1
|
Sellmeier M, Weinhold B, Münster-Kühnel A. CMP-Sialic Acid Synthetase: The Point of Constriction in the Sialylation Pathway. Top Curr Chem (Cham) 2015; 366:139-67. [PMID: 24141690 DOI: 10.1007/128_2013_477] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Sialoglycoconjugates form the outermost layer of animal cells and play a crucial role in cellular communication processes. An essential step in the biosynthesis of sialylated glycoconjugates is the activation of sialic acid to the monophosphate diester CMP-sialic acid. Only the activated sugar is transported into the Golgi apparatus and serves as a substrate for the linkage-specific sialyltransferases. Interference with sugar activation abolishes sialylation and is embryonic lethal in mammals. In this chapter we focus on the enzyme catalyzing the activation of sialic acid, the CMP-sialic acid synthetase (CMAS), and compare the enzymatic properties of CMASs isolated from different species. Information concerning the reaction mechanism and active site architecture is included. Moreover, the unusual nuclear localization of vertebrate CMASs as well as the biotechnological application of bacterial CMAS enzymes is addressed.
Collapse
Affiliation(s)
- Melanie Sellmeier
- Institute for Cellular Chemistry, Hannover Medical School (MHH), Hannover, 30625, Germany
| | | | | |
Collapse
|
2
|
Cress BF, Englaender JA, He W, Kasper D, Linhardt RJ, Koffas MAG. Masquerading microbial pathogens: capsular polysaccharides mimic host-tissue molecules. FEMS Microbiol Rev 2014; 38:660-97. [PMID: 24372337 PMCID: PMC4120193 DOI: 10.1111/1574-6976.12056] [Citation(s) in RCA: 173] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 10/16/2013] [Accepted: 12/19/2013] [Indexed: 11/27/2022] Open
Abstract
The increasing prevalence of antibiotic-resistant bacteria portends an impending postantibiotic age, characterized by diminishing efficacy of common antibiotics and routine application of multifaceted, complementary therapeutic approaches to treat bacterial infections, particularly multidrug-resistant organisms. The first line of defense for most bacterial pathogens consists of a physical and immunologic barrier known as the capsule, commonly composed of a viscous layer of carbohydrates that are covalently bound to the cell wall in Gram-positive bacteria or often to lipids of the outer membrane in many Gram-negative bacteria. Bacterial capsular polysaccharides are a diverse class of high molecular weight polysaccharides contributing to virulence of many human pathogens in the gut, respiratory tree, urinary tract, and other host tissues, by hiding cell surface components that might otherwise elicit host immune response. This review highlights capsular polysaccharides that are structurally identical or similar to polysaccharides found in mammalian tissues, including polysialic acid and glycosaminoglycan capsules hyaluronan, heparosan, and chondroitin. Such nonimmunogenic coatings render pathogens insensitive to certain immune responses, effectively increasing residence time in host tissues and enabling pathologically relevant population densities to be reached. Biosynthetic pathways and capsular involvement in immune system evasion are described, providing a basis for potential therapies aimed at supplementing or replacing antibiotic treatment.
Collapse
Affiliation(s)
- Brady F Cress
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | | | | | | | | | | |
Collapse
|
3
|
A CMP-N-acetylneuraminic Acid Synthetase Purified from a Marine Bacterium,Photobacterium leiognathiJT-SHIZ-145. Biosci Biotechnol Biochem 2014; 75:47-53. [DOI: 10.1271/bbb.100506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
4
|
Loh E, Kugelberg E, Tracy A, Zhang Q, Gollan B, Ewles H, Chalmers R, Pelicic V, Tang CM. Temperature triggers immune evasion by Neisseria meningitidis. Nature 2013; 502:237-40. [PMID: 24067614 PMCID: PMC3836223 DOI: 10.1038/nature12616] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Accepted: 08/29/2013] [Indexed: 11/10/2022]
Abstract
Neisseria meningitidis has several strategies to evade complement-mediated killing, and these contribute to its ability to cause septicaemic disease and meningitis. However, the meningococcus is primarily an obligate commensal of the human nasopharynx, and it is unclear why the bacterium has evolved exquisite mechanisms to avoid host immunity. Here we demonstrate that mechanisms of meningococcal immune evasion and resistance against complement increase in response to an increase in ambient temperature. We have identified three independent RNA thermosensors located in the 5' untranslated regions of genes necessary for capsule biosynthesis, the expression of factor H binding protein, and sialylation of lipopolysaccharide, which are essential for meningococcal resistance against immune killing. Therefore increased temperature (which occurs during inflammation) acts as a 'danger signal' for the meningococcus, enhancing its defence against human immune killing. Infection with viral pathogens, such as influenza, leads to inflammation in the nasopharynx with an increased temperature and recruitment of immune effectors. Thermoregulation of immune defence could offer an adaptive advantage to the meningococcus during co-infection with other pathogens, and promote the emergence of virulence in an otherwise commensal bacterium.
Collapse
Affiliation(s)
- Edmund Loh
- Sir William Dunn School of Pathology, University of Oxford, Sir Parks Road, Oxford OX1 3RE
| | | | - Alexander Tracy
- Sir William Dunn School of Pathology, University of Oxford, Sir Parks Road, Oxford OX1 3RE
| | - Qian Zhang
- Centre for Molecular Microbiology and Infection, Imperial College London
| | - Bridget Gollan
- Centre for Molecular Microbiology and Infection, Imperial College London
| | - Helen Ewles
- Centre for Molecular Microbiology and Infection, Imperial College London
| | | | - Vladimir Pelicic
- Centre for Molecular Microbiology and Infection, Imperial College London
| | - Christoph M. Tang
- Sir William Dunn School of Pathology, University of Oxford, Sir Parks Road, Oxford OX1 3RE
- Centre for Molecular Microbiology and Infection, Imperial College London
| |
Collapse
|
5
|
Apicella MA. Nontypeable Haemophilus influenzae: the role of N-acetyl-5-neuraminic acid in biology. Front Cell Infect Microbiol 2012; 2:19. [PMID: 22919611 PMCID: PMC3417534 DOI: 10.3389/fcimb.2012.00019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 02/07/2012] [Indexed: 11/13/2022] Open
Abstract
Nontypeable Haemophilus influenzae (NTHi) is an exclusive human pathogen, which has evolved a number of unique mechanisms to survive within the human environment. An important part of this is the ability of the organism to take up and incorporate sialic acid into its surface structures. This protects the organism against host adaptive and innate immune factor as well as serving as a mechanism for sustaining itself within biofilms. Recent evidence suggests that this also may be the source of the evolution of human antibodies to non-human sialic acid structures, which can lead to inflammation in the host. In very rare instances, evolution of antibodies to sialylated lipooligosaccharide (LOS) mimics of human antigens can result in autoimmune disease.
Collapse
Affiliation(s)
- Michael A Apicella
- Departments of Microbiology and Internal Medicine, The Carver College of Medicine, The University of Iowa, Iowa City IA, USA.
| |
Collapse
|
6
|
Abstract
Sialic acids, also known as neuraminic acids, are a family of negatively charged α-keto acids with a nine-carbon backbone. These unique sugars have been found at the termini of many glycan chains of vertebrate cell surface, which play pivotal roles in mediating or modulating a variety of physiological and pathological processes. This brief review covers general approaches for synthesizing sialic acid containing structures. Recently developed synthetic methods along with structural diversities and biological functions of sialic acid are discussed.
Collapse
Affiliation(s)
- Hongzhi Cao
- National Glycoengineering Research Center, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Xi Chen
- Department of Chemistry, University of California-Davis, One Shields Avenue, CA 95616, USA
| |
Collapse
|
7
|
Cloning and characterization of cytidine monophosphate-3-deoxy-d-manno-octulosonate synthetase from Arabidopsis thaliana. J Biosci Bioeng 2010; 108:527-9. [PMID: 19914588 DOI: 10.1016/j.jbiosc.2009.05.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Accepted: 05/28/2009] [Indexed: 11/21/2022]
Abstract
The function and metabolic pathway of 3-deoxy-d-manno-octulosonate (KDO) are unclear in plants although it is an essential component in plant cell wall. Here we cloned and characterized a putative Arabidopsis thaliana cytidine monophosphate-KDO synthetase to understand synthetic pathways of KDO. It showed a ubiquitous expression, the activity at an optimal pH of 8.0, and a requirement of Mg2+.
Collapse
|
8
|
Drouillard S, Mine T, Kajiwara H, Yamamoto T, Samain E. Efficient synthesis of 6'-sialyllactose, 6,6'-disialyllactose, and 6'-KDO-lactose by metabolically engineered E. coli expressing a multifunctional sialyltransferase from the Photobacterium sp. JT-ISH-224. Carbohydr Res 2010; 345:1394-9. [PMID: 20231015 DOI: 10.1016/j.carres.2010.02.018] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 02/11/2010] [Accepted: 02/22/2010] [Indexed: 10/19/2022]
Abstract
We have previously reported the efficient conversion of lactose into 3'-sialyllactose by high cell density cultures of a genetically engineered Escherichia coli strain expressing the Neisseria meningitidis gene for alpha-(2-->3)-sialyltransferase [Fierfort, N.; Samain, E. J. Biotechnol. 2008, 134, 261-265.]. First attempts to use a similar strategy to produce 6'-sialyllactose with a strain expressing alpha-(2-->6)-sialyltransferase from the Photobacterium sp. JT-ISH-224 led to the production of a trisaccharide that was identified as KDO-lactose (2-keto-3-deoxy-manno-octonyllactose). This result showed that alpha-(2-->6)-sialyltransferase was able to use CMP-KDO as sugar donor and preferentially used CMP-KDO over CMP-Neu5Ac. By reducing the expression level of the sialyltransferase gene and increasing that of the neuABC genes, we have been able to favour the formation of 6'-sialyllactose and to prevent the formation of KDO-lactose. However, in this case, a third lactose derivative, which was identified as 6,6'-disialyllactose, was also produced. Formation of 6,6'-disialyllactose was mainly observed under conditions of lactose shortage. On the other hand, when the culture was continuously fed with an excess of lactose, 6'-sialyllactose was almost the only product detected and its final concentration was higher than 30g/L of culture medium.
Collapse
Affiliation(s)
- Sophie Drouillard
- Centre de Recherches sur les Macromolécules Végétales (CERMAV-CNRS), BP53, 38041 Grenoble cedex 9, France
| | | | | | | | | |
Collapse
|
9
|
Mizanur RM, Pohl NL. Bacterial CMP-sialic acid synthetases: production, properties, and applications. Appl Microbiol Biotechnol 2008; 80:757-65. [PMID: 18716769 DOI: 10.1007/s00253-008-1643-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Revised: 07/25/2008] [Accepted: 07/30/2008] [Indexed: 12/01/2022]
Abstract
Sialic acids are abundant nine-carbon sugars expressed terminally on glycoconjugates of eukaryotic cells and are crucial for a variety of cell biological functions such as cell-cell adhesion, intracellular signaling, and in regulation of glycoproteins stability. In bacteria, N-acetylneuraminic acid (Neu5Ac) polymers are important virulence factors. Cytidine 5'-monophosphate (CMP)-N-acetylneuraminic acid synthetase (CSS; EC 2.7.7.43), the key enzyme that synthesizes CMP-N-acetylneuraminic acid, the donor molecule for numerous sialyltransferase reactions, is present in both prokaryotes and eukaryotic systems. Herein, we emphasize the source, function, and biotechnological applications of CSS enzymes from bacterial sources. To date, only a few CSS from pathogenic bacterial species such as Neisseria meningitidis, Escherichia coli, group B streptococci, Haemophilus ducreyi, and Pasteurella hemolytica and an enzyme from nonpathogenic bacterium, Clostridium thermocellum, have been described. Overall, the enzymes from both Gram-positive and Gram-negative bacteria share common catalytic properties such as their dependency on divalent cation, temperature and pH profiles, and catalytic mechanisms. The enzymes, however, can be categorized as smaller and larger enzymes depending on their molecular weight. The larger enzymes in some cases are bifunctional; they have exhibited acetylhydrolase activity in addition to their sugar nucleotidyltransferase activity. The CSSs are important enzymes for the chemoenzymatic synthesis of various sialooligosaccharides of significance in biotechnology.
Collapse
Affiliation(s)
- Rahman M Mizanur
- Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892, USA.
| | | |
Collapse
|
10
|
Uria MJ, Zhang Q, Li Y, Chan A, Exley RM, Gollan B, Chan H, Feavers I, Yarwood A, Abad R, Borrow R, Fleck RA, Mulloy B, Vazquez JA, Tang CM. A generic mechanism in Neisseria meningitidis for enhanced resistance against bactericidal antibodies. J Exp Med 2008; 205:1423-34. [PMID: 18504306 PMCID: PMC2413038 DOI: 10.1084/jem.20072577] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The presence of serum bactericidal antibodies is a proven correlate of protection against systemic infection with the important human pathogen Neisseria meningitidis. We have identified three serogroup C N. meningitidis (MenC) isolates recovered from patients with invasive meningococcal disease that resist killing by bactericidal antibodies induced by the MenC conjugate vaccine. None of the patients had received the vaccine, which has been successfully introduced in countries in North America and Europe. The increased resistance was not caused by changes either in lipopolysaccharide sialylation or acetylation of the α2-9–linked polysialic acid capsule. Instead, the resistance of the isolates resulted from the presence of an insertion sequence, IS1301, in the intergenic region (IGR) between the sia and ctr operons, which are necessary for capsule biosynthesis and export, respectively. The insertion sequence led to an increase in the transcript levels of surrounding genes and the amount of capsule expressed by the strains. The increased amount of capsule was associated with down-regulation of the alternative pathway of complement activation, providing a generic mechanism by which the bacterium protects itself against bactericidal antibodies. The strains with IS1301 in the IGR avoided complement-mediated lysis in the presence of bactericidal antibodies directed at the outer membrane protein, PorA, or raised against whole cells.
Collapse
Affiliation(s)
- Maria Jose Uria
- Centre for Molecular Microbiology and Infection, Department of Microbiology, Imperial College London, London SW7 2AZ, England, UK
- Reference Laboratory for Neisseria, National Center of Microbiology, Institute of Health Carlos III, 28220 Majadahonda, Madrid, Spain
| | - Qian Zhang
- Centre for Molecular Microbiology and Infection, Department of Microbiology, Imperial College London, London SW7 2AZ, England, UK
| | - Yanwen Li
- Centre for Molecular Microbiology and Infection, Department of Microbiology, Imperial College London, London SW7 2AZ, England, UK
| | - Angel Chan
- Centre for Molecular Microbiology and Infection, Department of Microbiology, Imperial College London, London SW7 2AZ, England, UK
| | - Rachel M. Exley
- Centre for Molecular Microbiology and Infection, Department of Microbiology, Imperial College London, London SW7 2AZ, England, UK
| | - Bridget Gollan
- Centre for Molecular Microbiology and Infection, Department of Microbiology, Imperial College London, London SW7 2AZ, England, UK
| | - Hannah Chan
- National Institute of Biological Standards and Control, South Mimms, Potters Bar, Hertfordshire EN6 3QG, England, UK
| | - Ian Feavers
- National Institute of Biological Standards and Control, South Mimms, Potters Bar, Hertfordshire EN6 3QG, England, UK
| | - Andy Yarwood
- JEOL (UK) Ltd., JEOL House, Silvercourt, Watchmead, Welwyn Garden City, Hertfordshire AL7 1LT, England, UK
| | - Raquel Abad
- Reference Laboratory for Neisseria, National Center of Microbiology, Institute of Health Carlos III, 28220 Majadahonda, Madrid, Spain
| | - Ray Borrow
- Vaccine Evaluation Unit, North West Regional HPA Laboratory, Manchester Royal Infirmary, Manchester M13 9WZ, England, UK
| | - Roland A. Fleck
- National Institute of Biological Standards and Control, South Mimms, Potters Bar, Hertfordshire EN6 3QG, England, UK
| | - Barbara Mulloy
- National Institute of Biological Standards and Control, South Mimms, Potters Bar, Hertfordshire EN6 3QG, England, UK
| | - Julio A. Vazquez
- Reference Laboratory for Neisseria, National Center of Microbiology, Institute of Health Carlos III, 28220 Majadahonda, Madrid, Spain
| | - Christoph M. Tang
- Centre for Molecular Microbiology and Infection, Department of Microbiology, Imperial College London, London SW7 2AZ, England, UK
| |
Collapse
|
11
|
Smith H, Tang CM, Exley RM. Effect of host lactate on gonococci and meningococci: new concepts on the role of metabolites in pathogenicity. Infect Immun 2007; 75:4190-8. [PMID: 17562766 PMCID: PMC1951187 DOI: 10.1128/iai.00117-07] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Harry Smith
- The Medical School, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom.
| | | | | |
Collapse
|
12
|
Lewis AL, Cao H, Patel SK, Diaz S, Ryan W, Carlin AF, Thon V, Lewis WG, Varki A, Chen X, Nizet V. NeuA sialic acid O-acetylesterase activity modulates O-acetylation of capsular polysaccharide in group B Streptococcus. J Biol Chem 2007; 282:27562-71. [PMID: 17646166 PMCID: PMC2588433 DOI: 10.1074/jbc.m700340200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Group B Streptococcus (GBS) is a common cause of neonatal sepsis and meningitis. A major GBS virulence determinant is its sialic acid (Sia)-capped capsular polysaccharide. Recently, we discovered the presence and genetic basis of capsular Sia O-acetylation in GBS. We now characterize a GBS Sia O-acetylesterase that modulates the degree of GBS surface O-acetylation. The GBS Sia O-acetylesterase operates cooperatively with the GBS CMP-Sia synthetase, both part of a single polypeptide encoded by the neuA gene. NeuA de-O-acetylation of free 9-O-acetyl-N-acetylneuraminic acid (Neu5,9Ac(2)) was enhanced by CTP and Mg(2+), the substrate and co-factor, respectively, of the N-terminal GBS CMP-Sia synthetase domain. In contrast, the homologous bifunctional NeuA esterase from Escherichia coli K1 did not display cofactor dependence. Further analyses showed that in vitro, GBS NeuA can operate via two alternate enzymatic pathways: de-O-acetylation of Neu5,9Ac(2) followed by CMP activation of Neu5Ac or activation of Neu5,9Ac(2) followed by de-O-acetylation of CMP-Neu5,9Ac(2). Consistent with in vitro esterase assays, genetic deletion of GBS neuA led to accumulation of intracellular O-acetylated Sias, and overexpression of GBS NeuA reduced O-acetylation of Sias on the bacterial surface. Site-directed mutagenesis of conserved asparagine residue 301 abolished esterase activity but preserved CMP-Sia synthetase activity, as evidenced by hyper-O-acetylation of capsular polysaccharide Sias on GBS expressing only the N301A NeuA allele. These studies demonstrate a novel mechanism regulating the extent of capsular Sia O-acetylation in intact bacteria and provide a genetic strategy for manipulating GBS O-acetylation in order to explore the role of this modification in GBS pathogenesis and immunogenicity.
Collapse
Affiliation(s)
- Amanda L. Lewis
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California, USA
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Hongzhi Cao
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Silpa K. Patel
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California, USA
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Sandra Diaz
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California, USA
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
- Department of Cellular & Molecular Medicine, University of California, San Diego, La Jolla, California, USA
| | - Wesley Ryan
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Aaron F. Carlin
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California, USA
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Vireak Thon
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Warren G. Lewis
- The Scripps Research Institute, Biochemistry Department, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
- Genomics Institute of the Novartis Research Foundation, University of California, Davis, CA 95616, USA
| | - Ajit Varki
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California, USA
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
- Department of Cellular & Molecular Medicine, University of California, San Diego, La Jolla, California, USA
- Address Correspondence to: Ajit Varki, UCSD School of Medicine, La Jolla, CA 92093-0687 Phone: (858) 534-2214; Fax: (858) 534-5611;
| | - Xi Chen
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Victor Nizet
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California, USA
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
- School of Medicine, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
13
|
Schneider MC, Exley RM, Chan H, Feavers I, Kang YH, Sim RB, Tang CM. Functional significance of factor H binding to Neisseria meningitidis. THE JOURNAL OF IMMUNOLOGY 2006; 176:7566-75. [PMID: 16751403 DOI: 10.4049/jimmunol.176.12.7566] [Citation(s) in RCA: 194] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Neisseria meningitidis is an important cause of septicemia and meningitis. To cause disease, the bacterium must successfully survive in the bloodstream where it has to avoid being killed by host innate immune mechanisms, particularly the complement system. A number of pathogenic microbes bind factor H (fH), the negative regulator of the alternative pathway of complement activation, to promote their survival in vivo. In this study, we show that N. meningitidis binds fH to its surface. Binding to serogroups A, B, and C N. meningitidis strains was detected by FACS and Far Western blot analysis, and occurred in the absence of other serum factors such as C3b. Unlike Neisseria gonorrhoeae, binding of fH to N. meningitidis was independent of sialic acid on the bacterium, either as a component of its LPS or its capsule. Characterization of the major fH binding partner demonstrated that it is a 33-kDa protein; examination of insertion mutants showed that porins A and B, outer membrane porins expressed by N. meningitidis, do not contribute significantly to fH binding. We examined the physiological consequences of fH bound to the bacterial surface. We found that fH retains its activity as a cofactor of factor I when bound to the bacterium and contributes to the ability of N. meningitidis to avoid complement-mediated killing in the presence of human serum. Therefore, the recruitment of fH provides another mechanism by which this important human pathogen evades host innate immunity.
Collapse
Affiliation(s)
- Muriel C Schneider
- Centre for Molecular Microbiology and Infection, Imperial College London, UK
| | | | | | | | | | | | | |
Collapse
|
14
|
Teplyakov A, Obmolova G, Toedt J, Galperin MY, Gilliland GL. Crystal structure of the bacterial YhcH protein indicates a role in sialic acid catabolism. J Bacteriol 2005; 187:5520-7. [PMID: 16077096 PMCID: PMC1196062 DOI: 10.1128/jb.187.16.5520-5527.2005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The yhcH gene is part of the nan operon in bacteria that encodes proteins involved in sialic acid catabolism. Determination of the crystal structure of YhcH from Haemophilus influenzae was undertaken as part of a structural genomics effort in order to assist with the functional assignment of the protein. The structure was determined at 2.2-A resolution by multiple-wavelength anomalous diffraction. The protein fold is a variation of the double-stranded beta-helix. Two antiparallel beta-sheets form a funnel opened at one side, where a putative active site contains a copper ion coordinated to the side chains of two histidine and two carboxylic acid residues. A comparison to other proteins with a similar fold and analysis of the genomic context suggested that YhcH may be a sugar isomerase involved in processing of exogenous sialic acid.
Collapse
Affiliation(s)
- Alexey Teplyakov
- Center for Advanced Research in Biotechnology, University of Maryland Biotechnology Institute and National Institute of Standards and Technology, Rockville, Maryland, USA.
| | | | | | | | | |
Collapse
|
15
|
Exley RM, Shaw J, Mowe E, Sun YH, West NP, Williamson M, Botto M, Smith H, Tang CM. Available carbon source influences the resistance of Neisseria meningitidis against complement. ACTA ACUST UNITED AC 2005; 201:1637-45. [PMID: 15897277 PMCID: PMC2212924 DOI: 10.1084/jem.20041548] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Neisseria meningitidis is an important cause of septicaemia and meningitis. To cause disease, the bacterium must acquire essential nutrients for replication in the systemic circulation, while avoiding exclusion by host innate immunity. Here we show that the utilization of carbon sources by N. meningitidis determines its ability to withstand complement-mediated lysis, through the intimate relationship between metabolism and virulence in the bacterium. The gene encoding the lactate permease, lctP, was identified and disrupted. The lctP mutant had a reduced growth rate in cerebrospinal fluid compared with the wild type, and was attenuated during bloodstream infection through loss of resistance against complement-mediated killing. The link between lactate and complement was demonstrated by the restoration of virulence of the lctP mutant in complement (C3(-/-))-deficient animals. The underlying mechanism for attenuation is mediated through the sialic acid biosynthesis pathway, which is directly connected to central carbon metabolism. The findings highlight the intimate relationship between bacterial physiology and resistance to innate immune killing in the meningococcus.
Collapse
Affiliation(s)
- Rachel M Exley
- The Centre for Molecular Microbiology and Infection, Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Yu H, Yu H, Karpel R, Chen X. Chemoenzymatic synthesis of CMP-sialic acid derivatives by a one-pot two-enzyme system: comparison of substrate flexibility of three microbial CMP-sialic acid synthetases. Bioorg Med Chem 2005; 12:6427-35. [PMID: 15556760 DOI: 10.1016/j.bmc.2004.09.030] [Citation(s) in RCA: 181] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2004] [Accepted: 09/16/2004] [Indexed: 11/22/2022]
Abstract
Three C terminal His6-tagged recombinant microbial CMP-sialic acid synthetases [EC 2.7.7.43] cloned from Neisseria meningitidis group B, Streptococcus agalactiae serotype V, and Escherichia coli K1, respectively, were evaluated for their ability in the synthesis of CMP-sialic acid derivatives in a one-pot two-enzyme system. In this system, N-acetylmannosamine or mannose analogs were condensed with pyruvate, catalyzed by a recombinant sialic acid aldolase [EC 4.1.3.3] cloned from E. coli K12 to provide sialic acid analogs as substrates for the CMP-sialic acid synthetases. The substrate flexibility and the reaction efficiency of the three recombinant CMP-sialic acid synthetases were compared, first by qualitative screening using thin layer chromatography, and then by quantitative analysis using high performance liquid chromatography. The N. meningitidis synthetase was shown to have the highest expression level, the most flexible substrate specificity, and the highest catalytic efficiency among the three synthetases. Finally, eight sugar nucleotides, including cytidine 5'-monophosphate N-acetylneuraminic acid (CMP-Neu5Ac) and its derivatives with substitutions at carbon-5, carbon-8, or carbon-9 of Neu5Ac, were synthesized in a preparative (100-200 mg) scale from their 5- or 6-carbon sugar precursors using the N. meningitidis synthetase and the aldolase.
Collapse
Affiliation(s)
- Hai Yu
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
17
|
Gunawan J, Simard D, Gilbert M, Lovering AL, Wakarchuk WW, Tanner ME, Strynadka NCJ. Structural and Mechanistic Analysis of Sialic Acid Synthase NeuB from Neisseria meningitidis in Complex with Mn2+, Phosphoenolpyruvate, and N-Acetylmannosaminitol. J Biol Chem 2005; 280:3555-63. [PMID: 15516336 DOI: 10.1074/jbc.m411942200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Neisseria meningitidis and related bacterial pathogens, sialic acids play critical roles in mammalian cell immunity evasion and are synthesized by a conserved enzymatic pathway that includes sialic acid synthase (NeuB, SiaC, or SynC). NeuB catalyzes the condensation of phosphoenolpyruvate (PEP) and N-acetylmannosamine, directly forming N-acetylneuraminic acid (or sialic acid). In this paper we report the development of a coupled assay to monitor NeuB reaction kinetics and an 18O-labeling study that demonstrates the synthase operates via a C-O bond cleavage mechanism. We also report the first structure of a sialic acid synthase, that of NeuB, revealing a unique domain-swapped homodimer architecture consisting of a (beta/alpha)8 barrel (TIM barrel)-type fold at the N-terminal end and a domain with high sequence identity and structural similarity to the ice binding type III antifreeze proteins at the C-terminal end of the enzyme. We have determined the structures of NeuB in the malate-bound form and with bound PEP and the substrate analog N-acetylmannosaminitol to 1.9 and 2.2 A resolution, respectively. Typical of other TIM barrel proteins, the active site of NeuB is located in a cavity at the C-terminal end of the barrel; however, the positioning of the swapped antifreeze-like domain from the adjacent monomer provides key residues for hydrogen bonding with substrates in the active site of NeuB, a structural feature that leads to distinct modes of substrate binding from other PEP-utilizing enzymes that lack an analogous antifreeze-like domain. Our observation of a direct interaction between a highly ordered manganese and the N-acetylmannosaminitol in the NeuB active site also suggests an essential role for the ion as an electrophilic catalyst that activates the N-acetylmannosamine carbonyl to the addition of PEP.
Collapse
Affiliation(s)
- Jason Gunawan
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3
| | | | | | | | | | | | | |
Collapse
|
18
|
Murkin AS, Chou WK, Wakarchuk WW, Tanner ME. Identification and Mechanism of a Bacterial Hydrolyzing UDP-N-Acetylglucosamine 2-Epimerase†. Biochemistry 2004; 43:14290-8. [PMID: 15518580 DOI: 10.1021/bi048606d] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This paper reports the first identification of a fully functional hydrolyzing UDP-N-acetylglucosamine 2-epimerase from a bacterial source. The epimerase (known as SiaA or NeuC) from Neisseria meningitidis MC58 group B is shown to catalyze the conversion of UDP-GlcNAc into ManNAc and UDP in the first step of sialic acid (N-acetylneuraminic acid) biosynthesis. The mechanism is proposed to involve an anti elimination of UDP to form 2-acetamidoglucal as an intermediate, followed by the syn addition of water. The observation that the alpha-anomer of ManNAc is the true product and that solvent deuterium is incorporated at C-2 is consistent with this mechanism. The use of the (18)O-labeled substrate confirms that the overall hydrolysis reaction proceeds via cleavage of the C-O bond. Furthermore, the putative intermediate 2-acetamidoglucal is shown to serve as a catalytically competent substrate and is enzymatically hydrated to give ManNAc exclusively. Isotope effect studies show that cleavage of the C-H bond is not rate limiting during catalysis. Mutagenesis studies show that three active site carboxylate residues are crucial for catalysis. In two of the mutants that were studied (E122Q and D131N), 2-acetamidoglucal was released from the active site during catalysis, providing direct evidence that the enzyme is capable of catalyzing the anti elimination of UDP from UDP-GlcNAc.
Collapse
Affiliation(s)
- Andrew S Murkin
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
| | | | | | | |
Collapse
|
19
|
Tyler S, Tsang R. Genetic analysis of Canadian isolates of C:2a:P1.2,5 and B:2a:P1.2,5Neisseria meningitidisstrains belonging to the hypervirulent clone of ET-15. Can J Microbiol 2004; 50:433-43. [PMID: 15284889 DOI: 10.1139/w04-024] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Isolates of the hypervirulent Neisseria meningitidis clone ET-15 found to express the serogroup B antigen were investigated and compared with representative members of serogroup B and C isolates. Clonal-clustering methods clearly grouped the B:ET15 isolates with C:ET15 isolates, indicating the only major difference between the two groups was in the capsule expressed. The organization of the cps operon from the B:ET15 isolates was found to be consistent with typical serogroup B isolates and differed from serogroup C isolates only in the sialyl transferase gene present. This suggests that these strains arose via recombination of the sialyl transferase gene. Specific points of recombination could not be identified, however, the majority (64%) of the B:ET15 isolates contained a copy of pseudo-IS1106 downstream of the cps operon indicating the potential for a common ancestral origin. The combination of pulsed-field gel electrophoresis (PFGE) and sequence analysis of targeted regions of the cps operon permitted the differentiation of most B:ET15 isolates indicating that they likely arose from separate genetic events and do not represent the emergence and spread of a new clone. However, two isolates that appeared identical by all methods employed were temporally and geographically related although no epidemiological evidence is available indicating a link between these strains.Key words: Neisseria meningitidis, ET-15, cps operon, capsule switching, IS element.
Collapse
Affiliation(s)
- Shaun Tyler
- Canadian Science Centre for Human and Animal Health, Winnipeg, Canada.
| | | |
Collapse
|
20
|
Karwaski MF, Wakarchuk WW, Gilbert M. High-level expression of recombinant Neisseria CMP-sialic acid synthetase in Escherichia coli. Protein Expr Purif 2002; 25:237-40. [PMID: 12135555 DOI: 10.1016/s1046-5928(02)00004-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The CMP-sialic acid synthetase (CMP-Neu5Ac, synthetase) is responsible for the synthesis of CMP-Neu5Ac, which is the donor used by sialyltransferases to attach sialic acid to acceptor hydroxyl groups in various polysaccharides, glycolipids, and glycoproteins. Since CMP-Neu5Ac is unstable and relatively expensive, the CMP-Neu5Ac synthetase is valuable for the preparative enzymatic synthesis of sialylated oligosaccharides. We made a construct to over-express the Neisseria meningitidis CMP-Neu5Ac synthetase in Escherichia coli. The recombinant enzyme was expressed at very high level (over 70,000 U/L) in a soluble form. It was purified by a sequence of anion-exchange chromatography and gel filtration with an overall yield of 23% (specific activity 220 U/mg). The purified CMP-Neu5Ac synthetase was used in the gram-scale synthesis of CMP-Neu5Ac.
Collapse
Affiliation(s)
- Marie-France Karwaski
- Institute for Biological Sciences, National Research Council of Canada, 100 Sussex Drive, Ottawa, Ont., Canada K1A 0R6
| | | | | |
Collapse
|
21
|
Angata T, Varki A. Chemical diversity in the sialic acids and related alpha-keto acids: an evolutionary perspective. Chem Rev 2002; 102:439-69. [PMID: 11841250 DOI: 10.1021/cr000407m] [Citation(s) in RCA: 954] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Takashi Angata
- Glycobiology Research and Training Center, Department of Medicine, University of California-San Diego, La Jolla, California 92093-0687, USA
| | | |
Collapse
|
22
|
Bravo IG, Barrallo S, Ferrero MA, Rodríguez-Aparicio LB, Martínez-Blanco H, Reglero A. Kinetic properties of the acylneuraminate cytidylyltransferase from Pasteurella haemolytica A2. Biochem J 2001; 358:585-98. [PMID: 11577688 PMCID: PMC1222114 DOI: 10.1042/bj3580585] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Neuroinvasive and septicaemia-causing pathogens often display a polysialic acid capsule that is involved in invasive behaviour. N-Acetylneuraminic acid (NeuAc) is the basic monomer of polysialic acid. The activated form, CMP-Neu5Ac, is synthesized by the acylneuraminate cytidylyltransferase (ACT; EC 2.7.7.43). We have purified this enzyme from Pasteurella haemolytica A2 to apparent homogeneity (522-fold). The protein behaved homogeneously on SDS/PAGE as a 43 kDa band, a size similar to that of Escherichia coli, calf, mouse and rat. Specific activity in crude lysate displayed one of the highest values cited in the literature (153 m-units/mg). We have studied the steady-state kinetic mechanism of the enzyme by using normalized plot premises. The catalysis proceeds through a Ping Pong Bi Bi mechanism, with CTP as the first substrate and CMP-NeuAc as the last product. The true Km values were 1.77 mM for CTP and 1.82 mM for NeuAc. The nucleotides CDP, UTP, UDP and TTP, and the modified sialic acid N-glycolylneuraminic acid were also substrates of the ACT activity. The enzyme is inhibited by cytidine nucleotides through binding to a second cytidyl-binding site. This inhibition is greater with nucleotides that display a long phosphate tail, and the genuine inhibitor is the substrate CTP. At physiological concentrations, ATP is an activator, and AMP an inhibitor, of the ACT activity. The activated sugar UDP-N-acetylglucosamine acts as an inhibitor, thus suggesting cross-regulation of the peptidoglycan and polysialic acid pathways. Our findings provide new mechanistic insights into the nature of sialic acid activation and suggest new targets for the approach to the pathogenesis of encapsulated bacteria.
Collapse
Affiliation(s)
- I G Bravo
- Departamento de Bioquímica y Biología Molecular, Universidad de León, Campus Vegazana, Spain
| | | | | | | | | | | |
Collapse
|
23
|
Nakata D, Close BE, Colley KJ, Matsuda T, Kitajima K. Molecular cloning and expression of the mouse N-acetylneuraminic acid 9-phosphate synthase which does not have deaminoneuraminic acid (KDN) 9-phosphate synthase activity. Biochem Biophys Res Commun 2000; 273:642-8. [PMID: 10873658 DOI: 10.1006/bbrc.2000.2983] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A cDNA of the mouse homologue of Escherichia coli N-acetylneuraminic acid (Neu5Ac) synthase (neuB gene product) was cloned by the PCR-based method. The mouse homologue consists of 359 amino acids, and the cDNA sequence displays 33% identity to that of the E. coli Neu5Ac synthase. The recombinant mouse homologue which is transiently expressed in HeLa cells does not exhibit the Neu5Ac synthase activity, which catalyzes condensation of phosphoenolpyruvate (PEP) and N-acetylmannosamine (ManNAc) to synthesize Neu5Ac, but the Neu5Ac 9-phosphate (Neu5Ac-9-P) synthase activity, which catalyzes condensation of PEP and ManNAc 6-phosphate (ManNAc-6-P) to synthesize Neu5Ac-9-P. Thus, the mouse homologue of E. coli Neu5Ac synthase is the Neu5Ac-9-P synthase. The Neu5Ac-9-P synthase is a cytosolic enzyme and ubiquitously distributed in mouse various tissues. Notably, the Neu5Ac-9-P synthase can not catalyze the synthesis of deaminoneuraminic acid (KDN) or KDN-9-P from PEP and Man or ManNAc-6-P, thus suggesting that the enzyme is not involved in the synthesis of KDN. This is consistent with the previous observation that only a very low activity to synthesize KDN is found in mouse B16 cells [Angata, T., et al. (1999) Biochem. Biophys. Res. Commun. 261, 326-331].
Collapse
Affiliation(s)
- D Nakata
- Department of Applied Molecular Biosciences, Nagoya University, Nagoya, 464-8601, Japan
| | | | | | | | | |
Collapse
|
24
|
Linton D, Karlyshev AV, Hitchen PG, Morris HR, Dell A, Gregson NA, Wren BW. Multiple N-acetyl neuraminic acid synthetase (neuB) genes in Campylobacter jejuni: identification and characterization of the gene involved in sialylation of lipo-oligosaccharide. Mol Microbiol 2000; 35:1120-34. [PMID: 10712693 DOI: 10.1046/j.1365-2958.2000.01780.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
N-acetyl neuraminic acid (NANA) is a common constituent of Campylobacter jejuni lipo-oligosaccharide (LOS). Such structures often mimic human gangliosides and are thought to be involved in the triggering of Guillain-Barré syndrome (GBS) and Miller-Fisher syndrome (MFS) following C. jejuni infection. Analysis of the C. jejuni NCTC 11168 genome sequence identified three putative NANA synthetase genes termed neuB1, neuB2 and neuB3. The NANA synthetase activity of all three C. jejuni neuB gene products was confirmed by complementation experiments in an Escherichia coli neuB-deficient strain. Isogenic mutants were created in all three neuB genes, and for one such mutant (neuB1) LOS was shown to have increased mobility. C. jejuni NCTC 11168 wild-type LOS bound cholera toxin, indicating the presence of NANA in a LOS structure mimicking the ganglioside GM1. This property was lost in the neuB1 mutant. Gas chromatography-mass spectrometry and fast atom bombardment-mass spectrometry analysis of LOS from wild-type and the neuB1 mutant strain demonstrated the lack of NANA in the latter. Expression of the neuB1 gene in E. coli confirmed that NeuB1 was capable of in vitro NANA biosynthesis through condensation of N-acetyl-D-mannosamine and phosphoenolpyruvate. Southern analysis demonstrated that the neuB1 gene was confined to strains of C. jejuni with LOS containing a single NANA residue. Mutagenesis of neuB2 and neuB3 did not affect LOS, but neuB3 mutants were aflagellate and non-motile. No phenotype was evident for neuB2 mutants in strain NCTC 11168, but for strain G1 the flagellin protein from the neuB2 mutant showed an apparent reduction in molecular size relative to the wild type. Thus, the neuB genes of C. jejuni appear to be involved in the biosynthesis of at least two distinct surface structures: LOS and flagella.
Collapse
Affiliation(s)
- D Linton
- Department of Neurology, United Medical and Dental School, Guy's Hospital, London SE1 9RT, UK
| | | | | | | | | | | | | |
Collapse
|
25
|
Stoughton DM, Zapata G, Picone R, Vann WF. Identification of Arg-12 in the active site of Escherichia coli K1 CMP-sialic acid synthetase. Biochem J 1999; 343 Pt 2:397-402. [PMID: 10510306 PMCID: PMC1220567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Escherichia coli K1 CMP-sialic acid synthetase catalyses the synthesis of CMP-sialic acid from CTP and sialic acid. The active site of the 418 amino acid E. coli enzyme was localized to its N-terminal half. The bacterial CMP-sialic acid synthetase enzymes have a conserved motif, IAIIPARXXSKGLXXKN, at their N-termini. Several basic residues have been identified at or near the active site of the E. coli enzyme by chemical modification and site-directed mutagenesis. Only one of the lysines in the N-terminal motif, Lys-21, appears to be essential for activity. Mutation of Lys-21 in the N-terminal motif results in an inactive enzyme. Furthermore, Arg-12 of the N-terminal motif appears to be an active-site residue, based on the following evidence. Substituting Arg-12 with glycine or alanine resulted in inactive enzymes, indicating that this residue is required for enzymic activity. The Arg-12-->Lys mutant was partially active, demonstrating that a positive charge is required at this site. Steady-state kinetic analysis reveals changes in k(cat), K(m) and K(s) for CTP, which implicates Arg-12 in catalysis and substrate binding.
Collapse
Affiliation(s)
- D M Stoughton
- Laboratory of Bacterial Toxins, Division of Bacterial Products, OVRR, CBER, FDA, 8800 Rockville Pike, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
26
|
Yamamoto S, Miyake K, Koike Y, Watanabe M, Machida Y, Ohta M, Iijima S. Molecular characterization of type-specific capsular polysaccharide biosynthesis genes of Streptococcus agalactiae type Ia. J Bacteriol 1999; 181:5176-84. [PMID: 10464185 PMCID: PMC94020 DOI: 10.1128/jb.181.17.5176-5184.1999] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The type-specific capsular polysaccharide (CP) of a group B streptococcus, Streptococcus agalactiae type Ia, is a high-molecular-weight polymer consisting of the pentasaccharide repeating unit 4)-[alpha-D-NeupNAc-(2-->3)-beta-D-Galp-(1-->4)-beta-D-GlcpNAc-(1- ->3 )]-beta-D-Galp-(1-->4)-beta-D-Glcp-(1. Here, cloning, sequencing, and transcription of the type Ia-specific capsular polysaccharide synthesis (cps) genes and functional analysis of these gene products are described. A 26-kb DNA fragment containing 18 complete open reading frames (ORFs) was cloned. These ORFs were designated cpsIaA to cpsIaL, neu (neuraminic acid synthesis gene) A to D, orf1 and ung (uracil DNA glycosylase). The cps gene products of S. agalactiae type Ia were homologous to proteins involved in CP synthesis of S. agalactiae type III and S. pneumoniae serotype 14. Unlike the cps gene cluster of S. pneumoniae serotype 14, transcription of this operon may start from cpsIaA, cpsIaE, and orf1 because putative promoter sequences were found in front of these genes. Northern hybridization, reverse transcription-PCR, and primer extension analyses supported this hypothesis. DNA sequence analysis showed that there were two transcriptional terminators in the 3' end of this operon (downstream of orf1 and ung). The functions of CpsIaE, CpsIaG, CpsIaI, and CpsIaJ were examined by glycosyltransferase assay by using the gene products expressed in Escherichia coli JM109 harboring plasmids containing various S. agalactiae type Ia cps gene fragments. Enzyme assays suggested that the gene products of cpsIaE, cpsIaG, cpsIaI, and cpsIaJ are putative glucosyltransferase, beta-1, 4-galactosyltransferase, beta-1,3-N-acetylglucosaminyltransferase, and beta-1,4-galactosyltransferase, respectively.
Collapse
Affiliation(s)
- S Yamamoto
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | | | | | | | | | | | | |
Collapse
|
27
|
Kahler CM, Stephens DS. Genetic basis for biosynthesis, structure, and function of meningococcal lipooligosaccharide (endotoxin). Crit Rev Microbiol 1999; 24:281-334. [PMID: 9887366 DOI: 10.1080/10408419891294216] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The exclusive human pathogen Neisseria meningitidis expresses lipooligosaccharide (LOS), an endotoxin that is structurally distinct from the lipopolysaccharides (LPS) of enteric Gram-negative bacilli. Differences that appear to be biologically important occur in the composition and attachment of acyl chains to lipid A, phosphorylation patterns of lipid A, and the incorporation and phosphorylation of sugar residues in the LOS inner core. Further, unlike most enteric LPS, only two to five sugar residues are attached to the meningococcal LOS inner core, and there are no multiple repeating units of O-antigens. In contrast to Escherichia coli, where the LPS biosynthesis genes are organized as large operons, the meningococcal LOS biosynthesis genes are organized into small operons or are located individually in the chromosome. Some of these genetic loci in meningococci and gonococci display polymorphisms caused by localized chromosomal rearrangements. One mechanism of antigenic variation of meningococci LOS is the regulation of glycosyltransferase activity by slipped strand mispairing of homopolymeric tracts within the 5' end of the genes encoding these enzymes, resulting in the addition of different sugar residues to the LOS molecule. Meningococcal LOS is a critical virulence factor in N. meningitidis infections and is involved in many aspects of pathogenesis, including the colonization of the human nasopharynx, survival after bloodstream invasion, and the inflammation associated with the morbidity and mortality of meningococcemia and meningitis. Meningococcal LOS, which is a component of serogroup B meningococcal vaccines currently in clinical trials, has been proposed as a candidate for a new generation of meningococcal vaccines. The rapidly expanding knowledge of the genetic basis for biosynthesis, structure, and regulation of meningococcal LOS provides insights into unique endotoxin structures and the precise role of LOS in the pathogenesis of meningococcal disease.
Collapse
Affiliation(s)
- C M Kahler
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30303, USA
| | | |
Collapse
|
28
|
Swartley JS, Marfin AA, Edupuganti S, Liu LJ, Cieslak P, Perkins B, Wenger JD, Stephens DS. Capsule switching of Neisseria meningitidis. Proc Natl Acad Sci U S A 1997; 94:271-6. [PMID: 8990198 PMCID: PMC19312 DOI: 10.1073/pnas.94.1.271] [Citation(s) in RCA: 286] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The different sialic acid (serogroups B, C, Y, and W-135) and nonsialic acid (serogroup A) capsular polysaccharides expressed by Neisseria meningitidis are major virulence factors and are used as epidemiologic markers and vaccine targets. However, the identification of meningococcal isolates with similar genetic markers but expressing different capsular polysaccharides suggests that meningococcal clones can switch the type of capsule they express. We identified, except for capsule, isogenic serogroups B [(alpha2-->8)-linked polysialic acid] and C [(alpha2-->9)-linked polysialic acid] meningococcal isolates from an outbreak of meningococcal disease in the U. S. Pacific Northwest. We used these isolates and prototype serogroup A, B, C, Y, and W-135 strains to define the capsular biosynthetic and transport operons of the major meningococcal serogroups and to show that switching from the B to C capsule in the outbreak strain was the result of allelic exchange of the polysialyltransferase. Capsule switching was probably the result of transformation and horizontal DNA exchange in vivo of a serogroup C capsule biosynthetic operon. These findings indicate that closely related virulent meningococcal clones may not be recognized by traditional serogroup-based surveillance and can escape vaccine-induced or natural protective immunity by capsule switching. Capsule switching may be an important virulence mechanism of meningococci and other encapsulated bacterial pathogens. As vaccine development progresses and broader immunization with capsular polysaccharide conjugate vaccines becomes a reality, the ability to switch capsular types may have important implications for the impact of these vaccines.
Collapse
Affiliation(s)
- J S Swartley
- Department of Medicine, Emory University School of Medicine, Atlanta, GA 30303, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Schauer R, Kamerling JP. Chemistry, biochemistry and biology of sialic acids ☆. NEW COMPREHENSIVE BIOCHEMISTRY 1997; 29. [PMCID: PMC7147860 DOI: 10.1016/s0167-7306(08)60624-9] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Roland Schauer
- Biochemisches Institut, Christian-Albrechls-Universität zu Kiel, Germany
| | - Johannis P. Kamerling
- Bijuoet Center, Department of Bio-Organic Chemistry, Utrecht University, The Netherlands
| |
Collapse
|
30
|
Moran AP, Prendergast MM, Appelmelk BJ. Molecular mimicry of host structures by bacterial lipopolysaccharides and its contribution to disease. FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 1996; 16:105-15. [PMID: 8988391 DOI: 10.1111/j.1574-695x.1996.tb00127.x] [Citation(s) in RCA: 187] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The core oligosaccharides of low-molecular-weight lipopolysaccharide (LPS), also termed lipooligosaccharide (LOS), of pathogenic Neisseria spp. mimic the carbohydrate moieties of glycosphingolipids present on human cells. Such mimicry may serve to camouflage the bacterial surface from the host. The LOS component is antigenically and/or chemically identical to lactoneoseries glycosphingolipids and can become sialylated in Neisseria gonorrhoeae when the bacterium is grown in the presence of cytidine 5'-monophospho-N-acetylneuraminic acid, the nucleotide sugar of sialic acid. Strains of Neisseria meningitidis and Haemophilus influenzae also express similarly sialylated LPS. Sialylation of the LOS influences susceptibility to bactericidal antibody, may decrease or prevent phagocytosis, cause down-regulation of complement activation, and decrease adherence to neutrophils and the subsequent oxidative burst response. The core oligosaccharides of LPS of Campylobacter jejuni serotypes which are associated with the development of the neurological disorder, Guillain-Barré syndrome (GBS), exhibit mimicry of gangliosides. Cross-reactive antibodies between C. jejuni LPS and gangliosides are considered to play an important role in GBS pathogenesis. In contrast, the O-chain of a number of Helicobacter pylori strains exhibit mimicry of Lewis(x) and Lewis(y) blood group antigens. The role of this mimicry remains to be investigated, but may play a role in bacterial camouflage, the induction of autoimmunity and immune suppression in H. pylori-associated disease.
Collapse
Affiliation(s)
- A P Moran
- Department of Microbiology, University College, Galway, Ireland.
| | | | | |
Collapse
|
31
|
Gilbert M, Watson DC, Cunningham AM, Jennings MP, Young NM, Wakarchuk WW. Cloning of the lipooligosaccharide alpha-2,3-sialyltransferase from the bacterial pathogens Neisseria meningitidis and Neisseria gonorrhoeae. J Biol Chem 1996; 271:28271-6. [PMID: 8910446 DOI: 10.1074/jbc.271.45.28271] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The genes encoding the alpha-2,3-sialyltransferases involved in lipooligosaccharide biosynthesis from Neisseria meningitidis and Neisseria gonorrhoeae have been cloned and expressed in Escherichia coli. A high sensitivity enzyme assay using a synthetic fluorescent glycosyltransferase acceptor and capillary electrophoresis was used to screen a genomic library of N. meningitidis MC58 L3 in a "divide and conquer" strategy. The gene, denoted lst, was found on a 2. 0-kilobase fragment of DNA, and its sequence was determined and then used to design probes to amplify and subsequently clone the corresponding lst genes from N. meningitidis 406Y L3, N. meningitidis M982B L7, and N. gonorrhoeae F62. Functional sialyltransferase was produced from the genes derived from both L3 N. meningitidis strains and the N. gonorrhoeae F62. However, the N. meningitidis M982B L7 gene contained a frameshift mutation that renders it inactive. The expression of the lst gene was easily detected using the enzyme assay, and the protein expression could be detected when an immunodetection tag was added to the COOH-terminal end of the protein. Using the synthetic acceptor N-acetyllactosamine-aminophenyl-(6-(5-(fluorescein-carboxamido)-hexan oic acid amide), the alpha-2,3 specificity of the enzyme was confirmed by NMR examination of the reaction product. The enzyme could also use synthetic acceptors with lactose or galactose as the saccharide portion. This study is the first example of the cloning, expression, and examination of alpha-2,3-sialyltransferase activity from a bacterial source.
Collapse
Affiliation(s)
- M Gilbert
- Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario K1A 0R6, Canada.
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
Bacterial polysaccharides are usually associated with the outer surface of the bacterium. They can form an amorphous layer of extracellular polysaccharide (EPS) surrounding the cell that may be further organized into a distinct structure termed a capsule. Additional polysaccharide molecules such as lipopolysaccharide (LPS) or lipooligosaccharide (LOS) may also decorate the cell surface. Polysaccharide capsules may mediate a number of biological processes, including invasive infections of human beings. Discussed here are the genetics and biochemistry of selected bacterial capsular polysaccharides and the basis of capsule diversity but not the genetics and biochemistry of LPS biosynthesis (for reviews see 100, 140).
Collapse
Affiliation(s)
- I S Roberts
- School of Biological Siences, University of Manchester, United Kingdom
| |
Collapse
|
33
|
Swartley JS, Ahn JH, Liu LJ, Kahler CM, Stephens DS. Expression of sialic acid and polysialic acid in serogroup B Neisseria meningitidis: divergent transcription of biosynthesis and transport operons through a common promoter region. J Bacteriol 1996; 178:4052-9. [PMID: 8763931 PMCID: PMC178160 DOI: 10.1128/jb.178.14.4052-4059.1996] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We studied capsule-defective (Cap-) serogroup B meningococcal mutants created through Tn916 or omega-fragment mutagenesis. The Cap- phenotypes were the results of insertions in three of four linked genes (synX, synC, and synD) involved in CMP-N-acetylneuraminic acid and polysialic acid capsule biosynthesis, and in ctrA the first of four linked genes involved in capsule membrane transport. Mutations in the CMP-N-acetylneuraminic acid biosynthesis genes synX and synC caused defects in lipooligosaccharide sialylation but not mutations in the putative (alpha2 -> 8)-linked polysialyltransferase (synD) or in ctrA. Reverse transcriptase PCR studies indicated that the four biosynthesis genes (synX to -D) and the capsule transport genes (ctr to -D) were separately transcribed as operons. The operons were separated by a 134-bp intergenic region. Primer extension of synX and ctrA demonstrated that transcription of the operons was divergently initiated from adjacent start sites present in the intergenic region. Both transcriptional start sites were preceded by a perfect -10 Pribnow promoter binding region. The synX to -D, but not the ctrA to -D, transcriptional start site was preceded by a sequence bearing strong homology to the consensus sigma 70 -35 promoter binding sequence. Both promoters showed transcriptional activity when cloned behind a lacZ reporter gene in Escherichia coli. Our results confirm the intrinsic relationship between polysialic acid capsule biosynthesis and lipooligosaccharide sialylation pathways in group B Neisseria meningitidis. Our study also suggests that the intergenic region separating the synX to -D and ctrA to -D operons is an important control point for the regulation of group B capsule expression through coordinated transcriptional regulation of the synX to -D and drA to -D promoters.
Collapse
Affiliation(s)
- J S Swartley
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30303, USA
| | | | | | | | | |
Collapse
|
34
|
Tullius MV, Munson RS, Wang J, Gibson BW. Purification, cloning, and expression of a cytidine 5'-monophosphate N-acetylneuraminic acid synthetase from Haemophilus ducreyi. J Biol Chem 1996; 271:15373-80. [PMID: 8663048 DOI: 10.1074/jbc.271.26.15373] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
An N-acetylneuraminic acid cytidylyltransferase (EC 2.7.7.43) (CMP-NeuAc synthetase) was isolated from a Haemophilus ducreyi strain 35000 cell lysate and partially characterized. The enzyme catalyzes the reaction of CTP and NeuAc to form CMP-NeuAc, which is the nucleotide sugar donor used by sialyltransferases. Previous studies have shown that the outer membrane lipooligosaccharides of H. ducreyi contain terminal sialic acid attached to N-acetyllactosamine and that this modification is likely important to its pathogenesis. Therefore, to investigate the role of sialic acid in H. ducreyi pathogenesis, the gene encoding the CMP-NeuAc synthetase was cloned using degenerate oligonucleotide probes derived from NH2-terminal sequence data, and the nucleotide sequence was determined. The derived amino acid sequence of the CMP-NeuAc synthetase gene has homology to other CMP-NeuAc synthetases and to a lesser extent to CMP-2-keto-3-deoxy-D-manno-octulosonic acid synthetases. The gene was cloned into a T7 expression vector, the protein expressed in Escherichia coli, and purified to apparent homogeneity by anion exchange, Green 19 dye, and hydrophobic interaction chromatography. The final step yielded 20 mg of pure protein/liter of culture. The protein has a predicted molecular mass of 25440.6 Da, which was confirmed by electrospray mass spectrometry (Mexpt = 25439.9 +/- 1.4 Da). The enzyme appears to exist as a dimer by size exclusion chromatography. In contrast to other bacterial CMP-NeuAc synthetases, the H. ducreyi enzyme exhibited a different substrate specificity, being capable of also using N-glycolylneuraminic acid as a substrate.
Collapse
Affiliation(s)
- M V Tullius
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143-0446, USA
| | | | | | | |
Collapse
|
35
|
|
36
|
Vimr E, Steenbergen S, Cieslewicz M. Biosynthesis of the polysialic acid capsule in Escherichia coli K1. JOURNAL OF INDUSTRIAL MICROBIOLOGY 1995; 15:352-60. [PMID: 8605072 DOI: 10.1007/bf01569991] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The extracellular polysaccharides elaborated by most or all bacterial species function in cell-to-cell and cell-substratum adhesion, cell signaling, and avoidance or inhibition of noxious agents in animal hosts or free-living environments. Recent advances in our understanding of exopolysaccharide synthesis have been facilitated by comparative approaches in both plant and animal pathogens, as well as in microorganisms of industrial importance. One of the best understood of these systems is the kps locus for polysialic acid synthesis in Escherichia coli K1. The genes for sialic acid synthesis, activation, polymerization and translocation have been identified and assigned at least tentative functions in the synthetic and export pathways. Initial studies of kps thermoregulation suggest that genetic control mechanisms will be involved which are distinct from those already described for several other exopolysaccharides. Information about the common as well as unique features of polysialic acid biosynthesis will increase our knowledge of microbial cell surfaces which in turn may suggest novel targets for therapeutic or industrial interventions.
Collapse
Affiliation(s)
- E Vimr
- Department of Veterinary Pathobiology, University of Illinois at Urbana-Champaign 61801, USA
| | | | | |
Collapse
|
37
|
Annunziato PW, Wright LF, Vann WF, Silver RP. Nucleotide sequence and genetic analysis of the neuD and neuB genes in region 2 of the polysialic acid gene cluster of Escherichia coli K1. J Bacteriol 1995; 177:312-9. [PMID: 7814319 PMCID: PMC176593 DOI: 10.1128/jb.177.2.312-319.1995] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The K1 capsular polysaccharide, a polymer of sialic acid, is an important virulence determinant of extraintestinal pathogenic Escherichia coli. The genes responsible for the synthesis and expression of the polysialic acid capsule of E. coli K1 are located on the 17-kb kps gene cluster, which is functionally divided into three regions. Central region 2 encodes proteins necessary for the synthesis, activation, and polymerization of sialic acid, while flanking regions 1 and 3 are involved in polymer transport to the cell surface. In this study, we identified two genes at the proximal end of region 2, neuD and neuB, which encode proteins with predicted sizes of 22.7 and 38.7 kDa, respectively. Several observations suggest that the neuB gene encodes sialic acid synthase. EV24, a neuB chromosomal mutant that expresses a capsule when provided exogenous sialic acid, could be complemented in trans by the cloned neuB gene. In addition, NeuB has significant sequence similarity to the product of the cpsB gene of Neisseria meningitidis group B, which is postulated to encode sialic acid synthase. We also present data indicating that neuD has an essential role in K1 polymer production. Cells harboring pSR426, which contains all of region 2 but lacks region 1 and 3 genes, produce an intracellular polymer. In contrast, no polymer accumulated in cells carrying a derivative of pSR426 lacking a functional neuD gene. Unlike strains with mutations in neuB, however, neuD mutants are not complemented by exogenous sialic acid, suggesting that NeuD is not involved in sialic acid synthesis. Additionally, cells harboring a mutation in neuD accumulated sialic acid and CMP-sialic acid. We also found no significant differences between the endogenous and exogenous sialyltransferase activities of a neuD mutant and the wild-type organism. NeuD shows significant similarity to a family of bacterial acetyltransferases, leading to the theory that NeuD is an acetyltransferase which may exert its influences through modification of other region 2 proteins.
Collapse
Affiliation(s)
- P W Annunziato
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, New York 14642
| | | | | | | |
Collapse
|