1
|
Shahi G, Kumar M, Khandelwal NK, Banerjee A, Sarkar P, Kumari S, Esquivel BD, Chauhan N, Chattopadhyay A, White TC, Gaur NA, Singh A, Prasad R. Inositol Phosphoryl Transferase, Ipt1, Is a Critical Determinant of Azole Resistance and Virulence Phenotypes in Candida glabrata. J Fungi (Basel) 2022; 8:jof8070651. [PMID: 35887407 PMCID: PMC9322651 DOI: 10.3390/jof8070651] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 12/10/2022] Open
Abstract
In this study, we have specifically blocked a key step of sphingolipid (SL) biosynthesis in Candida glabrata by disruption of the orthologs of ScIpt1 and ScSkn1. Based on their close homology with S. cerevisiae counterparts, the proteins are predicted to catalyze the addition of a phosphorylinositol group onto mannosyl inositolphosphoryl ceramide (MIPC) to form mannosyl diinositolphosphoryl ceramide (M(IP)2C), which accounts for the majority of complex SL structures in S. cerevisiae membranes. High throughput lipidome analysis confirmed the accumulation of MIPC structures in ΔCgipt1 and ΔCgskn1 cells, albeit to lesser extent in the latter. Noticeably, ΔCgipt1 cells showed an increased susceptibility to azoles; however, ΔCgskn1 cells showed no significant changes in the drug susceptibility profiles. Interestingly, the azole susceptible phenotype of ΔCgipt1 cells seems to be independent of the ergosterol content. ΔCgipt1 cells displayed altered lipid homeostasis, increased membrane fluidity as well as high diffusion of radiolabeled fluconazole (3H-FLC), which could together influence the azole susceptibility of C. glabrata. Furthermore, in vivo experiments also confirmed compromised virulence of the ΔCgipt1 strain. Contrarily, specific functions of CgSkn1 remain unclear.
Collapse
Affiliation(s)
- Garima Shahi
- Amity Institute of Biotechnology and Integrative Science and Health, Amity University Gurgaon, Gurgaon 122412, India; (G.S.); (M.K.); (A.B.)
| | - Mohit Kumar
- Amity Institute of Biotechnology and Integrative Science and Health, Amity University Gurgaon, Gurgaon 122412, India; (G.S.); (M.K.); (A.B.)
- Yeast Biofuel Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India; (S.K.); (N.A.G.)
| | | | - Atanu Banerjee
- Amity Institute of Biotechnology and Integrative Science and Health, Amity University Gurgaon, Gurgaon 122412, India; (G.S.); (M.K.); (A.B.)
| | - Parijat Sarkar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India; (P.S.); (A.C.)
| | - Sonam Kumari
- Yeast Biofuel Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India; (S.K.); (N.A.G.)
| | - Brooke D. Esquivel
- School of Biological and Chemical Sciences, University of Missouri at Kansas City, Kansas City, MO 64110, USA; (B.D.E.); (T.C.W.)
| | - Neeraj Chauhan
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA;
| | - Amitabha Chattopadhyay
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India; (P.S.); (A.C.)
| | - Theodore C. White
- School of Biological and Chemical Sciences, University of Missouri at Kansas City, Kansas City, MO 64110, USA; (B.D.E.); (T.C.W.)
| | - Naseem A. Gaur
- Yeast Biofuel Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India; (S.K.); (N.A.G.)
| | - Ashutosh Singh
- Department of Biochemistry, University of Lucknow, Lucknow 226007, India
- Correspondence: (A.S.); (R.P.)
| | - Rajendra Prasad
- Amity Institute of Biotechnology and Integrative Science and Health, Amity University Gurgaon, Gurgaon 122412, India; (G.S.); (M.K.); (A.B.)
- Correspondence: (A.S.); (R.P.)
| |
Collapse
|
2
|
Erdbrügger P, Fröhlich F. The role of very long chain fatty acids in yeast physiology and human diseases. Biol Chem 2020; 402:25-38. [PMID: 33544487 DOI: 10.1515/hsz-2020-0234] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/02/2020] [Indexed: 12/16/2022]
Abstract
Fatty acids (FAs) are a highly diverse class of molecules that can have variable chain length, number of double bonds and hydroxylation sites. FAs with 22 or more carbon atoms are described as very long chain fatty acids (VLCFAs). VLCFAs are synthesized in the endoplasmic reticulum (ER) through a four-step elongation cycle by membrane embedded enzymes. VLCFAs are precursors for the synthesis of sphingolipids (SLs) and glycerophospholipids. Besides their role as lipid constituents, VLCFAs are also found as precursors of lipid mediators. Mis-regulation of VLCFA metabolism can result in a variety of inherited diseases ranging from ichthyosis, to myopathies and demyelination. The enzymes for VLCFA biosynthesis are evolutionary conserved and many of the pioneering studies were performed in the model organism Saccharomyces cerevisiae. A growing body of evidence suggests that VLCFA metabolism is intricately regulated to maintain lipid homeostasis. In this review we will describe the metabolism of VLCFAs, how they are synthesized, transported and degraded and how these processes are regulated, focusing on budding yeast. We will review how lipid metabolism and membrane properties are affected by VLCFAs and which impact mutations in the biosynthetic genes have on physiology. We will also briefly describe diseases caused by mis-regulation of VLCFAs in human cells.
Collapse
Affiliation(s)
- Pia Erdbrügger
- Department of Biology/Chemistry, Molecular Membrane Biology Group, University of Osnabrück, Osnabrück, Germany
| | - Florian Fröhlich
- Department of Biology/Chemistry, Molecular Membrane Biology Group, University of Osnabrück, Osnabrück, Germany.,Center of Cellular Nanoanalytics Osnabrück, Osnabrück, Germany
| |
Collapse
|
3
|
Single symbiotic cell transcriptome sequencing of coral. Genomics 2020; 112:5305-5312. [DOI: 10.1016/j.ygeno.2020.10.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/22/2020] [Accepted: 10/16/2020] [Indexed: 12/17/2022]
|
4
|
Tanaka Y, Ogawa T, Maruta T, Yoshida Y, Arakawa K, Ishikawa T. Glucan synthase-like 2 is indispensable for paramylon synthesis in Euglena gracilis. FEBS Lett 2017; 591:1360-1370. [PMID: 28423179 DOI: 10.1002/1873-3468.12659] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 03/27/2017] [Accepted: 04/13/2017] [Indexed: 11/07/2022]
Abstract
The phytoflagellate Euglena gracilis produces a large amount of paramylon (PM), a conglomerate of liner β-1,3-glucan chains, as a storage polysaccharide. PM is synthesized from uridine diphosphate-glucose, but its mechanism of formation is largely unknown. Two enzymes, glucan synthase-like (EgGSL) 1 and EgGSL2 were previously identified as candidates for PM synthesis in a Euglena transcriptome analysis. Here, we performed a reverse genetic analysis on these enzymes. Knockdown of EgGSL2, but not EgGSL1, significantly inhibits PM accumulation in Euglena cells. Additionally, β-1,3-glucan synthesis is detected in a PM-associated membrane fraction extracted from Euglena cells. Our findings indicate that EgGSL2 is the predominant enzyme for PM biosynthesis.
Collapse
Affiliation(s)
- Yuji Tanaka
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo, Japan
| | - Takahisa Ogawa
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo, Japan
| | - Takanori Maruta
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo, Japan
| | - Yuta Yoshida
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa, Japan
| | - Kazuharu Arakawa
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa, Japan
| | - Takahiro Ishikawa
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo, Japan
| |
Collapse
|
5
|
García R, Botet J, Rodríguez-Peña JM, Bermejo C, Ribas JC, Revuelta JL, Nombela C, Arroyo J. Genomic profiling of fungal cell wall-interfering compounds: identification of a common gene signature. BMC Genomics 2015; 16:683. [PMID: 26341223 PMCID: PMC4560923 DOI: 10.1186/s12864-015-1879-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 08/25/2015] [Indexed: 01/01/2023] Open
Abstract
Background The fungal cell wall forms a compact network whose integrity is essential for cell morphology and viability. Thus, fungal cells have evolved mechanisms to elicit adequate adaptive responses when cell wall integrity (CWI) is compromised. Functional genomic approaches provide a unique opportunity to globally characterize these adaptive mechanisms. To provide a global perspective on these CWI regulatory mechanisms, we developed chemical-genomic profiling of haploid mutant budding yeast cells to systematically identify in parallel those genes required to cope with stresses interfering the cell wall by different modes of action: β-1,3 glucanase and chitinase activities (zymolyase), inhibition of β-1,3 glucan synthase (caspofungin) and binding to chitin (Congo red). Results Measurement of the relative fitness of the whole collection of 4786 haploid budding yeast knock-out mutants identified 222 mutants hypersensitive to caspofungin, 154 mutants hypersensitive to zymolyase, and 446 mutants hypersensitive to Congo red. Functional profiling uncovered both common and specific requirements to cope with different cell wall damages. We identified a cluster of 43 genes highly important for the integrity of the cell wall as the common “signature of cell wall maintenance (CWM)”. This cluster was enriched in genes related to vesicular trafficking and transport, cell wall remodeling and morphogenesis, transcription and chromatin remodeling, signal transduction and RNA metabolism. Although the CWI pathway is the main MAPK pathway regulating cell wall integrity, the collaboration with other signal transduction pathways like the HOG pathway and the invasive growth pathway is also required to cope with the cell wall damage depending on the nature of the stress. Finally, 25 mutant strains showed enhanced caspofungin resistance, including 13 that had not been previously identified. Only three of them, wsc1Δ, elo2Δ and elo3Δ, showed a significant decrease in β-1,3-glucan synthase activity. Conclusions This work provides a global perspective about the mechanisms involved in cell wall stress adaptive responses and the cellular functions required for cell wall integrity. The results may be useful to uncover new potential antifungal targets and develop efficient antifungal strategies by combination of two drugs, one targeting the cell wall and the other interfering with the adaptive mechanisms. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1879-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Raúl García
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, IRYCIS, 28040, Madrid, Spain.
| | - Javier Botet
- Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain.
| | - José Manuel Rodríguez-Peña
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, IRYCIS, 28040, Madrid, Spain.
| | - Clara Bermejo
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, IRYCIS, 28040, Madrid, Spain.
| | - Juan Carlos Ribas
- Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain. .,Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC) / Universidad de Salamanca, 37007, Salamanca, Spain.
| | - José Luis Revuelta
- Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain.
| | - César Nombela
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, IRYCIS, 28040, Madrid, Spain.
| | - Javier Arroyo
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, IRYCIS, 28040, Madrid, Spain.
| |
Collapse
|
6
|
Montefusco DJ, Matmati N, Hannun YA. The yeast sphingolipid signaling landscape. Chem Phys Lipids 2014; 177:26-40. [PMID: 24220500 PMCID: PMC4211598 DOI: 10.1016/j.chemphyslip.2013.10.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 10/18/2013] [Accepted: 10/19/2013] [Indexed: 12/13/2022]
Abstract
Sphingolipids are recognized as signaling mediators in a growing number of pathways, and represent potential targets to address many diseases. The study of sphingolipid signaling in yeast has created a number of breakthroughs in the field, and has the potential to lead future advances. The aim of this article is to provide an inclusive view of two major frontiers in yeast sphingolipid signaling. In the first section, several key studies in the field of sphingolipidomics are consolidated to create a yeast sphingolipidome that ranks nearly all known sphingolipid species by their level in a resting yeast cell. The second section presents an overview of most known phenotypes identified for sphingolipid gene mutants, presented with the intention of illuminating not yet discovered connections outside and inside of the field.
Collapse
Affiliation(s)
- David J Montefusco
- Dept. Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, United States.
| | - Nabil Matmati
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, United States
| | - Yusuf A Hannun
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, United States.
| |
Collapse
|
7
|
Orlean P. Architecture and biosynthesis of the Saccharomyces cerevisiae cell wall. Genetics 2012; 192:775-818. [PMID: 23135325 PMCID: PMC3522159 DOI: 10.1534/genetics.112.144485] [Citation(s) in RCA: 303] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 08/06/2012] [Indexed: 01/02/2023] Open
Abstract
The wall gives a Saccharomyces cerevisiae cell its osmotic integrity; defines cell shape during budding growth, mating, sporulation, and pseudohypha formation; and presents adhesive glycoproteins to other yeast cells. The wall consists of β1,3- and β1,6-glucans, a small amount of chitin, and many different proteins that may bear N- and O-linked glycans and a glycolipid anchor. These components become cross-linked in various ways to form higher-order complexes. Wall composition and degree of cross-linking vary during growth and development and change in response to cell wall stress. This article reviews wall biogenesis in vegetative cells, covering the structure of wall components and how they are cross-linked; the biosynthesis of N- and O-linked glycans, glycosylphosphatidylinositol membrane anchors, β1,3- and β1,6-linked glucans, and chitin; the reactions that cross-link wall components; and the possible functions of enzymatic and nonenzymatic cell wall proteins.
Collapse
Affiliation(s)
- Peter Orlean
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| |
Collapse
|
8
|
Healey KR, Katiyar SK, Raj S, Edlind TD. CRS-MIS in Candida glabrata: sphingolipids modulate echinocandin-Fks interaction. Mol Microbiol 2012; 86:303-13. [PMID: 22909030 DOI: 10.1111/j.1365-2958.2012.08194.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2012] [Indexed: 12/23/2022]
Abstract
Infections with the azole-refractory yeast Candida glabrata are now commonly treated with the echinocandins caspofungin (CSF) or micafungin (MCF). True resistance (> 32-fold decreased susceptibility) to these lipopeptide inhibitors of cell wall synthesis is rare and strictly associated with mutations in integral membrane proteins Fks1 or Fks2. In contrast, mutants exhibiting 4- to 32-fold CSF reduced susceptibility (CRS) were readily selected in vitro, and surprisingly demonstrated 4- to 32-fold MCF increased susceptibility (MIS). Sequencing and gene deletion demonstrated that CRS-MIS is Fks-independent. To explore alternative mechanisms, we initially employed Saccharomyces cerevisiae, and observed that CRS was conferred by multiple mutations (fen1Δ, sur4Δ, cka2Δ and tsc10-ts) disrupting sphingolipid biosynthesis. Following this lead, C. glabrata fen1Δ and cka2Δ deletants were constructed, and shown to exhibit CRS-MIS. Sphingolipid analysis of CRS-MIS laboratory mutants and clinical isolates demonstrated elevated dihydrosphingosine (DHS) and phytosphingosine (PHS) levels, and consistent with this sequencing revealed fen1, sur4, ifa38 and sur2 mutations. Moreover, exogenous DHS or PHS conferred a CRS-MIS phenotype on wild-type C. glabrata. Exogenous PHS failed, however, to suppress CRS-MIS in a sur2 mutant blocked in conversion of DHS to PHS, implying that accumulation of these intermediates confers CRS-MIS. We conclude that membrane sphingolipids modulate echinocandin-Fks interaction.
Collapse
Affiliation(s)
- Kelley R Healey
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | | | | | | |
Collapse
|
9
|
Dague E, Bitar R, Ranchon H, Durand F, Yken HM, François JM. An atomic force microscopy analysis of yeast mutants defective in cell wall architecture. Yeast 2010; 27:673-84. [DOI: 10.1002/yea.1801] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
10
|
Tehlivets O, Scheuringer K, Kohlwein SD. Fatty acid synthesis and elongation in yeast. Biochim Biophys Acta Mol Cell Biol Lipids 2007; 1771:255-70. [PMID: 16950653 DOI: 10.1016/j.bbalip.2006.07.004] [Citation(s) in RCA: 309] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Revised: 07/14/2006] [Accepted: 07/17/2006] [Indexed: 12/30/2022]
Abstract
Fatty acids are essential compounds in the cell. Since the yeast Saccharomyces cerevisiae does not feed typically on fatty acids, cellular function and growth relies on endogenous synthesis. Since all cellular organelles are involved in--or dependent on--fatty acid synthesis, multiple levels of control may exist to ensure proper fatty acid composition and homeostasis. In this review, we summarize what is currently known about enzymes involved in cellular fatty acid synthesis and elongation, and discuss potential links between fatty acid metabolism, physiology and cellular regulation.
Collapse
Affiliation(s)
- Oksana Tehlivets
- Institute of Molecular Biosciences, University of Graz, A8010 Graz, Austria
| | | | | |
Collapse
|
11
|
Lockshon D, Surface LE, Kerr EO, Kaeberlein M, Kennedy BK. The sensitivity of yeast mutants to oleic acid implicates the peroxisome and other processes in membrane function. Genetics 2006; 175:77-91. [PMID: 17151231 PMCID: PMC1774995 DOI: 10.1534/genetics.106.064428] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The peroxisome, sole site of beta-oxidation in Saccharomyces cerevisiae, is known to be required for optimal growth in the presence of fatty acid. Screening of the haploid yeast deletion collection identified approximately 130 genes, 23 encoding peroxisomal proteins, necessary for normal growth on oleic acid. Oleate slightly enhances growth of wild-type yeast and inhibits growth of all strains identified by the screen. Nonperoxisomal processes, among them chromatin modification by H2AZ, Pol II mediator function, and cell-wall-associated activities, also prevent oleate toxicity. The most oleate-inhibited strains lack Sap190, a putative adaptor for the PP2A-type protein phosphatase Sit4 (which is also required for normal growth on oleate) and Ilm1, a protein of unknown function. Palmitoleate, the other main unsaturated fatty acid of Saccharomyces, fails to inhibit growth of the sap190delta, sit4delta, and ilm1delta strains. Data that suggest that oleate inhibition of the growth of a peroxisomal mutant is due to an increase in plasma membrane porosity are presented. We propose that yeast deficient in peroxisomal and other functions are sensitive to oleate perhaps because of an inability to effectively control the fatty acid composition of membrane phospholipids.
Collapse
Affiliation(s)
- Daniel Lockshon
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | |
Collapse
|
12
|
Prasitchoke P, Kaneko Y, Bamba T, Fukusaki E, Kobayashi A, Harashima S. Identification and characterization of a very long-chain fatty acid elongase gene in the methylotrophic yeast, Hansenula polymorpha. Gene 2006; 391:16-25. [PMID: 17236726 DOI: 10.1016/j.gene.2006.11.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Revised: 11/12/2006] [Accepted: 11/13/2006] [Indexed: 10/23/2022]
Abstract
To understand the biosynthetic network of fatty acids in the methylotrophic yeast Hansenula polymorpha, which is able to produce poly-unsaturated fatty acids, we have attempted to identify genes encoding fatty acid elongase. Here we have characterized HpELO1, a fatty acid elongase gene encoding a 319-amino-acid protein containing five predicted membrane-spanning regions that is conserved throughout the yeast Elo protein family. Phylogenetic analysis of the deduced amino acid sequence suggests that HpELO1 is an ortholog of the Saccharomyces cerevisiae ELO3 gene that is involved in the elongation of very long-chain fatty acids (VLCFAs). In the fatty acid profile of the Hpelo1Delta disruptant by gas chromatography/mass spectrometry, the amount of C24:0 and C26:0 decreased to undetectable levels, whereas there was a large accumulation of C22:0, suggesting that the HpELO1 is involved in the elongation of VLCFAs and is essential for the production of C24:0. Expression of HpELO1 suppressed the lethality of the S. cerevisiae elo2Delta elo3Delta double disruptant and recovered the synthesis of VLCFAs. Similar to the S. cerevisiae elo3Delta strain, the Hpelo1Delta disruptant exhibited the extraordinary growth sensitivity to fumonisin B(1), a ceramide synthase inhibitor. Furthermore, cells of the Hpelo1Delta disruptant were more sensitive to Zymolyase and more flocculent than the wild-type cells, clumping together and falling rapidly out of suspension, suggesting that the Hpelo1Delta mutation causes changes in cell wall composition and structure.
Collapse
|
13
|
Wheeler RT, Fink GR. A drug-sensitive genetic network masks fungi from the immune system. PLoS Pathog 2006; 2:e35. [PMID: 16652171 PMCID: PMC1447670 DOI: 10.1371/journal.ppat.0020035] [Citation(s) in RCA: 262] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2005] [Accepted: 03/16/2006] [Indexed: 11/20/2022] Open
Abstract
Fungal pathogens can be recognized by the immune system via their β-glucan, a potent proinflammatory molecule that is present at high levels but is predominantly buried beneath a mannoprotein coat and invisible to the host. To investigate the nature and significance of “masking” this molecule, we characterized the mechanism of masking and consequences of unmasking for immune recognition. We found that the underlying β-glucan in the cell wall of Candida albicans is unmasked by subinhibitory doses of the antifungal drug caspofungin, causing the exposed fungi to elicit a stronger immune response. Using a library of bakers' yeast (Saccharomyces cerevisiae) mutants, we uncovered a conserved genetic network that is required for concealing β-glucan from the immune system and limiting the host response. Perturbation of parts of this network in the pathogen C. albicans caused unmasking of its β-glucan, leading to increased β-glucan receptor-dependent elicitation of key proinflammatory cytokines from primary mouse macrophages. By creating an anti-inflammatory barrier to mask β-glucan, opportunistic fungi may promote commensal colonization and have an increased propensity for causing disease. Targeting the widely conserved gene network required for creating and maintaining this barrier may lead to novel broad-spectrum antimycotics. Opportunistic fungal pathogens such as Candida albicans often cause fatal infections in patients with a compromised immune system. Unfortunately, current drugs often fail to halt fungal disease, are ineffective against drug-resistant strains, and have severe side effects. Despite the clear clinical significance of fungal infections, it is still not understood how fungi are recognized by the immune system. Candida has high levels of the structural molecule β-glucan in its cell wall, but the majority of its β-glucan is masked by a mannoprotein coat and is therefore invisible to the immune system. Masking of β-glucan may be a fungal virulence factor, because exposed β-glucan provokes a proinflammatory response that is important for mounting an effective immune response against the fungus and clearing the infection. By surveying the genome of the model fungus Saccharomyces cerevisiae (bakers' yeast), the authors discovered a genetic network required for masking β-glucan from the immune system. Mutation of genes in this network in C. albicans caused unmasking of β-glucan and an increased immune response to the fungus. The authors also found that sublethal doses of the antifungal drug caspofungin cause unmasking and lead to a greater immune response. Drugs targeting this fungally conserved masking network may provide new tools to fight fungal infections.
Collapse
Affiliation(s)
- Robert T Wheeler
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA.
| | | |
Collapse
|
14
|
Edlind TD, Katiyar SK. The echinocandin "target" identified by cross-linking is a homolog of Pil1 and Lsp1, sphingolipid-dependent regulators of cell wall integrity signaling. Antimicrob Agents Chemother 2004; 48:4491. [PMID: 15504893 PMCID: PMC525446 DOI: 10.1128/aac.48.11.4491.2004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
15
|
Germann M, Swain E, Bergman L, Nickels JT. Characterizing the sphingolipid signaling pathway that remediates defects associated with loss of the yeast amphiphysin-like orthologs, Rvs161p and Rvs167p. J Biol Chem 2004; 280:4270-8. [PMID: 15561700 DOI: 10.1074/jbc.m412454200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Loss of function of either the RVS161 or RVS167 Saccharomyces cerevisiae amphiphysin-like gene confers similar growth phenotypes that can be suppressed by mutations in sphingolipid biosynthesis. We performed a yeast two-hybrid screen using Rvs161p as bait to uncover proteins involved in this sphingolipid-dependent suppressor pathway. In the process, we have demonstrated a direct physical interaction between Rvs167p and the two-hybrid interacting proteins, Acf2p, Gdh3p, and Ybr108wp, while also elucidating the Rvs167p amino acid domains to which these proteins bind. By using subcellular fractionation, we demonstrate that Rvs167p, Ybr108wp, Gdh3p, and Acf2p all localize to Rvs161p-containing lipid rafts, thus placing them within a single compartment that should facilitate their interactions. Moreover, our results suggest that Acf2p and Gdh3p functions are needed for suppressor pathway activity. To determine pathway mechanisms further, we examined the localization of Rvs167p in suppressor mutants. These studies reveal roles for Rvs161p and the very long chain fatty acid elongase, Sur4p, in the localization and/or stability of Rvs167p. Previous yeast studies showed that rvs defects could be suppressed by changes in sphingolipid metabolism brought about by deleting SUR4 (Desfarges, L., Durrens, P., Juguelin, H., Cassagne, C., Bonneu, M., and Aigle, M. (1993) Yeast 9, 267-277). Using rvs167 sur4 and rvs161 sur4 double null cells as models to study suppressor pathway activity, we demonstrate that loss of SUR4 does not remediate the steady-state actin cytoskeletal defects of rvs167 or rvs161 cells. Moreover, suppressor activity does not require the function of the actin-binding protein, Abp1p, or Sla1p, a protein that is thought to regulate assembly of the cortical actin cytoskeleton. Based on our results, we suggest that sphingolipid-dependent suppression of rvs defects may not work entirely through regulating changes in actin organization.
Collapse
Affiliation(s)
- Melody Germann
- Department of Biochemistry, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, USA
| | | | | | | |
Collapse
|
16
|
Enyenihi AH, Saunders WS. Large-scale functional genomic analysis of sporulation and meiosis in Saccharomyces cerevisiae. Genetics 2003; 163:47-54. [PMID: 12586695 PMCID: PMC1462418 DOI: 10.1093/genetics/163.1.47] [Citation(s) in RCA: 193] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have used a single-gene deletion mutant bank to identify the genes required for meiosis and sporulation among 4323 nonessential Saccharomyces cerevisiae annotated open reading frames (ORFs). Three hundred thirty-four sporulation-essential genes were identified, including 78 novel ORFs and 115 known genes without previously described sporulation defects in the comprehensive Saccharomyces Genome (SGD) or Yeast Proteome (YPD) phenotype databases. We have further divided the uncharacterized sporulation-essential genes into early, middle, and late stages of meiosis according to their requirement for IME1 induction and nuclear division. We believe this represents a nearly complete identification of the genes uniquely required for this complex cellular pathway. The set of genes identified in this phenotypic screen shows only limited overlap with those identified by expression-based studies.
Collapse
Affiliation(s)
- Akon H Enyenihi
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | |
Collapse
|
17
|
Abstract
The polysaccharide beta(1,3)-D-glucan is a component of the cell wall of many fungi. Synthesis of the linear polymer is catalysed by UDP-glucose beta(1,3)-D-glucan beta(3)-D-glucosyltransferase. Because this enzyme has a key role in fungal cell-wall synthesis, and because many organisms that are responsible for human mycoses, including Candida albicans, Aspergillus fumigatus and Cryptococcus neoformans, produce walls that are rich in beta(1,3)-glucan, it has been and remains the focus of intensive study. From early characterization of the enzymatic activity in Saccharomyces cerevisiae, advances have been made in purification of the enzyme, identification of essential subunits and description of regulatory circuitry that controls expression and localization of different components of the multisubunit enzyme complex. Progress in each of these areas has been enhanced dramatically by the availability of specific inhibitors of the enzymatic reaction that produces beta(1,3)-glucan. These natural product inhibitors have utility both as tools to dissect the biology of beta(1,3)-glucan synthase and as sources for development of semisynthetic derivatives with clinical utility in treatment of human fungal disease. This review will focus on the biochemistry, genetics and regulation of the enzyme.
Collapse
Affiliation(s)
- C M Douglas
- Department of Human and Animal Infectious Diseases, Merck & Co., Rahway, New Jersey 07065, USA.
| |
Collapse
|
18
|
Dickson RC, Lester RL. Sphingolipid functions in Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1583:13-25. [PMID: 12069845 DOI: 10.1016/s1388-1981(02)00210-x] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent advances in understanding sphingolipid metabolism and function in Saccharomyces cerevisiae have moved the field from an embryonic, descriptive phase to one more focused on molecular mechanisms. One advance that has aided many experiments has been the uncovering of genes for the biosynthesis and breakdown of sphingolipids. S. cerevisiae seems on the verge of becoming the first organism in which all sphingolipid metabolic genes are identified. Other advances include the demonstration that S. cerevisiae cells have lipid rafts composed of sphingolipids and ergosterol and that specific proteins associate with rafts. Roles for phytosphingosine (PHS) and dihydrosphingosine (DHS) in heat stress continue to be uncovered including regulation of the transient cell cycle arrest, control of putative signaling pathways that govern cell integrity, endocytosis, movement of the cortical actin cytoskeleton and regulation of protein breakdown in the plasma membrane. Other studies suggest roles for sphingolipids in exocytosis, growth regulation and longevity. Finally, some progress has been made in understanding how sphingolipid synthesis is regulated and how sphingolipid levels are maintained.
Collapse
Affiliation(s)
- Robert C Dickson
- Department of Cellular and Molecular Biochemistry and the Lucille P. Markey Cancer Center, University of Kentucky College of Medicine, Lexington 40536-0298, USA.
| | | |
Collapse
|
19
|
Kurtz MB, Rex JH. Glucan synthase inhibitors as antifungal agents. ADVANCES IN PROTEIN CHEMISTRY 2001; 56:423-75. [PMID: 11329859 DOI: 10.1016/s0065-3233(01)56011-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- M B Kurtz
- Merck Research Laboratories, R80Y-220, Infectious Diseases, P.O. Box 2000, Rahway, NJ 07065, USA
| | | |
Collapse
|
20
|
Abe M, Nishida I, Minemura M, Qadota H, Seyama Y, Watanabe T, Ohya Y. Yeast 1,3-beta-glucan synthase activity is inhibited by phytosphingosine localized to the endoplasmic reticulum. J Biol Chem 2001; 276:26923-30. [PMID: 11337502 DOI: 10.1074/jbc.m102179200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
1,3-beta-D-Glucan, a major filamentous component of the cell wall in the budding yeast Saccharomyces cerevisiae, is synthesized by 1,3-beta-glucan synthase (GS). Although a yeast gene whose product is required for GS activity in vitro, GNS1, was isolated and characterized, its role in GS function has remained unknown. In the current study we show that Deltagns1 cells accumulate a non-competitive and non-proteinous inhibitor(s) in the membrane fraction. Investigations of inhibitory activity on GS revealed that the inhibitor(s) is mainly present in the sphingolipid fraction. It is shown that Deltagns1 cells contain phytosphingosine (PHS), an intermediate in the sphingolipid biosynthesis, 30-fold more than wild-type cells do. The membrane fraction isolated from Deltasur2 cells contains an increased amount of dihydrosphingosine (DHS) and also exhibits reduced GS activity. Among constituents of the sphingolipid fraction, PHS and DHS show striking inhibition in a non-competitive manner. The intracellular level of DHS is much lower than that of PHS in wild-type cells, suggesting that PHS is the primary inhibitor of GS in vivo. The localization of PHS to the endoplasmic reticulum in wild-type cells coincides with that of the inhibitor(s) in Deltagns1 cells. Taken together, our results indicate that PHS is a potent inhibitor of yeast GS in vivo.
Collapse
Affiliation(s)
- M Abe
- Department of Integrated Biosciences, Graduate School of Frontier Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | |
Collapse
|
21
|
Hong Z, Delauney AJ, Verma DP. A cell plate-specific callose synthase and its interaction with phragmoplastin. THE PLANT CELL 2001; 13:755-68. [PMID: 11283334 PMCID: PMC135532 DOI: 10.1105/tpc.13.4.755] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Callose is synthesized on the forming cell plate and several other locations in the plant. We cloned an Arabidopsis cDNA encoding a callose synthase (CalS1) catalytic subunit. The CalS1 gene comprises 42 exons with 41 introns and is transcribed into a 6.0-kb mRNA. The deduced peptide, with an approximate molecular mass of 226 kD, showed sequence homology with the yeast 1,3-beta-glucan synthases and is distinct from plant cellulose synthases. CalS1 contains 16 predicted transmembrane helices with the N-terminal region and a large central loop facing the cytoplasm. CalS1 interacts with two cell plate--associated proteins, phragmoplastin and a novel UDP-glucose transferase that copurifies with the CalS complex. That CalS1 is a cell plate--specific enzyme is demonstrated by the observations that the green fluorescent protein--CalS1 fusion protein was localized at the growing cell plate, that expression of CalS1 in transgenic tobacco cells enhanced callose synthesis on the forming cell plate, and that these cell lines exhibited higher levels of CalS activity. These data also suggest that plant CalS may form a complex with UDP-glucose transferase to facilitate the transfer of substrate for callose synthesis.
Collapse
Affiliation(s)
- Z Hong
- Department of Molecular Genetics and Plant Biotechnology Center, Ohio State University, 1060 Carmack Road, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
22
|
Kohlwein SD, Eder S, Oh CS, Martin CE, Gable K, Bacikova D, Dunn T. Tsc13p is required for fatty acid elongation and localizes to a novel structure at the nuclear-vacuolar interface in Saccharomyces cerevisiae. Mol Cell Biol 2001; 21:109-25. [PMID: 11113186 PMCID: PMC88785 DOI: 10.1128/mcb.21.1.109-125.2001] [Citation(s) in RCA: 172] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The TSC13/YDL015c gene was identified in a screen for suppressors of the calcium sensitivity of csg2Delta mutants that are defective in sphingolipid synthesis. The fatty acid moiety of sphingolipids in Saccharomyces cerevisiae is a very long chain fatty acid (VLCFA) that is synthesized by a microsomal enzyme system that lengthens the palmitate produced by cytosolic fatty acid synthase by two carbon units in each cycle of elongation. The TSC13 gene encodes a protein required for elongation, possibly the enoyl reductase that catalyzes the last step in each cycle of elongation. The tsc13 mutant accumulates high levels of long-chain bases as well as ceramides that harbor fatty acids with chain lengths shorter than 26 carbons. These phenotypes are exacerbated by the deletion of either the ELO2 or ELO3 gene, both of which have previously been shown to be required for VLCFA synthesis. Compromising the synthesis of malonyl coenzyme A (malonyl-CoA) by inactivating acetyl-CoA carboxylase in a tsc13 mutant is lethal, further supporting a role of Tsc13p in VLCFA synthesis. Tsc13p coimmunoprecipitates with Elo2p and Elo3p, suggesting that the elongating proteins are organized in a complex. Tsc13p localizes to the endoplasmic reticulum and is highly enriched in a novel structure marking nuclear-vacuolar junctions.
Collapse
Affiliation(s)
- S D Kohlwein
- SFB Biomembrane Research Center, Department of Biochemistry, Technical University Graz, A8010 Graz, Austria
| | | | | | | | | | | | | |
Collapse
|
23
|
Kottom TJ, Limper AH. Cell wall assembly by Pneumocystis carinii. Evidence for a unique gsc-1 subunit mediating beta -1,3-glucan deposition. J Biol Chem 2000; 275:40628-34. [PMID: 11013231 DOI: 10.1074/jbc.m002103200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pneumocystis carinii remains a persistent cause of severe pneumonia in immune compromised patients. Recent studies indicate that P. carinii is a fungal species possessing a glucan-rich cyst wall. Pneumocandin antagonists of beta-1,3-glucan synthesis rapidly suppress infection in animal models of P. carinii pneumonia. We, therefore, sought to define the molecular mechanisms of beta-glucan cell wall assembly by P. carinii. Membrane extracts derived from freshly purified P. carinii incorporate uridine 5'-diphosphoglucose into insoluble carbohydrate, in a manner that was completely inhibited by the pneumocandin L733-560, an antagonist of Gsc-1-type beta-glucan synthetases. Using degenerative polymerase chain reaction and library screening, the P. carinii Gsc-1 catalytic subunit of beta-1,3-glucan synthetase was cloned and characterized. P. carinii gsc1 exhibited homology to phylogenetically related fungal beta-1,3-glucan synthetases, encoding a predicted 214-kDa integral membrane protein with 12 transmembrane domain structure. Immunoprecipitation of P. carinii extracts, with a synthetic peptide anti-Gsc-1 antibody, specifically yielded a protein of 219.4 kDa, which was also capable of incorporating 5'-diphosphoglucose into insoluble glucan carbohydrate. As opposed to other fungi, the expression of gsc-1 mRNA is uniquely regulated over P. carinii's life cycle, having minimal expression in trophic forms, but substantial expression in the thick-walled cystic form of the organism. These results indicate that P. carinii contains a unique catalytic subunit of beta-1,3-glucan synthetase utilized in cyst wall formation. Because synthesis of beta-1,3-glucan is absent in mammalian cells, inhibition of the P. carinii Gsc-1 represents an attractive molecular target for therapeutic exploitation.
Collapse
Affiliation(s)
- T J Kottom
- Thoracic Diseases Research Unit, Departments of Medicine and Biochemistry, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | |
Collapse
|
24
|
Tvrdik P, Westerberg R, Silve S, Asadi A, Jakobsson A, Cannon B, Loison G, Jacobsson A. Role of a new mammalian gene family in the biosynthesis of very long chain fatty acids and sphingolipids. J Cell Biol 2000; 149:707-18. [PMID: 10791983 PMCID: PMC2174859 DOI: 10.1083/jcb.149.3.707] [Citation(s) in RCA: 154] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Whereas the physiological significance of microsomal fatty acid elongation is generally appreciated, its molecular nature is poorly understood. Here, we describe tissue-specific regulation of a novel mouse gene family encoding components implicated in the synthesis of very long chain fatty acids. The Ssc1 gene appears to be ubiquitously expressed, whereas Ssc2 and Cig30 show a restricted expression pattern. Their translation products are all integral membrane proteins with five putative transmembrane domains. By complementing the homologous yeast mutants, we found that Ssc1 could rescue normal sphingolipid synthesis in the sur4/elo3 mutant lacking the ability to synthesize cerotic acid (C(26:0)). Similarly, Cig30 reverted the phenotype of the fen1/elo2 mutant that has reduced levels of fatty acids in the C(20)-C(24) range. Further, we show that Ssc1 mRNA levels were markedly decreased in the brains of myelin-deficient mouse mutants known to have very low fatty acid chain elongation activity. Conversely, the dramatic induction of Cig30 expression during brown fat recruitment coincided with elevated elongation activity. Our results strongly implicate this new mammalian gene family in tissue-specific synthesis of very long chain fatty acids and sphingolipids.
Collapse
Affiliation(s)
- P Tvrdik
- The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, SE-106 91 Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Stock SD, Hama H, Radding JA, Young DA, Takemoto JY. Syringomycin E inhibition of Saccharomyces cerevisiae: requirement for biosynthesis of sphingolipids with very-long-chain fatty acids and mannose- and phosphoinositol-containing head groups. Antimicrob Agents Chemother 2000; 44:1174-80. [PMID: 10770748 PMCID: PMC89841 DOI: 10.1128/aac.44.5.1174-1180.2000] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Syringomycin E is an antifungal cyclic lipodepsinonapeptide that inhibits the growth of Saccharomyces cerevisiae by interaction with the plasma membrane. A screen conducted to find the yeast genes necessary for its fungicidal action identified two novel syringomycin E response genes, SYR3 and SYR4. A syr3 mutant allele was complemented by ELO2 and ELO3. These genes encode enzymes that catalyze the elongation of sphingolipid very long chain fatty acids. Tetrad analysis showed that SYR3 was ELO2. Strains with deletions of SYR3/ELO2 and ELO3 were resistant to syringomycin E, and lipid analyses of both mutants revealed shortened fatty acid chains and lower levels of sphingolipids. SYR4 was identified by Tn5 inactivation of genomic library plasmids that complemented a syr4 mutant allele. SYR4 was found to be identical to IPT1, which encodes the terminal sphingolipid biosynthetic enzyme, mannosyl-diinositolphosphoryl-ceramide synthase. Deletion Deltasyr4/ipt1 strains were viable, were resistant to syringomycin E, did not produce mannosyl-diinositolphosphoryl-ceramide, and accumulated mannosyl-inositolphosphoryl-ceramide. Accumulation of mannosyl-inositolphosphoryl-ceramide was not responsible for resistance since a temperature-sensitive secretory pathway mutant (sec14-3(ts)) accumulated this sphingolipid and was sensitive to syringomycin E. Finally, Deltacsg1/sur1 and Deltacsg2 strains defective in the transfer of mannose to inositolphosphoryl-ceramide were resistant to syringomycin E. These findings show that syringomycin E growth inhibition of yeast is promoted by the production of sphingolipids with fully elongated fatty acid chains and the mannosyl and terminal phosphorylinositol moieties of the polar head group.
Collapse
Affiliation(s)
- S D Stock
- Department of Biology, Utah State University, Logan, Utah 84322-5305, USA
| | | | | | | | | |
Collapse
|
26
|
Abstract
Here we present the genomic sequence, with analysis, of a pathogenic fowlpox virus (FPV). The 288-kbp FPV genome consists of a central coding region bounded by identical 9.5-kbp inverted terminal repeats and contains 260 open reading frames, of which 101 exhibit similarity to genes of known function. Comparison of the FPV genome with those of other chordopoxviruses (ChPVs) revealed 65 conserved gene homologues, encoding proteins involved in transcription and mRNA biogenesis, nucleotide metabolism, DNA replication and repair, protein processing, and virion structure. Comparison of the FPV genome with those of other ChPVs revealed extensive genome colinearity which is interrupted in FPV by a translocation and a major inversion, the presence of multiple and in some cases large gene families, and novel cellular homologues. Large numbers of cellular homologues together with 10 multigene families largely account for the marked size difference between the FPV genome (260 to 309 kbp) and other known ChPV genomes (178 to 191 kbp). Predicted proteins with putative functions involving immune evasion included eight natural killer cell receptors, four CC chemokines, three G-protein-coupled receptors, two beta nerve growth factors, transforming growth factor beta, interleukin-18-binding protein, semaphorin, and five serine proteinase inhibitors (serpins). Other potential FPV host range proteins included homologues of those involved in apoptosis (e.g., Bcl-2 protein), cell growth (e.g., epidermal growth factor domain protein), tissue tropism (e.g., ankyrin repeat-containing gene family, N1R/p28 gene family, and a T10 homologue), and avian host range (e.g., a protein present in both fowl adenovirus and Marek's disease virus). The presence of homologues of genes encoding proteins involved in steroid biogenesis (e.g., hydroxysteroid dehydrogenase), antioxidant functions (e.g., glutathione peroxidase), vesicle trafficking (e.g., two alpha-type soluble NSF attachment proteins), and other, unknown conserved cellular processes (e.g., Hal3 domain protein and GSN1/SUR4) suggests that significant modification of host cell function occurs upon viral infection. The presence of a cyclobutane pyrimidine dimer photolyase homologue in FPV suggests the presence of a photoreactivation DNA repair pathway. This diverse complement of genes with likely host range functions in FPV suggests significant viral adaptation to the avian host.
Collapse
Affiliation(s)
- C L Afonso
- Plum Island Animal Disease Center, Agricultural Research Service, U. S. Department of Agriculture, Greenport, New York 11944, USA
| | | | | | | | | | | |
Collapse
|
27
|
Dickson RC, Lester RL. Metabolism and selected functions of sphingolipids in the yeast Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1438:305-21. [PMID: 10366774 DOI: 10.1016/s1388-1981(99)00068-2] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Our knowledge of sphingolipid metabolism and function in Saccharomyces cerevisiae is growing rapidly. Here we discuss the current status of sphingolipid metabolism including recent evidence suggesting that exogenous sphingoid long-chain bases must first be phosphorylated and then dephosphorylated before incorporation into ceramide. Phenotypes of strains defective in sphingolipid metabolism are discussed because they provide hints about the undiscovered functions of sphingolipids and are one of the major reasons for studying this model eukaryote. The long-chain base phosphates, dihydrosphingosine-1-phosphate and phytosphingosine-1-phosphate, have been hypothesized to play roles in heat stress resistance, perhaps acting as signaling molecules. We evaluate the data supporting this hypothesis and suggest future experiments needed to verify it. Finally, we discuss recent clues that may help to reveal how sphingolipid synthesis and total cellular sphingolipid content are regulated.
Collapse
Affiliation(s)
- R C Dickson
- Department of Biochemistry and the Lucille P. Markey Cancer Center, University of Kentucky Medical Center, Lexington, KY 40536-0298, USA.
| | | |
Collapse
|
28
|
Lee DW, Ahn GW, Kang HG, Park HM. Identification of a gene, SOO1, which complements osmo-sensitivity and defect in in vitro beta1,3-glucan synthase activity in Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1450:145-54. [PMID: 10354506 DOI: 10.1016/s0167-4889(99)00041-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The soo1-1 (for suppressor of osmo-sensitivity) mutation results in a temperature-dependent osmo-sensitive phenotype at non-permissive temperature (37 degrees C), makes yeast cells more susceptible to Zymolyase and affects in vitro beta1,3-glucan synthase activity level. Transformation of soo1-1 mutant by SOO1 gene reverses these effects. Nucleotide sequencing of SOO1 revealed that this gene is identical to the recently reported alpha-COP that is involved in the intracellular protein translocation from endoplasmic reticulum to Golgi and vice versa. Although the soo1-1 mutant strain showed osmotically remediable growth at 37 degrees C, SOO1 disruptants could not grow in any culture conditions. Analysis of cell wall fractions revealed that the soo1-1 mutation causes a decrease in in vitro beta1,3-glucan synthase activity, and, thus, a subsequent alteration of the cell wall composition.
Collapse
Affiliation(s)
- D W Lee
- Department of Microbiology, Chungnam National University, Taejon 305-764, South Korea
| | | | | | | |
Collapse
|
29
|
Bianchi MM, Sartori G, Vandenbol M, Kaniak A, Uccelletti D, Mazzoni C, Di Rago JP, Carignani G, Slonimski PP, Frontali L. How to bring orphan genes into functional families. Yeast 1999; 15:513-26. [PMID: 10234789 DOI: 10.1002/(sici)1097-0061(199904)15:6<513::aid-yea370>3.0.co;2-p] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In the framework of the B1 Consortium of the EUROFAN-1 project, we set up a series of simple phenotypic tests that can be performed on a large number of strains at a time. This methodological approach was intended to help assign functions of putative genes coding for unknown proteins to several specific aspects of cell biology. The tests were chosen to study phenotypes which should be affected by numerous genes. In this report, we examined the sensitivity/resistance or the adaptation of the cell to physical or chemical stresses (thermotolerance, osmotolerance and ethanol sensitivity), the effects of the alteration of the level of protein phosphorylation (sensitivity or resistance to compounds affecting the activity of protein kinases or phosphatases) and the effects of compounds interfering with synthesis of nucleic acids or proteins. Deletions in 66 genes of unknown function have been tested in 21 different conditions. In many deletant strains, phenotypes were observed and, for the most promising candidates, tetrad analysis was performed in order to verify co-segregation of the deletion marker with the phenotype.
Collapse
Affiliation(s)
- M M Bianchi
- Department of Cell and Developmental Biology, University of Rome La Sapienza, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
David D, Sundarababu S, Gerst JE. Involvement of long chain fatty acid elongation in the trafficking of secretory vesicles in yeast. J Biophys Biochem Cytol 1998; 143:1167-82. [PMID: 9832547 PMCID: PMC2133077 DOI: 10.1083/jcb.143.5.1167] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Members of the synaptobrevin/VAMP family of v-SNAREs are thought to be essential for vesicle docking and exocytosis in both lower and higher eukaryotes. Here, we describe yeast mutants that appear to bypass the known v-SNARE requirement in secretion. Recessive mutations in either VBM1 or VBM2, which encode related ER-localized membrane proteins, allow yeast to grow normally and secrete in the absence of Snc v-SNAREs. These mutants show selective alterations in protein transport, resulting in the differential trafficking and secretion of certain protein cargo. Yet, processing of the vacuolar marker, carboxypeptidase Y, and the secreted protein, invertase, appear normal in these mutants indicating that general protein trafficking early in the pathway is unaffected. Interestingly, VBM1 and VBM2 are allelic to ELO3 and ELO2, two genes that have been shown recently to mediate the elongation of very long chain fatty acids and subsequent ceramide and inositol sphingolipid synthesis. Thus, the v-SNARE requirement in constitutive exocytosis is abrogated by mutations in early components of the secretory pathway that act at the level of lipid synthesis to affect the ability of secretory vesicles to sort and deliver protein cargo.
Collapse
Affiliation(s)
- D David
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
31
|
Radding JA, Heidler SA, Turner WW. Photoaffinity analog of the semisynthetic echinocandin LY303366: identification of echinocandin targets in Candida albicans. Antimicrob Agents Chemother 1998; 42:1187-94. [PMID: 9593148 PMCID: PMC105773 DOI: 10.1128/aac.42.5.1187] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The echinocandins are a family of cyclic lipopeptides with potent antifungal activity. These compounds inhibit the synthesis of BETA-1,3-glucan in fungi. The new semisynthetic echinocandin LY303366 was derivatized to produce a photoactivatable cross-linking echinocandin analog with antifungal activity. This analog was radioiodinated and used as a probe in microsomal membrane preparations of Candida albicans which contain glucan synthase activity. The photoaffinity probe identified two major proteins of 40 and 18 kDa in both membrane preparations. Labeling of these proteins was specific in that it required irradiation with UV light and was effectively competed against with unlabeled echinocandin analogs. In addition, the abilities of echinocandin analogs to compete with the photoaffinity probe correlated to their relative antifungal potencies and glucan synthase inhibition. The 40-kDa protein was isolated, and partial sequences were obtained from internal peptide fragments of the protein. Analysis of the sequences of these internal peptides of the 40-kDa protein revealed that it was a new protein not previously described as being involved in glucan synthesis or the mode of action of echinocandins.
Collapse
Affiliation(s)
- J A Radding
- Department of Infectious Disease Research, Lilly Research Laboratories, Eli Lilly and Co., Indianapolis, Indiana 46285, USA.
| | | | | |
Collapse
|
32
|
Tvrdik P, Asadi A, Kozak LP, Nedergaard J, Cannon B, Jacobsson A. Cig30, a mouse member of a novel membrane protein gene family, is involved in the recruitment of brown adipose tissue. J Biol Chem 1997; 272:31738-46. [PMID: 9395518 DOI: 10.1074/jbc.272.50.31738] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have identified a previously uncharacterized gene that is implicated in the thermogenic function of brown adipose tissue of mice. This gene, termed Cig30, is the first mammalian member of a novel gene family comprising several nematode and yeast genes, such as SUR4 and FEN1, mutation of which is associated with highly pleiotropic phenotypes. It codes for a 30-kDa plasma membrane glycoprotein with five putative transmembrane domains. The Cig30 mRNA was readily detected only in brown fat and liver. When animals were exposed to a 3-day cold stress, the Cig30 expression was selectively elevated in brown fat more than 200-fold. Similar increases were brought about in two other conditions of brown fat recruitment, namely during perinatal development and after cafeteria diet. The magnitude of Cig30 mRNA induction in the cold could be mimicked by chronic norepinephrine treatment in vivo. However, in primary cultures of brown adipocytes, a synergistic action of norepinephrine and dexamethasone was required for full expression of the gene, indicating that both catecholamines and glucocorticoids are required for the induction of Cig30. We propose that the CIG30 protein is involved in a pathway connected with brown fat hyperplasia.
Collapse
Affiliation(s)
- P Tvrdik
- The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, S-106 91 Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
33
|
Ishiguro J, Saitou A, Durán A, Ribas JC. cps1+, a Schizosaccharomyces pombe gene homolog of Saccharomyces cerevisiae FKS genes whose mutation confers hypersensitivity to cyclosporin A and papulacandin B. J Bacteriol 1997; 179:7653-62. [PMID: 9401022 PMCID: PMC179726 DOI: 10.1128/jb.179.24.7653-7662.1997] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The Schizosaccharomyces pombe cps1-12 (for chlorpropham supersensitive) mutant strain was originally isolated as hypersensitive to the spindle poison isopropyl N-3-chlorophenyl carbamate (chlorpropham) (J. Ishiguro and Y. Uhara, Jpn. J. Genet. 67:97-109, 1992). We have found that the cps1-12 mutation also confers (i) hypersensitivity to the immunosuppressant cyclosporin A (CsA), (ii) hypersensitivity to the drug papulacandin B, which specifically inhibits 1,3-beta-D-glucan synthesis both in vivo and in vitro, and (iii) thermosensitive growth at 37 degrees C. Under any of these restrictive treatments, cells swell up and finally lyse. With an osmotic stabilizer, cells do not lyse, but at 37 degrees C they become multiseptated and multibranched. The cps1-12 mutant, grown at a restrictive temperature, showed an increase in sensitivity to lysis by enzymatic cell wall degradation, in in vitro 1,3-beta-D-glucan synthase activity (173% in the absence of GTP in the reaction), and in cell wall biosynthesis (130% of the wild-type amount). Addition of Ca2+ suppresses hypersensitivity to papulacandin B and septation and branching phenotypes. All of these data suggest a relationship between the cps1+ gene and cell wall synthesis. A DNA fragment containing the cps1+ gene was cloned, and sequence analysis indicated that it encodes a predicted membrane protein of 1,729 amino acids with 15 to 16 transmembrane domains. S. pombe cps1p has overall 55% sequence identity with Fks1p or Fks2p, proposed to be catalytic or associated subunits of Saccharomyces cerevisiae 1,3-beta-D-glucan synthase. Thus, the cps1+ product might be a catalytic or an associated copurifying subunit of the fission yeast 1,3-beta-D-glucan synthase that plays an essential role in cell wall synthesis.
Collapse
Affiliation(s)
- J Ishiguro
- Department of Biology, Faculty of Science, Konan University, Okamoto, Kobe, Japan
| | | | | | | |
Collapse
|
34
|
Rieger KJ, Kaniak A, Coppée JY, Aljinovic G, Baudin-Baillieu A, Orlowska G, Gromadka R, Groudinsky O, Di Rago JP, Slonimski PP. Large-scale phenotypic analysis--the pilot project on yeast chromosome III. Yeast 1997; 13:1547-62. [PMID: 9509574 DOI: 10.1002/(sici)1097-0061(199712)13:16<1547::aid-yea230>3.0.co;2-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In 1993, a pilot project for the functional analysis of newly discovered open reading frames, presumably coding for proteins, from yeast chromosome III was launched by the European Community. In the frame of this programme, we have developed a large-scale screening for the identification of gene/protein functions via systematic phenotypic analysis. To this end, some 80 haploid mutant yeast strains were constructed, each carrying a targeted deletion of a single gene obtained by HIS3 or TRP1 transplacement in the W303 background and a panel of some 100 growth conditions was established, ranging from growth substrates, stress to, predominantly, specific inhibitors and drugs acting on various cellular processes. Furthermore, co-segregation of the targeted deletion and the observed phenotype(s) in meiotic products has been verified. The experimental procedure, using microtiter plates for phenotypic analysis of yeast mutants, can be applied on a large scale, either on solid or in liquid media. Since the minimal working unit of one 96-well microtiter plate allows the simultaneous analysis of at least 60 mutant strains, hundreds of strains can be handled in parallel. The high number of monotropic and pleiotropic phenotypes (62%) obtained, together with the acquired practical experience, have shown this approach to be simple, inexpensive and reproducible. It provides a useful tool for the yeast community for the systematic search of biochemical and physiological functions of unknown genes accounting for about a half of the 6000 genes of the complete yeast genome.
Collapse
Affiliation(s)
- K J Rieger
- Centre de Génétique Moléculaire du Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Billon-Grand G, Marais MF, Joseleau JP, Girard V, Gay L, Fãvre M. A novel 1,3-β-glucan synthase from the oomycete Saprolegnia monoica. Microbiology (Reading) 1997; 143:3175-3183. [DOI: 10.1099/00221287-143-10-3175] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An apparently novel 1,3-β-glucan synthase from the oomyceteSaprolegnia monoicahas been characterized. The enzyme exhibits properties that differ markedly from those of the enzyme previously described [Fèvre, M. & Dumas, C. (1977).J Gen Microbiol103, 297-306] as it is active at alkaline pH, stimulated by the divalent cations Ca2+, Mg2+and Mn2+, and appears to be located mainly in the apical part of the hypha. Taking into consideration the differences in pH optimum and effect of divalent ions, each enzyme activity could be assayed in the presence of the other. The insoluble polymeric product of the enzyme with alkaline pH optimum was characterized as a linear 1,3-β-glucan. Comparisons of the general properties of 1,3-β-glucan synthases suggest that enzymes from the oomycetes are more closely related to enzymes from higher plants than to those of true fungi, reflecting the fact that the oomycetes are highly divergent from chitinous fungi.
Collapse
Affiliation(s)
- Geneviève Billon-Grand
- Laboratoire de Biologie Cellulaire Fongique, Centre de Génétique Moléculaire et Cellulaire, UMR CNRS 5534, Université Lyon 1, 43 Bd 11 novembre 1918, 69622 Villeurbanne Cedex, France
| | - Marie-France Marais
- Centre de Recherches sur les Macromolécules Végétales, UPR CNRS 5031, associéà I'Université Joseph Fourier, Domaine Universitaire BP 53, 38041 Grenoble Cedex 09, France
| | - Jean-Paul Joseleau
- Centre de Recherches sur les Macromolécules Végétales, UPR CNRS 5031, associéà I'Université Joseph Fourier, Domaine Universitaire BP 53, 38041 Grenoble Cedex 09, France
| | - Vincent Girard
- Laboratoire de Biologie Cellulaire Fongique, Centre de Génétique Moléculaire et Cellulaire, UMR CNRS 5534, Université Lyon 1, 43 Bd 11 novembre 1918, 69622 Villeurbanne Cedex, France
| | - Lucien Gay
- Laboratoire de Biologie Cellulaire Fongique, Centre de Génétique Moléculaire et Cellulaire, UMR CNRS 5534, Université Lyon 1, 43 Bd 11 novembre 1918, 69622 Villeurbanne Cedex, France
| | - Michel Fãvre
- Laboratoire de Biologie Cellulaire Fongique, Centre de Génétique Moléculaire et Cellulaire, UMR CNRS 5534, Université Lyon 1, 43 Bd 11 novembre 1918, 69622 Villeurbanne Cedex, France
| |
Collapse
|
36
|
Oh CS, Toke DA, Mandala S, Martin CE. ELO2 and ELO3, homologues of the Saccharomyces cerevisiae ELO1 gene, function in fatty acid elongation and are required for sphingolipid formation. J Biol Chem 1997; 272:17376-84. [PMID: 9211877 DOI: 10.1074/jbc.272.28.17376] [Citation(s) in RCA: 359] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
ELO2 and ELO3 were identified from the Saccharomyces cerevisiae genome data base as homologues of ELO1, a gene involved in the elongation of the fatty acid 14:0 to 16:0. Mutations in these genes have previously been shown to produce pleiotropic effects involving a number of membrane functions. The simultaneous disruption of ELO2 and ELO3 has also been shown to produce synthetic lethality, indicating that they have related and/or overlapping functions. Gas chromatography and gas chromatography/mass spectroscopy analyses reveal that null mutations of ELO2 and ELO3 produce defects in the formation of very long chain fatty acids. Analysis of the null mutants indicates that these genes encode components of the membrane-bound fatty acid elongation systems that produce the 26-carbon very long chain fatty acids that are precursors for ceramide and sphingolipids. Elo2p appears to be involved in the elongation of fatty acids up to 24 carbons. It appears to have the highest affinity for substrates with chain lengths less than 22 carbons. Elo3p apparently has a broader substrate specificity and is essential for the conversion of 24-carbon acids to 26-carbon species. Disruption of either gene reduces cellular sphingolipid levels and results in the accumulation of the long chain base, phytosphingosine. Null mutations in ELO3 result in accumulation of labeled precursors into inositol phosphoceramide, with little labeling in the more complex mannosylated sphingolipids, whereas disruption of ELO2 results in reduced levels of all sphingolipids.
Collapse
Affiliation(s)
- C S Oh
- Bureau of Biological Research, Rutgers University, Nelson Laboratories, Piscataway, New Jersey 08855-1059, USA
| | | | | | | |
Collapse
|
37
|
Kurtz MB, Douglas CM. Lipopeptide inhibitors of fungal glucan synthase. JOURNAL OF MEDICAL AND VETERINARY MYCOLOGY : BI-MONTHLY PUBLICATION OF THE INTERNATIONAL SOCIETY FOR HUMAN AND ANIMAL MYCOLOGY 1997; 35:79-86. [PMID: 9147267 DOI: 10.1080/02681219780000961] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The echinocandins and pneumocandins are lipopeptide antifungal agents that inhibit the synthesis of 1,3-beta-D-glucan, an essential cell wall homopolysaccharide found in many pathogenic fungi. Compounds with this fungal-specific target have several attractive features: lack of mechanism-based toxicity, potential for fungicidal activity and activity against strains with intrinsic or acquired resistance mechanisms for existing antimycotics. Semi-synthetic analogues of naturally occurring lipopeptides are currently in clinical trials with the aim of treating systemic candidiasis and aspergillosis. Thus a fuller understanding of the target enzyme and its inhibition by these compounds should be useful for epidemiological and other clinical studies. Although it has been long known that lipopeptides inhibit fungal glucan synthase activity both in cell extracts and in whole cells, the genetic and biochemical identification of the proteins involved has been accomplished only recently. We now know that in Saccharomyces cerevisiae, glucan synthase is a heteromeric enzyme complex comprising one large integral membrane protein (specified by either FKS1 or by FKS2) and one small subunit more loosely associated with the membrane (specified by RHO1). Additional components may also be involved. The heteromeric enzyme complex containing Fks1p constitutes the majority of the activity found in vegetatively growing cells in this organism. The FKS2 gene product is needed for sporulation. Lipopeptides affect the function of the Fksp component from either FKS gene. The current model for interaction and regulation of these components in S. cerevisiae and the application to Candida albicans and other pathogenic fungi are discussed in this review.
Collapse
Affiliation(s)
- M B Kurtz
- Department of Biochemistry, Merck Research Laboratories R80Y-220, Rahway, NJ 07065-0900, USA
| | | |
Collapse
|
38
|
Arellano M, Durán A, Pérez P. Rho 1 GTPase activates the (1-3)beta-D-glucan synthase and is involved in Schizosaccharomyces pombe morphogenesis. EMBO J 1996; 15:4584-91. [PMID: 8887550 PMCID: PMC452188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The Schizosaccharomyces pombe Cdc42 and Rho1 GTPases were tested for their ability to complement the cwg2-1 mutant phenotype of a decrease in (1-3)beta-D-glucan synthase activity when grown at the non-permissive temperature. Only Rho1 is able to partly complement the defect in glucan synthase associated with the cwg2-1 mutation. Moreover, overexpression of the rho1 gene in wild-type S.pombe cells causes aberrant morphology with loss of polarity and cells with several septa. Under this condition (1-3)beta-D-glucan synthase activity is increased four times, but is still dependent on GTP. When S.pombe is transformed with constitutively active rho1 mutant alleles (rho1-G15V or rho1-Q64L), cells stop growing and show a very thick cell wall with hardly any septum. Under this condition the level of (1-3)beta-D-glucan synthase activity is at least 20 times higher than wild-type and is independent of GTP. Neither cdc42+ nor the cdc42-V12G or cdc42-Q61L constitutively active mutant alleles affect (1-3)beta-D-glucan synthase activity when overexpressed in S.pombe. Cells overproducing Rho1 are hypersensitive to inhibitors of cell wall biosynthesis or to cell wall degrading enzymes. We conclude that Rho1 GTPase directly activates (1-3)beta-D-glucan synthase and regulates S.pombe morphogenesis.
Collapse
Affiliation(s)
- M Arellano
- Instituto de Microbiología Bioquímica, Consejo Superior de Investigaciones Científicas and Universidad de Salamanca, Edificio Departamental, Spain
| | | | | |
Collapse
|
39
|
Godoy C, Arellano M, Diaz M, Duran A, Perez P. Characterization of cwl1+, a gene from Schizosaccharomyces pombe whose overexpression causes cell lysis. Yeast 1996; 12:983-90. [PMID: 8873452 DOI: 10.1002/(sici)1097-0061(199608)12:10<983::aid-yea2>3.0.co;2-d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
From a Schizosaccharomyces pombe genomic library we have isolated the gene cwl1+ that causes cell lysis when it is overexpressed in the absence of an osmotic stabilizer. Southern hybridization showed that cwl1+ exists as a single copy in the S. pombe genome. The cwl1+ gene nucleotide sequence revealed a putative open reading frame of 924 bp encoding a polypeptide of 308 amino acids with a calculated Mt of 27000. The cwl1+ DNA hybridizes to a major RNA transcript of 1.5 kb whose 5' end maps at a position 452 bp upstream from the predicted translation start. Comparison of the amino acid sequence with those included in the current databases, showed no significant similarity to any known sequences. Cells overexpressing the cwl1+ gene under the control of the S. pombe nmt inducible promoter displayed a reduced cell wall content, were unable to separate after division and lysed drastically in the absence of osmotic stabilizer. Disruption of the cwl1+ gene caused no noticeable phenotype.
Collapse
Affiliation(s)
- C Godoy
- Instituto de Microbiologia Bioquimica, Consejo Superior de Investigaciones Cientificas, Salamanca, Spain
| | | | | | | | | |
Collapse
|
40
|
Mazur P, Baginsky W. In vitro activity of 1,3-beta-D-glucan synthase requires the GTP-binding protein Rho1. J Biol Chem 1996; 271:14604-9. [PMID: 8662910 DOI: 10.1074/jbc.271.24.14604] [Citation(s) in RCA: 137] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In the yeast Saccharomyces cerevisiae, the family of RHO genes are implicated in the control of morphogenetic events although the molecular targets of these GTP-binding proteins remain largely unknown. The activity of 1,3-beta-D-glucan synthase, the product of which is essential for cell wall integrity, is regulated by a GTP-binding protein, which we here present evidence to be Rho1p. Rho1p was found to copurify with Fks1p, a glucan synthase subunit, in preparations of the enzyme purified by product entrapment and was also shown to be depleted by a detergent extraction procedure known to remove the GTP-binding regulatory component. Specific ADP-ribosylation of Rho1p by exoenzyme C3 inactivates glucan synthase activity specified by FKS1 and FKS2 as demonstrated in membrane preparations from fks2 and fks1 deletion strains, respectively, and in the purified enzyme containing Fks1p. Rho1p and Fks1p were co-immunoprecipitated from purified glucan synthase under conditions that maintained enzyme activity in the immunoprecipitate. Putative Rho homologs were also identified and implicated in the regulation of glucan synthase activity from Candida albicans, Aspergillus nidulans, and Cryptococcus neoformans by ribosylation studies. The regulation of 1,3-beta-D-glucan synthase activity by RHO1 is consistent with its observed role in morphogenetic control and osmotic integrity.
Collapse
Affiliation(s)
- P Mazur
- Department of Biochemistry, Merck Research Laboratories, Rahway, New Jersey 07065, USA
| | | |
Collapse
|
41
|
Castro C, Ribas JC, Valdivieso MH, Varona R, del Rey F, Duran A. Papulacandin B resistance in budding and fission yeasts: isolation and characterization of a gene involved in (1,3)beta-D-glucan synthesis in Saccharomyces cerevisiae. J Bacteriol 1995; 177:5732-9. [PMID: 7592316 PMCID: PMC177391 DOI: 10.1128/jb.177.20.5732-5739.1995] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Papulacandin B, an antifungal agent that interferes with the synthesis of yeast cell wall (1,3)beta-D-glucan, was used to isolate resistant mutants in Schizosaccharomyces pombe and Saccharomyces cerevisiae. The resistance to papulacandin B always segregated as a recessive character that defines a single complementation group in both yeasts (pbr1+ and PBR1, respectively). Determination of several kinetic parameters of (1,3)beta-D-glucan synthase activity revealed no differences between S. pombe wild-type and pbr1 mutant strains except in the 50% inhibitory concentration for papulacandin B of the synthases (about a 50-fold increase in mutant activity). Inactivation of the synthase activity of both yeasts after in vivo treatment with the antifungal agent showed that mutant synthases were more resistant than the corresponding wild-type ones. Detergent dissociation of the S. pombe synthase into soluble and particulate fractions and subsequent reconstitution indicated that the resistance character of pbr1 mutants resides in the particulate fraction of the enzyme. Cloning and sequencing of PBR1 from S. cerevisiae revealed a gene identical to others recently reported (FKS1, ETG1, CWH53, and CND1). Its disruption leads to reduced levels of both (1,3)beta-D-glucan synthase activity and the alkali-insoluble cell wall fraction. Transformants containing the PBR1 gene reverse the defect in (1,3)beta-D-glucan synthase. It is concluded that Pbr1p is probably part of the (1,3)beta-D-glucan synthase complex.
Collapse
Affiliation(s)
- C Castro
- Instituto de Microbiología Bioquímica, CSIC/Universidad de Salamanca, Spain
| | | | | | | | | | | |
Collapse
|
42
|
Cid VJ, Durán A, del Rey F, Snyder MP, Nombela C, Sánchez M. Molecular basis of cell integrity and morphogenesis in Saccharomyces cerevisiae. Microbiol Rev 1995; 59:345-86. [PMID: 7565410 PMCID: PMC239365 DOI: 10.1128/mr.59.3.345-386.1995] [Citation(s) in RCA: 218] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In fungi and many other organisms, a thick outer cell wall is responsible for determining the shape of the cell and for maintaining its integrity. The budding yeast Saccharomyces cerevisiae has been a useful model organism for the study of cell wall synthesis, and over the past few decades, many aspects of the composition, structure, and enzymology of the cell wall have been elucidated. The cell wall of budding yeasts is a complex and dynamic structure; its arrangement alters as the cell grows, and its composition changes in response to different environmental conditions and at different times during the yeast life cycle. In the past few years, we have witnessed a profilic genetic and molecular characterization of some key aspects of cell wall polymer synthesis and hydrolysis in the budding yeast. Furthermore, this organism has been the target of numerous recent studies on the topic of morphogenesis, which have had an enormous impact on our understanding of the intracellular events that participate in directed cell wall synthesis. A number of components that direct polarized secretion, including those involved in assembly and organization of the actin cytoskeleton, secretory pathways, and a series of novel signal transduction systems and regulatory components have been identified. Analysis of these different components has suggested pathways by which polarized secretion is directed and controlled. Our aim is to offer an overall view of the current understanding of cell wall dynamics and of the complex network that controls polarized growth at particular stages of the budding yeast cell cycle and life cycle.
Collapse
Affiliation(s)
- V J Cid
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Spain
| | | | | | | | | | | |
Collapse
|