1
|
Collins KM, Evans NJ, Torpey JH, Harris JM, Haynes BA, Camp AH, Isaacson RL. Structural Analysis of Bacillus subtilis Sigma Factors. Microorganisms 2023; 11:microorganisms11041077. [PMID: 37110501 PMCID: PMC10141391 DOI: 10.3390/microorganisms11041077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Bacteria use an array of sigma factors to regulate gene expression during different stages of their life cycles. Full-length, atomic-level structures of sigma factors have been challenging to obtain experimentally as a result of their many regions of intrinsic disorder. AlphaFold has now supplied plausible full-length models for most sigma factors. Here we discuss the current understanding of the structures and functions of sigma factors in the model organism, Bacillus subtilis, and present an X-ray crystal structure of a region of B. subtilis SigE, a sigma factor that plays a critical role in the developmental process of spore formation.
Collapse
Affiliation(s)
- Katherine M Collins
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, UK
| | - Nicola J Evans
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, UK
| | - James H Torpey
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, UK
| | - Jonathon M Harris
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, UK
| | - Bethany A Haynes
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, UK
| | - Amy H Camp
- Department of Biological Sciences, Mount Holyoke College, 50 College Street, South Hadley, MA 01075, USA
| | - Rivka L Isaacson
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, UK
| |
Collapse
|
2
|
Tsai J, Yeh Y, Lin L, Sun Y, Hsiao C. Crystal structure of the flagellin protein FlaG from Helicobacter pylori. J CHIN CHEM SOC-TAIP 2019. [DOI: 10.1002/jccs.201900162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jia‐Yin Tsai
- Department of Life Science and Institute of Bioinformatics and Structural BiologyNational Tsing Hua University Hsinchu Taiwan
| | - Yi‐Hung Yeh
- Institute of Molecular BiologyAcademia Sinica Taipei Taiwan
| | - Lun‐Der Lin
- Department of Life Science and Institute of Bioinformatics and Structural BiologyNational Tsing Hua University Hsinchu Taiwan
| | - Yuh‐Ju Sun
- Department of Life Science and Institute of Bioinformatics and Structural BiologyNational Tsing Hua University Hsinchu Taiwan
| | | |
Collapse
|
3
|
SwrD (YlzI) Promotes Swarming in Bacillus subtilis by Increasing Power to Flagellar Motors. J Bacteriol 2017; 200:JB.00529-17. [PMID: 29061663 DOI: 10.1128/jb.00529-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 09/29/2017] [Indexed: 11/20/2022] Open
Abstract
The bacterium Bacillus subtilis is capable of two kinds of flagellum-mediated motility: swimming, which occurs in liquid, and swarming, which occurs on a surface. Swarming is distinct from swimming in that it requires secretion of a surfactant, an increase in flagellar density, and perhaps additional factors. Here we report a new gene, swrD, located within the 32 gene fla-che operon dedicated to flagellar biosynthesis and chemotaxis, which when mutated abolished swarming motility. SwrD was not required for surfactant production, flagellar gene expression, or an increase in flagellar number. Instead, SwrD was required to increase flagellar power. Mutation of swrD reduced swimming speed and torque of tethered flagella, and all swrD-related phenotypes were restored when the stator subunits MotA and MotB were overexpressed either by spontaneous suppressor mutations or by artificial induction. We conclude that swarming motility requires flagellar power in excess of that which is needed to swim.IMPORTANCE Bacteria swim in liquid and swarm over surfaces by rotating flagella, but the difference between swimming and swarming is poorly understood. Here we report that SwrD of Bacillus subtilis is necessary for swarming because it increases flagellar torque and cells mutated for swrD swim with reduced speed. How flagellar motors generate power is primarily studied in Escherichia coli, and SwrD likely increases power in other organisms, like the Firmicutes, Clostridia, Spirochaetes, and the Deltaproteobacteria.
Collapse
|
4
|
Kobayashi K, Kanesaki Y, Yoshikawa H. Genetic Analysis of Collective Motility of Paenibacillus sp. NAIST15-1. PLoS Genet 2016; 12:e1006387. [PMID: 27764113 PMCID: PMC5072692 DOI: 10.1371/journal.pgen.1006387] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/26/2016] [Indexed: 11/18/2022] Open
Abstract
Bacteria have developed various motility mechanisms to adapt to a variety of solid surfaces. A rhizosphere isolate, Paenibacillus sp. NAIST15-1, exhibited unusual motility behavior. When spotted onto 1.5% agar media, Paenibacillus sp. formed many colonies, each of which moved around actively at a speed of 3.6 μm/sec. As their density increased, each moving colony began to spiral, finally forming a static round colony. Despite its unusual motility behavior, draft genome sequencing revealed that both the composition and organization of flagellar genes in Paenibacillus sp. were very similar to those in Bacillus subtilis. Disruption of flagellar genes and flagellar stator operons resulted in loss of motility. Paenibacillus sp. showed increased transcription of flagellar genes and hyperflagellation on hard agar media. Thus, increased flagella and their rotation drive Paenibacillus sp. motility. We also identified a large extracellular protein, CmoA, which is conserved only in several Paenibacillus and related species. A cmoA mutant could neither form moving colonies nor move on hard agar media; however, motility was restored by exogenous CmoA. CmoA was located around cells and enveloped cell clusters. Comparison of cellular behavior between the wild type and cmoA mutant indicated that extracellular CmoA is involved in drawing water out of agar media and/or smoothing the cell surface interface. This function of CmoA probably enables Paenibacillus sp. to move on hard agar media.
Collapse
Affiliation(s)
- Kazuo Kobayashi
- Graduate School of Biological Sciences, Nara Institute of Science & Technology, Ikoma, Japan
- * E-mail:
| | - Yu Kanesaki
- NODAI Genome Research Center, Tokyo University of Agriculture, Setagaya-ku, Japan
| | - Hirofumi Yoshikawa
- NODAI Genome Research Center, Tokyo University of Agriculture, Setagaya-ku, Japan
- Department of Bioscience, Tokyo University of Agriculture, Setagaya-ku, Japan
| |
Collapse
|
5
|
Jagtap CB, Kumar P, Rao KK. Bacillus subtilis Hfq: A role in chemotaxis and motility. J Biosci 2016; 41:347-58. [DOI: 10.1007/s12038-016-9618-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
6
|
Guo S, Li X, He P, Ho H, Wu Y, He Y. Whole-genome sequencing of Bacillus subtilis XF-1 reveals mechanisms for biological control and multiple beneficial properties in plants. J Ind Microbiol Biotechnol 2015; 42:925-37. [PMID: 25860123 DOI: 10.1007/s10295-015-1612-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 03/25/2015] [Indexed: 03/14/2023]
Abstract
Bacillus subtilis XF-1 is a gram-positive, plant-associated bacterium that stimulates plant growth and produces secondary metabolites that suppress soil-borne plant pathogens. In particular, it is especially highly efficient at controlling the clubroot disease of cruciferous crops. Its 4,061,186-bp genome contains an estimated 3853 protein-coding sequences and the 1155 genes of XF-1 are present in most genome-sequenced Bacillus strains: 3757 genes in B. subtilis 168, and 1164 in B. amyloliquefaciens FZB42. Analysis using the Cluster of Orthologous Groups database of proteins shows that 60 genes control bacterial mobility, 221 genes are related to cell wall and membrane biosynthesis, and more than 112 are genes associated with secondary metabolites. In addition, the genes contributed to the strain's plant colonization, bio-control and stimulation of plant growth. Sequencing of the genome is a fundamental step for developing a desired strain to serve as an efficient biological control agent and plant growth stimulator. Similar to other members of the taxon, XF-1 has a genome that contains giant gene clusters for the non-ribosomal synthesis of antifungal lipopeptides (surfactin and fengycin), the polyketides (macrolactin and bacillaene), the siderophore bacillibactin, and the dipeptide bacilysin. There are two synthesis pathways for volatile growth-promoting compounds. The expression of biosynthesized antibiotic peptides in XF-1 was revealed by matrix-assisted laser desorption/ionization-time of flight mass spectrometry.
Collapse
Affiliation(s)
- Shengye Guo
- Faculty of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | | | | | | | | | | |
Collapse
|
7
|
FliW and FliS function independently to control cytoplasmic flagellin levels in Bacillus subtilis. J Bacteriol 2012; 195:297-306. [PMID: 23144244 DOI: 10.1128/jb.01654-12] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cytoplasmic level of flagellin (called Hag) is homeostatically regulated in the Gram-positive bacterium Bacillus subtilis by a partner-switching mechanism between the protein FliW and either the Hag structural protein or CsrA, an RNA binding protein that represses hag translation. Here we show that FliW and the putative secretion chaperone FliS bind to Hag simultaneously but control Hag translation by different mechanisms. While FliW directly inhibits CsrA activity, FliS antagonizes CsrA indirectly by binding to Hag, enhancing Hag secretion, and depleting Hag in the cytoplasm to trigger the FliW partner switch. Consistent with a role for FliS in potentiating Hag secretion, the mutation of fliS crippled both motility and flagellar filament assembly, and both phenotypes could be partially rescued by artificially increasing the concentration of the Hag substrate through the absence of CsrA. Furthermore, the absence of FliS resulted in an approximately 30-fold reduction in extracellular Hag accumulation in cells mutated for CsrA (to relieve homeostatic control) and the filament cap protein FliD (to secrete flagellin into the supernatant). Thus, we mechanistically discriminate between the FliW regulator and the FliS chaperone to show that secretion disrupts flagellin homeostasis and promotes high-level flagellin synthesis during the period of filament assembly in B. subtilis.
Collapse
|
8
|
Winter T, Winter J, Polak M, Kusch K, Mäder U, Sietmann R, Ehlbeck J, van Hijum S, Weltmann KD, Hecker M, Kusch H. Characterization of the global impact of low temperature gas plasma on vegetative microorganisms. Proteomics 2011; 11:3518-30. [DOI: 10.1002/pmic.201000637] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 04/29/2011] [Accepted: 06/08/2011] [Indexed: 01/19/2023]
|
9
|
Dubey GP, Ben-Yehuda S. Intercellular nanotubes mediate bacterial communication. Cell 2011; 144:590-600. [PMID: 21335240 DOI: 10.1016/j.cell.2011.01.015] [Citation(s) in RCA: 367] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 10/18/2010] [Accepted: 01/10/2011] [Indexed: 12/18/2022]
Abstract
Bacteria are known to communicate primarily via secreted extracellular factors. Here we identify a previously uncharacterized type of bacterial communication mediated by nanotubes that bridge neighboring cells. Using Bacillus subtilis as a model organism, we visualized transfer of cytoplasmic fluorescent molecules between adjacent cells. Additionally, by coculturing strains harboring different antibiotic resistance genes, we demonstrated that molecular exchange enables cells to transiently acquire nonhereditary resistance. Furthermore, nonconjugative plasmids could be transferred from one cell to another, thereby conferring hereditary features to recipient cells. Electron microscopy revealed the existence of variously sized tubular extensions bridging neighboring cells, serving as a route for exchange of intracellular molecules. These nanotubes also formed in an interspecies manner, between B. subtilis and Staphylococcus aureus, and even between B. subtilis and the evolutionary distant bacterium Escherichia coli. We propose that nanotubes represent a major form of bacterial communication in nature, providing a network for exchange of cellular molecules within and between species.
Collapse
Affiliation(s)
- Gyanendra P Dubey
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Israel
| | | |
Collapse
|
10
|
Lam WWL, Woo EJ, Kotaka M, Tam WK, Leung YC, Ling TKW, Au SWN. Molecular interaction of flagellar export chaperone FliS and cochaperone HP1076 in Helicobacter pylori. FASEB J 2010; 24:4020-32. [PMID: 20581225 DOI: 10.1096/fj.10-155242] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Flagellar export chaperone FliS prevents premature polymerization of flagellins and is critical for flagellar assembly and bacterial colonization. Previously, a yeast 2-hybrid study identified various FliS-associated proteins in Helicobacter pylori, but the implications of these interactions are not known. Here we demonstrate the biophysical interaction of FliS (HP0753) and the uncharacterized protein HP1076 from H. pylori. HP1076 possesses a cochaperone activity that promotes the folding and chaperone activity of FliS. We further determined the crystal structures of FliS, HP1076, and the binary complex at 2.7, 1.8, and 2.7 Å resolution, respectively. HP1076 adopts a helix-rich bundle structure and interestingly shares a similar fold with a flagellin homologue, hook-associated protein, and FliS. The FliS-HP1076 complex revealed an extensive electrostatic and hydrophobic binding interface, which is distinct from the flagellin binding pocket in FliS. The helical stacking interaction between HP1076 and FliS suggests that HP1076 stabilizes 2 α helices of FliS and therefore the overall structure of the bundle. Our findings provide new insights into flagellar export chaperones and may have implications for other secretion chaperones in the type III secretion system.
Collapse
Affiliation(s)
- Wendy Wai Ling Lam
- Centre of Protein Science and Crystallography, Department of Biochemistry, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|
11
|
Eletsky A, Sukumaran DK, Xiao R, Acton TB, Rost B, Montelione GT, Szyperski T. NMR structure of protein YvyC from Bacillus subtilis reveals unexpected structural similarity between two PFAM families. Proteins 2009; 76:1037-41. [PMID: 19455708 DOI: 10.1002/prot.22459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Alexander Eletsky
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Role of the sigmaD-dependent autolysins in Bacillus subtilis population heterogeneity. J Bacteriol 2009; 191:5775-84. [PMID: 19542270 DOI: 10.1128/jb.00521-09] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Exponentially growing populations of Bacillus subtilis contain two morphologically and functionally distinct cell types: motile individuals and nonmotile multicellular chains. Motility differentiation arises because RNA polymerase and the alternative sigma factor sigma(D) activate expression of flagellin in a subpopulation of cells. Here we demonstrate that the peptidoglycan-remodeling autolysins under sigma(D) control, LytC, LytD, and LytF, are expressed in the same subpopulation of cells that complete flagellar synthesis. Morphological heterogeneity is explained by the expression of LytF that is necessary and sufficient for cell separation. Moreover, LytC is required for motility but not at the level of cell separation or flagellum biosynthesis. Rather, LytC appears to be important for flagellar function, and motility was restored to a LytC mutant by mutation of either lonA, encoding the LonA protease, or a gene encoding a previously unannotated swarming motility inhibitor, SmiA. We conclude that heterogeneous activation of sigma(D)-dependent gene expression is sufficient to explain both the morphological heterogeneity and functional heterogeneity present in vegetative B. subtilis populations.
Collapse
|
13
|
Abstract
We demonstrate that transcription of the gene swrAA, required for swarming migration in Bacillus subtilis, is driven by two promoters: a sigD-dependent promoter and a putative sigA-dependent promoter, which is inactive during growth in liquid Luria-Bertani medium and becomes active in the presence of the phosphorylated form of the response regulator DegU or on semisolid surfaces. Since sigD transcription is enhanced by SwrAA, this finding reveals that swrA expression is controlled by a positive feedback loop. We also demonstrate that the positive action of SwrAA in swimming and swarming motility is prevented in strains carrying a deletion of the two-component system degS-degU and that this effect is independent of swrAA transcription. Therefore, both DegU and SwrAA must be present to achieve full motility in B. subtilis.
Collapse
|
14
|
Abstract
We have discovered that cells of Bacillus subtilis at the mid-exponential phase of growth are a mixed population of two strikingly different cell types. One type is single swimming cells (or cell doublets) in which the transcription factor for motility, sigma(D), is active (sigma(D) ON). The other type is long chains of sessile cells in which sigma(D) is inactive (sigma(D) OFF). The population is strongly biased toward sigma(D)-ON cells by the action of a novel regulatory protein called SwrA. SwrA stimulates the transcription of a large operon (the flagellum/chemotaxis operon), which includes the genes for sigma(D) and an activator of sigma(D)-directed gene expression, SwrB. Cell population heterogeneity could enable B. subtilis to exploit its present location through the production of sessile cells as well as to explore new environmental niches through the generation of nomadic cells.
Collapse
Affiliation(s)
- Daniel B Kearns
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | |
Collapse
|
15
|
Sorenson MK, Ray SS, Darst SA. Crystal Structure of the Flagellar σ/Anti-σ Complex σ28/FlgM Reveals an Intact σ Factor in an Inactive Conformation. Mol Cell 2004; 14:127-38. [PMID: 15068809 DOI: 10.1016/s1097-2765(04)00150-9] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2004] [Revised: 02/23/2004] [Accepted: 02/26/2004] [Indexed: 10/26/2022]
Abstract
The key regulators of bacterial transcription initiation are the sigma factors, which direct promoter recognition and melting but only after binding to the core RNA polymerase to form the holoenzyme. X-ray crystal structures of the flagellar sigma, sigma(28), in complex with its anti-sigma, FlgM, explain the inhibition mechanism of FlgM, including its ability to attack and destabilize the sigma(28)-holoenzyme. The sigma domains (sigma(2), sigma(3), and sigma(4)) pack together in a compact unit with extensive interdomain interfaces that bury the promoter binding determinants, including the -35 element recognition helix of sigma(4), which fits in an acidic groove on the surface of sigma(3). The structure illustrates the large rearrangements that sigma(28) must undergo to form the holoenzyme and provides insights into the regulation of sigma(28) promoter binding activity that may extend, at least in principle, to other sigmas.
Collapse
|
16
|
Hernández CS, Martínez C, Porcar M, Caballero P, Ferré J. Correlation between serovars of Bacillus thuringiensis and type I beta-exotoxin production. J Invertebr Pathol 2003; 82:57-62. [PMID: 12581720 DOI: 10.1016/s0022-2011(02)00199-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
beta-Exotoxin is a thermostable metabolite produced by some strains of Bacillus thuringiensis. Because of vertebrate toxicity, most commercial preparations of B. thuringiensis are prepared from isolates that do not produce beta-exotoxin. The aim of the present study was to find out the possible relationship between serovars of B. thuringiensis and beta-exotoxin production. A specific HPLC assay for type I beta-exotoxin has been used to detect this exotoxin in supernatants from final whole cultures of 100 strains belonging to four serovars of B. thuringiensis: thuringiensis, kurstaki, aizawai, and morrisoni. For each serovar, 25 strains randomly chosen from two Spanish collections were analyzed. Frequency of beta-exotoxin production was higher in B. thuringiensis serovar thuringiensis, whereas only two strains from serovar kurstaki showed beta-exotoxin production. None of the 25 strains belonging to serovars aizawai and morrisoni was found to produce this compound. Along with data from other studies, serovars can be classified as "common," "seldom," or "rare" beta-exotoxin producers. The serovar-dependent beta-exotoxin production is discussed in relation to the evolutionary process of serovar differentiation, the plasmid compatibility and limited plasmid exchange between serovars, and with the serovar-dependent regulation of plasmid-encoded genes.
Collapse
Affiliation(s)
- Carmen Sara Hernández
- Departament de Genètica, Facultad de Ciencias Biologicas, Universitat de València, 46100 (Valencia), Burjassot, Spain
| | | | | | | | | |
Collapse
|
17
|
Baichoo N, Wang T, Ye R, Helmann JD. Global analysis of the Bacillus subtilis Fur regulon and the iron starvation stimulon. Mol Microbiol 2002; 45:1613-29. [PMID: 12354229 DOI: 10.1046/j.1365-2958.2002.03113.x] [Citation(s) in RCA: 201] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Bacillus subtilis ferric uptake repressor (Fur) protein coordinates a global transcriptional response to iron starvation. We have used DNA microarrays to define the Fur regulon and the iron starvation stimulon. We identify 20 operons (containing 39 genes) that are derepressed both by mutation of fur and by treatment of cells with the iron chelator 2,2'-dipyridyl. These operons are direct targets of Fur regulation as judged by DNase I footprinting. Analyses of lacZ reporter fusions to six Fur-regulated promoter regions reveal that repression is highly selective for iron. In addition to the Fur regulon, iron starvation induces members of the PerR regulon and leads to reduced expression of cytochromes. However, we did not find any evidence for genes that are directly activated by Fur or repressed by Fur under iron-limiting conditions. Although genome searches using the 19 bp Fur box consensus are useful in identifying candidate Fur-regulated genes, some genes associated with Fur boxes are not demonstrably regulated by Fur, whereas other genes are regulated from sites with little apparent similarity to the conventional Fur consensus.
Collapse
Affiliation(s)
- Noel Baichoo
- Department of Mirobiology, Cornell University, Ithica, NY 14853-8101, USA
| | | | | | | |
Collapse
|
18
|
Hanawa T, Yamanishi S, Murayama S, Yamamoto T, Kamiya S. Participation of DnaK in expression of genes involved in virulence of Listeria monocytogenes. FEMS Microbiol Lett 2002; 214:69-75. [PMID: 12204374 DOI: 10.1111/j.1574-6968.2002.tb11326.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
DnaK is required for adaptation to environmental stress and is also involved in bacterial growth under normal conditions. To examine whether DnaK plays a role in the expression of genes related to pathogenicity of Listeria monocytogenes, the transcription of flaA, iap and lmaA in a dnaK mutant was analyzed. Northern blot analysis showed that expression of flaA and lmaA mRNAs was reduced in the dnaK mutant, THY-LK1. A reporter assay revealed that transcription of lmaB in the dnaK mutant, LKS01, constructed in this study was lower than that in the parental strain. In contrast, the dnaK mutation had no effect on the transcription of iap. These results suggest that DnaK is involved in the transcription of flaA and lmaB.
Collapse
Affiliation(s)
- Tomoko Hanawa
- Division of Medical Microbiology, Department of Infectious Diseases, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo 181-8611, Japan.
| | | | | | | | | |
Collapse
|
19
|
Dixit M, Murudkar CS, Rao KK. Epr is transcribed from a final sigma(D) promoter and is involved in swarming of Bacillus subtilis. J Bacteriol 2002; 184:596-9. [PMID: 11751842 PMCID: PMC139581 DOI: 10.1128/jb.184.2.596-599.2002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epr is a minor extracellular protease secreted by Bacillus subtilis 168. In this study, we show that epr is transcribed by E sigma(D), the RNA polymerase associated with transcription of genes involved in chemotaxis and motility. Disruption of epr abolished swarming of Bacillus subtilis, suggesting its involvement in motility.
Collapse
Affiliation(s)
- Madhulika Dixit
- Biotechnology Centre, Indian Institute of Technology, Powai, Mumbai 400076, India
| | | | | |
Collapse
|
20
|
Heuner K, Große K, Schade R, Göbel UB. A flagellar gene cluster from the oral spirochaete Treponema maltophilum. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 2):497-507. [PMID: 10708388 DOI: 10.1099/00221287-146-2-497] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A flagellar gene cluster from the oral spirochaete Treponema maltophilum ATCC 51939T was cloned. Sequence analysis revealed six putative ORFs, two of which encode the flagellar subunit proteins FlaB2 (286 aa) and FlaB3 (285 aa). Northern blot analysis revealed two flagellin transcripts with the expected size of monocistronic mRNAs. Sequence analysis and primer extension experiments indicated that the transcription of the flaB2 gene is directed by a sigma28-like FliA factor. Using fliA and fliA+ Escherichia coli K-12 strains, it was shown that flaB2 expression in E. coli required the sigma28 factor using an initiation site identical to that in Treponema maltophilum. Primer extension analysis revealed two transcriptional start sites 5' of the flaB3 gene, a strong promoter with a sigma28-like -10 promoter element and a weak promoter with a putative sigma54 promoter consensus sequence. Downstream of flaB3, a putative fliD homologue was found, probably encoding the flagellar cap protein of Treponema maltophilum. Flagellin-gene-specific DNA probes hybridized to all 13 Treponema strains investigated, whereas a fliD-specific DNA probe only hybridized to Treponema maltophilum, other treponemal group IV isolates and Treponema brennaborense.
Collapse
Affiliation(s)
- Klaus Heuner
- Institut für Mikrobiologie und Hygiene1 and Institut für Pharmakologie und Toxikologie2, Universitätsklinikum Charité, Humboldt-Universität zu Berlin, Dorotheenstr. 96, 10117 Berlin, Germany
| | - Karin Große
- Institut für Mikrobiologie und Hygiene1 and Institut für Pharmakologie und Toxikologie2, Universitätsklinikum Charité, Humboldt-Universität zu Berlin, Dorotheenstr. 96, 10117 Berlin, Germany
| | - Rüdiger Schade
- Institut für Mikrobiologie und Hygiene1 and Institut für Pharmakologie und Toxikologie2, Universitätsklinikum Charité, Humboldt-Universität zu Berlin, Dorotheenstr. 96, 10117 Berlin, Germany
| | - Ulf B Göbel
- Institut für Mikrobiologie und Hygiene1 and Institut für Pharmakologie und Toxikologie2, Universitätsklinikum Charité, Humboldt-Universität zu Berlin, Dorotheenstr. 96, 10117 Berlin, Germany
| |
Collapse
|
21
|
Kim JS, Chang JH, Chung SI, Yum JS. Molecular cloning and characterization of the Helicobacter pylori fliD gene, an essential factor in flagellar structure and motility. J Bacteriol 1999. [PMID: 10559162 DOI: 10.1111/j.1755-3768.1923.tb03128.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori colonizes the human stomach and can cause gastroduodenal disease. Flagellar motility is regarded as a major factor in the colonizing ability of H. pylori. The functional roles of flagellar structural proteins other than FlaA, FlaB, and FlgE are not well understood. The fliD operon of H. pylori consists of flaG, fliD, and fliS genes, in the order stated, under the control of a sigma(28)-dependent promoter. In an effort to elucidate the function of the FliD protein, a hook-associated protein 2 homologue, in flagellar morphogenesis and motility, the fliD gene (2,058 bp) was cloned and isogenic mutants were constructed by disruption of the fliD gene with a kanamycin resistance cassette and electroporation-mediated allelic-exchange mutagenesis. In the fliD mutant, morphologically abnormal flagellar appendages in which very little filament elongation was apparent were observed. The fliD mutant strain was completely nonmotile, indicating that these abnormal flagella were functionally defective. Furthermore, the isogenic fliD mutant of H. pylori SS1, a mouse-adapted strain, was not able to colonize the gastric mucosae of host mice. These results suggest that H. pylori FliD is an essential element in the assembly of the functional flagella that are required for colonization of the gastric mucosa.
Collapse
Affiliation(s)
- J S Kim
- Mogam Biotechnology Research Institute, Koosung-myon, Yongin-city, Kyonggi-do 449-910, Korea.
| | | | | | | |
Collapse
|
22
|
Kim JS, Chang JH, Chung SI, Yum JS. Molecular cloning and characterization of the Helicobacter pylori fliD gene, an essential factor in flagellar structure and motility. J Bacteriol 1999; 181:6969-76. [PMID: 10559162 PMCID: PMC94171 DOI: 10.1128/jb.181.22.6969-6976.1999] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/1999] [Accepted: 09/07/1999] [Indexed: 11/20/2022] Open
Abstract
Helicobacter pylori colonizes the human stomach and can cause gastroduodenal disease. Flagellar motility is regarded as a major factor in the colonizing ability of H. pylori. The functional roles of flagellar structural proteins other than FlaA, FlaB, and FlgE are not well understood. The fliD operon of H. pylori consists of flaG, fliD, and fliS genes, in the order stated, under the control of a sigma(28)-dependent promoter. In an effort to elucidate the function of the FliD protein, a hook-associated protein 2 homologue, in flagellar morphogenesis and motility, the fliD gene (2,058 bp) was cloned and isogenic mutants were constructed by disruption of the fliD gene with a kanamycin resistance cassette and electroporation-mediated allelic-exchange mutagenesis. In the fliD mutant, morphologically abnormal flagellar appendages in which very little filament elongation was apparent were observed. The fliD mutant strain was completely nonmotile, indicating that these abnormal flagella were functionally defective. Furthermore, the isogenic fliD mutant of H. pylori SS1, a mouse-adapted strain, was not able to colonize the gastric mucosae of host mice. These results suggest that H. pylori FliD is an essential element in the assembly of the functional flagella that are required for colonization of the gastric mucosa.
Collapse
Affiliation(s)
- J S Kim
- Mogam Biotechnology Research Institute, Koosung-myon, Yongin-city, Kyonggi-do 449-910, Korea.
| | | | | | | |
Collapse
|
23
|
Millikan DS, Felbeck H, Stein JL. Identification and characterization of a flagellin gene from the endosymbiont of the hydrothermal vent tubeworm Riftia pachyptila. Appl Environ Microbiol 1999; 65:3129-33. [PMID: 10388713 PMCID: PMC91466 DOI: 10.1128/aem.65.7.3129-3133.1999] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bacterial endosymbionts of the hydrothermal vent tubeworm Riftia pachyptila play a key role in providing their host with fixed carbon. Results of prior research suggest that the symbionts are selected from an environmental bacterial population, although a free-living form has been neither cultured from nor identified in the hydrothermal vent environment. To begin to assess the free-living potential of the symbiont, we cloned and characterized a flagellin gene from a symbiont fosmid library. The symbiont fliC gene has a high degree of homology with other bacterial flagellin genes in the amino- and carboxy-terminal regions, while the central region was found to be nonconserved. A sequence that was homologous to that of a consensus sigma28 RNA polymerase recognition site lay upstream of the proposed translational start site. The symbiont protein was expressed in Escherichia coli, and flagella were observed by electron microscopy. A 30,000-Mr protein subunit was identified in whole-cell extracts by Western blot analysis. These results provide the first direct evidence of a motile free-living stage of a chemoautotrophic symbiont and support the hypothesis that the symbiont of R. pachyptila is acquired with each new host generation.
Collapse
Affiliation(s)
- D S Millikan
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093-0202, USA
| | | | | |
Collapse
|
24
|
Liu J, Cosby WM, Zuber P. Role of lon and ClpX in the post-translational regulation of a sigma subunit of RNA polymerase required for cellular differentiation in Bacillus subtilis. Mol Microbiol 1999; 33:415-28. [PMID: 10411757 DOI: 10.1046/j.1365-2958.1999.01489.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The RNA polymerase sigma subunit, sigmaH (Spo0H) of Bacillus subtilis, is essential for the transcription of genes that function in sporulation and genetic competence. Although spo0H is transcriptionally regulated by the key regulatory device that controls sporulation initiation, the Spo0 phosphorelay, there is considerable evidence implicating a mechanism of post-translational control that governs the activity and concentration of sigmaH. Post-translational control of spo0H is responsible for the reduced expression of genes requiring sigmaH under conditions of low environmental pH. It is also responsible for heightened sigmaH activity upon relief of acid stress and during nutritional depletion. In this study, the ATP-dependent proteases LonA and B and the regulatory ATPase ClpX were found to function in the post-translational control of sigmaH. Mutations in lonA and lonB result in elevated sigmaH protein concentrations in low-pH cultures. However, this is not sufficient to increase sigmaH-dependent transcription. Activation of sigmaH-dependent transcription upon raising medium pH and in cells undergoing sporulation requires clpX, as shown by measuring the expression of lacZ fusions that require sigmaH for transcription and by complementation of a clpX null mutation. A hypothesis is presented that low environmental pH results in the Lon-dependent degradation of sigmaH, but the activity of sigmaH in sporulating cells and in cultures at neutral pH is stimulated by a ClpX-dependent mechanism in response to nutritional stress.
Collapse
Affiliation(s)
- J Liu
- Department of Biochemistry and Molecular Biology, Oregon Graduate Institute of Science and Technology, Portland, OR 97291-1000, USA
| | | | | |
Collapse
|
25
|
Herbort M, Klein M, Manting EH, Driessen AJ, Freudl R. Temporal expression of the Bacillus subtilis secA gene, encoding a central component of the preprotein translocase. J Bacteriol 1999; 181:493-500. [PMID: 9882663 PMCID: PMC93403 DOI: 10.1128/jb.181.2.493-500.1999] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Bacillus subtilis, the secretion of extracellular proteins strongly increases upon transition from exponential growth to the stationary growth phase. It is not known whether the amounts of some or all components of the protein translocation apparatus are concomitantly increased in relation to the increased export activity. In this study, we analyzed the transcriptional organization and temporal expression of the secA gene, encoding a central component of the B. subtilis preprotein translocase. We found that secA and the downstream gene (prfB) constitute an operon that is transcribed from a vegetative (sigmaA-dependent) promoter located upstream of secA. Furthermore, using different independent methods, we found that secA expression occurred mainly in the exponential growth phase, reaching a maximal value almost precisely at the transition from exponential growth to the stationary growth phase. Following to this maximum, the de novo transcription of secA sharply decreased to a low basal level. Since at the time of maximal secA transcription the secretion activity of B. subtilis strongly increases, our results clearly demonstrate that the expression of at least one of the central components of the B. subtilis protein export apparatus is adapted to the increased demand for protein secretion. Possible mechanistic consequences are discussed.
Collapse
Affiliation(s)
- M Herbort
- Institut für Biotechnologie 1, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
| | | | | | | | | |
Collapse
|
26
|
Drzewiecki K, Eymann C, Mittenhuber G, Hecker M. The yvyD gene of Bacillus subtilis is under dual control of sigmaB and sigmaH. J Bacteriol 1998; 180:6674-80. [PMID: 9852014 PMCID: PMC107773 DOI: 10.1128/jb.180.24.6674-6680.1998] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During a search by computer-aided inspection of two-dimensional (2D) protein gels for sigmaB-dependent general stress proteins exhibiting atypical induction profiles, a protein initially called Hst23 was identified as a product of the yvyD gene of Bacillus subtilis. In addition to the typical sigmaB-dependent, stress- and starvation-inducible pattern, yvyD is also induced in response to amino acid depletion. By primer extension of RNA isolated from the wild-type strain and appropriate mutants carrying mutations in the sigB and/or spo0H gene, two promoters were mapped upstream of the yvyD gene. The sigmaB-dependent promoter drives expression of yvyD under stress conditions and after glucose starvation, whereas a sigmaH-dependent promoter is responsible for yvyD transcription following amino acid limitation. Analysis of Northern blots revealed that yvyD is transcribed monocistronically and confirmed the conclusions drawn from the primer extension experiments. The analysis of the protein synthesis pattern in amino acid-starved wild-type and relA mutant cells showed that the YvyD protein is not synthesized in the relA mutant background. It was concluded that the stringent response plays a role in the activation of sigmaH. The yvyD gene product is homologous to a protein which might modify the activity of sigma54 in gram-negative bacteria. The expression of a sigmaL-dependent (sigmaL is the equivalent of sigma54 in B. subtilis) levD-lacZ fusion is upregulated twofold in a yvyD mutant. This indicates that the yvyD gene product, being a member of both the sigmaB and sigmaH regulons, might negatively regulate the activity of the sigmaL regulon. We conclude that (i) systematic, computer-aided analysis of 2D protein gels is appropriate for the identification of genes regulated by multiple transcription factors and that (ii) YvyD might form a junction between the sigmaB and sigmaH regulons on one side and the sigmaL regulon on the other.
Collapse
Affiliation(s)
- K Drzewiecki
- Institut für Mikrobiologie und Molekularbiologie, Ernst-Moritz-Arndt-Universität, D-17487 Greifswald, Germany
| | | | | | | |
Collapse
|
27
|
Liu J, Zuber P. A molecular switch controlling competence and motility: competence regulatory factors ComS, MecA, and ComK control sigmaD-dependent gene expression in Bacillus subtilis. J Bacteriol 1998; 180:4243-51. [PMID: 9696775 PMCID: PMC107423 DOI: 10.1128/jb.180.16.4243-4251.1998] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus subtilis, like many bacteria, will choose among several response pathways when encountering a stressful environment. Among the processes activated under growth-restricting conditions are sporulation, establishment of motility, and competence development. Recent reports implicate ComK and MecA-ClpC as part of a system that regulates both motility and competence development. MecA, while negatively controlling competence by inhibiting ComK, stimulates sigmaD-dependent transcription of genes that function in motility and autolysin production. Both ComK-dependent and -independent pathways have been proposed for MecA's role in the regulation of motility. Mutations in mecA reduce the transcription of hag. encoding flagellin, and are partially suppressed by comK in both medium promoting motility and medium promoting competence. Reduced sigmaD levels are observed in mecA mutants grown in competence medium, but no change in sigmaD concentration is detected in a comK mutant. The comF operon, transcription of which requires ComK, is located immediately upstream of the operon that contains the flgM gene, encoding the sigmaD-specific antisigma factor. An insertion mutation that disrupts the putative comF-flgM transcription unit confers a phenotype identical to that of the comK mutant with respect to hag-lacZ expression. Expression of a flgM-lacZ operon fusion is reduced in both sigD and comK mutant cells but is abolished in the sigD comK double mutant. Reverse transcription-PCR examination of the comF-flgM transcript indicates that readthrough from comF into the flgM operon is dependent on ComK. ComK negatively controls the transcription of hag by stimulating the transcription of comF-flgM, thereby increasing the production of the FlgM antisigma factor that inhibits sigmaD activity. There likely exists another comK-independent mechanism of hag transcription that requires mecA and possibly affects the sigmaD concentration in cells undergoing competence development.
Collapse
Affiliation(s)
- J Liu
- Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, Shreveport, Louisiana, USA
| | | |
Collapse
|
28
|
Arora SK, Ritchings BW, Almira EC, Lory S, Ramphal R. The Pseudomonas aeruginosa flagellar cap protein, FliD, is responsible for mucin adhesion. Infect Immun 1998; 66:1000-7. [PMID: 9488388 PMCID: PMC108008 DOI: 10.1128/iai.66.3.1000-1007.1998] [Citation(s) in RCA: 177] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mucin-specific adhesion of Pseudomonas aeruginosa plays an important role in the initial colonization of this organism in the airways of cystic fibrosis patients. We report here that the flagellar cap protein, FliD, participates in this adhesion process. A polar chromosomal insertional mutation in the P. aeruginosa fliD gene made this organism nonadhesive to mucin in an in vitro mucin adhesion assay. The adhesive phenotype was restored by providing the fliD gene alone on a multicopy plasmid, suggesting involvement of this gene in mucin adhesion of P. aeruginosa. Further supporting this observation, the in vitro competition experiments demonstrated that purified FliD protein inhibited the mucin adhesion of nonpiliated P. aeruginosa PAK-NP, while the same concentrations of PilA and FlaG proteins of P. aeruginosa were ineffective in this function. The regulation of the fliD gene was studied and was found to be unique in that the transcription of the fliD gene was independent of the flagellar sigma factor sigma28. Consistent with this finding, no sigma28 binding sequence could be identified in the fliD promoter region. The results of the beta-galactosidase assays suggest that the fliD gene in P. aeruginosa is regulated by the newly described transcriptional regulator FleQ and the alternate sigma factor sigma54 (RpoN).
Collapse
Affiliation(s)
- S K Arora
- Department of Medicine/Infectious Diseases, University of Florida, Gainesville 32610, USA
| | | | | | | | | |
Collapse
|
29
|
Fredrick K, Helmann JD. RNA polymerase sigma factor determines start-site selection but is not required for upstream promoter element activation on heteroduplex (bubble) templates. Proc Natl Acad Sci U S A 1997; 94:4982-7. [PMID: 9144176 PMCID: PMC24617 DOI: 10.1073/pnas.94.10.4982] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Sequence-selective transcription by bacterial RNA polymerase (RNAP) requires sigma factor that participates in both promoter recognition and DNA melting. RNAP lacking sigma (core enzyme) will initiate RNA synthesis from duplex ends, nicks, gaps, and single-stranded regions. We have used DNA templates containing short regions of heteroduplex (bubbles) to compare initiation in the presence and absence of various sigma factors. Using bubble templates containing the sigmaD-dependent flagellin promoter, with or without its associated upstream promoter (UP) element, we demonstrate that UP element stimulation occurs efficiently even in the absence of sigma. This supports a model in which the UP element acts primarily through the alpha subunit of core enzyme to increase the initial association of RNAP with the promoter. Core and holoenzyme do differ substantially in the template positions chosen for initiation: sigmaD restricts initiation to sites 8-9 nucleotides downstream of the conserved -10 element. Remarkably, sigmaA also has a dramatic effect on start-site selection even though the sigmaA holoenzyme is inactive on the corresponding homoduplexes. The start sites chosen by the sigmaA holoenzyme are located 8 nucleotides downstream of sequences on the nontemplate strand that resemble the conserved -10 hexamer recognized by sigmaA. Thus, sigmaA appears to recognize the -10 region even in a single-stranded state. We propose that in addition to its described roles in promoter recognition and start-site melting, sigma also localizes the transcription start site.
Collapse
Affiliation(s)
- K Fredrick
- Section of Microbiology, Cornell University, Ithaca, NY 14853-8101, USA
| | | |
Collapse
|
30
|
Ge Y, Old IG, Saint Girons I, Charon NW. Molecular characterization of a large Borrelia burgdorferi motility operon which is initiated by a consensus sigma70 promoter. J Bacteriol 1997; 179:2289-99. [PMID: 9079915 PMCID: PMC178966 DOI: 10.1128/jb.179.7.2289-2299.1997] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A large motility operon, referred to as the flgB operon, was identified, characterized, and mapped at 310 to 320 kb on the linear chromosome of the spirochete Borrelia burgdorferi. This is the first report that a sigma70-like promoter rather than a sigma28-like promoter is involved in the transcription of a major motility operon in bacteria. From these results in conjunction with results from a previous study (Y. Ge and N. W. Charon, Gene, in press), we have identified 26 genes in this operon that are relevant to motility and flagellar synthesis. With few exceptions, the gene order and deduced gene products were most similar to those of other spirochetes and Bacillus subtilis. Primer extension analysis indicated that transcription initiated from a conserved sigma70-like promoter immediately upstream of flgB; this promoter mapped within the heat-shock-induced protease gene hslU. Reverse transcriptase PCR analysis indicated that a single transcript of 21 kb initiated at this promoter and extended through flgE and (with our previous results) onto the putative motility gene flbE. The flgB promoter element had strong activity in both Escherichia coli and Salmonella typhimurium. As expected, a mutant of S. typhimurium with an inactivated flagellum-specific sigma28 factor did not affect the function of this promoter. Western blot analysis indicated that B. burgdorferi recombinant FliG and FliI were antigenically similar to those of E. coli and other spirochetes. Although complementation of E. coli or S. typhimurium fliG or fliI mutants with the B. burgdorferi genes was unsuccessful, B. burgdorferi recombinant FliI completely inhibited flagellar synthesis and motility of wild-type E. coli and S. typhimurium. These results show that spirochete motility genes can influence flagellar synthesis in other species of bacteria. Finally, Western blot analysis with sera from infected humans and animals indicated a weak or nondetectable response to recombinant FliG and FliI. These results indicate that these antigens are not favorable candidate reagents to be used in the diagnosis of Lyme disease.
Collapse
Affiliation(s)
- Y Ge
- Department of Microbiology and Immunology, West Virginia University, Robert C. Byrd Health Sciences Center, Morgantown 26506-9177, USA
| | | | | | | |
Collapse
|
31
|
Fredrick K, Helmann JD. FlgM is a primary regulator of sigmaD activity, and its absence restores motility to a sinR mutant. J Bacteriol 1996; 178:7010-3. [PMID: 8955328 PMCID: PMC178607 DOI: 10.1128/jb.178.23.7010-7013.1996] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We have used mini-Tn1O mutagenesis to identify negative regulators of sigmaD activity. Nine independent insertions were mapped to five genes: flgM, flgK, fliD, fliS, and fliT, suggesting that FlgM export is regulated similarly in Bacillus subtilis and Salmonella typhimurium. We show that a deletion of flgM can restore sigmaD activity to a sinR null mutant of B. subtilis, although fla/che operon expression is affected by neither SinR nor FlgM.
Collapse
Affiliation(s)
- K Fredrick
- Section of Microbiology, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
32
|
Mobley HL, Belas R, Lockatell V, Chippendale G, Trifillis AL, Johnson DE, Warren JW. Construction of a flagellum-negative mutant of Proteus mirabilis: effect on internalization by human renal epithelial cells and virulence in a mouse model of ascending urinary tract infection. Infect Immun 1996; 64:5332-40. [PMID: 8945585 PMCID: PMC174527 DOI: 10.1128/iai.64.12.5332-5340.1996] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
To examine the role of flagella in pathogenesis of urinary tract infection caused by Proteus mirabilis, we constructed a nonmotile, nonswarming flagellum mutant of strain WPM111 (an hpmA hemolysin mutant of strain BA6163, chosen because of its lack of in vitro cytotoxicity in renal epithelial cell internalization studies). A nonpolar mutation was introduced into the flaD gene, which encodes the flagellar cap protein. This mutation does not affect the synthesis of flagellin but rather prevents the assembly of an intact flagellar filament. In in vitro assays, the genetically characterized nonmotile mutant was found to be internalized by cultured human renal proximal tubular epithelial cells in numbers less than 1% of those of the flagellated parent strain. Internalization of the nonmotile mutant was increased significantly (14- to 21-fold) by centrifugation onto the monolayer. To assess virulence in vivo, CBA mice were challenged transurethrally with 10(7) CFU of P. mirabilis BA6163 (wild type) (n = 16), WPM111 (hpmA mutant) (n = 46), or BB2401 (hmpA flaD mutant) (n = 46). Differences in quantitative cultures between the parent strain and the hemolysin-negative mutant were not significant. However, the hpmA flaD mutant was recovered in numbers approximately 100-fold lower than those of the hmpA mutant or the wild-type parent strain and thus was clearly attenuated. We conclude that while hemolysin does not significantly influence virulence, flagella contribute significantly to the ability of P. mirabilis to colonize the urinary tract and cause acute pyelonephritis in an experimental model of ascending urinary tract infection.
Collapse
Affiliation(s)
- H L Mobley
- Department of Medicine, University of Maryland School of Medicine, Baltimore 21201, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Rashid MH, Sekiguchi J. flaD (sinR) mutations affect SigD-dependent functions at multiple points in Bacillus subtilis. J Bacteriol 1996; 178:6640-3. [PMID: 8932324 PMCID: PMC178554 DOI: 10.1128/jb.178.22.6640-6643.1996] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A flaD (sinR) null mutation depressed sigD-lacZ expression only two- to fourfold, whereas a flaD1 point mutation depressed it almost completely. Introduction of pHYSigD, a sigmaD-overproducing plasmid, corrected the filamentous phenotype common to both sinR mutants; autolysin synthesis was restored partially and completely in the flaD1 and flaD (sinR) null strains, respectively. Flagellin synthesis and motility were not restored at all in either strain.
Collapse
Affiliation(s)
- M H Rashid
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Nagano, Japan
| | | |
Collapse
|
34
|
Caramori T, Barilla D, Nessi C, Sacchi L, Galizzi A. Role of FlgM in sigma D-dependent gene expression in Bacillus subtilis. J Bacteriol 1996; 178:3113-8. [PMID: 8655488 PMCID: PMC178060 DOI: 10.1128/jb.178.11.3113-3118.1996] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The alternative sigma factor sigma D directs transcription of a number of genes involved in chemotaxis, motility, and autolysis in Bacillus subtilis (sigmaD regulon). The activity of SigD is probably in contrast to that of FlgM, which acts as an antisigma factor and is responsible for the coupling of late flagellar gene expression to the assembly of the hook-basal body complex. We have characterized the effects of an in-frame deletion mutation of flgM. By transcriptional fusions to lacZ, we have shown that in FlgM-depleted strains there is a 10-fold increase in transcription from three different sigmaD-dependent promoters, i.e., Phag, PmotAB, and PfliDST. The number of flagellar filaments was only slightly increased by the flgM mutation. Overexpression of FlgM from a multicopy plasmid under control of the isopropyl-beta-D-thiogalactopyranoside-inducible spac promoter drastically reduced the level of transcription from the hag promoter. On the basis of these results, we conclude that, as in Salmonella typhimurium, FlgM inhibits the activity of SigD, but an additional element is involved in determining the number of flagellar filaments.
Collapse
Affiliation(s)
- T Caramori
- Dipartimento di Genetica e Microbiologia "A. Buzzati-Traverso", Universita degli Studi, Pavia, Italy
| | | | | | | | | |
Collapse
|
35
|
Stewart BJ, McCarter LL. Vibrio parahaemolyticus FlaJ, a homologue of FliS, is required for production of a flagellin. Mol Microbiol 1996; 20:137-49. [PMID: 8861212 DOI: 10.1111/j.1365-2958.1996.tb02496.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The flaA locus of Vibrio parahaemolyticus encodes one of the four polar flagellin genes, the flagellum-capping protein HAP2, and three additional flagellar genes. Sequence analysis downstream of the gene encoding HAP2 revealed the region to be similar to the fliD (HAP2) locus of Pseudomonas aeruginosa. The deduced protein sequences for the newly identified genes suggest that one protein belongs to the family of transcriptional regulatory proteins known to interact with sigma (54), one may be a rod component of the flagellum, and one resembles the FliS protein. fliS is an essential flagellar gene in many bacteria; however its function is not clear. The V. parahaemolyticus polar flaC flagellin gene was poorly expressed in Escherichia coli Production of FlaC was stimulated by provision of the flaA locus in trans. Dissection of this locus revealed that the fliS-like gene, flaJ, was required for increased expression of flaC. Stimulation by FlaJ occurred in E.coli mutants defective in either the master flagellar-controlling operon or the gene encoding the flagellar sigma (28). Therefore the effect of FlaJ was not mediated through flagellar proteins. Nor was it mediated through sigma (54) for enhanced FlaC production was observed in mutants with defects in the gene encoding sigma (54).
Collapse
Affiliation(s)
- B J Stewart
- Immunology Department, The Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
36
|
Klein M, Meens J, Freudl R. Functional characterization of theStaphylococcus carnosusSecA protein inEscherichia coliandBacillus subtilissecAmutant strains. FEMS Microbiol Lett 1995. [DOI: 10.1111/j.1574-6968.1995.tb07787.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
37
|
Fredrick K, Caramori T, Chen YF, Galizzi A, Helmann JD. Promoter architecture in the flagellar regulon of Bacillus subtilis: high-level expression of flagellin by the sigma D RNA polymerase requires an upstream promoter element. Proc Natl Acad Sci U S A 1995; 92:2582-6. [PMID: 7708689 PMCID: PMC42262 DOI: 10.1073/pnas.92.7.2582] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Flagellin is one of the most abundant proteins in motile bacteria, yet its expression requires a low abundance sigma factor (sigma 28). We show that transcription from the Bacillus subtilis flagellin promoter is stimulated 20-fold by an upstream A+T-rich region [upstream promoter (UP) element] both in vivo and in vitro. This UP element is contacted by sigma 28 holoenzyme bound at the flagellin promoter and binds the isolated alpha 2 subassembly of RNA polymerase. The UP element increases the affinity of RNA polymerase for the flagellin promoter and stimulates transcription when initiation is limited by the rate of RNA polymerase binding. Comparison with other promoters in the flagellar regulon reveals a bipartite architecture: the -35 and -10 elements confer specificity for sigma 28, while promoter strength is determined largely by upstream DNA sequences.
Collapse
Affiliation(s)
- K Fredrick
- Section of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | |
Collapse
|
38
|
Abstract
The specificity of DNA-dependent RNA polymerase for target promotes is largely due to the replaceable sigma subunit that it carries. Multiple sigma proteins, each conferring a unique promoter preference on RNA polymerase, are likely to be present in all bacteria; however, their abundance and diversity have been best characterized in Bacillus subtilis, the bacterium in which multiple sigma factors were first discovered. The 10 sigma factors thus far identified in B. subtilis directly contribute to the bacterium's ability to control gene expression. These proteins are not merely necessary for the expression of those operons whose promoters they recognize; in many instances, their appearance within the cell is sufficient to activate these operons. This review describes the discovery of each of the known B. subtilis sigma factors, their characteristics, the regulons they direct, and the complex restrictions placed on their synthesis and activities. These controls include the anticipated transcriptional regulation that modulates the expression of the sigma factor structural genes but, in the case of several of the B. subtilis sigma factors, go beyond this, adding novel posttranslational restraints on sigma factor activity. Two of the sigma factors (sigma E and sigma K) are, for example, synthesized as inactive precursor proteins. Their activities are kept in check by "pro-protein" sequences which are cleaved from the precursor molecules in response to intercellular cues. Other sigma factors (sigma B, sigma F, and sigma G) are inhibited by "anti-sigma factor" proteins that sequester them into complexes which block their ability to form RNA polymerase holoenzymes. The anti-sigma factors are, in turn, opposed by additional proteins which participate in the sigma factors' release. The devices used to control sigma factor activity in B, subtilis may prove to be as widespread as multiple sigma factors themselves, providing ways of coupling sigma factor activation to environmental or physiological signals that cannot be readily joined to other regulatory mechanisms.
Collapse
Affiliation(s)
- W G Haldenwang
- Department of Microbiology, University of Texas Health Science Center, San Antonio 78284-7758
| |
Collapse
|
39
|
|
40
|
Abstract
Bacillus subtilis undergoes a typical bacterial stress response when exposed to low concentrations (0.1 mM) of hydrogen peroxide. Protection is thereby induced against otherwise lethal, challenge concentrations (10 mM) of this oxidant and a number of proteins are induced including the scavenging enzymes, catalase and alkyl hydroperoxide reductase, and a putative DNA binding and protecting protein. Induced protection against higher concentrations (10-30 mM) of hydrogen peroxide is eliminated in a catalase-deficient mutant. Both RecA and Spo0A influence the basal but not the induced resistance to hydrogen peroxide. A regulatory mutation has been characterized that affects the inducible phenotype and is constitutively resistant to high concentrations of hydrogen peroxide. This mutant constitutively overexpresses the proteins induced by hydrogen peroxide in the wild-type. The resistance of spores to hydrogen peroxide is partly attributable to binding of small acid soluble proteins by the spore DNA and partly to a second step which coincides with the depletion of the NADH pool, which may inhibit the generation of hydroxyl radicals from hydrogen peroxide.
Collapse
Affiliation(s)
- B C Dowds
- Department of Biology, St Patrick's College, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
41
|
Abstract
The overproduction of flagella is a distinguishing characteristic of Proteus mirabilis swarmer cell differentiation. The synthesis of flagellin, the principal protein composing the flagellar filament, is coordinately regulated as part of a larger regulon of genes whose expression is a prerequisite in urinary pathogenesis. In this report, the regulation of expression of the flaA locus, comprising flaA and flaB, two tandemly linked and nearly identical copies of flagellin-encoding genes, is examined. Transcriptional expression studies reveal that flaA, but not flaB, is expressed by wild-type cells, and flaA transcription increases eightfold during differentiation. The flaA transcriptional start site for both swimmer and swarmer cells was determined to be located at a guanine, 8 bases downstream of the flaA sigma 28 promoter. FlaA- mutants are nonmotile and undifferentiated and do not synthesize flagellin, while FlaB- mutants are wild type, thus verifying that FlaA is the sole flagellin produced by wild-type cells and that flaB is silent. FlaA- mutants frequently revert to a Mot+ phenotype that is antigenically distinct from that of wild-type cells. Southern blot analysis of the flaA Mot+ revertants reveals a deletion of between 2 and 7kb in the flaA locus. Biochemical analyses of revertant flagellin indicate major changes in protein size and composition but conservation of the first 28 N-terminal residues. The result of this process is to produce an antigenically distinct flagellum that may be significant in ensuring the survival of P. mirabilis during pathogenesis.
Collapse
Affiliation(s)
- R Belas
- Center of Marine Biotechnology, University of Maryland Biotechnology Institute, Baltimore 21202
| |
Collapse
|