as a dark pigment that can protect fungi from the harm of environmental stresses. To investigate what roles of melanin played in the pathogenicity and development of Colletotrichum gloeosporioides, a causal agent of poplar anthracnose, genes encoding a transcription factor CgCmr1 and a polyketide synthase CgPks1 were isolated as the ortholog of Magnaporthe oryzae Pig1 and Pks1 respectively. Deletion of CgCmr1 or CgPks1 resulted in melanin-deficient fungal colony. The ΔCgPks1 mutant showed no melanin accumulation in appressoria, and lack of CgCmr1 also resulted in the delayed and decreased melanization of appressoria. In addition, the turgor pressure of the appressorium was lower in ΔCgPks1 and ΔCgCmr1 than in the wild-type (WT). However, DHN melanin was not a vital factor for virulence in C. gloeosporioides. Moreover, deletion of CgCmr1 and CgPks1 resulted in the hypersensitivity to hydrogen peroxide (H2O2) oxidative stress but not to other abiotic stresses. Collectively, these results suggest that CgCmr1 and CgPks1 play an important role in DHN melanin biosynthesis, and melanin was not an essential factor in penetration and pathogenicity in C. gloeosporioides. The data presented in this study will facilitate future evaluations of the melanin biosynthetic pathway and development in filamentous fungi.
Collapse
Affiliation(s)
- Xiaolian Wang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
| | - Dongxiao Lu
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
| | - Chengming Tian
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China.
| |
Collapse
|
12
|
Genetic Relationships in the Toxin-Producing Fungal Endophyte, Alternaria oxytropis Using Polyketide Synthase and Non-Ribosomal Peptide Synthase Genes. J Fungi (Basel) 2021; 7:jof7070538. [PMID: 34356917 PMCID: PMC8306250 DOI: 10.3390/jof7070538] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 01/16/2023] Open
Abstract
The legume Oxytropis sericea hosts a fungal endophyte, Alternaria oxytropis, which produces secondary metabolites (SM), including the toxin swainsonine. Polyketide synthase (PKS) and non-ribosomal peptide synthase (NRPS) enzymes are associated with biosynthesis of fungal SM. To better understand the origins of the SM, an unannotated genome of A. oxytropis was assessed for protein sequences similar to known PKS and NRPS enzymes of fungi. Contigs exhibiting identity with known genes were analyzed at nucleotide and protein levels using available databases. Software were used to identify PKS and NRPS domains and predict identity and function. Confirmation of sequence for selected gene sequences was accomplished using PCR. Thirteen PKS, 5 NRPS, and 4 PKS-NRPS hybrids were identified and characterized with functions including swainsonine and melanin biosynthesis. Phylogenetic relationships among closest amino acid matches with Alternaria spp. were identified for seven highly conserved PKS and NRPS, including melanin synthesis. Three PKS and NRPS were most closely related to other fungi within the Pleosporaceae family, while five PKS and PKS-NRPS were closely related to fungi in the Pleosporales order. However, seven PKS and PKS-NRPS showed no identity with fungi in the Pleosporales or the class Dothideomycetes, suggesting a different evolutionary origin for those genes.
Collapse
|
13
|
Evdokias G, Semper C, Mora-Ochomogo M, Di Falco M, Nguyen TTM, Savchenko A, Tsang A, Benoit-Gelber I. Identification of a Novel Biosynthetic Gene Cluster in Aspergillus niger Using Comparative Genomics. J Fungi (Basel) 2021; 7:374. [PMID: 34064722 PMCID: PMC8151901 DOI: 10.3390/jof7050374] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 11/17/2022] Open
Abstract
Previously, DNA microarrays analysis showed that, in co-culture with Bacillus subtilis, a biosynthetic gene cluster anchored with a nonribosomal peptides synthetase of Aspergillus niger is downregulated. Based on phylogenetic and synteny analyses, we show here that this gene cluster, NRRL3_00036-NRRL3_00042, comprises genes predicted to encode a nonribosomal peptides synthetase, a FAD-binding domain-containing protein, an uncharacterized protein, a transporter, a cytochrome P450 protein, a NAD(P)-binding domain-containing protein and a transcription factor. We overexpressed the in-cluster transcription factor gene NRRL3_00042. The overexpression strain, NRRL3_00042OE, displays reduced growth rate and production of a yellow pigment, which by mass spectrometric analysis corresponds to two compounds with masses of 409.1384 and 425.1331. We deleted the gene encoding the NRRL3_00036 nonribosomal peptides synthetase in the NRRL3_00042OE strain. The resulting strain reverted to the wild-type phenotype. These results suggest that the biosynthetic gene cluster anchored by the NRRL3_00036 nonribosomal peptides synthetase gene is regulated by the in-cluster transcriptional regulator gene NRRL3_00042, and that it is involved in the production of two previously uncharacterized compounds.
Collapse
Affiliation(s)
- Gregory Evdokias
- Centre for Structural and Functional Genomics, Department of Biology, Concordia University, 7141 Rue Sherbrooke Ouest, Montréal, QC H4B 1R6, Canada; (G.E.); (M.M.-O.); (M.D.F.); (T.T.M.N.); (A.T.)
| | - Cameron Semper
- Department of Microbiology, Immunology and Infectious Disease, University of Calgary, 3330 Hospital Drive, Calgary, AB T2N 4N1, Canada; (C.S.); (A.S.)
| | - Montserrat Mora-Ochomogo
- Centre for Structural and Functional Genomics, Department of Biology, Concordia University, 7141 Rue Sherbrooke Ouest, Montréal, QC H4B 1R6, Canada; (G.E.); (M.M.-O.); (M.D.F.); (T.T.M.N.); (A.T.)
| | - Marcos Di Falco
- Centre for Structural and Functional Genomics, Department of Biology, Concordia University, 7141 Rue Sherbrooke Ouest, Montréal, QC H4B 1R6, Canada; (G.E.); (M.M.-O.); (M.D.F.); (T.T.M.N.); (A.T.)
| | - Thi Truc Minh Nguyen
- Centre for Structural and Functional Genomics, Department of Biology, Concordia University, 7141 Rue Sherbrooke Ouest, Montréal, QC H4B 1R6, Canada; (G.E.); (M.M.-O.); (M.D.F.); (T.T.M.N.); (A.T.)
| | - Alexei Savchenko
- Department of Microbiology, Immunology and Infectious Disease, University of Calgary, 3330 Hospital Drive, Calgary, AB T2N 4N1, Canada; (C.S.); (A.S.)
| | - Adrian Tsang
- Centre for Structural and Functional Genomics, Department of Biology, Concordia University, 7141 Rue Sherbrooke Ouest, Montréal, QC H4B 1R6, Canada; (G.E.); (M.M.-O.); (M.D.F.); (T.T.M.N.); (A.T.)
| | - Isabelle Benoit-Gelber
- Centre for Structural and Functional Genomics, Department of Biology, Concordia University, 7141 Rue Sherbrooke Ouest, Montréal, QC H4B 1R6, Canada; (G.E.); (M.M.-O.); (M.D.F.); (T.T.M.N.); (A.T.)
| |
Collapse
|
14
|
Kemler M, Wingfield M, Cowan D, Slippers B. Foliar fungi of the enigmatic desert plant Welwitschia mirabilis show little adaptation to their unique host plant. S AFR J SCI 2021. [DOI: 10.17159/sajs.2021/7666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Foliar fungi, especially endophytic fungi, constitute an important part of the microbiome of plants. Yet little is known about the composition of these communities. In this study, we isolated fungi from leaf tissues of the desert plant Welwitschia mirabilis to determine the culturable diversity of the foliar fungal community. The isolated fungal taxa, which grouped into 17 distinct lineages, were identified by sequencing elongation factor 1 alpha, beta tubulin 1, beta tubulin 2 and the internal transcribed spacer region. The culturable community was mainly composed of cosmopolitan fungal genera despite the unique taxonomic position of the plant and its geographic isolation. To test for endemism in two of the common fungal genera, Alternaria and Aureobasidium, we built haplotype networks using a global data set. Even this broad data set showed little evidence for specialisation within this unique host or its geographical location. The data suggest that the culturable members of communities of leaf-associated fungi in habitats with little plant coverage, such as the Namib Desert, are mainly established by long-distance aerially distributed fungal inocula and few of these taxa co-evolve with the host within the habitat.
Collapse
Affiliation(s)
- Martin Kemler
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- AG Geobotanik, Ruhr University Bochum, Bochum, Germany
| | - Michael Wingfield
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Don Cowan
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa
| | - Bernard Slippers
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| |
Collapse
|
15
|
Hamamoto E, Kimura N, Nishino S, Ishihara A, Otani H, Osaki-Oka K. Antimicrobial activity of the volatile compound 3,5-dichloro-4-methoxybenzaldehyde, produced by the mushroom Porostereum spadiceum, against plant-pathogenic bacteria and fungi. J Appl Microbiol 2021; 131:1431-1439. [PMID: 33524179 DOI: 10.1111/jam.15020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 11/27/2022]
Abstract
AIMS In this study, volatile compounds released from mycelia of some aromatic mushrooms were investigated for their inhibitory activity against plant-pathogenic bacteria and fungi. METHODS AND RESULTS A screening revealed that volatile compounds from mycelia of Porostereum spadiceum remarkably inhibited the colony formation of plant-pathogenic bacteria, including Clavibacter michiganensis subsp. michiganensis and Ralstonia solanacearum while also inhibiting the conidial germination of plant-pathogenic fungi including Alternaria brassicicola and Colletotrichum orbiculare. The volatile compounds were isolated from the culture filtrate of P. spadiceum, and 3,4-dichloro-4-methoxybenzaldehyde (DCMB) was identified as a major compound. DCMB significantly inhibited bacterial colonization at 10 μg ml-1 and fungal conidial germination at 0·1-1 μg ml-1 as a vapour. CONCLUSIONS This is the first report on the production of the volatile compound DCMB by P. spadiceum and on the antimicrobial activity of DCMB against plant-pathogenic bacteria and fungi at low concentrations. It may be possible to use the compound as an agent for protecting crops from bacterial and fungal diseases during cultivation and storage. SIGNIFICANCE AND IMPACT OF THE STUDY This study provides an understanding of antimicrobial activity of the mushroom volatile compound that may be useful as a novel biological control agent for protecting various plant diseases.
Collapse
Affiliation(s)
- E Hamamoto
- Faculty of Agriculture, Tottori University, Tottori, Japan.,Kumiai Chemical Industry Co., Ltd, Tokyo, Japan
| | - N Kimura
- Faculty of Agriculture, Tottori University, Tottori, Japan
| | - S Nishino
- Faculty of Agriculture, Tottori University, Tottori, Japan.,Odawara Research Center, Nippon Soda Co., Ltd., Kanagawa, Japan
| | - A Ishihara
- Faculty of Agriculture, Tottori University, Tottori, Japan
| | - H Otani
- Faculty of Agriculture, Tottori University, Tottori, Japan
| | - K Osaki-Oka
- Faculty of Agriculture, Tottori University, Tottori, Japan
| |
Collapse
|
16
|
Inoue Y, Vy TTP, Tani D, Tosa Y. Suppression of wheat blast resistance by an effector of Pyricularia oryzae is counteracted by a host specificity resistance gene in wheat. THE NEW PHYTOLOGIST 2021; 229:488-500. [PMID: 32852846 DOI: 10.1111/nph.16894] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 08/05/2020] [Indexed: 06/11/2023]
Abstract
Wheat blast caused by the Triticum pathotype of Pyricularia oryzae poses a serious threat to wheat production in South America and Asia and is now becoming a pandemic disease. Here, we show that Rmg8, a promising wheat gene for resistance breeding, is suppressed by PWT4, an effector gene of P. oryzae, and in turn that the suppression is counteracted by Rwt4, a wheat gene recognizing PWT4. When PWT4 was introduced into a wheat blast isolate carrying AVR-Rmg8 (an avirulence gene corresponding to Rmg8), PWT4 suppressed wheat resistance conferred by Rmg8. PWT4 did not alter the expression of AVR-Rmg8, but higher expression of PWT4 led to more efficient suppression. This suppression was observed in rwt4 carriers, but not in Rwt4 carriers, indicating that it is counteracted by Rwt4. PWT4 was assumed to have been horizontally transferred from a weed-associated cryptic species, P. pennisetigena, to an Avena isolate of P. oryzae in Brazil. This implies a potential risk of the acquisition of PWT4 by the wheat blast fungus and the 'breakdown' of Rmg8. We suggest that Rmg8 should be introduced together with Rwt4 into a wheat cultivar when it is used for resistance breeding.
Collapse
Affiliation(s)
- Yoshihiro Inoue
- Graduate School of Agricultural Science, Kobe University, Kobe, 657-8501, Japan
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Trinh Thi Phuoug Vy
- Graduate School of Agricultural Science, Kobe University, Kobe, 657-8501, Japan
| | - Daichi Tani
- Graduate School of Agricultural Science, Kobe University, Kobe, 657-8501, Japan
| | - Yukio Tosa
- Graduate School of Agricultural Science, Kobe University, Kobe, 657-8501, Japan
| |
Collapse
|
17
|
Wang F, Gao W, Sun J, Mao X, Liu K, Xu J, Fu D, Yuan M, Wang H, Chen N, Xiao S, Xue C. NADPH Oxidase ClNOX2 Regulates Melanin-Mediated Development and Virulence in Curvularia lunata. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:1315-1329. [PMID: 32815478 DOI: 10.1094/mpmi-06-20-0138-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The role of NADPH oxidases (NOXs) in pathogenesis and development in the Curvularia leaf spot agent Curvularia lunata remains poorly understood. In this study, we identified C. lunata ClNOX2, which localized to the plasma membrane and was responsible for reactive oxygen species (ROS) generation. Scavenging the ROS production inhibited the conidial germination and appressorial formation. The ClNOX2 and ClBRN1 deletion mutants were defective in 1,8-dihydroxynaphthalene (DHN) melanin accumulation, appressorial formation, and cellulase synthesis and exhibited lower virulence. However, disruption of the ClNOX2 and ClBRN1 genes facilitated hyphal growth, enhanced stress adaptation to cell-wall-disrupting agents, and promoted developmental processes such as conidiation, conidial germination, and pseudothecium and ascus formation. Interestingly, loss of ClM1, the cell wall integrity (CWI) mitogen-activated protein kinase gene in C. lunata, led to morphology and pathogenicity phenotypes similar to ClNOX2 and ClBRN1 deletion mutants such as abnormal conidia, fewer appressoria, less melanin, increased hyphal growth, and enhanced tolerance to Congo red (CR). These results indicated that the ClNOX2 gene plays an important role in C. lunata development and virulence via regulating intracellular DHN melanin biosynthesis. Quantitative reverse-transcription PCR revealed that the ClNOX2-related ROS signaling pathway and ClM1-mediated CWI signaling pathway are cross-linked in regulating DHN melanin biosynthesis. Our findings provide new insights into how ClNOX2 participates in pathogenesis and development in hemibiotrophic plant fungal pathogens.[Formula: see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Fen Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110161, China
| | - Weida Gao
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110161, China
| | - Jiaying Sun
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110161, China
| | - Xiuwen Mao
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110161, China
| | - Kexin Liu
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110161, China
| | - Jingru Xu
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110161, China
| | - Dandan Fu
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110161, China
| | - Mingyue Yuan
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110161, China
| | - Hongchuan Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110161, China
| | - Nan Chen
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110161, China
| | - Shuqin Xiao
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110161, China
| | - Chunsheng Xue
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110161, China
| |
Collapse
|
18
|
Fu H, Chung K, Gai Y, Mao L, Li H. The basal transcription factor II H subunit Tfb5 is required for stress response and pathogenicity in the tangerine pathotype of Alternaria alternata. MOLECULAR PLANT PATHOLOGY 2020; 21:1337-1352. [PMID: 32776683 PMCID: PMC7488464 DOI: 10.1111/mpp.12982] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/25/2020] [Accepted: 07/20/2020] [Indexed: 05/16/2023]
Abstract
The basal transcription factor II H (TFIIH) is a multicomponent complex. In the present study, we characterized a TFIIH subunit Tfb5 by analysing loss- and gain-of-function mutants to gain a better understanding of the molecular mechanisms underlying stress resistance and pathogenicity in the citrus fungal pathogen Alternaria alternata. Tfb5 deficiency mutants (ΔAatfb5) decreased sporulation and pigmentation, and were impaired in the maintenance of colony surface hydrophobicity and cell wall integrity. ΔAatfb5 increased sensitivity to ultraviolet light, DNA-damaging agents, and oxidants. The expression of Aatfb5 was up-regulated in the wild type upon infection in citrus leaves, implicating the requirement of Aatfb5 in fungal pathogenesis. Biochemical and virulence assays revealed that ΔAatfb5 was defective in toxin production and cellwall-degrading enzymes, and failed to induce necrotic lesions on detached citrus leaves. Aatfb5 fused with green fluorescent protein (GFP) was localized in the cytoplasm and nucleus and physically interacted with another subunit, Tfb2, based on yeast two-hybrid and co-immunoprecipitation analyses. Transcriptome and Antibiotics & Secondary Metabolite Analysis Shell (antiSMASH) analyses revealed the positive and negative roles of Aatfb5 in the production of various secondary metabolites and in the regulation of many metabolic and biosynthetic processes in A. alternata. Aatfb5 may play a negative role in oxidative phosphorylation and a positive role in peroxisome biosynthesis. Two cutinase-coding genes (AaCut2 and AaCut15) required for full virulence were down-regulated in ΔAatfb5. Overall, this study expands our understanding of how A. alternata uses the basal transcription factor to deal with stress and achieve successful infection in the plant host.
Collapse
Affiliation(s)
- Huilan Fu
- Key Laboratory of Molecular Biology of Crop Pathogens and InsectsInstitute of BiotechnologyZhejiang UniversityHangzhouChina
| | - Kuang‐Ren Chung
- Department of Plant PathologyCollege of Agriculture and Natural ResourcesNational Chung‐Hsing UniversityTaichungTaiwan
| | - Yunpeng Gai
- Key Laboratory of Molecular Biology of Crop Pathogens and InsectsInstitute of BiotechnologyZhejiang UniversityHangzhouChina
| | - Lijuan Mao
- Analysis Center of Agrobiology and Environmental SciencesFaculty of Agriculture, Life and Environment SciencesZhejiang UniversityHangzhouChina
| | - Hongye Li
- Key Laboratory of Molecular Biology of Crop Pathogens and InsectsInstitute of BiotechnologyZhejiang UniversityHangzhouChina
| |
Collapse
|
19
|
Charlton ND, Yi M, Bock CH, Zhang M, Young CA. First description of the sexual stage of Venturia effusa, causal agent of pecan scab. Mycologia 2020; 112:711-721. [PMID: 32469692 DOI: 10.1080/00275514.2020.1759998] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Pecan scab, caused by Venturia effusa, is the most prevalent disease of pecan in the southeastern United States. Recent characterization of the mating type (MAT) distribution of V. effusa revealed that the MAT idiomorphs are in equilibrium at various spatial scales, indicative of regular sexual recombination. However, the occurrence of the sexual stage of V. effusa has never been observed, and the pathogen was previously considered to rely entirely on asexual reproduction. We were able to generate the sexual stage by pairing isolates of opposite mating types on oatmeal culture media. Cultures were incubated at 24 C for 2 mo to allow hyphae from isolates of each mating type to interact. Culture plates were then incubated at 4 C for 4 mo, after which immature pseudothecia were observed. Following exposure to a 12-h photoperiod for 2 wk at 24 C, asci and ascospores readily developed. Pseudothecium and ascospore production was optimal when incubated for 4 mo at 4 C. We utilized progeny from a cross of an albino isolate and wild-type (melanized) isolates to determine that recombination had occurred. Multilocus genotyping using 32 microsatellite markers confirmed that progeny were the result of recombination, which was further supported by segregation of mating types and culture pigmentation. Albino progeny were all confirmed to contain the same mutation in the polyketide synthase (PKS1) melanin biosynthesis gene as the albino parent. The results of this study demonstrate the heterothallic nature of V. effusa. The impact of determining the source of the overwintering ascostroma will aid in management decisions to reduce the primary inoculum in the disease cycle.
Collapse
Affiliation(s)
| | - Mihwa Yi
- Noble Research Institute , LLC, Ardmore, Oklahoma 73401
| | - Clive H Bock
- Southeastern Fruit and Tree Nut Research Laboratory, Agricultural Research Service, United States Department of Agriculture , Byron, Georgia 31008
| | - Minling Zhang
- Southeastern Fruit and Tree Nut Research Laboratory, Agricultural Research Service, United States Department of Agriculture , Byron, Georgia 31008
| | | |
Collapse
|
20
|
Oh JJ, Kim JY, Kwon SL, Hwang DH, Choi YE, Kim GH. Production and characterization of melanin pigments derived from Amorphotheca resinae. J Microbiol 2020; 58:648-656. [PMID: 32424578 DOI: 10.1007/s12275-020-0054-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/14/2020] [Accepted: 04/20/2020] [Indexed: 12/16/2022]
Abstract
As melanin has emerged as functional pigment with cosmetic, health and food applications, the demand for the pigments is expected to increase. However, the conventional sources (e.g. mushroom, hair, and wool) of melanin production entail pigments inside the substrates which requires the costly extraction procedures, leading to inappropriate scalable production. In this study, we screened 102 of fungal isolates for their ability to produce melanin in the supernatant and selected the only Amorphotheca resinae as a promising candidate. In the peptone yeast extract glucose broth, A. resinae produced the melanin rapidly during the autolysis phase of growth, reaching up 4.5 g/L within 14 days. Structural characterization of the purified melanin from A. resinae was carried out by using elemental analysis, electron paramagnetic resonance, 13C solid-state nuclear magnetic resonance spectroscopy, and pyrolysis-gas chromatography-mass spectrometry in comparison with the standard melanins. The results indicate that the structural properties of A. resinae melanin is similar to the eumelanin which has a wide range of industrial uses. For example, the purified melanin from A. resinae has the potent antioxidant activities as a result of free radical scavenging assays. Consequently, A. resinae KUC3009 can be a promising candidate for scalable production of industrially applicable melanin.
Collapse
Affiliation(s)
- Jeong-Joo Oh
- Division of Environmental Science & Ecological Engineering, College of Life Sciences & Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Jee Young Kim
- Division of Environmental Science & Ecological Engineering, College of Life Sciences & Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Sun Lul Kwon
- Division of Environmental Science & Ecological Engineering, College of Life Sciences & Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Dong-Hyeok Hwang
- Department of Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Yoon-E Choi
- Division of Environmental Science & Ecological Engineering, College of Life Sciences & Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Gyu-Hyeok Kim
- Division of Environmental Science & Ecological Engineering, College of Life Sciences & Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
21
|
Bieker VC, Sánchez Barreiro F, Rasmussen JA, Brunier M, Wales N, Martin MD. Metagenomic analysis of historical herbarium specimens reveals a postmortem microbial community. Mol Ecol Resour 2020; 20:1206-1219. [DOI: 10.1111/1755-0998.13174] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/09/2020] [Accepted: 04/14/2020] [Indexed: 01/16/2023]
Affiliation(s)
- Vanessa C. Bieker
- Department of Natural History NTNU University MuseumNorwegian University of Science and Technology (NTNU) Trondheim Norway
| | - Fátima Sánchez Barreiro
- Section for EvoGenomics GLOBE Institute Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Jacob A. Rasmussen
- Department of Natural History NTNU University MuseumNorwegian University of Science and Technology (NTNU) Trondheim Norway
- Section for EvoGenomics GLOBE Institute Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Marie Brunier
- Department of Natural History NTNU University MuseumNorwegian University of Science and Technology (NTNU) Trondheim Norway
- School of Industrial Biology (École de Biologie Industrielle ‐ EBI) Cergy France
| | - Nathan Wales
- School of Industrial Biology (École de Biologie Industrielle ‐ EBI) Cergy France
- Department of Plant and Microbial Biology University of California Berkeley CA USA
- Department of Archaeology University of York York UK
| | - Michael D. Martin
- Department of Natural History NTNU University MuseumNorwegian University of Science and Technology (NTNU) Trondheim Norway
| |
Collapse
|
22
|
Winter DJ, Charlton ND, Krom N, Shiller J, Bock CH, Cox MP, Young CA. Chromosome-Level Reference Genome of Venturia effusa, Causative Agent of Pecan Scab. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:149-152. [PMID: 31631770 DOI: 10.1094/mpmi-08-19-0236-a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Pecan scab, caused by Venturia effusa, is a devastating disease of pecan (Carya illinoinensis), which results in economic losses on susceptible cultivars throughout the southeastern United States. To enhance our understanding of pathogenicity in V. effusa, we have generated a complete telomere-to-telomere reference genome of V. effusa isolate FRT5LL7-Albino. By combining Illumina MiSeq and Oxford Nanopore MinION data, we assembled a 45.2-Mb genome represented by 20 chromosomes and containing 10,820 putative genes, of which 7,619 have at least one functional annotation. The likely causative mutation of the albino phenotype was identified as a single base insertion and a resulting frameshift in the gene encoding the polyketide synthase ALM1. This genome represents the first full chromosome-level assembly of any Venturia sp.
Collapse
Affiliation(s)
- David J Winter
- School of Fundamental Sciences and the Bio-Protection Research Centre, Massey University, Palmerston North 4442, New Zealand
| | | | - Nick Krom
- Noble Research Institute, LLC, Ardmore, OK 73401, U.S.A
| | - Jason Shiller
- Noble Research Institute, LLC, Ardmore, OK 73401, U.S.A
| | - Clive H Bock
- United States Department of Agriculture-Agricultural Research Service Southeastern Fruit and Tree Nut Research Laboratory, Byron, GA 31008, U.S.A
| | - Murray P Cox
- School of Fundamental Sciences and the Bio-Protection Research Centre, Massey University, Palmerston North 4442, New Zealand
| | | |
Collapse
|
23
|
Harting R, Höfer A, Tran VT, Weinhold LM, Barghahn S, Schlüter R, Braus GH. The Vta1 transcriptional regulator is required for microsclerotia melanization in Verticillium dahliae. Fungal Biol 2020; 124:490-500. [PMID: 32389312 DOI: 10.1016/j.funbio.2020.01.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 12/13/2022]
Abstract
Many fungi are able to produce resting structures, which ensure survival and protect them against various stresses in their habitat such as exposure to UV light, temperature variations, drought as well as changing pH and nutrient conditions. Verticillium dahliae is a plant pathogenic fungus that forms melanized resting structures, called microsclerotia, for survival of time periods without a host. These highly stress resistant microsclerotia persist in the soil for many years and are therefore problematic for an effective treatment of the fungus. The Verticillium transcription activator of adhesion 1 (Vta1) was initially identified as one of several transcriptional regulators that rescue adhesion in non-adhesive Saccharomyces cerevisiae cells. Vta2 and Vta3 are required for early steps in plant infection and colonization and additionally control microsclerotia formation. Here, we show that Vta1 function is different, because it is dispensable for root colonization and infection. Vta1 is produced in the fungal cell during microsclerotia development. Analysis of the deletion mutant revealed that the absence of Vta1 allows microsclerotia production, but they are colorless and no more melanized. Vta1 is required for melanin production and activates transcription of melanin biosynthesis genes including the polyketide synthase encoding PKS1 and the laccase LAC1. The primary function of Vta1 in melanin production is important for survival of microsclerotia as resting structures of V. dahliae.
Collapse
Affiliation(s)
- Rebekka Harting
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, University of Göttingen and Göttingen Center for Molecular Biosciences (GZMB), Grisebachstr. 8, D-37077 Göttingen, Germany
| | - Annalena Höfer
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, University of Göttingen and Göttingen Center for Molecular Biosciences (GZMB), Grisebachstr. 8, D-37077 Göttingen, Germany
| | - Van-Tuan Tran
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, University of Göttingen and Göttingen Center for Molecular Biosciences (GZMB), Grisebachstr. 8, D-37077 Göttingen, Germany
| | - Lisa-Maria Weinhold
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, University of Göttingen and Göttingen Center for Molecular Biosciences (GZMB), Grisebachstr. 8, D-37077 Göttingen, Germany
| | - Sina Barghahn
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, University of Göttingen and Göttingen Center for Molecular Biosciences (GZMB), Grisebachstr. 8, D-37077 Göttingen, Germany
| | - Rabea Schlüter
- Imaging Center of the Department of Biology, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 15, D-17489 Greifswald, Germany
| | - Gerhard H Braus
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, University of Göttingen and Göttingen Center for Molecular Biosciences (GZMB), Grisebachstr. 8, D-37077 Göttingen, Germany.
| |
Collapse
|
24
|
Rajarammohan S, Paritosh K, Pental D, Kaur J. Comparative genomics of Alternaria species provides insights into the pathogenic lifestyle of Alternaria brassicae - a pathogen of the Brassicaceae family. BMC Genomics 2019; 20:1036. [PMID: 31888481 PMCID: PMC6937934 DOI: 10.1186/s12864-019-6414-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 12/19/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Alternaria brassicae, a necrotrophic pathogen, causes Alternaria Leaf Spot, one of the economically important diseases of Brassica crops. Many other Alternaria spp. such as A. brassicicola and A. alternata are known to cause secondary infections in the A. brassicae-infected Brassicas. The genome architecture, pathogenicity factors, and determinants of host-specificity of A. brassicae are unknown. In this study, we annotated and characterised the recently announced genome assembly of A. brassicae and compared it with other Alternaria spp. to gain insights into its pathogenic lifestyle. RESULTS We also sequenced the genomes of two A. alternata isolates that were co-infecting B. juncea using Nanopore MinION sequencing for additional comparative analyses within the Alternaria genus. Genome alignments within the Alternaria spp. revealed high levels of synteny between most chromosomes with some intrachromosomal rearrangements. We show for the first time that the genome of A. brassicae, a large-spored Alternaria species, contains a dispensable chromosome. We identified 460 A. brassicae-specific genes, which included many secreted proteins and effectors. Furthermore, we have identified the gene clusters responsible for the production of Destruxin-B, a known pathogenicity factor of A. brassicae. CONCLUSION The study provides a perspective into the unique and shared repertoire of genes within the Alternaria genus and identifies genes that could be contributing to the pathogenic lifestyle of A. brassicae.
Collapse
Affiliation(s)
- Sivasubramanian Rajarammohan
- Department of Genetics, University of Delhi , South Campus, New Delhi, 110021, India
- Present Address: National Agri-Food Biotechnology Institute, Mohali, India
| | - Kumar Paritosh
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, New Delhi, India
| | - Deepak Pental
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, New Delhi, India
| | - Jagreet Kaur
- Department of Genetics, University of Delhi , South Campus, New Delhi, 110021, India.
| |
Collapse
|
25
|
Tapfuma KI, Uche-Okereafor N, Sebola TE, Hussan R, Mekuto L, Makatini MM, Green E, Mavumengwana V. Cytotoxic activity of crude extracts from Datura stramonium's fungal endophytes against A549 lung carcinoma and UMG87 glioblastoma cell lines and LC-QTOF-MS/MS based metabolite profiling. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:330. [PMID: 31752824 PMCID: PMC6873518 DOI: 10.1186/s12906-019-2752-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 11/11/2019] [Indexed: 02/12/2023]
Abstract
BACKGROUND Endophytic fungi are a proven source of bioactive secondary metabolites that may provide lead compounds for novel drug discovery. In this study, crude extracts from fungal endophytes isolated from Datura stramonium were evaluated for cytotoxic activity on two human cancer cell lines. METHODS Fungal endophytes were isolated from surface sterilized aerial parts of D. stramonium and identified using molecular, morphological and phylogenetic methods. Ethyl acetate crude extracts from these isolates were evaluated for cytotoxic activity on A549 lung carcinoma and UMG87 glioblastoma cell lines. Metabolite profiling was then performed by liquid chromatography coupled to quadrupole time-of-flight with tandem mass spectrometry (LC-QTOF-MS/MS) for the cytotoxic crude extract. RESULTS Eleven fungal endophytes were identified from D. stramonium. Significant cytotoxicity was only observed from the crude extract of Alternaria sp. KTDL7 on UMG87 glioblastoma cells (IC50 = 21.49 μg/ml). Metabolite profiling of this crude extract tentatively revealed the presence of the following secondary metabolites: 1,8-dihydroxynaphthalene (1), anserinone B (2), phelligridin B (3), metacytofilin (4), phomopsidin (5) and vermixocin A (6). Compounds 2 and 3 have been shown to be cytotoxic in literature. CONCLUSION The findings in this study suggest that the crude extract of Alternaria sp. KTDL7 possesses compound(s) cytotoxic to glioblastoma multiforme cells. Future studies to isolate and characterize the cytotoxic compound(s) from this fungus could result in lead development of a fungal-based drug for glioblastoma multiforme treatment.
Collapse
|
26
|
Rokas A, Wisecaver JH, Lind AL. The birth, evolution and death of metabolic gene clusters in fungi. Nat Rev Microbiol 2019; 16:731-744. [PMID: 30194403 DOI: 10.1038/s41579-018-0075-3] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Fungi contain a remarkable diversity of both primary and secondary metabolic pathways involved in ecologically specialized or accessory functions. Genes in these pathways are frequently physically linked on fungal chromosomes, forming metabolic gene clusters (MGCs). In this Review, we describe the diversity in the structure and content of fungal MGCs, their population-level and species-level variation, the evolutionary mechanisms that underlie their formation, maintenance and decay, and their ecological and evolutionary impact on fungal populations. We also discuss MGCs from other eukaryotes and the reasons for their preponderance in fungi. Improved knowledge of the evolutionary life cycle of MGCs will advance our understanding of the ecology of specialized metabolism and of the interplay between the lifestyle of an organism and genome architecture.
Collapse
Affiliation(s)
- Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA. .,Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN, USA.
| | - Jennifer H Wisecaver
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.,Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | - Abigail L Lind
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN, USA.,Gladstone Institutes, San Francisco, CA, USA
| |
Collapse
|
27
|
The phosphatase gene MaCdc14 negatively regulates UV-B tolerance by mediating the transcription of melanin synthesis-related genes and contributes to conidiation in Metarhizium acridum. Curr Genet 2019; 66:141-153. [PMID: 31256233 DOI: 10.1007/s00294-019-01008-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/19/2019] [Accepted: 06/22/2019] [Indexed: 10/26/2022]
Abstract
Reversible phosphorylation of proteins regulated by protein kinases and phosphatases mediate multiple biological events in eukaryotes. In this study, a dual-specificity cell division cycle 14 phosphatase, MaCdc14, was functionally characterized in Metarhizium acridum. Deletion of MaCdc14 decreased branch numbers, affected septum formation and resulted in multiple nuclei in each hyphal compartment, indicating nuclear division and cytokinesis defects. The spore production capacity was severely impaired with decreased conidial yield and delayed conidiation in MaCdc14-deletion mutant (ΔMaCdc14). The transcription levels of conidiation-related genes were significantly changed after MaCdc14 inactivation. The morphology of conidia was uneven in size and the germination rate of conidia was increased in ΔMaCdc14. In addition, ΔMaCdc14 displayed significantly enhanced conidial tolerance to ultraviolet (UV) irradiation but had no significant effect on the thermotolerance, the sensitivities to cell wall damage reagents, osmotic and oxidative stresses, and virulence compared to the wild-type strain and complementary transformant. Furthermore, the pigmentation of ΔMaCdc14 was increased by the upregulated expression of melanin synthesis-related genes, which may result in the enhanced UV-B tolerance of ΔMaCdc14. In summary, MaCdc14 negatively regulated UV-B tolerance by mediating the transcription of melanin synthesis-related genes, contributed to conidiation by regulating the expression levels of conidiation-related genes and also played important roles in cytokinesis and morphogenesis in Metarhizium acridum.
Collapse
|
28
|
Zhang P, Zhou S, Wang G, An Z, Liu X, Li K, Yin WB. Two transcription factors cooperatively regulate DHN melanin biosynthesis and development in Pestalotiopsis fici. Mol Microbiol 2019; 112:649-666. [PMID: 31116900 DOI: 10.1111/mmi.14281] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2019] [Indexed: 01/17/2023]
Abstract
Fungal 1,8-dihydroxynaphthalene (DHN) melanin plays important roles in UV protection, oxidative stress and pathogenesis. However, knowledge of the regulatory mechanisms of its biosynthesis is limited. Previous studies showed two transcription factors, PfmaF and PfmaH, located in the DHN melanin biosynthetic gene cluster (Pfma) in Pestalotiopsis fici. In this study, deletion of PfmaH resulted in loss of melanin and affected conidia cell wall integrity. Specifically, PfmaH directly regulates the expression of scytalone dehydratase, which catalyzes the transition of scytalone to T3 HN. However, PfmaF disruption using CRISPR/Cas9 system affected neither DHN melanin distribution nor conidia cell wall integrity in P. fici. Unexpectedly, overexpression of PfmaF leads to heavy pigment accumulation in P. fici hyphae. Transcriptome and qRT-PCR analyses provide insight into the roles of PfmaF and PfmaH in DHN melanin regulation. PfmaH, as a pathway specific regulator, mainly regulates melanin biosynthesis that contributes to cell wall development. Furthermore, PfmaF functions as a broad regulator to stimulate PfmaH expression in melanin production, secondary metabolism as well as fungal development.
Collapse
Affiliation(s)
- Peng Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Shuang Zhou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Gang Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Zhiqiang An
- Texas Therapeutics Institute, the Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, 77030, USA
| | - Xingzhong Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Kuan Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Wen-Bing Yin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
29
|
Ribera J, Panzarasa G, Stobbe A, Osypova A, Rupper P, Klose D, Schwarze FWMR. Scalable Biosynthesis of Melanin by the Basidiomycete Armillaria cepistipes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:132-139. [PMID: 30541276 DOI: 10.1021/acs.jafc.8b05071] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Natural melanin features many interesting properties, including the ability to shield electromagnetic radiation, the ability to act as scavenger for radical and reactive oxygen species and the capacity to chelate different metal ions. For these reasons, melanin is becoming increasingly relevant for the development of functional materials with potential applications in cosmetics, drug delivery, and water purification. However, the extraction and purification of melanin from conventional sources (e.g., sepia ink, hair, and wool) is inefficient and not easily scalable, hence diverting its technological applications. Some fungal species, especially wood-decay basidiomycetes, can be regarded as promising sources of melanin. In the present study, we screened different fungi in regard to their melanin-biosynthesis abilities using l-tyrosine as a precursor, and we found that an Armillaria cepistipes strain (Empa 655) produced the highest yield of melanin (27.98 g L-1). Physicochemical characterization of the obtained fungal melanin revealed a typical eumelanin structure. The method for the biosynthesis of fungal melanin we propose is efficient, scalable, and sustainable and has the potential to provide support for further technological exploitation.
Collapse
Affiliation(s)
- Javier Ribera
- Laboratory for Applied Wood Materials , Empa , Lerchenfeldstrasse 5 , St. Gallen 9014 , Switzerland
| | - Guido Panzarasa
- Laboratory for Soft and Living Materials, Department of Materials , ETH Zürich , Vladimir-Prelog-Weg 5 , Zürich 8093 , Switzerland
| | - Annika Stobbe
- Laboratory for Applied Wood Materials , Empa , Lerchenfeldstrasse 5 , St. Gallen 9014 , Switzerland
| | - Alina Osypova
- Innovative Sensor Technology, IST AG , Stegrütistrasse 14 , Ebnat-Kappel 9642 , Switzerland
| | - Patrick Rupper
- Laboratory for Advanced Fibers , Empa , Lerchenfeldstrase 5 , St. Gallen 9014 , Switzerland
| | - Daniel Klose
- Laboratory for Physical Chemistry, Department of Chemistry and Applied Biosciences , ETH Zürich , Vladimir-Prelog-Weg 5 , Zürich 8093 , Switzerland
| | - Francis W M R Schwarze
- Laboratory for Applied Wood Materials , Empa , Lerchenfeldstrasse 5 , St. Gallen 9014 , Switzerland
| |
Collapse
|
30
|
Griffiths SA, Cox RJ, Overdijk EJR, Mesarich CH, Saccomanno B, Lazarus CM, de Wit PJGM, Collemare J. Assignment of a dubious gene cluster to melanin biosynthesis in the tomato fungal pathogen Cladosporium fulvum. PLoS One 2018; 13:e0209600. [PMID: 30596695 PMCID: PMC6312243 DOI: 10.1371/journal.pone.0209600] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 12/07/2018] [Indexed: 12/17/2022] Open
Abstract
Pigments and phytotoxins are crucial for the survival and spread of plant pathogenic fungi. The genome of the tomato biotrophic fungal pathogen Cladosporium fulvum contains a predicted gene cluster (CfPKS1, CfPRF1, CfRDT1 and CfTSF1) that is syntenic with the characterized elsinochrome toxin gene cluster in the citrus pathogen Elsinoë fawcettii. However, a previous phylogenetic analysis suggested that CfPks1 might instead be involved in pigment production. Here, we report the characterization of the CfPKS1 gene cluster to resolve this ambiguity. Activation of the regulator CfTSF1 specifically induced the expression of CfPKS1 and CfRDT1, but not of CfPRF1. These co-regulated genes that define the CfPKS1 gene cluster are orthologous to genes involved in 1,3-dihydroxynaphthalene (DHN) melanin biosynthesis in other fungi. Heterologous expression of CfPKS1 in Aspergillus oryzae yielded 1,3,6,8-tetrahydroxynaphthalene, a typical precursor of DHN melanin. Δcfpks1 deletion mutants showed similar altered pigmentation to wild type treated with DHN melanin inhibitors. These mutants remained virulent on tomato, showing this gene cluster is not involved in pathogenicity. Altogether, our results showed that the CfPKS1 gene cluster is involved in the production of DHN melanin and suggests that elsinochrome production in E. fawcettii likely involves another gene cluster.
Collapse
Affiliation(s)
- Scott A. Griffiths
- Fungal Natural Products, Westerdijk Fungal Biodiversity Institute, CT, Utrecht, The Netherlands
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
| | - Russell J. Cox
- Institut für Organische Chemie, Leibniz Universität Hannover, Hannover
| | - Elysa J. R. Overdijk
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
- Laboratory of Cell Biology, Wageningen University, Wageningen, The Netherlands
| | - Carl H. Mesarich
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
| | - Benedetta Saccomanno
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
| | - Colin M. Lazarus
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | | | - Jérôme Collemare
- Fungal Natural Products, Westerdijk Fungal Biodiversity Institute, CT, Utrecht, The Netherlands
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
- * E-mail:
| |
Collapse
|
31
|
Hessel-Pras S, Kieshauer J, Roenn G, Luckert C, Braeuning A, Lampen A. In vitro characterization of hepatic toxicity of Alternaria toxins. Mycotoxin Res 2018; 35:157-168. [PMID: 30552586 DOI: 10.1007/s12550-018-0339-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/15/2018] [Accepted: 12/04/2018] [Indexed: 10/27/2022]
Abstract
Alternaria mycotoxins are secondary fungal metabolites which can contaminate food and feed. They are produced by Alternaria species with alternariol (AOH), alternariol monomethyl ether (AME), tenuazonic acid (TeA), and tentoxin (TEN) as the main representatives for Alternaria mycotoxins in food. Once passing the intestinal barrier, Alternaria toxins can reach the liver to exert yet uncharacterized molecular effects. Therefore, hepatic in vitro systems were used to examine selected Alternaria mycotoxins for their induction of metabolism-dependent cytotoxicity, phosphorylation of the histone H2AX as a surrogate marker for DNA double-strand breaks, and relevant marker genes for hepatotoxicity. Analysis of cell viability as well as the induction of H2AX phosphorylation in the hepatocarcinoma cell line HepG2 revealed a detoxification of 100 μmol/l AME and AOH by pre-treatment with S9 liver homogenate as shown by a decrease in cytotoxicity and H2AX histone phosphorylation to levels observed in control cells. Concentrations up to 100 μmol/l TeA and TEN did not induce H2AX phosphorylation whether metabolized or not. In the metabolically competent human hepatoma cell line HepaRG, no cytotoxicity of Alternaria toxins occurred even at high concentrations up to 100 μmol/l, which indicates a low cytotoxic potential. Induction of gene expression associated with liver toxicity was analyzed by quantitative real-time PCR using a specific hepatotoxicity PCR array in HepaRG cells: here, an evidence was found that 50 μmol/l of AOH, AME, TeA, and TEN might be associated with hepatotoxic effects, necrosis, and the development of diseases like cholestasis and phospholipidosis.
Collapse
Affiliation(s)
- Stefanie Hessel-Pras
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany.
| | - Janine Kieshauer
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Giana Roenn
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Claudia Luckert
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Albert Braeuning
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Alfonso Lampen
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| |
Collapse
|
32
|
Aamir M, Singh VK, Dubey MK, Meena M, Kashyap SP, Katari SK, Upadhyay RS, Umamaheswari A, Singh S. In silico Prediction, Characterization, Molecular Docking, and Dynamic Studies on Fungal SDRs as Novel Targets for Searching Potential Fungicides Against Fusarium Wilt in Tomato. Front Pharmacol 2018; 9:1038. [PMID: 30405403 PMCID: PMC6204350 DOI: 10.3389/fphar.2018.01038] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 08/27/2018] [Indexed: 12/31/2022] Open
Abstract
Vascular wilt of tomato caused by Fusarium oxysporum f.sp. lycopersici (FOL) is one of the most devastating diseases, that delimits the tomato production worldwide. Fungal short-chain dehydrogenases/reductases (SDRs) are NADP(H) dependent oxidoreductases, having shared motifs and common functional mechanism, have been demonstrated as biochemical targets for commercial fungicides. The 1,3,6,8 tetra hydroxynaphthalene reductase (T4HNR) protein, a member of SDRs family, catalyzes the naphthol reduction reaction in fungal melanin biosynthesis. We retrieved an orthologous member of T4HNR, (complexed with NADP(H) and pyroquilon from Magnaporthe grisea) in the FOL (namely; FOXG_04696) based on homology search, percent identity and sequence similarity (93% query cover; 49% identity). The hypothetical protein FOXG_04696 (T4HNR like) had conserved T-G-X-X-X-G-X-G motif (cofactor binding site) at N-terminus, similar to M. grisea (1JA9) and Y-X-X-X-K motif, as a part of the active site, bearing homologies with two fungal keto reductases T4HNR (M. grisea) and 17-β-hydroxysteroid dehydrogenase from Curvularia lunata (teleomorph: Cochliobolus lunatus PDB ID: 3IS3). The catalytic tetrad of T4HNR was replaced with ASN115, SER141, TYR154, and LYS158 in the FOXG_04696. The structural alignment and superposition of FOXG_04696 over the template proteins (3IS3 and 1JA9) revealed minimum RMSD deviations of the C alpha atomic coordinates, and therefore, had structural conservation. The best protein model (FOXG_04696) was docked with 37 fungicides, to evaluate their binding affinities. The Glide XP and YASARA docked complexes showed discrepancies in results, for scoring and ranking the binding affinities of fungicides. The docked complexes were further refined and rescored from their docked poses through 50 ns long MD simulations, and binding free energies (ΔGbind) calculations, using MM/GBSA analysis, revealed Oxathiapiprolin and Famoxadone as better fungicides among the selected one. However, Famoxadone had better interaction of the docked residues, with best protein ligand contacts, minimum RMSD (high accuracy of the docking pose) and RMSF (structural integrity and conformational flexibility of docking) at the specified docking site. The Famoxadone was found to be acceptable based on in silico toxicity and in vitro growth inhibition assessment. We conclude that the FOXG_04696, could be employed as a novel candidate protein, for structure-based design, and screening of target fungicides against the FOL pathogen.
Collapse
Affiliation(s)
- Mohd Aamir
- Laboratory of Mycopathology and Microbial Technology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Vinay Kumar Singh
- Centre for Bioinformatics, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Manish Kumar Dubey
- Laboratory of Mycopathology and Microbial Technology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Mukesh Meena
- Laboratory of Mycopathology and Microbial Technology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
- Department of Botany, University College of Science, Mohanlal Sukhadia University, Udaipur, India
| | - Sarvesh Pratap Kashyap
- Division of Crop Improvement and Biotechnology, Indian Institute of Vegetable Research, Indian Council of Agricultural Research (ICAR), Varanasi, India
| | - Sudheer Kumar Katari
- Bioinformatics Centre, Department of Bioinformatics, Sri Venkateswara Institute of Medical Sciences University, Tirupati, India
| | - Ram Sanmukh Upadhyay
- Laboratory of Mycopathology and Microbial Technology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Amineni Umamaheswari
- Bioinformatics Centre, Department of Bioinformatics, Sri Venkateswara Institute of Medical Sciences University, Tirupati, India
| | - Surendra Singh
- Laboratory of Mycopathology and Microbial Technology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
33
|
Abstract
In bacteria, more than half of the genes in the genome are organized in operons. In contrast, in eukaryotes, functionally related genes are usually dispersed across the genome. There are, however, numerous examples of functional clusters of nonhomologous genes for metabolic pathways in fungi and plants. Despite superficial similarities with operons (physical clustering, coordinate regulation), these clusters have not usually originated by horizontal gene transfer from bacteria, and (unlike operons) the genes are typically transcribed separately rather than as a single polycistronic message. This clustering phenomenon raises intriguing questions about the origins of clustered metabolic pathways in eukaryotes and the significance of clustering for pathway function. Here we review metabolic gene clusters from fungi and plants, highlight commonalities and differences, and consider how these clusters form and are regulated. We also identify opportunities for future research in the areas of large-scale genomics, synthetic biology, and experimental evolution.
Collapse
Affiliation(s)
- Hans-Wilhelm Nützmann
- Department of Metabolic Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom; .,Current affiliation: Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom;
| | - Claudio Scazzocchio
- Department of Microbiology, Imperial College, London SW7 2AZ, United Kingdom; .,Institute for Integrative Biology of the Cell, 91190 Gif-sur-Yvette, France
| | - Anne Osbourn
- Department of Metabolic Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom;
| |
Collapse
|
34
|
Anh VL, Inoue Y, Asuke S, Vy TTP, Anh NT, Wang S, Chuma I, Tosa Y. Rmg8 and Rmg7, wheat genes for resistance to the wheat blast fungus, recognize the same avirulence gene AVR-Rmg8. MOLECULAR PLANT PATHOLOGY 2018; 19:1252-1256. [PMID: 28846191 PMCID: PMC6638012 DOI: 10.1111/mpp.12609] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 07/24/2017] [Accepted: 08/24/2017] [Indexed: 05/11/2023]
Abstract
Rmg8 and Rmg7 are genes for resistance to the wheat blast fungus (Pyricularia oryzae), located on chromosome 2B in hexaploid wheat and chromosome 2A in tetraploid wheat, respectively. AVR-Rmg8, an avirulence gene corresponding to Rmg8, was isolated from a wheat blast isolate through a map-based strategy. The cloned fragment encoded a small protein containing a putative signal peptide. AVR-Rmg8 was recognized not only by Rmg8, but also by Rmg7, suggesting that these two resistance genes are equivalent to a single gene from the viewpoint of resistance breeding.
Collapse
Affiliation(s)
- Vu Lan Anh
- Graduate School of Agricultural ScienceKobe UniversityKobe 657‐8501Japan
| | - Yoshihiro Inoue
- Graduate School of Agricultural ScienceKobe UniversityKobe 657‐8501Japan
- Present address:
Graduate School of AgricultureKyoto UniversityKyoto 606‐8224Japan
| | - Soichiro Asuke
- Graduate School of Agricultural ScienceKobe UniversityKobe 657‐8501Japan
| | | | - Nguyen Tuan Anh
- Graduate School of Agricultural ScienceKobe UniversityKobe 657‐8501Japan
| | - Shizhen Wang
- Graduate School of Agricultural ScienceKobe UniversityKobe 657‐8501Japan
| | - Izumi Chuma
- Graduate School of Agricultural ScienceKobe UniversityKobe 657‐8501Japan
| | - Yukio Tosa
- Graduate School of Agricultural ScienceKobe UniversityKobe 657‐8501Japan
| |
Collapse
|
35
|
Liversage J, Coetzee MP, Bluhm BH, Berger DK, Crampton BG. LOVe across kingdoms: Blue light perception vital for growth and development in plant–fungal interactions. FUNGAL BIOL REV 2018. [DOI: 10.1016/j.fbr.2017.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
36
|
Jung KW, Lim S, Bahn YS. Microbial radiation-resistance mechanisms. J Microbiol 2017; 55:499-507. [PMID: 28664512 DOI: 10.1007/s12275-017-7242-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 06/19/2017] [Indexed: 11/28/2022]
Abstract
Organisms living in extreme environments have evolved a wide range of survival strategies by changing biochemical and physiological features depending on their biological niches. Interestingly, organisms exhibiting high radiation resistance have been discovered in the three domains of life (Bacteria, Archaea, and Eukarya), even though a naturally radiationintensive environment has not been found. To counteract the deleterious effects caused by radiation exposure, radiation- resistant organisms employ a series of defensive systems, such as changes in intracellular cation concentration, excellent DNA repair systems, and efficient enzymatic and non-enzymatic antioxidant systems. Here, we overview past and recent findings about radiation-resistance mechanisms in the three domains of life for potential usage of such radiationresistant microbes in the biotechnology industry.
Collapse
Affiliation(s)
- Kwang-Woo Jung
- Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea
| | - Sangyong Lim
- Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea.
| | - Yong-Sun Bahn
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
37
|
Wenderoth M, Pinecker C, Voß B, Fischer R. Establishment of CRISPR/Cas9 in Alternaria alternata. Fungal Genet Biol 2017; 101:55-60. [PMID: 28286319 DOI: 10.1016/j.fgb.2017.03.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/05/2017] [Accepted: 03/06/2017] [Indexed: 10/20/2022]
Abstract
The filamentous fungus Alternaria alternata is a potent producer of many secondary metabolites, some of which like alternariol or alternariol-methyl ether are toxic and/or cancerogenic. Many Alternaria species do not only cause post-harvest losses of food and feed, but are aggressive plant pathogens. Despite the great economic importance and the large number of research groups working with the fungus, the molecular toolbox is rather underdeveloped. Gene deletions often result in heterokaryotic strains and therefore, gene-function analyses are rather tedious. In addition, A. alternata lacks a sexual cycle and classical genetic approaches cannot be combined with molecular biological methods. Here, we show that CRISPR/Cas9 can be efficiently used for gene inactivation. Two genes of the melanin biosynthesis pathway, pksA and brm2, were chosen as targets. Several white mutants were obtained after several rounds of strain purification through protoplast regeneration or spore inoculation. Mutation of the genes was due to deletions from 1bp to 1.5kbp. The CRISPR/Cas9 system was also used to inactivate the orotidine-5-phosphate decarboxylase gene pyrG to create a uracil-auxotrophic strain. The strain was counter-selected with fluor-orotic acid and could be re-transformed with pyrG from Aspergillus fumigatus and pyr-4 from Neurospora crassa. In order to test the functioning of GFP, the fluorescent protein was fused to a nuclear localization signal derived from the StuA transcription factor of Aspergillus nidulans. After transformation bright nuclei were visible.
Collapse
Affiliation(s)
- Maximilian Wenderoth
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Dept. of Microbiology, Fritz-Haber-Weg 4, D-76131 Karlsruhe, Germany
| | - Christoph Pinecker
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Dept. of Microbiology, Fritz-Haber-Weg 4, D-76131 Karlsruhe, Germany
| | - Benjamin Voß
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Dept. of Microbiology, Fritz-Haber-Weg 4, D-76131 Karlsruhe, Germany
| | - Reinhard Fischer
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Dept. of Microbiology, Fritz-Haber-Weg 4, D-76131 Karlsruhe, Germany. http://www.iab.kit.de
| |
Collapse
|
38
|
Teixeira M, Moreno L, Stielow B, Muszewska A, Hainaut M, Gonzaga L, Abouelleil A, Patané J, Priest M, Souza R, Young S, Ferreira K, Zeng Q, da Cunha M, Gladki A, Barker B, Vicente V, de Souza E, Almeida S, Henrissat B, Vasconcelos A, Deng S, Voglmayr H, Moussa T, Gorbushina A, Felipe M, Cuomo C, de Hoog GS. Exploring the genomic diversity of black yeasts and relatives ( Chaetothyriales, Ascomycota). Stud Mycol 2017; 86:1-28. [PMID: 28348446 PMCID: PMC5358931 DOI: 10.1016/j.simyco.2017.01.001] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The order Chaetothyriales (Pezizomycotina, Ascomycetes) harbours obligatorily melanised fungi and includes numerous etiologic agents of chromoblastomycosis, phaeohyphomycosis and other diseases of vertebrate hosts. Diseases range from mild cutaneous to fatal cerebral or disseminated infections and affect humans and cold-blooded animals globally. In addition, Chaetothyriales comprise species with aquatic, rock-inhabiting, ant-associated, and mycoparasitic life-styles, as well as species that tolerate toxic compounds, suggesting a high degree of versatile extremotolerance. To understand their biology and divergent niche occupation, we sequenced and annotated a set of 23 genomes of main the human opportunists within the Chaetothyriales as well as related environmental species. Our analyses included fungi with diverse life-styles, namely opportunistic pathogens and closely related saprobes, to identify genomic adaptations related to pathogenesis. Furthermore, ecological preferences of Chaetothyriales were analysed, in conjuncture with the order-level phylogeny based on conserved ribosomal genes. General characteristics, phylogenomic relationships, transposable elements, sex-related genes, protein family evolution, genes related to protein degradation (MEROPS), carbohydrate-active enzymes (CAZymes), melanin synthesis and secondary metabolism were investigated and compared between species. Genome assemblies varied from 25.81 Mb (Capronia coronata) to 43.03 Mb (Cladophialophora immunda). The bantiana-clade contained the highest number of predicted genes (12 817 on average) as well as larger genomes. We found a low content of mobile elements, with DNA transposons from Tc1/Mariner superfamily being the most abundant across analysed species. Additionally, we identified a reduction of carbohydrate degrading enzymes, specifically many of the Glycosyl Hydrolase (GH) class, while most of the Pectin Lyase (PL) genes were lost in etiological agents of chromoblastomycosis and phaeohyphomycosis. An expansion was found in protein degrading peptidase enzyme families S12 (serine-type D-Ala-D-Ala carboxypeptidases) and M38 (isoaspartyl dipeptidases). Based on genomic information, a wide range of abilities of melanin biosynthesis was revealed; genes related to metabolically distinct DHN, DOPA and pyomelanin pathways were identified. The MAT (MAting Type) locus and other sex-related genes were recognized in all 23 black fungi. Members of the asexual genera Fonsecaea and Cladophialophora appear to be heterothallic with a single copy of either MAT-1-1 or MAT-1-2 in each individual. All Capronia species are homothallic as both MAT1-1 and MAT1-2 genes were found in each single genome. The genomic synteny of the MAT-locus flanking genes (SLA2-APN2-COX13) is not conserved in black fungi as is commonly observed in Eurotiomycetes, indicating a unique genomic context for MAT in those species. The heterokaryon (het) genes expansion associated with the low selective pressure at the MAT-locus suggests that a parasexual cycle may play an important role in generating diversity among those fungi.
Collapse
Affiliation(s)
- M.M. Teixeira
- Division of Pathogen Genomics, Translational Genomics Research Institute (TGen), Flagstaff, AZ, USA
- Department of Cell Biology, University of Brasília, Brasilia, Brazil
| | - L.F. Moreno
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
- Department of Basic Pathology, Federal University of Paraná State, Curitiba, PR, Brazi1
- Institute of Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - B.J. Stielow
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - A. Muszewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - M. Hainaut
- Université Aix-Marseille (CNRS), Marseille, France
| | - L. Gonzaga
- The National Laboratory for Scientific Computing (LNCC), Petropolis, Brazil
| | | | - J.S.L. Patané
- Department of Biochemistry, University of São Paulo, Brazil
| | - M. Priest
- Broad Institute of MIT and Harvard, Cambridge, USA
| | - R. Souza
- The National Laboratory for Scientific Computing (LNCC), Petropolis, Brazil
| | - S. Young
- Broad Institute of MIT and Harvard, Cambridge, USA
| | - K.S. Ferreira
- Department of Biological Sciences, Federal University of São Paulo, Diadema, SP, Brazil
| | - Q. Zeng
- Broad Institute of MIT and Harvard, Cambridge, USA
| | - M.M.L. da Cunha
- Núcleo Multidisciplinar de Pesquisa em Biologia UFRJ-Xerém-NUMPEX-BIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - A. Gladki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - B. Barker
- Division of Pathogen Genomics, Translational Genomics Research Institute (TGen), Flagstaff, AZ, USA
| | - V.A. Vicente
- Department of Basic Pathology, Federal University of Paraná State, Curitiba, PR, Brazi1
| | - E.M. de Souza
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, PR, Brazil
| | - S. Almeida
- Department of Clinical and Toxicological Analysis, University of São Paulo, São Paulo, SP, Brazil
| | - B. Henrissat
- Université Aix-Marseille (CNRS), Marseille, France
| | - A.T.R. Vasconcelos
- The National Laboratory for Scientific Computing (LNCC), Petropolis, Brazil
| | - S. Deng
- Shanghai Institute of Medical Mycology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - H. Voglmayr
- Department of Systematic and Evolutionary Botany, University of Vienna, Vienna, Austria
| | - T.A.A. Moussa
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - A. Gorbushina
- Federal Institute for Material Research and Testing (BAM), Berlin, Germany
| | - M.S.S. Felipe
- Department of Cell Biology, University of Brasília, Brasilia, Brazil
| | - C.A. Cuomo
- Broad Institute of MIT and Harvard, Cambridge, USA
| | - G. Sybren de Hoog
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
- Department of Basic Pathology, Federal University of Paraná State, Curitiba, PR, Brazi1
- Institute of Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
39
|
Looi HK, Toh YF, Yew SM, Na SL, Tan YC, Chong PS, Khoo JS, Yee WY, Ng KP, Kuan CS. Genomic insight into pathogenicity of dematiaceous fungus Corynespora cassiicola. PeerJ 2017; 5:e2841. [PMID: 28149676 PMCID: PMC5274520 DOI: 10.7717/peerj.2841] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 11/29/2016] [Indexed: 01/05/2023] Open
Abstract
Corynespora cassiicola is a common plant pathogen that causes leaf spot disease in a broad range of crop, and it heavily affect rubber trees in Malaysia (Hsueh, 2011; Nghia et al., 2008). The isolation of UM 591 from a patient's contact lens indicates the pathogenic potential of this dematiaceous fungus in human. However, the underlying factors that contribute to the opportunistic cross-infection have not been fully studied. We employed genome sequencing and gene homology annotations in attempt to identify these factors in UM 591 using data obtained from publicly available bioinformatics databases. The assembly size of UM 591 genome is 41.8 Mbp, and a total of 13,531 (≥99 bp) genes have been predicted. UM 591 is enriched with genes that encode for glycoside hydrolases, carbohydrate esterases, auxiliary activity enzymes and cell wall degrading enzymes. Virulent genes comprising of CAZymes, peptidases, and hypervirulence-associated cutinases were found to be present in the fungal genome. Comparative analysis result shows that UM 591 possesses higher number of carbohydrate esterases family 10 (CE10) CAZymes compared to other species of fungi in this study, and these enzymes hydrolyses wide range of carbohydrate and non-carbohydrate substrates. Putative melanin, siderophore, ent-kaurene, and lycopene biosynthesis gene clusters are predicted, and these gene clusters denote that UM 591 are capable of protecting itself from the UV and chemical stresses, allowing it to adapt to different environment. Putative sterigmatocystin, HC-toxin, cercosporin, and gliotoxin biosynthesis gene cluster are predicted. This finding have highlighted the necrotrophic and invasive nature of UM 591.
Collapse
Affiliation(s)
- Hong Keat Looi
- Department of Medical Microbiology, University of Malaya, Kuala Lumpur, Malaysia
| | - Yue Fen Toh
- Department of Medical Microbiology, University of Malaya, Kuala Lumpur, Malaysia
| | - Su Mei Yew
- Department of Medical Microbiology, University of Malaya, Kuala Lumpur, Malaysia
| | - Shiang Ling Na
- Department of Medical Microbiology, University of Malaya, Kuala Lumpur, Malaysia
| | - Yung-Chie Tan
- Department of Science and Technology, Codon Genomics SB, Seri Kembangan, Selangor, Malaysia
| | - Pei-Sin Chong
- Department of Science and Technology, Codon Genomics SB, Seri Kembangan, Selangor, Malaysia
| | - Jia-Shiun Khoo
- Department of Science and Technology, Codon Genomics SB, Seri Kembangan, Selangor, Malaysia
| | - Wai-Yan Yee
- Department of Science and Technology, Codon Genomics SB, Seri Kembangan, Selangor, Malaysia
| | - Kee Peng Ng
- Department of Medical Microbiology, University of Malaya, Kuala Lumpur, Malaysia
| | - Chee Sian Kuan
- Department of Medical Microbiology, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
40
|
Schlegel M, Münsterkötter M, Güldener U, Bruggmann R, Duò A, Hainaut M, Henrissat B, Sieber CMK, Hoffmeister D, Grünig CR. Globally distributed root endophyte Phialocephala subalpina links pathogenic and saprophytic lifestyles. BMC Genomics 2016; 17:1015. [PMID: 27938347 PMCID: PMC5148876 DOI: 10.1186/s12864-016-3369-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 12/02/2016] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Whereas an increasing number of pathogenic and mutualistic ascomycetous species were sequenced in the past decade, species showing a seemingly neutral association such as root endophytes received less attention. In the present study, the genome of Phialocephala subalpina, the most frequent species of the Phialocephala fortinii s.l. - Acephala applanata species complex, was sequenced for insight in the genome structure and gene inventory of these wide-spread root endophytes. RESULTS The genome of P. subalpina was sequenced using Roche/454 GS FLX technology and a whole genome shotgun strategy. The assembly resulted in 205 scaffolds and a genome size of 69.7 Mb. The expanded genome size in P. subalpina was not due to the proliferation of transposable elements or other repeats, as is the case with other ascomycetous genomes. Instead, P. subalpina revealed an expanded gene inventory that includes 20,173 gene models. Comparative genome analysis of P. subalpina with 13 ascomycetes shows that P. subalpina uses a versatile gene inventory including genes specific for pathogens and saprophytes. Moreover, the gene inventory for carbohydrate active enzymes (CAZymes) was expanded including genes involved in degradation of biopolymers, such as pectin, hemicellulose, cellulose and lignin. CONCLUSIONS The analysis of a globally distributed root endophyte allowed detailed insights in the gene inventory and genome organization of a yet largely neglected group of organisms. We showed that the ubiquitous root endophyte P. subalpina has a broad gene inventory that links pathogenic and saprophytic lifestyles.
Collapse
Affiliation(s)
- Markus Schlegel
- Institute of Integrative Biology (IBZ), Forest Pathology and Dendrology, ETH Zürich, 8092, Zürich, Switzerland
| | - Martin Münsterkötter
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Ulrich Güldener
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany.,Department of Genome-oriented Bioinformatics, Technische Universität München, Wissenschaftszentrum Weihenstephan, 85354, Freising, Germany
| | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Berne, Baltzerstrasse 6, 3012, Bern, Switzerland
| | - Angelo Duò
- Institute of Integrative Biology (IBZ), Forest Pathology and Dendrology, ETH Zürich, 8092, Zürich, Switzerland
| | - Matthieu Hainaut
- Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257 CNRS, Université Aix-Marseille, 163 Avenue de Luminy, 13288, Marseille, France
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257 CNRS, Université Aix-Marseille, 163 Avenue de Luminy, 13288, Marseille, France
| | - Christian M K Sieber
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany.,DOE Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - Dirk Hoffmeister
- Friedrich-Schiller-Universität, Pharmazeutische Mikrobiologie, Winzerlaer Strasse 2, 07745, Jena, Germany
| | - Christoph R Grünig
- Institute of Integrative Biology (IBZ), Forest Pathology and Dendrology, ETH Zürich, 8092, Zürich, Switzerland. .,Microsynth AG, Schützenstrasse 15, 9436, Balgach, Switzerland.
| |
Collapse
|
41
|
Estiarte N, Lawrence C, Sanchis V, Ramos A, Crespo-Sempere A. LaeA and VeA are involved in growth morphology, asexual development, and mycotoxin production in Alternaria alternata. Int J Food Microbiol 2016; 238:153-164. [DOI: 10.1016/j.ijfoodmicro.2016.09.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/29/2016] [Accepted: 09/05/2016] [Indexed: 12/21/2022]
|
42
|
Toh YF, Yew SM, Chan CL, Na SL, Lee KW, Hoh CC, Yee WY, Ng KP, Kuan CS. Genome Anatomy of Pyrenochaeta unguis-hominis UM 256, a Multidrug Resistant Strain Isolated from Skin Scraping. PLoS One 2016; 11:e0162095. [PMID: 27626635 PMCID: PMC5023194 DOI: 10.1371/journal.pone.0162095] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 08/17/2016] [Indexed: 11/18/2022] Open
Abstract
Pyrenochaeta unguis-hominis is a rare human pathogen that causes infection in human skin and nail. P. unguis-hominis has received little attention, and thus, the basic biology and pathogenicity of this fungus is not fully understood. In this study, we performed in-depth analysis of the P. unguis-hominis UM 256 genome that was isolated from the skin scraping of a dermatitis patient. The isolate was identified to species level using a comprehensive multilocus phylogenetic analysis of the genus Pyrenochaeta. The assembled UM 256 genome has a size of 35.5 Mb and encodes 12,545 putative genes, and 0.34% of the assembled genome is predicted transposable elements. Its genomic features propose that the fungus is a heterothallic fungus that encodes a wide array of plant cell wall degrading enzymes, peptidases, and secondary metabolite biosynthetic enzymes. Antifungal drug resistance genes including MDR, CDR, and ERG11/CYP51 were identified in P. unguis-hominis UM 256, which may confer resistance to this fungus. The genome analysis of P. unguis-hominis provides an insight into molecular and genetic basis of the fungal lifestyles, understanding the unrevealed biology of antifungal resistance in this fungus.
Collapse
Affiliation(s)
- Yue Fen Toh
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Su Mei Yew
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Chai Ling Chan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Shiang Ling Na
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kok Wei Lee
- Codon Genomics SB, Seri Kembangan, Selangor Darul Ehsan, Malaysia
| | - Chee-Choong Hoh
- Codon Genomics SB, Seri Kembangan, Selangor Darul Ehsan, Malaysia
| | - Wai-Yan Yee
- Codon Genomics SB, Seri Kembangan, Selangor Darul Ehsan, Malaysia
| | - Kee Peng Ng
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Chee Sian Kuan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- * E-mail:
| |
Collapse
|
43
|
Activation of Melanin Synthesis in Alternaria infectoria by Antifungal Drugs. Antimicrob Agents Chemother 2015; 60:1646-55. [PMID: 26711773 DOI: 10.1128/aac.02190-15] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 12/15/2015] [Indexed: 12/28/2022] Open
Abstract
The importance of Alternaria species fungi to human health ranges from their role as etiological agents of serious infections with poor prognoses in immunosuppressed individuals to their association with respiratory allergic diseases. The present work focuses on Alternaria infectoria, which was used as a model organism of the genus, and was designed to unravel melanin production in response to antifungals. After we characterized the pigment produced by A. infectoria, we studied the dynamics of 1,8-dihydroxynaphthalene (DHN)-melanin production during growth, the degree of melanization in response to antifungals, and how melanization affected susceptibility to several classes of therapeutic drugs. We demonstrate that A. infectoria increased melanin deposition in cell walls in response to nikkomycin Z, caspofungin, and itraconazole but not in response to fluconazole or amphotericin B. These results indicate that A. infectoria activates DHN-melanin synthesis in response to certain antifungal drugs, possibly as a protective mechanism against these drugs. Inhibition of DHN-melanin synthesis by pyroquilon resulted in a lower minimum effective concentration (MEC) of caspofungin and enhanced morphological changes (increased hyphal balloon size), characterized by thinner and less organized A. infectoria cell walls. In summary, A. infectoria synthesizes melanin in response to certain antifungal drugs, and its susceptibility is influenced by melanization, suggesting the therapeutic potential of drug combinations that affect melanin synthesis.
Collapse
|
44
|
Pusztahelyi T, Holb IJ, Pócsi I. Secondary metabolites in fungus-plant interactions. FRONTIERS IN PLANT SCIENCE 2015; 6:573. [PMID: 26300892 PMCID: PMC4527079 DOI: 10.3389/fpls.2015.00573] [Citation(s) in RCA: 269] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 07/13/2015] [Indexed: 05/18/2023]
Abstract
Fungi and plants are rich sources of thousands of secondary metabolites. The genetically coded possibilities for secondary metabolite production, the stimuli of the production, and the special phytotoxins basically determine the microscopic fungi-host plant interactions and the pathogenic lifestyle of fungi. The review introduces plant secondary metabolites usually with antifungal effect as well as the importance of signaling molecules in induced systemic resistance and systemic acquired resistance processes. The review also concerns the mimicking of plant effector molecules like auxins, gibberellins and abscisic acid by fungal secondary metabolites that modulate plant growth or even can subvert the plant defense responses such as programmed cell death to gain nutrients for fungal growth and colonization. It also looks through the special secondary metabolite production and host selective toxins of some significant fungal pathogens and the plant response in form of phytoalexin production. New results coming from genome and transcriptional analyses in context of selected fungal pathogens and their hosts are also discussed.
Collapse
Affiliation(s)
- Tünde Pusztahelyi
- Central Laboratory, Faculty of Agricultural and Food Sciences and Environmental Management, University of DebrecenDebrecen, Hungary
| | - Imre J. Holb
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Horticulture, University of DebrecenDebrecen, Hungary
- Department of Plant Pathology, Centre for Agricultural Research, Plant Protection Institute, Hungarian Academy of SciencesDebrecen, Hungary
| | - István Pócsi
- Department of Biotechnology and Microbiology, Faculty of Science and Technology, University of DebrecenDebrecen, Hungary
| |
Collapse
|
45
|
Chen Y, Feng P, Shang Y, Xu YJ, Wang C. Biosynthesis of non-melanin pigment by a divergent polyketide synthase in Metarhizium robertsii. Fungal Genet Biol 2015; 81:142-9. [DOI: 10.1016/j.fgb.2014.10.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 10/01/2014] [Accepted: 10/29/2014] [Indexed: 01/17/2023]
|
46
|
Tian Y, Zhao GY, Fang W, Xu Q, Tan RX. Δ10(E)-Sphingolipid Desaturase Involved in Fusaruside Mycosynthesis and Stress Adaptation in Fusarium graminearum. Sci Rep 2015; 5:10486. [PMID: 25994332 PMCID: PMC4440215 DOI: 10.1038/srep10486] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 04/15/2015] [Indexed: 12/20/2022] Open
Abstract
Sphingolipids are biologically important and structurally distinct cell membrane components. Fusaruside (1) is a 10,11-unsaturated immunosuppressive fungal sphingolipid with medical potentials for treating liver injury and colitis, but its poor natural abundance bottlenecks its druggability. Here, fusaruside is clarified biosynthetically, and its efficacy-related 10,11-double bond can be generated under the regioselective catalysis of an unprecedented Δ10(E)-sphingolipid desaturase (Δ10(E)-SD). Δ10(E)-SD shares 17.7% amino acid sequence similarity with a C9-unmethylated Δ10-sphingolipid desaturase derived from a marine diatom, and 55.7% with Δ8(E)-SD from Fusarium graminearum. Heterologous expression of Δ10(E)-SD in Pichia pastoris has been established to facilitate a reliable generation of 1 through the Δ10(E)-SD catalyzed desaturation of cerebroside B (2), an abundant fungal sphingolipid. Site directed mutageneses show that the conserved histidines of Δ10(E)-SD are essential for the 10,11-desaturation catalysis, which is also preconditioned by the C9-methylation of the substrate. Moreover, Δ10(E)-SD confers improved survival and faster growth to fungal strains at low temperature and high salinity, in parallel with to higher contents of 1 in the mycelia. Collectively, the investigation describes a new Δ10(E)-sphingolipid desaturase with its heterologous expression fundamentalizing a biotechnological supply of 1, and eases the follow-up clarification of the immunosuppression and stress-tolerance mechanism.
Collapse
Affiliation(s)
- Yuan Tian
- Institute of Functional Biomolecules, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, P. R. China
| | - Guo Y. Zhao
- Institute of Functional Biomolecules, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, P. R. China
| | - Wei Fang
- Institute of Functional Biomolecules, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, P. R. China
| | - Qiang Xu
- Institute of Functional Biomolecules, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, P. R. China
| | - Ren X. Tan
- Institute of Functional Biomolecules, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
47
|
Epigenetics of Fungal Secondary Metabolism Related Genes. Fungal Biol 2015. [DOI: 10.1007/978-1-4939-2531-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
48
|
Fetzner R, Seither K, Wenderoth M, Herr A, Fischer R. Alternaria alternata transcription factor CmrA controls melanization and spore development. MICROBIOLOGY-SGM 2014; 160:1845-1854. [PMID: 24972701 DOI: 10.1099/mic.0.079046-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Melanin is a black pigment widely distributed across the kingdoms, from bacterial to human. The filamentous fungus Alternaria alternata is a typical 'black fungus', which produces melanin in its hyphal and especially its asexual spore cell walls. Its biosynthesis follows the dihydroxynaphthalene (DHN) pathway with 1,8-DHN as an intermediate. Two genes, encoding a polyketide synthase (pksA) and a 1,3,8-trihydroxynaphthalene (THN) reductase (brm2), along with a putative transcription factor, CmrA, comprise a small gene cluster. Here we show that CmrA controls the expression of pksA and brm2, but that it also controls the expression of a scytalone dehydratase encoding gene (brm1) located elsewhere in the genome. The regulatory function of CmrA was shown in a reporter assay system. Al. alternata CmrA was expressed in the filamentous fungus Aspergillus nidulans where it was able to induce the expression of a reporter construct under the control of the putative pksA promoter. This suggests direct binding of CmrA to the promoter of pksA in the heterologous system. Likewise, silencing of cmrA in Al. alternata led to white colonies due to the lack of melanin. In addition, hyphal diameter and spore morphology were changed in the mutant and the number of spores reduced. Silencing of brm2 and inhibition of melanin biosynthesis by tricyclazole largely phenocopied the effects of cmrA silencing, suggesting a novel regulatory function of melanin in morphogenetic pathways.
Collapse
Affiliation(s)
- Ramona Fetzner
- Karlsruhe Institute of Technology (KIT) - South Campus, Dept. of Microbiology, Hertzstrasse 16, D-76187 Karlsruhe, Germany
| | - Kristin Seither
- Karlsruhe Institute of Technology (KIT) - South Campus, Dept. of Microbiology, Hertzstrasse 16, D-76187 Karlsruhe, Germany
| | - Maximilian Wenderoth
- Karlsruhe Institute of Technology (KIT) - South Campus, Dept. of Microbiology, Hertzstrasse 16, D-76187 Karlsruhe, Germany
| | - Andreas Herr
- Karlsruhe Institute of Technology (KIT) - South Campus, Dept. of Microbiology, Hertzstrasse 16, D-76187 Karlsruhe, Germany
| | - Reinhard Fischer
- Karlsruhe Institute of Technology (KIT) - South Campus, Dept. of Microbiology, Hertzstrasse 16, D-76187 Karlsruhe, Germany
| |
Collapse
|
49
|
Chooi YH, Muria-Gonzalez MJ, Solomon PS. A genome-wide survey of the secondary metabolite biosynthesis genes in the wheat pathogen Parastagonospora nodorum.. Mycology 2014; 5:192-206. [PMID: 25379341 PMCID: PMC4205913 DOI: 10.1080/21501203.2014.928386] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 05/22/2014] [Indexed: 12/02/2022] Open
Abstract
The model pathogen Parastagonospora nodorum is a necrotroph and the causal agent of the wheat disease Septoria nodorum blotch (SNB). The sequenced P. nodorum genome has revealed that the fungus harbours a large number of secondary metabolite genes. Secondary metabolites are known to play important roles in the virulence of plant pathogens, but limited knowledge is available about the SM repertoire of this wheat pathogen. Here, we review the secondary metabolites that have been isolated from P. nodorum and related species of the same genus and provide an in-depth genome-wide overview of the secondary metabolite gene clusters encoded in the P. nodorum genome. The secondary metabolite gene survey reveals that P. nodorum is capable of producing a diverse range of small molecules and exciting prospects exist for discovery of novel virulence factors and bioactive molecules.
Collapse
Affiliation(s)
- Yit-Heng Chooi
- Plant Sciences Division, Research School of Biology, The Australian National University , Canberra , 0200 , Australia
| | - Mariano Jordi Muria-Gonzalez
- Plant Sciences Division, Research School of Biology, The Australian National University , Canberra , 0200 , Australia
| | - Peter S Solomon
- Plant Sciences Division, Research School of Biology, The Australian National University , Canberra , 0200 , Australia
| |
Collapse
|
50
|
Takaoka S, Kurata M, Harimoto Y, Hatta R, Yamamoto M, Akimitsu K, Tsuge T. Complex regulation of secondary metabolism controlling pathogenicity in the phytopathogenic fungus Alternaria alternata. THE NEW PHYTOLOGIST 2014; 202:1297-1309. [PMID: 24611558 DOI: 10.1111/nph.12754] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 02/03/2014] [Indexed: 05/10/2023]
Abstract
The filamentous fungus Alternaria alternata includes seven pathogenic variants (pathotypes), which produce different host-selective toxins and cause disease on different plants. The Japanese pear, strawberry and tangerine pathotypes produce AK-toxin, AF-toxin and ACT-toxin, respectively, which have a common structural moiety, 9,10-epoxy-8-hydroxy-9-methyl-decatrienoic acid (EDA). Here, we identified a new gene, AKT7 (AK-toxin biosynthetic gene 7), from the Japanese pear pathotype, which encodes a cytochrome P450 monooxygenase and functions to limit AK-toxin production. AKT7 homologs were found in the strawberry pathotype, but not the tangerine pathotype. However, the strawberry pathotype homolog appeared to include a premature stop codon. Although the Japanese pear pathotype strain has multiple copies of AKT7, a single-copy disruption resulted in mutants with increased production of AK-toxin and EDA. AKT7 overexpression in the three pathotypes caused marked reductions of toxin and EDA production, suggesting that Akt7 catalyzes a side reaction of EDA or its precursor. AKT7 overexpression caused reduced virulence in these pathotypes. We also found that AKT7 transcripts predominantly include misspliced mRNAs, which have premature stop codons. Our observations suggest that the AK-toxin production required for full virulence is regulated in a complex way by the copy number and intron information content of AKT7.
Collapse
Affiliation(s)
- Shinya Takaoka
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Mariko Kurata
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Yoshiaki Harimoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Rieko Hatta
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Mikihiro Yamamoto
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Kazuya Akimitsu
- Faculty of Agriculture, Kagawa University, Miki, Kagawa, 761-0795, Japan
| | - Takashi Tsuge
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| |
Collapse
|