1
|
Soares-Castro P, Soares F, Reis F, Lino-Neto T, Santos PM. Bioprospection of the bacterial β-myrcene-biotransforming trait in the rhizosphere. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12650-w. [PMID: 37405434 PMCID: PMC10386936 DOI: 10.1007/s00253-023-12650-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/06/2023] [Accepted: 06/16/2023] [Indexed: 07/06/2023]
Abstract
The biocatalysis of β-myrcene into value-added compounds, with enhanced organoleptic/therapeutic properties, may be performed by resorting to specialized enzymatic machinery of β-myrcene-biotransforming bacteria. Few β-myrcene-biotransforming bacteria have been studied, limiting the diversity of genetic modules/catabolic pathways available for biotechnological research. In our model Pseudomonas sp. strain M1, the β-myrcene catabolic core-code was identified in a 28-kb genomic island (GI). The lack of close homologs of this β-myrcene-associated genetic code prompted a bioprospection of cork oak and eucalyptus rhizospheres, from 4 geographic locations in Portugal, to evaluate the environmental diversity and dissemination of the β-myrcene-biotransforming genetic trait (Myr+). Soil microbiomes were enriched in β-myrcene-supplemented cultures, from which β-myrcene-biotransforming bacteria were isolated, belonging to Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, and Sphingobacteriia classes. From a panel of representative Myr+ isolates that included 7 bacterial genera, the production of β-myrcene derivatives previously reported in strain M1 was detected in Pseudomonas spp., Cupriavidus sp., Sphingobacterium sp., and Variovorax sp. A comparative genomics analysis against the genome of strain M1 found the M1-GI code in 11 new Pseudomonas genomes. Full nucleotide conservation of the β-myrcene core-code was observed throughout a 76-kb locus in strain M1 and all 11 Pseudomonas spp., resembling the structure of an integrative and conjugative element (ICE), despite being isolated from different niches. Furthermore, the characterization of isolates not harboring the Myr+-related 76-kb locus suggested that they may biotransform β-myrcene via alternative catabolic loci, being thereby a novel source of enzymes and biomolecule catalogue for biotechnological exploitation. KEY POINTS: • The isolation of 150 Myr+ bacteria hints the ubiquity of such trait in the rhizosphere. • The Myr+ trait is spread across different bacterial taxonomic classes. • The core-code for the Myr+ trait was detected in a novel ICE, only found in Pseudomonas spp.
Collapse
Affiliation(s)
- Pedro Soares-Castro
- CBMA - Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, Braga, Portugal
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa, Av. Prof. Egas Moniz, Lisbon, Portugal
| | - Filipa Soares
- CBMA - Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Francisca Reis
- CBMA - Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Teresa Lino-Neto
- CBMA - Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Pedro M Santos
- CBMA - Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, Braga, Portugal.
| |
Collapse
|
2
|
Gable JA, Poulos TL, Follmer AH. Redox partner recognition and selectivity of cytochrome P450lin (CYP111A1). J Inorg Biochem 2023; 244:112212. [PMID: 37058990 PMCID: PMC10519177 DOI: 10.1016/j.jinorgbio.2023.112212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/19/2023] [Accepted: 04/03/2023] [Indexed: 04/16/2023]
Abstract
The strict requirement of cytochrome P450cam for its native ferredoxin redox partner, putidaredoxin (Pdx), is not exhibited by any other known cytochrome P450 (CYP) system and the molecular details of redox partner selectivity are still not completely understood. We therefore examined the selectivity of a related Pseudomonas cytochrome P450, P450lin, by testing its activity with non-native redox partners. We found that P450lin could utilize Arx, the native redox partner of CYP101D1, to enable turnover of its substrate, linalool, while Pdx showed limited activity. Arx exhibited a higher sequence similarity to P450lins native redox partner, linredoxin (Ldx) than Pdx, including several residues that are believed to be at the interface of the two proteins, based on the P450cam-Pdx complex structure. We therefore mutated Pdx to resemble Ldx and Arx and found that a double mutant, D38L/∆106, displayed higher activity than Arx. In addition, Pdx D38L/∆106 does not induce a low-spin shift in linalool bound P450lin but does destabilize the P450lin-oxycomplex. Together our results suggest that P450lin and its redox partners may form a similar interface to P450cam-Pdx, but the interactions that allow for productive turnover are different.
Collapse
Affiliation(s)
- Jessica A Gable
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697-3900, USA
| | - Thomas L Poulos
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697-3900, USA; Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA 92697-3900, USA; Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697-3900, USA
| | - Alec H Follmer
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697-3900, USA.
| |
Collapse
|
3
|
Giang PD, Churchman LR, Stok JE, Bell SG, De Voss JJ. Cymredoxin, a [2Fe-2S] ferredoxin, supports catalytic activity of the p-cymene oxidising P450 enzyme CYP108N12. Arch Biochem Biophys 2023; 737:109549. [PMID: 36801262 DOI: 10.1016/j.abb.2023.109549] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/07/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023]
Abstract
Rhodococcus globerulus is a metabolically active organism that has been shown to utilise eucalypt oil as its sole source of carbon and energy. This oil includes 1,8-cineole, p-cymene and limonene. Two identified and characterised cytochromes P450 (P450s) from this organism initiate the biodegradation of the monoterpenes 1,8-cineole (CYP176A1) and p-cymene (CYP108N12). Extensive characterisation has been completed for CYP176A1 and it has been successfully reconstituted with its immediate redox partner, cindoxin, and E. coli flavodoxin reductase. Two putative redox partner genes are encoded in the same operon as CYP108N12 and here the isolation, expression, purification, and characterisation of its specific [2Fe-2S] ferredoxin redox partner, cymredoxin is presented. Reconstitution of CYP108N12 with cymredoxin in place of putidaredoxin, a [2Fe-2S] redox partner of another P450, improves both the rate of electron transfer (from 13 ± 2 to 70 ± 1 μM NADH/min/μM CYP108N12) and the efficiency of NADH utilisation (the so-called coupling efficiency increases from 13% to 90%). Cymredoxin improves the catalytic ability of CYP108N12 in vitro. Aldehyde oxidation products of the previously identified substrates p-cymene (4-isopropylbenzaldehyde) and limonene (perillaldehyde) were observed in addition to major hydroxylation products 4-isopropylbenzyl alcohol and perillyl alcohol respectively. These further oxidation products had not previously been seen with putidaredoxin supported oxidation. Furthermore, when supported by cymredoxin CYP108N12 is able to oxidise a wider range of substrates than previously reported. These include o-xylene, α-terpineol, (-)-carveol and thymol yielding o-tolylmethanol, 7-hydroxyterpineol, (4R)-7-hydroxycarveol and 5-hydroxymethyl-2-isopropylphenol, respectively. Cymredoxin is also capable of supporting CYP108A1 (P450terp) and CYP176A1 activity, allowing them to catalyse the hydroxylation of their native substrates α-terpineol to 7-hydroxyterpineol and 1,8-cineole to 6β-hydroxycineole respectively. These results indicate that cymredoxin not only improves the catalytic capability of CYP108N12 but can also support the activity of other P450s and prove useful for their characterisation.
Collapse
Affiliation(s)
- Peter D Giang
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, 4067, Australia
| | - Luke R Churchman
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, 4067, Australia
| | - Jeanette E Stok
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, 4067, Australia
| | - Stephen G Bell
- Department of Chemistry, University of Adelaide, Adelaide, SA, 5005, Australia
| | - James J De Voss
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, 4067, Australia.
| |
Collapse
|
4
|
Peng X, Li T, Zheng Q, Lu Y, He Y, Tang Y, Qiu R. Citrobacter sp. Y3 harbouring novel gene HBCD-hd-1 mineralizes hexabromocyclododecane via new metabolic pathways according to multi-omics characterization. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130071. [PMID: 36183513 DOI: 10.1016/j.jhazmat.2022.130071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/24/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Hexabromocyclododecane (HBCD) is a typical persistent organic pollutant that is widely detected in the environment. Despite the significant efforts put into its mineralisation, there is still a lack of microorganism resources that can completely mineralise HBCD. Stable isotope analysis revealed that the Citrobacter sp. Y3 can use [13C]HBCD as its sole carbon source and degrade or even mineralise it into 13CO2, with a maximum conversion rate of 100% in approximately 14 days. Strain Y3 could completely mineralise HBCD, which it used as its only carbon source, and six debromination enzymes related to HBCD degradation were found in Y3, including haloalkane dehalogenase (DhaA), haloacid dehalogenase (HAD), etc. A functional gene named HBCD-hd-1, encoding a HAD, was found to be upregulated during HBCD degradation and heterologously expressed in Escherichia coli. Recombinant E. coli with the HBCD-hd-1 gene transformed the typical intermediate 4-bromobutyric acid to 4-hydroxybutanoic acid and showed excellent degradation performance on HBCD, accompanied by nearly 100% bromine (Br) ion generation. The expression of HBCD-hd-1 in Y3 rapidly accelerated the biodegradation of HBCD. With HBCD as its sole carbon source, strain Y3 could potentially degrade HBCD, especially in a low-nutrient environment.
Collapse
Affiliation(s)
- Xingxing Peng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Tianyu Li
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Qihang Zheng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yingyuan Lu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuzhe He
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yetao Tang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Rongliang Qiu
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
5
|
Correddu D, Helmy Aly S, Di Nardo G, Catucci G, Prandi C, Blangetti M, Bellomo C, Bonometti E, Viscardi G, Gilardi G. Enhanced and specific epoxidation activity of P450 BM3 mutants for the production of high value terpene derivatives. RSC Adv 2022; 12:33964-33969. [PMID: 36505709 PMCID: PMC9703296 DOI: 10.1039/d2ra06029a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Terpenes are natural molecules of valuable interest for different industrial applications. Cytochromes P450 enzymes can functionalize terpenoids to form high value oxidized derivatives in a green and sustainable manner, representing a valid alternative to chemical catalysis. In this work, an enhanced and specific epoxidation activity of cytochrome P450 BM3 mutants was found for the terpenes geraniol and linalool. This is the first report showing the epoxidation of linalool by P450 BM3 and its mutant A2 (Asp251Gly/Gln307His) with the formation of valuable oxide derivatives, highlighting the relevance of this enzymes for industrial applications.
Collapse
Affiliation(s)
- Danilo Correddu
- Department of Life Sciences and Systems Biology, University of TorinoVia Accademia Albertina 1310123TorinoItaly
| | - Sabrina Helmy Aly
- Department of Life Sciences and Systems Biology, University of TorinoVia Accademia Albertina 1310123TorinoItaly
| | - Giovanna Di Nardo
- Department of Life Sciences and Systems Biology, University of TorinoVia Accademia Albertina 1310123TorinoItaly
| | - Gianluca Catucci
- Department of Life Sciences and Systems Biology, University of TorinoVia Accademia Albertina 1310123TorinoItaly
| | - Cristina Prandi
- Department of Chemistry, University of TorinoVia P. Giuria 710125TorinoItaly
| | - Marco Blangetti
- Department of Chemistry, University of TorinoVia P. Giuria 710125TorinoItaly
| | - Chiara Bellomo
- Department of Chemistry, University of TorinoVia P. Giuria 710125TorinoItaly
| | | | - Guido Viscardi
- Department of Chemistry, University of TorinoVia P. Giuria 710125TorinoItaly
| | - Gianfranco Gilardi
- Department of Life Sciences and Systems Biology, University of TorinoVia Accademia Albertina 1310123TorinoItaly
| |
Collapse
|
6
|
CYP108N12 initiates p-cymene biodegradation in Rhodococcus globerulus. Arch Biochem Biophys 2022; 730:109410. [PMID: 36155781 DOI: 10.1016/j.abb.2022.109410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 11/21/2022]
Abstract
Rhodococcus globerulus (R. globerulus) isolated from soil beneath Eucalyptus sp. was found to live on the monoterpenes 1,8-cineole, p-cymene and (R)- and (S)-limonene as sole sources of carbon and energy. Previous metabolic studies revealed that R. globerulus is capable of living on 1,8-cineole, the main monoterpene component of eucalyptus essential oil through the activity of cytochrome P450cin (CYP176A1) [1]. Genomic sequencing of R. globerulus revealed a novel putative cytochrome P450 (CYP108N12) that shares 48% sequence identity with CYP108A1 (P450terp) from Pseudomonas sp., an α-terpineol hydroxylase. Given the sequence similarity between CYP108N12 and P450terp, it was hypothesised that CYP108N12 may be responsible for initiating the biodegradation of a monoterpene structurally similar to α-terpineol such as (R)-limonene, (S)-limonene or p-cymene. Encoded within the operon containing CYP108N12 were two putative bacterial P450 redox partners and putative alcohol and aldehyde dehydrogenases, suggesting a complete catalytic system for activating these monoterpenes. Binding studies revealed that p-cymene and (R)- and (S)-limonene all bound tightly to CYP108N12 but α-terpineol did not. A catalytically active system was reconstituted using the non-native redox partner putidaredoxin and putidaredoxin reductase that act with CYP101A1 (P450cam) from Pseudomonas. This reconstituted system catalysed the hydroxylation of p-cymene to 4-isopropylbenzyl alcohol, and (R)- and (S)-limonene to (R)- and (S)-perillyl alcohol, respectively. R. globerulus was successfully grown on solely p-cymene, (R)-limonene or (S)-limonene. CYP108N12 was detected when R. globerulus was grown on p-cymene, but not either limonene enantiomer. The native function of CYP108N12 is therefore proposed to be initiation of p-cymene biodegradation by methyl oxidation and is a potentially attractive biocatalyst capable of specific benzylic and allylic hydroxylation.
Collapse
|
7
|
Abstract
The successful implementation of synthetic biology for chemicals biosynthesis relies on the availability of large libraries of well-characterized enzymatic building blocks. Here we present a scalable pipeline that applies the methodology of synthetic biology itself to bootstrap the creation of such a library. By designing and building a cytochrome P450 enzyme collection and testing it in a custom-made untargeted GC/MS-metabolomics-based approach, we were able to rapidly create and characterize a comprehensive enzyme library for the controlled oxyfunctionalisation of terpene scaffolds with a wide range of activities and selectivities towards several monoterpenes. This novel resource can now be used to access the extensive chemical diversity of terpenoids by pathway engineering and the assembly of biocatalytic cascades to subsequently produce libraries of oxygenated terpenoids and their derivatives for diverse applications, including drug discovery.
Collapse
|
8
|
Janocha S, Schmitz D, Bernhardt R. Terpene hydroxylation with microbial cytochrome P450 monooxygenases. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 148:215-50. [PMID: 25682070 DOI: 10.1007/10_2014_296] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Terpenoids comprise a highly diverse group of natural products. In addition to their basic carbon skeleton, they differ from one another in their functional groups. Functional groups attached to the carbon skeleton are the basis of the terpenoids' diverse properties. Further modifications of terpene olefins include the introduction of acyl-, aryl-, or sugar moieties and usually start with oxidations catalyzed by cytochrome P450 monooxygenases (P450s, CYPs). P450s are ubiquitously distributed throughout nature, involved in essential biological pathways such as terpenoid biosynthesis as well as the tailoring of terpenoids and other natural products. Their ability to introduce oxygen into nonactivated C-H bonds is unique and makes P450s very attractive for applications in biotechnology. Especially in the field of terpene oxidation, biotransformation methods emerge as an attractive alternative to classical chemical synthesis. For this reason, microbial P450s depict a highly interesting target for protein engineering approaches in order to increase selectivity and activity, respectively. Microbial P450s have been described to convert industrial and pharmaceutically interesting terpenoids such as ionones, limone, valencene, resin acids, and triterpenes (including steroids) as well as vitamin D3. Highly selective and active mutants have been evolved by applying classical site-directed mutagenesis as well as directed evolution of proteins. As P450s usually depend on electron transfer proteins, mutagenesis has also been applied to improve the interactions between P450s and their respective redox partners. This chapter provides an overview of terpenoid hydroxylation reactions catalyzed by bacterial P450s and highlights the achievements made by protein engineering to establish productive hydroxylation processes.
Collapse
Affiliation(s)
- Simon Janocha
- Department of Biochemistry, Saarland University, Campus B2 2, 66123, Saarbruecken, Germany
| | | | | |
Collapse
|
9
|
|
10
|
Nakano C, Kim HK, Ohnishi Y. Identification and Characterization of the Linalool/Nerolidol Synthase from Streptomyces clavuligerus. Chembiochem 2011; 12:2403-7. [DOI: 10.1002/cbic.201100501] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2011] [Indexed: 12/30/2022]
|
11
|
Furuya T, Kino K. Genome mining approach for the discovery of novel cytochrome P450 biocatalysts. Appl Microbiol Biotechnol 2010; 86:991-1002. [DOI: 10.1007/s00253-010-2450-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 01/13/2010] [Accepted: 01/13/2010] [Indexed: 10/19/2022]
|
12
|
Rosłoniec KZ, Wilbrink MH, Capyk JK, Mohn WW, Ostendorf M, van der Geize R, Dijkhuizen L, Eltis LD. Cytochrome P450 125 (CYP125) catalyses C26-hydroxylation to initiate sterol side-chain degradation in Rhodococcus jostii RHA1. Mol Microbiol 2009; 74:1031-43. [PMID: 19843222 DOI: 10.1111/j.1365-2958.2009.06915.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The cyp125 gene of Rhodococcus jostii RHA1 was previously found to be highly upregulated during growth on cholesterol and the orthologue in Mycobacterium tuberculosis (rv3545c) has been implicated in pathogenesis. Here we show that cyp125 is essential for R. jostii RHA1 to grow on 3-hydroxysterols such as cholesterol, but not on 3-oxo sterol derivatives, and that CYP125 performs an obligate first step in cholesterol degradation. The involvement of cyp125 in sterol side-chain degradation was confirmed by disrupting the homologous gene in Rhodococcus rhodochrous RG32, a strain that selectively degrades the cholesterol side-chain. The RG32 Omega cyp125 mutant failed to transform the side-chain of cholesterol, but degraded that of 5-cholestene-26-oic acid-3beta-ol, a cholesterol catabolite. Spectral analysis revealed that while purified ferric CYP125(RHA1) was < 10% in the low-spin state, cholesterol (K(D)(app) = 0.20 +/- 0.08 microM), 5 alpha-cholestanol (K(D)(app) = 0.15 +/- 0.03 microM) and 4-cholestene-3-one (K(D)(app) = 0.20 +/- 0.03 microM) further reduced the low spin character of the haem iron consistent with substrate binding. Our data indicate that CYP125 is involved in steroid C26-carboxylic acid formation, catalysing the oxidation of C26 either to the corresponding carboxylic acid or to an intermediate state.
Collapse
Affiliation(s)
- Kamila Z Rosłoniec
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, PO Box 14, 9750 AA Haren, the Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Bell SG, Dale A, Rees NH, Wong LL. A cytochrome P450 class I electron transfer system from Novosphingobium aromaticivorans. Appl Microbiol Biotechnol 2009; 86:163-75. [DOI: 10.1007/s00253-009-2234-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 08/14/2009] [Accepted: 08/28/2009] [Indexed: 10/20/2022]
|
14
|
Adris P, Lopez-Estraño C, Chung KT. The metabolic activation of 2-aminofluorine, 4-aminobiphenyl, and benzidine by cytochrome P-450-107S1 of Pseudomonas aeruginosa. Toxicol In Vitro 2007; 21:1663-71. [PMID: 17826028 DOI: 10.1016/j.tiv.2007.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Revised: 07/02/2007] [Accepted: 07/11/2007] [Indexed: 11/25/2022]
Abstract
Pseudomonas aeruginosa is an important opportunistic pathogen of the human urinary bladder. Similar to rat liver S9, the cell-free extract from P. aeruginosa caused significant increase of histidine reversion numbers with the Salmonella typhimurium tester strain TA98 in the Ames Salmonella mutagenicity assay in the presence of either 2-aminofluorene, 4-aminobiphenyl, or benzidine procarcinogens. The presence of cytochrome P-450 protein in the cell-free extract was demonstrated by the carbon monoxide difference spectrum. We employed gene knockout technology to inactivate one of the three known putative cytochrome P-450 genes of P. aeruginosa, namely CYP107S1, which we postulated to be the most likely to induce activation. The ampicillin resistant gene from PUC19 DNA confers carbenicillin resistance to P. aeruginosa. We inserted a synthetic ampicillin gene flanked by 40 base-pairs of the 5' and 3' untranslated region of the CYP gene by electroporating the synthetic gene into electrocompetent P. aeruginosa cells. CYP107S1 knockout strains were selected on 1000 microg/ml carbenicillin plates. A single cloned carbenicillin resistant colony was isolated and used to determine its mutagenic capacity using Ames Salmonella mutagenicity assay. The results showed that Salmonella TA98 tester strain returned the number of revertants to its baselines level indicating the lack of metabolic activation of procarcinogens in the P. aeruginosa CYP107S1 knockout cell-free extract. In addition, the characteristic cytochrome P-450 peak determined by the carbon monoxide difference spectrum was completely absent in the cell-free extract from this CYP107S1 knockout strain bacterium. Homologous recombination of the synthetic ampicillin gene on the CYP 107S1 P-450 locus was confirmed by PCR on purified genomic DNA extracted from the knockout bacterium. The metabolic activation of tested procarcinogens is, therefore, carried out by CYP107S1 in P. aeruginosa.
Collapse
Affiliation(s)
- Piyatilake Adris
- Department of Biology, The University of Memphis, 3774 Walker Street, Memphis, TN 38152, USA
| | | | | |
Collapse
|
15
|
Bell SG, Wong LL. P450 enzymes from the bacterium Novosphingobium aromaticivorans. Biochem Biophys Res Commun 2007; 360:666-72. [PMID: 17618912 DOI: 10.1016/j.bbrc.2007.06.119] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Accepted: 06/21/2007] [Indexed: 11/16/2022]
Abstract
Twelve of the fifteen potential P450 enzymes from the bacterium Novosphingobium aromaticivorans, which is known to degrade a wide range of aromatic hydrocarbons, have been produced via heterologous expression in Escherichia coli. The enzymes were tested for their ability to bind a range of substrates including polyaromatic hydrocarbons. While two of the enzymes were found to bind aromatic compounds (CYP108D1 and CYP203A2), the others show binding with a variety of compounds including linear alkanes (CYP153C1) and mono- and sesqui-terpenoid compounds (CYP101B1, CYP101C1, CYP101D1, CYP101D2, CYP111A1, and CYP219A1). A 2Fe-2S ferredoxin (Arx-A), which is associated with CYP101D2, was also produced. The activity of five of the P450 enzymes (CYP101B1, CYP101C1, CYP101D1, CYP101D2, and CYP111A2) was reconstituted with Arx-A and putidaredoxin reductase (of the P450cam system from Pseudomonas putida) in a Class I type electron transfer system. Preliminary characterisation of the majority of the substrate oxidation products is reported.
Collapse
Affiliation(s)
- Stephen G Bell
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR, UK.
| | | |
Collapse
|
16
|
Liu L, Schmid RD, Urlacher VB. Cloning, expression, and characterization of a self-sufficient cytochrome P450 monooxygenase from Rhodococcus ruber DSM 44319. Appl Microbiol Biotechnol 2006; 72:876-82. [PMID: 16607529 DOI: 10.1007/s00253-006-0355-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2005] [Revised: 01/25/2006] [Accepted: 01/25/2006] [Indexed: 10/24/2022]
Abstract
A new member of class IV of cytochrome P450 monooxygenases was identified in Rhodococcus ruber strain DSM 44319. As the genome of R. ruber has not been sequenced, a P450-like gene fragment was amplified using degenerated primers. The flanking regions of the P450-like DNA fragment were identified by directional genome walking using polymerase chain reaction. The primary protein structure suggests a natural self-sufficient fusion protein consisting of ferredoxin, flavin-containing reductase, and P450 monooxygenase. The only flavin found within the enzyme was riboflavin 5'-monophosphate. The enzyme was successfully expressed in Escherichia coli, purified and characterized. In the presence of NADPH, the P450 monooxygenase showed hydroxylation activity towards polycyclic aromatic hydrocarbons naphthalene, indene, acenaphthene, toluene, fluorene, m-xylene, and ethyl benzene. The conversion of naphthalene, acenaphthene, and fluorene resulted in respective ring monohydroxylated metabolites. Alkyl aromatics like toluene, m-xylene, and ethyl benzene were hydroxylated exclusively at the side chains. The new enzyme's ability to oxidize such compounds makes it a potential candidate for biodegradation of pollutants and an attractive biocatalyst for synthesis.
Collapse
Affiliation(s)
- Luo Liu
- Institute of Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | | | | |
Collapse
|
17
|
Adris P, Chung KT. Metabolic activation of bladder procarcinogens, 2-aminofluorene, 4-aminobiphenyl, and benzidine by Pseudomonas aeruginosa and other human endogenous bacteria. Toxicol In Vitro 2006; 20:367-74. [PMID: 16203120 DOI: 10.1016/j.tiv.2005.08.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Revised: 07/28/2005] [Accepted: 08/17/2005] [Indexed: 11/20/2022]
Abstract
Pseudomonas aeruginosa, an opportunistic pathogen of the human urinary tract, and other selected human endogenous bacteria were investigated for metabolic activation of the bladder procarcinogens, 2-aminofluorene (2-AF), 4-aminobiphenyl (4-AB), and benzidine (Bz). The cell-free extracts of Pseudomonas aeruginosa, Escherichia coli, Enterobacter aerogenes, Proteus mirabilis, Proteus vulgaris, Staphylococcus epidermidis, Staphylococcus saprophyticus, Klebsiella pneumoniae, and intestinal anaerobes, Bacteroides fragilis, Clostridium perfringens, and Eubacterium aerofaciens produced increased histidine revertant frequencies with the tester strain Salmonella typhimurium TA98 in the Ames Salmonella mutagenicity assay. In addition, the cell-free extracts of Pseudomonas aeruginosa, Bacteroides fragilis, and Eubacterium aerofaciens each showed the presence of a cytochrome P450 absorption peak in the carbon monoxide (CO) difference spectrum. This was not demonstratable for the other bacteria. Our findings indicate that human endogenous bacteria, which are opportunistic pathogens of the urinary bladder, can metabolically activate the bladder procarcinogens 2-AF, 4-AB, and Bz into mutagens. The metabolic activation by Pseudomonas aeruginosa, Bacteroides fragilis, and Eubacterium aerofaciens is mediated by a cytochrome P450 enzyme. For those organisms that induced metabolic activation but did not show a P450 absorption peak with the cell-free extracts, other oxidative enzymes may be involved.
Collapse
Affiliation(s)
- Piyatilake Adris
- Department of Biology, The University of Memphis, 3774 Walker Street, Memphis, TN 38152, USA
| | | |
Collapse
|
18
|
Kato Y, Asano Y. Molecular and enzymatic analysis of the “aldoxime–nitrile pathway” in the glutaronitrile degrader Pseudomonas sp. K-9. Appl Microbiol Biotechnol 2006; 70:92-101. [PMID: 16003557 DOI: 10.1007/s00253-005-0044-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2005] [Revised: 04/29/2005] [Accepted: 05/30/2005] [Indexed: 12/01/2022]
Abstract
A gene cluster responsible for aldoxime metabolism in the glutaronitrile degrader Pseudomonas sp. K-9 was analyzed genetically and enzymatically. The cluster was composed of genes coding for aldoxime dehydratase (Oxd), nitrile hydratase (NHase), NHase activator, amidase, acyl-CoA ligase, and some regulatory and functionally unknown proteins, which were similar to proteins appearing in the "aldoxime-nitrile pathway" gene cluster from strains having Fe-containing NHase. A key enzyme in the cluster, OxdK, which has 32.7-90.3 % identity with known Oxds, was overexpressed in Escherichia coli cells under the control of a T7 promoter in its His(6)-tagged form, purified, and characterized. The enzyme showed similar characteristics with the known Oxds coexisting with an Fe-containing NHase in its subunit structure, substrate specificity, and effects on various compounds. The enzyme can be classified into a group of "aliphatic aldoxime dehydratase (EC 4.99.1.5)." The existence of a gene cluster of enzymes responsible for aldoxime metabolism via the aldoxime-nitrile pathway (aldoxime-->nitrile-->amide-->acid-->acyl-CoA) in Pseudomonas sp. K-9, and the fact that the proteins comprising the cluster are similar to those acting on aliphatic type substrates, evidently clarified the alkylaldoxime-degrading pathway in that strain.
Collapse
Affiliation(s)
- Yasuo Kato
- Biotechnology Research Center, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Kosugi, Toyama 939-0398, Japan
| | | |
Collapse
|
19
|
Deprez E, Gill E, Helms V, Wade RC, Hui Bon Hoa G. Specific and non-specific effects of potassium cations on substrate-protein interactions in cytochromes P450cam and P450lin. J Inorg Biochem 2002; 91:597-606. [PMID: 12237225 DOI: 10.1016/s0162-0134(02)00467-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Substrate binding to cytochrome P450cam is generally considered to be a two-step process. The first step corresponds to the entrance of the substrate, camphor, into the heme pocket. The second step corresponds to a spin transition (low spin-->high spin) of the iron in the protein-substrate complex. This spin transition is related to the mobility of the substrate inside the active site [Biochim Biophys Acta 1338 (1997) 77]. Potassium cations (K(+)) have a specific effect on the spin equilibrium. This is generally attributed to the K(+) ion-induced conformational change of tyrosine 96, the hydroxyl group of which is hydrogen bonded to the keto group of camphor and results in optimum substrate orientation and reduced mobility of this substrate in the active site. In the present paper, we show that K(+) not only affects the substrate-Tyr 96 couple, but acts more globally since K(+) effects are also observed in the Tyr96Phe mutant as well as in complexes with camphor-analogues. Large compounds, that fit well in the heme pocket and bind with higher affinity than camphor, display high spin contents that are less dependent on the presence of K(+). In contrast, K(+) has a significant effect on the high spin content of substrate-cytochrome P450cam complexes with looser interactions. We conclude that large compounds with higher affinities than camphor have more van der Waals contacts with the active site residues. Their mobilities are then reduced and less dependent on the presence of K(+). In this study, we also explored, for comparison, the K(+) effect on the spin transition state of another member of the P450 superfamily, cytochrome P450lin. This effect is not as strong as those observed for cytochrome P450cam. Even though the spin equilibrium does not change dramatically in the presence of K(+) or Na(+), the value of the dissociation constant (K(d)) for linalool binding is significantly affected by ionic strength. Analysis of the thermodynamic parameters for the linalool binding strongly suggests that, similarly to our previous finding for cytochrome P450cam, electrostatic gates participate in the control of substrate access.
Collapse
Affiliation(s)
- Eric Deprez
- Laboratoire de Biotechnologies et Pharmacologie Génétique Appliquée (UMR-CNRS 8532), Ecole Normale Supérieure de Cachan, Cachan, France
| | | | | | | | | |
Collapse
|
20
|
Hawkes DB, Adams GW, Burlingame AL, Ortiz de Montellano PR, De Voss JJ. Cytochrome P450(cin) (CYP176A), isolation, expression, and characterization. J Biol Chem 2002; 277:27725-32. [PMID: 12016226 DOI: 10.1074/jbc.m203382200] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytochromes P450 are members of a superfamily of hemoproteins involved in the oxidative metabolism of various physiologic and xenobiotic compounds in eukaryotes and prokaryotes. Studies on bacterial P450s, particularly those involved in monoterpene oxidation, have provided an integral contribution to our understanding of these proteins, away from the problems encountered with eukaryotic forms. We report here a novel cytochrome P450 (P450(cin), CYP176A1) purified from a strain of Citrobacter braakii that is capable of using cineole 1 as its sole source of carbon and energy. This enzyme has been purified to homogeneity and the amino acid sequences of three tryptic peptides determined. By using this information, a PCR-based cloning strategy was developed that allowed the isolation of a 4-kb DNA fragment containing the cytochrome P450(cin) gene (cinA). Sequencing revealed three open reading frames that were identified on the basis of sequence homology as a cytochrome P450, an NADPH-dependent flavodoxin/ferrodoxin reductase, and a flavodoxin. This arrangement suggests that P450(cin) may be the first isolated P450 to use a flavodoxin as its natural redox partner. Sequencing also identified the unprecedented substitution of a highly conserved, catalytically important active site threonine with an asparagine residue. The P450 gene was subcloned and heterologously expressed in Escherichia coli at approximately 2000 nmol/liter of original culture, and purification was achieved by standard protocols. Postulating the native E. coli flavodoxin/flavodoxin reductase system might mimic the natural redox partners of P450(cin), it was expressed in E. coli in the presence of cineole 1. A product was formed in vivo that was tentatively identified by gas chromatography-mass spectrometry as 2-hydroxycineole 2. Examination of P450(cin) by UV-visible spectroscopy revealed typical spectra characteristic of P450s, a high affinity for cineole 1 (K(D) = 0.7 microm), and a large spin state change of the heme iron associated with binding of cineole 1. These facts support the hypothesis that cineole 1 is the natural substrate for this enzyme and that P450(cin) catalyzes the initial monooxygenation of cineole 1 biodegradation. This constitutes the first characterization of an enzyme involved in this pathway.
Collapse
Affiliation(s)
- David B Hawkes
- Department of Chemistry, University of Queensland, Brisbane, Queensland 4067, Australia
| | | | | | | | | |
Collapse
|
21
|
Maier T, Förster HH, Asperger O, Hahn U. Molecular characterization of the 56-kDa CYP153 from Acinetobacter sp. EB104. Biochem Biophys Res Commun 2001; 286:652-8. [PMID: 11511110 DOI: 10.1006/bbrc.2001.5449] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
CYP153 a cytochrome P450 from Acinetobacter sp. EB104 catalyzes the hydroxylation of unsubstituted n-alkanes. We have decided to use the CYP153 system as a model for mechanistic studies on regioselective n-alkane oxidation and the interaction of hydrophobic substrates with soluble enzymes. Here the molecular cloning of the CYP153 gene is reported. Single specific primer PCR was applied to yield the whole gene sequence via chromosomal walks. CYP153 consists of 497 amino acids (M(r) = 56 kDa) and thus represents an unusually long bacterial P450, containing all P450 typical structural elements. It constitutes the new P450 family CYP153. The prolonged N-terminus of about 90 amino acids does not contain a so far known membrane-anchoring sequence but a 28-amino acid long amphipathic helix. The relevance of the remarkably long N-terminus and of other sequence motives like the hydrophobic F-G loop is discussed with respect to substrate binding and recognition.
Collapse
Affiliation(s)
- T Maier
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy, and Psychology, University of Leipzig, Talstrabetae 33, Leipzig, D-04103, Federal Republic of Germany
| | | | | | | |
Collapse
|
22
|
Steffensky M, Mühlenweg A, Wang ZX, Li SM, Heide L. Identification of the novobiocin biosynthetic gene cluster of Streptomyces spheroides NCIB 11891. Antimicrob Agents Chemother 2000; 44:1214-22. [PMID: 10770754 PMCID: PMC89847 DOI: 10.1128/aac.44.5.1214-1222.2000] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/1999] [Accepted: 01/29/2000] [Indexed: 11/20/2022] Open
Abstract
The novobiocin biosynthetic gene cluster from Streptomyces spheroides NCIB 11891 was cloned by using homologous deoxynucleoside diphosphate (dNDP)-glucose 4,6-dehydratase gene fragments as probes. Double-stranded sequencing of 25.6 kb revealed the presence of 23 putative open reading frames (ORFs), including the gene for novobiocin resistance, gyrB(r), and at least 11 further ORFs to which a possible role in novobiocin biosynthesis could be assigned. An insertional inactivation experiment with a dNDP-glucose 4, 6-dehydratase fragment resulted in abolishment of novobiocin production, since biosynthesis of the deoxysugar moiety of novobiocin was blocked. Heterologous expression of a key enzyme of novobiocin biosynthesis, i.e., novobiocic acid synthetase, in Streptomyces lividans TK24 further confirmed the involvement of the analyzed genes in the biosynthesis of the antibiotic.
Collapse
Affiliation(s)
- M Steffensky
- Pharmazeutische Biologie, Pharmazeutisches Institut, Eberhard-Karls-Universität Tübingen, 72076 Tübingen, Germany
| | | | | | | | | |
Collapse
|
23
|
Iurescia S, Marconi AM, Tofani D, Gambacorta A, Paternò A, Devirgiliis C, van der Werf MJ, Zennaro E. Identification and sequencing of beta-myrcene catabolism genes from Pseudomonas sp. strain M1. Appl Environ Microbiol 1999; 65:2871-6. [PMID: 10388678 PMCID: PMC91431 DOI: 10.1128/aem.65.7.2871-2876.1999] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/1999] [Accepted: 04/16/1999] [Indexed: 11/20/2022] Open
Abstract
The M1 strain, able to grow on beta-myrcene as the sole carbon and energy source, was isolated by an enrichment culture and identified as a Pseudomonas sp. One beta-myrcene-negative mutant, called N22, obtained by transposon mutagenesis, accumulated (E)-2-methyl-6-methylen-2,7-octadien-1-ol (or myrcen-8-ol) as a unique beta-myrcene biotransformation product. This compound was identified by gas chromatography-mass spectrometry. We cloned and sequenced the DNA regions flanking the transposon and used these fragments to identify the M1 genomic library clones containing the wild-type copy of the interrupted gene. One of the selected cosmids, containing a 22-kb genomic insert, was able to complement the N22 mutant for growth on beta-myrcene. A 5,370-bp-long sequence spanning the region interrupted by the transposon in the mutant was determined. We identified four open reading frames, named myrA, myrB, myrC, and myrD, which can potentially code for an aldehyde dehydrogenase, an alcohol dehydrogenase, an acyl-coenzyme A (CoA) synthetase, and an enoyl-CoA hydratase, respectively. myrA, myrB, and myrC are likely organized in an operon, since they are separated by only 19 and 36 nucleotides (nt), respectively, and no promoter-like sequences have been found in these regions. The myrD gene starts 224 nt upstream of myrA and is divergently transcribed. The myrB sequence was found to be completely identical to the one flanking the transposon in the mutant. Therefore, we could ascertain that the transposon had been inserted inside the myrB gene, in complete agreement with the accumulation of (E)-2-methyl-6-methylen-2,7-octadien-1-ol by the mutant. Based on sequence and biotransformation data, we propose a pathway for beta-myrcene catabolism in Pseudomonas sp. strain M1.
Collapse
Affiliation(s)
- S Iurescia
- Department of Biology, University of Rome Three, Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
24
|
van der Werf MJ, de Bont JAM, Leak DJ. Opportunities in microbial biotransformation of monoterpenes. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 1997. [DOI: 10.1007/bfb0102065] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
25
|
Abstract
The cytochromes P-450 (P-450s) constitute an extremely large family ('superfamily') of haemoproteins that catalyse the oxidation of a wide range of physiological and non-physiological compounds. A remarkable feature of the P-450s is the manipulation of the same basic structure and chemistry to achieve an enormous range of functions in organisms as diverse as bacteria and man. Indeed, the P-450s have been described as 'the most versatile biological catalyst known'. Much research is focussed on mammalian P-450s, with their roles in such processes as steroid transformations and the metabolism of carcinogens and other xenobiotics. However, our knowledge of the structure and function of the P-450s has been advanced by analysis of a limited number of its bacterial members, primarily P-450cam from Pseudomonas putida. Four P-450 structures have been solved to date, all of which are from bacterial sources. The aim of this review is to assess current knowledge of the many bacterial P-450s, with emphasis on their diverse biological roles and on the advances in our knowledge of this extremely important enzyme class, which have been made feasible through their study.
Collapse
Affiliation(s)
- A W Munro
- Division of Biochemistry and Molecular Biology, Institute of Biological and Life Sciences, University of Glasgow, UK.
| | | |
Collapse
|
26
|
Cane DE, Sohng JK, Lamberson CR, Rudnicki SM, Wu Z, Lloyd MD, Oliver JS, Hubbard BR. Pentalenene synthase. Purification, molecular cloning, sequencing, and high-level expression in Escherichia coli of a terpenoid cyclase from Streptomyces UC5319. Biochemistry 1994; 33:5846-57. [PMID: 8180213 DOI: 10.1021/bi00185a024] [Citation(s) in RCA: 118] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Pentalenene synthase, which catalyzes the cyclization of farnesyl diphosphate (1) to the tricyclic sesquiterpene hydrocarbon pentalenene (2), was purified from Streptomyces UC5319. A 450-bp hybridization probe, generated by PCR amplification of genomic DNA using primers based on N-terminal and internal tryptic peptide sequence data for pentalenene synthase, was used to screen both plasmid and phage DNA libraries of Streptomyces genomic DNA, resulting in the isolation and sequencing of the complete pentalenene synthase gene. PCR was used to insert the pentalenene synthase gene into the T7 expression vector pLM1. Cloning of the resulting construct in the expression host Escherichia coli BL21 (DE3) gave transformants that expressed pentalenene synthase as greater than 10% of soluble protein. The recombinant enzyme has been purified, and initial physical and kinetic characterization has been performed. The recombinant enzyme appears to be identical in every respect with the native Streptomyces synthase and exhibits the following steady-state kinetic parameters: Km = 0.31 +/- 0.05 microM, kcat = 0.32 +/- s-1, KI(PPi) = 3.2 +/- 0.6 microM. Both enzymes have an absolute requirement of Mg2+ for catalysis and an optimum pH of 8.2-8.4. Both proteins have M(r) values of 41-42 kDa, as determined by SDS-PAGE.
Collapse
Affiliation(s)
- D E Cane
- Department of Chemistry, Brown University, Providence, Rhode Island 02912
| | | | | | | | | | | | | | | |
Collapse
|