1
|
Sarkar S, Sadhukhan R, Mohandas N, Ravi AK, Narayanan TN, Mondal J. Adenosine Triphosphate Inhibits Cold-Responsive Aggregation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:21587-21599. [PMID: 39361827 DOI: 10.1021/acs.langmuir.4c02534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Adenosine triphosphate (ATP), ubiquitous in all living organisms, is conventionally recognized as a fundamental energy currency essential for a myriad of cellular processes. While its traditional role in energy metabolism requires only micromolar concentrations, the cellular content of ATP has been found to be significantly higher at the millimolar level. Recent studies have attempted to correlate this higher concentration of ATP with its nonenergetic role in maintaining protein homeostasis, leaving the investigation of ATP's nontrivial activities in biology an open question. Here, by coupling computer simulations and experiments, we uncover new insights into ATP's role as a cryoprotectant against cold-salt stress, highlighting the necessity for higher cellular ATP concentrations. We present direct evidence at charged silica interfaces, demonstrating ATP's ability to restore native intersurface interactions disrupted by combined cold-salt stress, thereby inhibiting cold-responsive aggregation in high-salt conditions. ATP desorbs salt cations from negatively charged surfaces through predominant interactions between ATP and the salt cations. Although the mode of ATP's action remains unchanged with temperature, the extent of interaction scales with temperature, requiring less ATP activity at lower temperatures, justifying the reason for reduction in cellular ATP content due to the cold effect, reported in previous experimental studies. The trend observed in inorganic nanostructures is recurrent and robustly transferable to charged protein interfaces. A thorough comparison of ATP's cryoprotective activity with traditionally known biological cryoprotectants (glycine and betaine) reveals ATP's greater efficiency. In retrospect, our findings highlight ATP's additional biological role in cryopreservation, expanding its potential biomedical applications by offering effective protection of cells from cryoinjuries and avoiding the significant challenges associated with the toxicity of organic cryoprotectants.
Collapse
Affiliation(s)
- Susmita Sarkar
- Center for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500046, India
| | - Rayantan Sadhukhan
- Center for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500046, India
| | - Nandita Mohandas
- Center for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500046, India
| | - Amogh K Ravi
- Center for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500046, India
| | - Tharangattu N Narayanan
- Center for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500046, India
| | - Jagannath Mondal
- Center for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500046, India
| |
Collapse
|
2
|
Jayasinghe MI, Patel KJ, Jackman JE. Thg1 family 3'-5' RNA polymerases as tools for targeted RNA synthesis. RNA (NEW YORK, N.Y.) 2024; 30:1315-1327. [PMID: 38997129 PMCID: PMC11404450 DOI: 10.1261/rna.080156.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024]
Abstract
Members of the 3'-5' RNA polymerase family, comprised of tRNAHis guanylyltransferase (Thg1) and Thg1-like proteins (TLPs), catalyze templated synthesis of RNA in the reverse direction to all other known 5'-3' RNA and DNA polymerases. The discovery of enzymes capable of this reaction raised the possibility of exploiting 3'-5' polymerases for posttranscriptional incorporation of nucleotides to the 5'-end of nucleic acids without ligation, and instead by templated polymerase addition. To date, studies of these enzymes have focused on nucleotide addition to highly structured RNAs, such as tRNA and other noncoding RNAs. Consequently, general principles of RNA substrate recognition and nucleotide preferences that might enable broader application of 3'-5' polymerases have not been elucidated. Here, we investigated the feasibility of using Thg1 or TLPs for multiple nucleotide incorporation to the 5'-end of a short duplex RNA substrate, using a templating RNA oligonucleotide provided in trans to guide 5'-end addition of specific sequences. Using optimized assay conditions, we demonstrated a remarkable capacity of certain TLPs to accommodate short RNA substrate-template duplexes of varying lengths with significantly high affinity, resulting in the ability to incorporate a desired nucleotide sequence of up to eight bases to 5'-ends of the model RNA substrates in a template-dependent manner. This work has further advanced our goals to develop this atypical enzyme family as a versatile nucleic acid 5'-end labeling tool.
Collapse
Affiliation(s)
- Malithi I Jayasinghe
- Department of Chemistry and Biochemistry and Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Krishna J Patel
- Department of Chemistry and Biochemistry and Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Jane E Jackman
- Department of Chemistry and Biochemistry and Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
3
|
Shen Q, Zhang SJ, Xu BH, Chen ZY, Peng F, Xiong N, Xue YP, Zheng YG. Semirational engineering of Cytophaga hutchinsonii polyphosphate kinase for developing a cost-effective, robust, and efficient adenosine 5'-triphosphate regeneration system. Appl Environ Microbiol 2023; 89:e0110623. [PMID: 37902313 PMCID: PMC10686093 DOI: 10.1128/aem.01106-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
IMPORTANCE The adenosine 5'-triphosphate (ATP) regeneration system can significantly reduce the cost of many biocatalytic processes. Numerous studies have endeavored to utilize the ATP regeneration system based on Cytophaga hutchinsonii PPK (ChPPK). However, the wild-type ChPPK enzyme possesses limitations such as low enzymatic activity, poor stability, and limited substrate tolerance, impeding its application in catalytic reactions. To enhance the performance of ChPPK, we employed a semi-rational design approach to obtain the variant ChPPK/A79G/S106C/I108F/L285P. The enzymatic kinetic parameters and the catalytic performance in the synthesis of nicotinamide mononucleotide demonstrated that the variant ChPPK/A79G/S106C/I108F/L285P exhibited superior enzymatic properties than the wild-type enzyme. All data indicated that our engineered ATP regeneration system holds inherent potential for implementation in biocatalytic processes.
Collapse
Affiliation(s)
- Qi Shen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Shi-Jia Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Bin-Hui Xu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Zhi-Yu Chen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Feng Peng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Neng Xiong
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Ya-Ping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
4
|
Goodall DJ, Warecka D, Hawkins M, Rudolph CJ. Interplay between chromosomal architecture and termination of DNA replication in bacteria. Front Microbiol 2023; 14:1180848. [PMID: 37434703 PMCID: PMC10331603 DOI: 10.3389/fmicb.2023.1180848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/05/2023] [Indexed: 07/13/2023] Open
Abstract
Faithful transmission of the genome from one generation to the next is key to life in all cellular organisms. In the majority of bacteria, the genome is comprised of a single circular chromosome that is normally replicated from a single origin, though additional genetic information may be encoded within much smaller extrachromosomal elements called plasmids. By contrast, the genome of a eukaryote is distributed across multiple linear chromosomes, each of which is replicated from multiple origins. The genomes of archaeal species are circular, but are predominantly replicated from multiple origins. In all three cases, replication is bidirectional and terminates when converging replication fork complexes merge and 'fuse' as replication of the chromosomal DNA is completed. While the mechanics of replication initiation are quite well understood, exactly what happens during termination is far from clear, although studies in bacterial and eukaryotic models over recent years have started to provide some insight. Bacterial models with a circular chromosome and a single bidirectional origin offer the distinct advantage that there is normally just one fusion event between two replication fork complexes as synthesis terminates. Moreover, whereas termination of replication appears to happen in many bacteria wherever forks happen to meet, termination in some bacterial species, including the well-studied bacteria Escherichia coli and Bacillus subtilis, is more restrictive and confined to a 'replication fork trap' region, making termination even more tractable. This region is defined by multiple genomic terminator (ter) sites, which, if bound by specific terminator proteins, form unidirectional fork barriers. In this review we discuss a range of experimental results highlighting how the fork fusion process can trigger significant pathologies that interfere with the successful conclusion of DNA replication, how these pathologies might be resolved in bacteria without a fork trap system and how the acquisition of a fork trap might have provided an alternative and cleaner solution, thus explaining why in bacterial species that have acquired a fork trap system, this system is remarkably well maintained. Finally, we consider how eukaryotic cells can cope with a much-increased number of termination events.
Collapse
Affiliation(s)
- Daniel J. Goodall
- Division of Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | | | | | - Christian J. Rudolph
- Division of Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| |
Collapse
|
5
|
Moianos D, Prifti GM, Makri M, Zoidis G. Targeting Metalloenzymes: The "Achilles' Heel" of Viruses and Parasites. Pharmaceuticals (Basel) 2023; 16:901. [PMID: 37375848 DOI: 10.3390/ph16060901] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Metalloenzymes are central to the regulation of a wide range of essential viral and parasitic functions, including protein degradation, nucleic acid modification, and many others. Given the impact of infectious diseases on human health, inhibiting metalloenzymes offers an attractive approach to disease therapy. Metal-chelating agents have been expansively studied as antivirals and antiparasitics, resulting in important classes of metal-dependent enzyme inhibitors. This review provides the recent advances in targeting the metalloenzymes of viruses and parasites that impose a significant burden on global public health, including influenza A and B, hepatitis B and C, and human immunodeficiency viruses as well as Trypanosoma brucei and Trypanosoma cruzi.
Collapse
Affiliation(s)
- Dimitrios Moianos
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Georgia-Myrto Prifti
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Maria Makri
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Grigoris Zoidis
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| |
Collapse
|
6
|
Abstract
DNA polymerase beta (Pol β) is a 39 kD vertebrate polymerase that lacks proofreading ability, yet still maintains a moderate fidelity of DNA synthesis. Pol β is a key enzyme that functions in the base excision repair and non-homologous end joining pathways of DNA repair. Mechanisms of fidelity for Pol β are still being elucidated but are likely to involve dynamic conformational motions of the enzyme upon its binding to DNA and deoxynucleoside triphosphates. Recent studies have linked germline and somatic variants of Pol β with cancer and autoimmunity. These variants induce genomic instability by a number of mechanisms, including error-prone DNA synthesis and accumulation of single nucleotide gaps that lead to replication stress. Here, we review the structure and function of Pol β, and we provide insights into how structural changes in Pol β variants may contribute to genomic instability, mutagenesis, disease, cancer development, and impacts on treatment outcomes.
Collapse
Affiliation(s)
- Danielle L Sawyer
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ
| | - Joann B Sweasy
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ
| |
Collapse
|
7
|
Kumar S, Verma A, Yadav P, Dubey SK, Azhar EI, Maitra SS, Dwivedi VD. Molecular pathogenesis of Japanese encephalitis and possible therapeutic strategies. Arch Virol 2022; 167:1739-1762. [PMID: 35654913 PMCID: PMC9162114 DOI: 10.1007/s00705-022-05481-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 03/10/2022] [Indexed: 12/26/2022]
Abstract
Japanese encephalitis virus (JEV), a single-stranded, enveloped RNA virus, is a health concern across Asian countries, associated with severe neurological disorders, especially in children. Primarily, pigs, bats, and birds are the natural hosts for JEV, but humans are infected incidentally. JEV requires a few host proteins for its entry and replication inside the mammalian host cell. The endoplasmic reticulum (ER) plays a significant role in JEV genome replication and assembly. During this process, the ER undergoes stress due to its remodelling and accumulation of viral particles and unfolded proteins, leading to an unfolded protein response (UPR). Here, we review the overall strategy used by JEV to infect the host cell and various cytopathic effects caused by JEV infection. We also highlight the role of JEV structural proteins (SPs) and non-structural proteins (NSPs) at various stages of the JEV life cycle that are involved in up- and downregulation of different host proteins and are potentially relevant for developing efficient therapeutic drugs.
Collapse
Affiliation(s)
- Sanjay Kumar
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067 India
- Center for Bioinformatics, Computational and Systems Biology, Pathfinder Research and Training Foundation, Greater Noida, India
| | - Akanksha Verma
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Pardeep Yadav
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh 201310 India
- Center for Bioinformatics, Computational and Systems Biology, Pathfinder Research and Training Foundation, Greater Noida, India
| | | | - Esam Ibraheem Azhar
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - S. S. Maitra
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Vivek Dhar Dwivedi
- Center for Bioinformatics, Computational and Systems Biology, Pathfinder Research and Training Foundation, Greater Noida, India
| |
Collapse
|
8
|
Zhou Z, Zhang J, Zhou E, Ren C, Wang J, Wang Y. Small molecule NS5B RdRp non-nucleoside inhibitors for the treatment of HCV infection: A medicinal chemistry perspective. Eur J Med Chem 2022; 240:114595. [PMID: 35868125 DOI: 10.1016/j.ejmech.2022.114595] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 02/06/2023]
Abstract
Hepatitis C virus (HCV) infection has become a global health problem with enormous risks. Nonstructural protein 5B (NS5B) RNA-dependent RNA polymerase (RdRp) is a component of HCV, which can promote the formation of the viral RNA replication complex and is also an essential part of the replication complex itself. It plays a vital role in the synthesis of the positive and negative strands of HCV RNA. Therefore, the development of small-molecule inhibitors targeting NS5B RdRp is of great value for treating HCV infection-related diseases. Compared with NS5B RdRp nucleoside inhibitors, non-nucleoside inhibitors have more flexible structures, simpler mechanisms of action, and more predictable efficacy and safety of drugs in humans. Technological advances over the past decade have led to remarkable achievements in developing NS5B RdRp inhibitors. This review will summarize the non-nucleoside inhibitors targeting NS5B RdRp developed in the past decade and describe their structure optimization process and structure-activity relationship.
Collapse
Affiliation(s)
- Zhilan Zhou
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jifa Zhang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Tianfu Jincheng Laboratory, Chengdu, 610041, Sichuan, China
| | - Enda Zhou
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Changyu Ren
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu, Sichuan, 611130, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, Tennessee, United States
| | - Yuxi Wang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Tianfu Jincheng Laboratory, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
9
|
Cao Y, Aimaiti A, Zhu Z, Zhou L, Ye D. Discovery of Novel 3-Hydroxyquinazoline-2,4(1 H,3 H)-Dione Derivatives: A Series of Metal Ion Chelators with Potent Anti-HCV Activities. Int J Mol Sci 2022; 23:ijms23115930. [PMID: 35682608 PMCID: PMC9180926 DOI: 10.3390/ijms23115930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 11/16/2022] Open
Abstract
Millions of people worldwide suffer from acute or chronic liver inflammation caused by the hepatitis C virus (HCV). Metal ion chelators have achieved widespread success in the development of antiviral drugs. Some inhibitors with metal ion chelating structures have been proven to have good inhibitory activities on non-structural protein 5B (NS5B) polymerase. However, most of the reported metal ion chelators showed poor anti-HCV potency at the cellular level. Hence, we designed and synthesized a series of 3-hydroxyquinazoline-2,4(1H,3H)-dione derivatives with novel metal ion chelating structures. Typical compounds such as 21h, 21k, and 21t showed better anti-HCV activities than ribavirin with EC50 values less than 10 μM. 21t is currently known as one of the metal ion chelators with the best anti-HCV potency (EC50 = 2.0 μM) at the cellular level and has a better therapeutic index (TI > 25) as compared to ribavirin and the reported compound 6. In the thermal shift assay, the representative compounds 21e and 21k increased the melting temperature (Tm) of NS5B protein solution by 1.6 °C and 2.1 °C, respectively, at the test concentration, indicating that these compounds may exert an anti-HCV effect by targeting NS5B. This speculation was also supported by our molecular docking studies and ultraviolet-visible (UV-Vis) spectrophotometry assay, in which the possibility of binding of 3-hydroxyquinazoline-2,4(1H,3H)-diones with Mg2+ in the NS5B catalytic center was observed.
Collapse
Affiliation(s)
- Yang Cao
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Rd, Shanghai 201203, China; (Y.C.); (Z.Z.)
| | - Abudumijiti Aimaiti
- Shanghai Medical College, Fudan University, 130 Dongan Rd, Shanghai 200032, China;
| | - Zeyun Zhu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Rd, Shanghai 201203, China; (Y.C.); (Z.Z.)
| | - Lu Zhou
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Rd, Shanghai 201203, China; (Y.C.); (Z.Z.)
- Correspondence: (L.Z.); (D.Y.)
| | - Deyong Ye
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Rd, Shanghai 201203, China; (Y.C.); (Z.Z.)
- Correspondence: (L.Z.); (D.Y.)
| |
Collapse
|
10
|
The Role of Natural Polymorphic Variants of DNA Polymerase β in DNA Repair. Int J Mol Sci 2022; 23:ijms23042390. [PMID: 35216513 PMCID: PMC8877055 DOI: 10.3390/ijms23042390] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 11/17/2022] Open
Abstract
DNA polymerase β (Polβ) is considered the main repair DNA polymerase involved in the base excision repair (BER) pathway, which plays an important part in the repair of damaged DNA bases usually resulting from alkylation or oxidation. In general, BER involves consecutive actions of DNA glycosylases, AP endonucleases, DNA polymerases, and DNA ligases. It is known that protein-protein interactions of Polβ with enzymes from the BER pathway increase the efficiency of damaged base repair in DNA. However natural single-nucleotide polymorphisms can lead to a substitution of functionally significant amino acid residues and therefore affect the catalytic activity of the enzyme and the accuracy of Polβ action. Up-to-date databases contain information about more than 8000 SNPs in the gene of Polβ. This review summarizes data on the in silico prediction of the effects of Polβ SNPs on DNA repair efficacy; available data on cancers associated with SNPs of Polβ; and experimentally tested variants of Polβ. Analysis of the literature indicates that amino acid substitutions could be important for the maintenance of the native structure of Polβ and contacts with DNA; others affect the catalytic activity of the enzyme or play a part in the precise and correct attachment of the required nucleotide triphosphate. Moreover, the amino acid substitutions in Polβ can disturb interactions with enzymes involved in BER, while the enzymatic activity of the polymorphic variant may not differ significantly from that of the wild-type enzyme. Therefore, investigation regarding the effect of Polβ natural variants occurring in the human population on enzymatic activity and protein-protein interactions is an urgent scientific task.
Collapse
|
11
|
Patel KJ, Yourik P, Jackman JE. Fidelity of base-pair recognition by a 3'-5' polymerase: mechanism of the Saccharomyces cerevisiae tRNA His guanylyltransferase. RNA (NEW YORK, N.Y.) 2021; 27:683-693. [PMID: 33790044 PMCID: PMC8127993 DOI: 10.1261/rna.078686.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
The tRNAHis guanylyltransferase (Thg1) was originally discovered in Saccharomyces cerevisiae where it catalyzes 3'-5' addition of a single nontemplated guanosine (G-1) to the 5' end of tRNAHis In addition to this activity, S. cerevisiae Thg1 (SceThg1) also catalyzes 3'-5' polymerization of Watson-Crick (WC) base pairs, utilizing nucleotides in the 3'-end of a tRNA as the template for addition. Subsequent investigation revealed an entire class of enzymes related to Thg1, called Thg1-like proteins (TLPs). TLPs are found in all three domains of life and preferentially catalyze 3'-5' polymerase activity, utilizing this unusual activity to repair tRNA, among other functions. Although both Thg1 and TLPs utilize the same chemical mechanism, the molecular basis for differences between WC-dependent (catalyzed by Thg1 and TLPs) and non-WC-dependent (catalyzed exclusively by Thg1) reactions has not been fully elucidated. Here we investigate the mechanism of base-pair recognition by 3'-5' polymerases using transient kinetic assays, and identify Thg1-specific residues that play a role in base-pair discrimination. We reveal that, regardless of the identity of the opposing nucleotide in the RNA "template," addition of a non-WC G-1 residue is driven by a unique kinetic preference for GTP. However, a secondary preference for forming WC base pairs is evident for all possible templating residues. Similar to canonical 5'-3' polymerases, nucleotide addition by SceThg1 is driven by the maximal rate rather than by NTP substrate affinity. Together, these data provide new insights into the mechanism of base-pair recognition by 3'-5' polymerases.
Collapse
Affiliation(s)
- Krishna J Patel
- Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Paul Yourik
- Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Jane E Jackman
- Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
12
|
Ullah S, Ali M, Shaheen A, Zia F, Rahman L, Rahman S, Ali H, Din M, Waris A, Shinwari ZK. Sofosbuvir Resistance-associated Substitutions in the Palm Domain of HCV-NS5B RNA Dependent RNA Polymerase; Study of two Sofosbuvir non-responders. Int J Infect Dis 2021:S1201-9712(21)00426-4. [PMID: 34000421 DOI: 10.1016/j.ijid.2021.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE In current study we performed sequencing of palm domain of HCV-NS5B gene, its ancestral analysis along with amino acids substitution analysis. These analysis were done to find the molecular basis of the viral resistance against Sofosbuvir drug. METHODS Blood samples from individuals with chronic Hepatitis C infection that were resistant to Sofosbuvir were collected. The samples were processed for their molecular characterization that included RNA extraction, Complementary DNA (cDNA) synthesize, nested PCR, gel elution, Sequencing, ancestral and 3D structure analysis. RESULTS Evolutionary analysis revealed that current study sequences (QAU-01, QAU-02) clustered with a previously studied sequence, KY971494.1. Moreover, we reports multiple novel amino acid substitutions in the palm domain of NS5B gene such as Ile116Val, Asn117Gly, Glu246Ala, Val252Ala, Glu258Gln, Cys262Leu, Ser269Arg, Ala272Thr, Ile293Leu, Lys304Arg, Asn307Gly, Ala338Val and Arg345Gly in our query sequence (QAU-01). At 246 and 269 position in (QAU-02), no substitution was observed. CONCLUSIONS We have noticed that the current sequences are relatively emerging and could have been originated from aforementioned sequence recently. Based on the current results, we suggests that these substitutions could be associated with structural or functional impairment of protein and could also be may be considered as resistance associated substitutions (RAS) to Sofosbuvir drug.
Collapse
Affiliation(s)
- Sana Ullah
- Department of Biotechnology, Quaid-i-Azam University Islamabad, 45320, Pakistan.
| | - Muhammad Ali
- Department of Biotechnology, Quaid-i-Azam University Islamabad, 45320, Pakistan.
| | - Asmat Shaheen
- Department of Biochemistry, Khyber Medical University-Institute of Medical Sciences, Kohat, Pakistan.
| | - Fatima Zia
- Department of Biotechnology, Quaid-i-Azam University Islamabad, 45320, Pakistan.
| | - Lubna Rahman
- Department of Biotechnology, Quaid-i-Azam University Islamabad, 45320, Pakistan.
| | - Sidra Rahman
- Department of Biotechnology, Quaid-i-Azam University Islamabad, 45320, Pakistan.
| | - Hammad Ali
- Department of Biotechnology, Quaid-i-Azam University Islamabad, 45320, Pakistan.
| | - Misbahud Din
- Department of Biotechnology, Quaid-i-Azam University Islamabad, 45320, Pakistan.
| | - Abdul Waris
- Department of Biotechnology, Quaid-i-Azam University Islamabad, 45320, Pakistan.
| | - Zabta Khan Shinwari
- Department of Plant Sciences, Quaid-i-Azam University Islamabad, 45320, Pakistan.
| |
Collapse
|
13
|
Swift RP, Rajaram K, Keutcha C, Liu HB, Kwan B, Dziedzic A, Jedlicka AE, Prigge ST. The NTP generating activity of pyruvate kinase II is critical for apicoplast maintenance in Plasmodium falciparum. eLife 2020; 9:e50807. [PMID: 32815516 PMCID: PMC7556864 DOI: 10.7554/elife.50807] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 08/20/2020] [Indexed: 12/20/2022] Open
Abstract
The apicoplast of Plasmodium falciparum parasites is believed to rely on the import of three-carbon phosphate compounds for use in organelle anabolic pathways, in addition to the generation of energy and reducing power within the organelle. We generated a series of genetic deletions in an apicoplast metabolic bypass line to determine which genes involved in apicoplast carbon metabolism are required for blood-stage parasite survival and organelle maintenance. We found that pyruvate kinase II (PyrKII) is essential for organelle maintenance, but that production of pyruvate by PyrKII is not responsible for this phenomenon. Enzymatic characterization of PyrKII revealed activity against all NDPs and dNDPs tested, suggesting that it may be capable of generating a broad range of nucleotide triphosphates. Conditional mislocalization of PyrKII resulted in decreased transcript levels within the apicoplast that preceded organelle disruption, suggesting that PyrKII is required for organelle maintenance due to its role in nucleotide triphosphate generation.
Collapse
Affiliation(s)
- Russell P Swift
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public HealthBaltimoreUnited States
| | - Krithika Rajaram
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public HealthBaltimoreUnited States
| | - Cyrianne Keutcha
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public HealthBaltimoreUnited States
| | - Hans B Liu
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public HealthBaltimoreUnited States
| | - Bobby Kwan
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public HealthBaltimoreUnited States
| | - Amanda Dziedzic
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public HealthBaltimoreUnited States
| | - Anne E Jedlicka
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public HealthBaltimoreUnited States
| | - Sean T Prigge
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public HealthBaltimoreUnited States
| |
Collapse
|
14
|
Polymerase Activity, Protein-Protein Interaction, and Cellular Localization of the Usutu Virus NS5 Protein. Antimicrob Agents Chemother 2019; 64:AAC.01573-19. [PMID: 31685463 PMCID: PMC7187600 DOI: 10.1128/aac.01573-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/23/2019] [Indexed: 12/31/2022] Open
Abstract
Usutu virus (USUV) has become increasingly relevant in recent years, with large outbreaks that sporadically have affected humans being reported in wildlife. Similarly to the rest of flaviviruses, USUV contains a positive-sense single-stranded RNA genome which is replicated by the activity of nonstructural protein 5 (NS5). USUV NS5 shows high sequence identity with the remaining viruses in this genus. This permitted us to identify the predicted methyltransferase domain and the RNA-dependent RNA polymerase domain (RdRpD). Owing to their high degree of conservation, viral polymerases are considered priority targets for the development of antiviral compounds. In the present study, we cloned and expressed the entire NS5 and the RdRpD in a heterologous system and used purified preparations for protein characterizations. We determined the optimal reaction conditions by investigating how variations in different physicochemical parameters, such as buffer concentration, temperature, and pH, affect RNA polymerization activity. We also found that USUV polymerase, but not the full-length NS5, exhibits cooperative activity in the synthesis of RNA and that the RdRp activity is not inhibited by sofosbuvir. To further examine the characteristics of USUV polymerase in a more specifically biological context, we have expressed NS5 and the RdRpD in eukaryotic cells and analyzed their subcellular location. NS5 is predominantly found in the cytoplasm; a significant proportion is directed to the nucleus, and this translocation involves nuclear location signals (NLS) located at least between the MTase and RdRpD domains.
Collapse
|
15
|
El-Hassab MAEM, El-Bastawissy EE, El-Moselhy TF. Identification of potential inhibitors for HCV NS5b of genotype 4a by combining dynamic simulation, protein-ligand interaction fingerprint, 3D pharmacophore, docking and 3D QSAR. J Biomol Struct Dyn 2019; 38:4521-4535. [PMID: 31647392 DOI: 10.1080/07391102.2019.1685005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
HCV NS5B polymerase has been one of the most attractive targets for developing new drugs for HCV infection and many drugs were successfully developed, but all of them were designed for targeting Hepatitis C Virus genotype 1 (HCV GT1). Hepatitis C virus genotype 4a (HCV GT4a) dominant in Egypt has paid less attention. Here, we describe our protocol of virtual screening in identification of novel potential potent inhibitors for HCV NS5B polymerase of GT4a using homology modeling, protein-ligand interaction fingerprint (PLIF), docking, pharmacophore, and 3D CoMFA quantitative structure activity relationship (QSAR). Firstly, a high-quality 3D model of HCV NS5B polymerase of GT4a was constructed using crystal structure of HCV NS5B polymerase of GT1 (PDB ID: 3hkw) as a template. Then, both the model and the template were simulated to compare conformational stability. PLIF was generated using five crystal structures of HCV NS5B (PDB ID: 4mia, 4mib, 4mk9, 4mka, and 4mkb), which revealed the most important residues and their interactions with the co-crystalized ligands. After that, a 3D pharmacophore model was developed from the generated PLIF data and then used as a screening filter for 17000328 drug-like zinc database compounds. 900 compounds passed the pharmacophore filter and entered the docking-based virtual screening stage. Finally, a 3D CoMFA QSAR was developed using 42 compounds as a training and 19 compounds as a test set. The 3D CoMFA QSAR was used to design and screen some potential inhibitors, these compounds were further evaluated by the docking stage. The highest ranked five hits from docking result (compounds (p1-p4) and compound q1) were selected for further analysis.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | | | - Tarek Fathy El-Moselhy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Gharbia, Egypt
| |
Collapse
|
16
|
Smertina E, Urakova N, Strive T, Frese M. Calicivirus RNA-Dependent RNA Polymerases: Evolution, Structure, Protein Dynamics, and Function. Front Microbiol 2019; 10:1280. [PMID: 31244803 PMCID: PMC6563846 DOI: 10.3389/fmicb.2019.01280] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/22/2019] [Indexed: 12/11/2022] Open
Abstract
The Caliciviridae are viruses with a positive-sense, single-stranded RNA genome that is packaged into an icosahedral, environmentally stable protein capsid. The family contains five genera (Norovirus, Nebovirus, Sapovirus, Lagovirus, and Vesivirus) that infect vertebrates including amphibians, reptiles, birds, and mammals. The RNA-dependent RNA polymerase (RdRp) replicates the genome of RNA viruses and can speed up evolution due to its error-prone nature. Studying calicivirus RdRps in the context of genuine virus replication is often hampered by a lack of suitable model systems. Enteric caliciviruses and RHDV in particular are notoriously difficult to propagate in cell culture; therefore, molecular studies of replication mechanisms are challenging. Nevertheless, research on recombinant proteins has revealed several unexpected characteristics of calicivirus RdRps. For example, the RdRps of RHDV and related lagoviruses possess the ability to expose a hydrophobic motif, to rearrange Golgi membranes, and to copy RNA at unusually high temperatures. This review is focused on the structural dynamics, biochemical properties, kinetics, and putative interaction partners of these RdRps. In addition, we discuss the possible existence of a conserved but as yet undescribed structural element that is shared amongst the RdRps of all caliciviruses.
Collapse
Affiliation(s)
- Elena Smertina
- Commonwealth Scientific and Industrial Research Organisation, Health and Biosecurity, Canberra, ACT, Australia
- Faculty of Science and Technology, University of Canberra, Canberra, ACT, Australia
| | - Nadya Urakova
- Department of Entomology, Pennsylvania State University, University Park, PA, United States
| | - Tanja Strive
- Commonwealth Scientific and Industrial Research Organisation, Health and Biosecurity, Canberra, ACT, Australia
- Invasive Animals Cooperative Research Centre, University of Canberra, Canberra, ACT, Australia
| | - Michael Frese
- Faculty of Science and Technology, University of Canberra, Canberra, ACT, Australia
| |
Collapse
|
17
|
Green MR, Sambrook J. Polymerase Chain Reaction. Cold Spring Harb Protoc 2019; 2019:2019/6/pdb.top095109. [PMID: 31160389 DOI: 10.1101/pdb.top095109] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The polymerase chain reaction (PCR) underlies almost all of modern molecular cloning. Using PCR, a defined target sequence that occurs once within a DNA of high complexity and large size-an entire mammalian genome, for example-can be rapidly and selectively amplified in a quasi-exponential chain reaction that generates millions of copies. The reaction is simple to set up, cheap, and undemanding, the only requirement being some knowledge of the nucleotide sequences of the target. In addition to its simplicity, PCR is robust, speedy, flexible, and sensitive.
Collapse
|
18
|
The Role of 3' to 5' Reverse RNA Polymerization in tRNA Fidelity and Repair. Genes (Basel) 2019; 10:genes10030250. [PMID: 30917604 PMCID: PMC6471195 DOI: 10.3390/genes10030250] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 12/16/2022] Open
Abstract
The tRNAHis guanylyltransferase (Thg1) superfamily includes enzymes that are found in all three domains of life that all share the common ability to catalyze the 3′ to 5′ synthesis of nucleic acids. This catalytic activity, which is the reverse of all other known DNA and RNA polymerases, makes this enzyme family a subject of biological and mechanistic interest. Previous biochemical, structural, and genetic investigations of multiple members of this family have revealed that Thg1 enzymes use the 3′ to 5′ chemistry for multiple reactions in biology. Here, we describe the current state of knowledge regarding the catalytic features and biological functions that have been so far associated with Thg1 and its homologs. Progress toward the exciting possibility of utilizing this unusual protein activity for applications in biotechnology is also discussed.
Collapse
|
19
|
Döring J, Hurek T. Dual coding potential of a 2',5'-branched ribonucleotide in DNA. RNA (NEW YORK, N.Y.) 2019; 25:105-120. [PMID: 30361268 PMCID: PMC6298571 DOI: 10.1261/rna.068486.118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/15/2018] [Indexed: 06/08/2023]
Abstract
Branchpoints in RNA templates are highly mutagenic, but it is not known yet whether this also applies to branchpoints in DNA templates. Here, we report how nucleic acid polymerases replicate a 2',5'-branched DNA (bDNA) molecule. We constructed long-chained bDNA templates containing a branch guanosine and T7 promoters at both arms by splinted ligation. Quantitative real-time PCR analysis was used to investigate whether a branchpoint blocks DNA synthesis from the two arms in the same manner. We find that the blocking effect of a branchpoint is arm-specific. DNA synthesis from the 2'-arm is more than 20,000-fold decreased, whereas from the 3'-arm only 15-fold. Our sequence analysis of full-length nucleic acid generated by Taq DNA polymerase, Moloney murine leukemia virus reverse transcriptase, and T7 RNA polymerase from the 2'-arm of bDNA shows that the branched guanine has a dual coding potential and can base-pair with cytosine and guanine. We find that branchpoint templating is influenced by the type of the surrounding nucleic acid and is probably modulated by polymerase and RNase H active sites. We show that the branchpoint bypass by the polymerases from the 3'-arm of bDNA is predominantly error-free, indicating that bDNA is not as highly mutagenic as 2',5'-branched RNA.
Collapse
Affiliation(s)
- Jessica Döring
- Department of Microbe-Plant Interactions, CBIB (Center for Biomolecular Interactions Bremen), University of Bremen, D-28334 Bremen, Germany
| | - Thomas Hurek
- Department of Microbe-Plant Interactions, CBIB (Center for Biomolecular Interactions Bremen), University of Bremen, D-28334 Bremen, Germany
| |
Collapse
|
20
|
DNA synthesis from diphosphate substrates by DNA polymerases. Proc Natl Acad Sci U S A 2018; 115:980-985. [PMID: 29339523 DOI: 10.1073/pnas.1712193115] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The activity of DNA polymerase underlies numerous biotechnologies, cell division, and therapeutics, yet the enzyme remains incompletely understood. We demonstrate that both thermostable and mesophilic DNA polymerases readily utilize deoxyribonucleoside diphosphates (dNDPs) for DNA synthesis and inorganic phosphate for the reverse reaction, that is, phosphorolysis of DNA. For Taq DNA polymerase, the KMs of the dNDP and phosphate substrates are ∼20 and 200 times higher than for dNTP and pyrophosphate, respectively. DNA synthesis from dNDPs is about 17 times slower than from dNTPs, and DNA phosphorolysis about 200 times less efficient than pyrophosphorolysis. Such parameters allow DNA replication without requiring coupled metabolism to sequester the phosphate products, which consequently do not pose a threat to genome stability. This mechanism contrasts with DNA synthesis from dNTPs, which yield high-energy pyrophosphates that have to be hydrolyzed to phosphates to prevent the reverse reaction. Because the last common ancestor was likely a thermophile, dNDPs are plausible substrates for genome replication on early Earth and may represent metabolic intermediates later replaced by the higher-energy triphosphates.
Collapse
|
21
|
Alnajjar KS, Garcia-Barboza B, Negahbani A, Nakhjiri M, Kashemirov B, McKenna C, Goodman MF, Sweasy JB. A Change in the Rate-Determining Step of Polymerization by the K289M DNA Polymerase β Cancer-Associated Variant. Biochemistry 2017; 56:2096-2105. [PMID: 28326765 DOI: 10.1021/acs.biochem.6b01230] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
K289M is a variant of DNA polymerase β (pol β) that has previously been identified in colorectal cancer. The expression of this variant leads to a 16-fold increase in mutation frequency at a specific site in vivo and a reduction in fidelity in vitro in a sequence context-specific manner. Previous work shows that this reduction in fidelity results from a decreased level of discrimination against incorrect nucleotide incorporation at the level of polymerization. To probe the transition state of the K289M mutator variant of pol β, single-turnover kinetic experiments were performed using β,γ-CXY dGTP analogues with a wide range of leaving group monoacid dissociation constants (pKa4), including a corresponding set of novel β,γ-CXY dCTP analogues. Surprisingly, we found that the values of the log of the catalytic rate constant (kpol) for correct insertion by K289M, in contrast to those of wild-type pol β, do not decrease with increased leaving group pKa4 for analogues with pKa4 values of <11. This suggests that one of the relative rate constants differs for the K289M reaction in comparison to that of the wild type (WT). However, a plot of log(kpol) values for incorrect insertion by K289M versus pKa4 reveals a linear correlation with a negative slope, in this respect resembling kpol values for misincorporation by the WT enzyme. We also show that some of these analogues improve the fidelity of K289M. Taken together, our data show that Lys289 critically influences the catalytic pathway of pol β.
Collapse
Affiliation(s)
- Khadijeh S Alnajjar
- Department of Therapeutic Radiology and Department of Genetics, Yale University School of Medicine , New Haven, Connecticut 06520, United States
| | - Beatriz Garcia-Barboza
- Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States
| | - Amirsoheil Negahbani
- Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States
| | - Maryam Nakhjiri
- Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States
| | - Boris Kashemirov
- Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States
| | - Charles McKenna
- Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States
| | - Myron F Goodman
- Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States
| | - Joann B Sweasy
- Department of Therapeutic Radiology and Department of Genetics, Yale University School of Medicine , New Haven, Connecticut 06520, United States
| |
Collapse
|
22
|
da Fonseca NJ, Lima Afonso MQ, Pedersolli NG, de Oliveira LC, Andrade DS, Bleicher L. Sequence, structure and function relationships in flaviviruses as assessed by evolutive aspects of its conserved non-structural protein domains. Biochem Biophys Res Commun 2017; 492:565-571. [PMID: 28087275 DOI: 10.1016/j.bbrc.2017.01.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 01/09/2017] [Indexed: 10/20/2022]
Abstract
Flaviviruses are responsible for serious diseases such as dengue, yellow fever, and zika fever. Their genomes encode a polyprotein which, after cleavage, results in three structural and seven non-structural proteins. Homologous proteins can be studied by conservation and coevolution analysis as detected in multiple sequence alignments, usually reporting positions which are strictly necessary for the structure and/or function of all members in a protein family or which are involved in a specific sub-class feature requiring the coevolution of residue sets. This study provides a complete conservation and coevolution analysis on all flaviviruses non-structural proteins, with results mapped on all well-annotated available sequences. A literature review on the residues found in the analysis enabled us to compile available information on their roles and distribution among different flaviviruses. Also, we provide the mapping of conserved and coevolved residues for all sequences currently in SwissProt as a supplementary material, so that particularities in different viruses can be easily analyzed.
Collapse
Affiliation(s)
- Néli José da Fonseca
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos, 6627, Belo Horizonte, 31270-901, Brazil.
| | - Marcelo Querino Lima Afonso
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos, 6627, Belo Horizonte, 31270-901, Brazil.
| | - Natan Gonçalves Pedersolli
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos, 6627, Belo Horizonte, 31270-901, Brazil.
| | - Lucas Carrijo de Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos, 6627, Belo Horizonte, 31270-901, Brazil.
| | - Dhiego Souto Andrade
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos, 6627, Belo Horizonte, 31270-901, Brazil.
| | - Lucas Bleicher
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos, 6627, Belo Horizonte, 31270-901, Brazil.
| |
Collapse
|
23
|
Laponogov I, Pan XS, Veselkov DA, Cirz RT, Wagman A, Moser HE, Fisher LM, Sanderson MR. Exploring the active site of the Streptococcus pneumoniae topoisomerase IV-DNA cleavage complex with novel 7,8-bridged fluoroquinolones. Open Biol 2016; 6:rsob.160157. [PMID: 27655731 PMCID: PMC5043579 DOI: 10.1098/rsob.160157] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/26/2016] [Indexed: 12/16/2022] Open
Abstract
As part of a programme of synthesizing and investigating the biological properties of new fluoroquinolone antibacterials and their targeting of topoisomerase IV from Streptococcus pneumoniae, we have solved the X-ray structure of the complexes of two new 7,8-bridged fluoroquinolones (with restricted C7 group rotation favouring tight binding) in complex with the topoisomerase IV from S. pneumoniae and an 18-base-pair DNA binding site—the E-site—found by our DNA mapping studies to bind drug strongly in the presence of topoisomerase IV (Leo et al. 2005 J. Biol. Chem.280, 14 252–14 263, doi:10.1074/jbc.M500156200). Although the degree of antibiotic resistance towards fluoroquinolones is much lower than that of β-lactams and a range of ribosome-bound antibiotics, there is a pressing need to increase the diversity of members of this successful clinically used class of drugs. The quinolone moiety of the new 7,8-bridged agents ACHN-245 and ACHN-454 binds similarly to that of clinafloxocin, levofloxacin, moxifloxacin and trovofloxacin but the cyclic scaffold offers the possibility of chemical modification to produce interactions with other topoisomerase residues at the active site.
Collapse
Affiliation(s)
- Ivan Laponogov
- Randall Division of Cell and Molecular Biophysics, King's College, Guy's Campus, London Bridge, London SE1 1UL, UK Molecular and Clinical Sciences Research Institute, St George's, University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Xiao-Su Pan
- Molecular and Clinical Sciences Research Institute, St George's, University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Dennis A Veselkov
- Randall Division of Cell and Molecular Biophysics, King's College, Guy's Campus, London Bridge, London SE1 1UL, UK
| | - Ryan T Cirz
- Achaogen, 7000 Shoreline Ct. No. 371, San Francisco, CA 94080, USA
| | - Allan Wagman
- Achaogen, 7000 Shoreline Ct. No. 371, San Francisco, CA 94080, USA
| | - Heinz E Moser
- Achaogen, 7000 Shoreline Ct. No. 371, San Francisco, CA 94080, USA
| | - L Mark Fisher
- Molecular and Clinical Sciences Research Institute, St George's, University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Mark R Sanderson
- Randall Division of Cell and Molecular Biophysics, King's College, Guy's Campus, London Bridge, London SE1 1UL, UK
| |
Collapse
|
24
|
Abstract
Hantaviruses are emerging zoonotic pathogens that belong to the Bunyaviridae family. They have been classified as category A pathogens by CDC (centers for disease control and prevention). Hantaviruses pose a serious threat to human health because their infection causes two highly fatal diseases, hemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome (HCPS). These pathogens are transmitted to humans through aerosolized excreta of their infected rodent hosts. Hantaviruses have a tripartite-segmented negative-sense RNA genome. The three genomic RNA segments, S, M, and L, encode a nucleocapsid protein (N), a precursor glycoprotein that is processed into two envelope glycoproteins (Gn and Gc) and the viral RNA-dependent RNA polymerase (RdRp), respectively. N protein is the major structural component of the virus, its main function is to protect and encapsidate the three genomic RNAs forming three viral ribonucleocapsids. Recent studies have proposed that N in conjunction with RdRp plays important roles in the transcription and replication of viral genome. In addition, N preferentially facilitates the translation of viral mRNA in cells. Glycoproteins, Gn and Gc, play major roles in viral attachment and entry to the host cells, virulence, and assembly and packaging of new virions in infected cells. RdRp functions as RNA replicase and transcriptase to replicate and transcribe the viral RNA and is also thought to have endonuclease activity. Currently, no antiviral therapy or vaccine is available for the treatment of hantavirus-associated diseases. Understanding the molecular details of hantavirus life cycle will help in the identification of targets for antiviral therapeutics and in the design of potential antiviral drug for the treatment of HFRS and HCPS. Due to the alarming fatality of hantavirus diseases, development of an effective vaccine against hantaviruses is a necessity.
Collapse
|
25
|
Cameron CE, Moustafa IM, Arnold JJ. Fidelity of Nucleotide Incorporation by the RNA-Dependent RNA Polymerase from Poliovirus. Enzymes 2016; 39:293-323. [PMID: 27241934 DOI: 10.1016/bs.enz.2016.02.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Using poliovirus (PV) and its RNA-dependent RNA polymerase (RdRp) as our primary model system, we have advanced knowledge fundamental to the chemistry and fidelity of nucleotide addition by nucleic acid polymerase. Two fidelity checkpoints exist prior to nucleotide addition. The first toggles the enzyme between a nucleotide binding-occluded state and a nucleotide binding-competent state. The second represents an ensemble of conformational states of conserved structural motifs that permits retention of the incoming nucleotide in a state competent for phosphoryl transfer long enough for chemistry to occur. Nucleophilic attack of the alpha-phosphorous atom of the incoming nucleotide produces a pentavalent transition state, collapse of which is facilitated by protonation of the pyrophosphate leaving group by a general acid. All of the relevant conformational states of the enzyme are controlled by a network of interacting residues that permits remote-site residues to control active-site function. The current state of the art for PV RdRp enzymology is such that mechanisms governing fidelity of this enzyme can now be targeted genetically and chemically for development of attenuated viruses and antiviral agents, respectively. Application of the knowledge obtained with the PV RdRp to the development of vaccines and antivirals for emerging RNA viruses represents an important goal for the future.
Collapse
Affiliation(s)
- C E Cameron
- The Pennsylvania State University, University Park, PA, United States.
| | - I M Moustafa
- The Pennsylvania State University, University Park, PA, United States
| | - J J Arnold
- The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
26
|
A Complex Network of Interactions between S282 and G283 of Hepatitis C Virus Nonstructural Protein 5B and the Template Strand Affects Susceptibility to Sofosbuvir and Ribavirin. Antimicrob Agents Chemother 2016; 60:2018-27. [PMID: 26824949 DOI: 10.1128/aac.02436-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 01/05/2016] [Indexed: 01/17/2023] Open
Abstract
The hepatitis C virus (HCV) RNA-dependent RNA-polymerase NS5B is essentially required for viral replication and serves as a prominent drug target. Sofosbuvir is a prodrug of a nucleotide analog that interacts selectively with NS5B and has been approved for HCV treatment in combination with ribavirin. Although the emergence of resistance to sofosbuvir is rarely seen in the clinic, the S282T mutation was shown to decrease susceptibility to this drug. S282T was also shown to confer hypersusceptibility to ribavirin, which is of potential clinical benefit. Here we devised a biochemical approach to elucidate the underlying mechanisms. Recent crystallographic data revealed a hydrogen bond between S282 and the 2'-hydroxyl of the bound nucleotide, while the adjacent G283 forms a hydrogen bond with the 2'-hydroxyl of the residue of the template that base pairs with the nucleotide substrate. We show that DNA-like modifications of the template that disrupt hydrogen bonding with G283 cause enzyme pausing with natural nucleotides. However, the specifically introduced DNA residue of the template reestablishes binding and incorporation of sofosbuvir in the context of S282T. Moreover, the DNA-like modifications of the template prevent the incorporation of ribavirin in the context of the wild-type enzyme, whereas the S282T mutant enables the binding and incorporation of ribavirin under the same conditions. Together, these findings provide strong evidence to show that susceptibility to sofosbuvir and ribavirin depends crucially on a network of interdependent hydrogen bonds that involve the adjacent residues S282 and G283 and their interactions with the incoming nucleotide and complementary template residue, respectively.
Collapse
|
27
|
Temporal Regulation of Distinct Internal Ribosome Entry Sites of the Dicistroviridae Cricket Paralysis Virus. Viruses 2016; 8:v8010025. [PMID: 26797630 PMCID: PMC4728584 DOI: 10.3390/v8010025] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 01/08/2016] [Accepted: 01/11/2016] [Indexed: 01/04/2023] Open
Abstract
Internal ribosome entry is a key mechanism for viral protein synthesis in a subset of RNA viruses. Cricket paralysis virus (CrPV), a member of Dicistroviridae, has a positive-sense single strand RNA genome that contains two internal ribosome entry sites (IRES), a 5′untranslated region (5′UTR) and intergenic region (IGR) IRES, that direct translation of open reading frames (ORF) encoding the viral non-structural and structural proteins, respectively. The regulation of and the significance of the CrPV IRESs during infection are not fully understood. In this study, using a series of biochemical assays including radioactive-pulse labelling, reporter RNA assays and ribosome profiling, we demonstrate that while 5′UTR IRES translational activity is constant throughout infection, IGR IRES translation is delayed and then stimulated two to three hours post infection. The delay in IGR IRES translation is not affected by inhibiting global translation prematurely via treatment with Pateamine A. Using a CrPV replicon that uncouples viral translation and replication, we show that the increase in IGR IRES translation is dependent on expression of non-structural proteins and is greatly stimulated when replication is active. Temporal regulation by distinct IRESs within the CrPV genome is an effective viral strategy to ensure optimal timing and expression of viral proteins to facilitate infection.
Collapse
|
28
|
Kobbe S, Trapp O, Knoll A, Manuss A, Puchta H. The Translesion Polymerase ζ Has Roles Dependent on and Independent of the Nuclease MUS81 and the Helicase RECQ4A in DNA Damage Repair in Arabidopsis. PLANT PHYSIOLOGY 2015; 169:2718-29. [PMID: 26474640 PMCID: PMC4677884 DOI: 10.1104/pp.15.00806] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 10/15/2015] [Indexed: 05/20/2023]
Abstract
DNA polymerase zeta catalytic subunit REV3 is known to play an important role in the repair of DNA damage induced by cross-linking and methylating agents. Here, we demonstrate that in Arabidopsis (Arabidopsis thaliana), the basic polymerase activity of REV3 is essential for resistance protection against these different types of damaging agents. Interestingly, its processivity is mainly required for resistance to interstrand and intrastrand cross-linking agents, but not alkylating agents. To better define the role of REV3 in relation to other key factors involved in DNA repair, we perform epistasis analysis and show that REV3-mediated resistance to DNA-damaging agents is independent of the replication damage checkpoint kinase ataxia telangiectasia-mutated and rad3-related homolog. REV3 cooperates with the endonuclease MMS and UV-sensitive protein81 in response to interstrand cross links and alkylated bases, whereas it acts independently of the ATP-dependent DNA helicase RECQ4A. Taken together, our data show that four DNA intrastrand cross-link subpathways exist in Arabidopsis, defined by ATP-dependent DNA Helicase RECQ4A, MMS and UV-sensitive protein81, REV3, and the ATPase Radiation Sensitive Protein 5A.
Collapse
Affiliation(s)
- Sabrina Kobbe
- Botanical Institute II, Karlsruhe Institute of Technology, 76187 Karlsruhe, Germany
| | - Oliver Trapp
- Botanical Institute II, Karlsruhe Institute of Technology, 76187 Karlsruhe, Germany
| | - Alexander Knoll
- Botanical Institute II, Karlsruhe Institute of Technology, 76187 Karlsruhe, Germany
| | - Anja Manuss
- Botanical Institute II, Karlsruhe Institute of Technology, 76187 Karlsruhe, Germany
| | - Holger Puchta
- Botanical Institute II, Karlsruhe Institute of Technology, 76187 Karlsruhe, Germany
| |
Collapse
|
29
|
Lontok E, Harrington P, Howe A, Kieffer T, Lennerstrand J, Lenz O, McPhee F, Mo H, Parkin N, Pilot-Matias T, Miller V. Hepatitis C virus drug resistance-associated substitutions: State of the art summary. Hepatology 2015; 62:1623-32. [PMID: 26095927 DOI: 10.1002/hep.27934] [Citation(s) in RCA: 247] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 06/06/2015] [Indexed: 12/12/2022]
Abstract
UNLABELLED Hepatitis C virus (HCV) drug development has resulted in treatment regimens composed of interferon-free, all-oral combinations of direct-acting antivirals. While the new regimens are potent and highly efficacious, the full clinical impact of HCV drug resistance, its implications for retreatment, and the potential role of baseline resistance testing remain critical research and clinical questions. In this report, we discuss the viral proteins targeted by HCV direct-acting antivirals and summarize clinically relevant resistance data for compounds that have been approved or are currently in phase 3 clinical trials. CONCLUSION This report provides a comprehensive, systematic review of all resistance information available from sponsors' trials as a tool to inform the HCV drug development field.
Collapse
Affiliation(s)
- Erik Lontok
- Forum for Collaborative HIV Research, University of California at Berkeley, Washington, DC
| | - Patrick Harrington
- Center for Drug Evaluation and Research, Office of Antimicrobial Products, Division of Antiviral Products, US Food and Drug Administration, Silver Spring, MD
| | - Anita Howe
- Merck Research Laboratories, West Point, PA
| | | | | | - Oliver Lenz
- Janssen Infectious Diseases, Beerse, Belgium
| | - Fiona McPhee
- Bristol-Myers Squibb Research and Development, Wallingford, CT
| | | | | | | | - Veronica Miller
- Forum for Collaborative HIV Research, University of California at Berkeley, Washington, DC
| |
Collapse
|
30
|
Abstract
Environmental citrate or malonate is degraded by a variety of aerobic or anaerobic bacteria. For selected examples, the genes encoding the specific enzymes of the degradation pathway are described together with the encoded proteins and their catalytic mechanisms. Aerobic bacteria degrade citrate readily by the basic enzyme equipment of the cell if a specific transporter for citrate is available. Anaerobic degradation of citrate in Klebsiella pneumoniae requires the so-called substrate activation module to convert citrate into its thioester with the phosphoribosyl dephospho-CoA prosthetic group of citrate lyase. The citryl thioester is subsequently cleaved into oxaloacetate and the acetyl thioester, from which a new citryl thioester is formed as the turnover continues. The degradation of malonate likewise includes a substrate activation module with a phosphoribosyl dephospho-CoA prosthetic group. The machinery gets ready for turnover after forming the acetyl thioester with the prosthetic group. The acetyl residue is then exchanged by a malonyl residue, which is easily decarboxylated with the regeneration of the acetyl thioester. This equipment suffices for aerobic growth on malonate, since ATP is produced via the oxidation of acetate. Anaerobic growth on citrate or malonate, however, depends on additional enzymes of a so-called energy conservation module. This allows the conversion of decarboxylation energy into an electrochemical gradient of Na+ ions. In citrate-fermenting K. pneumoniae, the Na+ gradient is formed by the oxaloacetate decarboxylase and mainly used to drive the active transport of citrate into the cell. To use this energy source for this purpose is possible, since ATP is generated by substrate phosphorylation in the well-known sequence from pyruvate to acetate. In the malonate-fermenting bacterium Malonomonas rubra, however, no reactions for substrate level phosphorylation are available and the Na+ gradient formed in the malonate decarboxylation reaction must therefore be used as the driving force for ATP synthesis.
Collapse
|
31
|
Zhao C, Wang Y, Ma S. Recent advances on the synthesis of hepatitis C virus NS5B RNA-dependent RNA-polymerase inhibitors. Eur J Med Chem 2015; 102:188-214. [PMID: 26276434 DOI: 10.1016/j.ejmech.2015.07.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 07/23/2015] [Accepted: 07/28/2015] [Indexed: 02/07/2023]
Abstract
Hepatitis C is a viral liver infection considered as the major cause of cirrhosis and hepatocellular carcinoma (HCC). The HCV NS5B polymerase, an RNA-dependent RNA polymerase, is essential for HCV replication, which is able to catalyze the synthesis of positive (genomic) and negative (template) strand HCV RNA, but has no functional equivalent in mammalian cells. Therefore, the NS5B polymerase has emerged as an attractive target for the development of specifically targeted antiviral therapy for HCV (DAA, for direct-acting antivirals). Recently, a growing number of compounds have been reported as the NS5B polymerase inhibitors, some of which especially have been licensed in clinical trials. This review describes recent advances on the synthesis of the NS5B polymerase inhibitors, focusing on the merits and demerits of their synthetic methods. In particular, inspiration from the synthesis and the future direction of the NS5B polymerase inhibitors are highlighted.
Collapse
Affiliation(s)
- Can Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, PR China
| | - Yinhu Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, PR China
| | - Shutao Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, PR China.
| |
Collapse
|
32
|
Vrontaki E, Melagraki G, Mavromoustakos T, Afantitis A. Searching for anthranilic acid-based thumb pocket 2 HCV NS5B polymerase inhibitors through a combination of molecular docking, 3D-QSAR and virtual screening. J Enzyme Inhib Med Chem 2015; 31:38-52. [PMID: 26060939 DOI: 10.3109/14756366.2014.1003925] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A combination of the following computational methods: (i) molecular docking, (ii) 3-D Quantitative Structure Activity Relationship Comparative Molecular Field Analysis (3D-QSAR CoMFA), (iii) similarity search and (iv) virtual screening using PubChem database was applied to identify new anthranilic acid-based inhibitors of hepatitis C virus (HCV) replication. A number of known inhibitors were initially docked into the "Thumb Pocket 2" allosteric site of the crystal structure of the enzyme HCV RNA-dependent RNA polymerase (NS5B GT1b). Then, the CoMFA fields were generated through a receptor-based alignment of docking poses to build a validated and stable 3D-QSAR CoMFA model. The proposed model can be first utilized to get insight into the molecular features that promote bioactivity, and then within a virtual screening procedure, it can be used to estimate the activity of novel potential bioactive compounds prior to their synthesis and biological tests.
Collapse
Affiliation(s)
- Eleni Vrontaki
- a Department of Chemoinformatics , NovaMechanics Ltd. , Nicosia , Cyprus and.,b Department of Chemistry, Laboratory of Organic Chemistry , University of Athens , Athens , Greece
| | - Georgia Melagraki
- a Department of Chemoinformatics , NovaMechanics Ltd. , Nicosia , Cyprus and
| | - Thomas Mavromoustakos
- b Department of Chemistry, Laboratory of Organic Chemistry , University of Athens , Athens , Greece
| | - Antreas Afantitis
- a Department of Chemoinformatics , NovaMechanics Ltd. , Nicosia , Cyprus and
| |
Collapse
|
33
|
Kocabas F, Turan RD, Aslan GS. Fluorometric RdRp assay with self-priming RNA. Virus Genes 2015; 50:498-504. [PMID: 25749997 DOI: 10.1007/s11262-015-1187-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 02/27/2015] [Indexed: 10/23/2022]
Abstract
There is an outmost need for the identification of specific antiviral compounds. Current antivirals lack specificity, making them susceptible to off-target effects, and highlighting importance of development of assays to discover antivirals targeting viral specific proteins. Previous studies for identification of inhibitors of RNA-dependent RNA polymerase (RdRp) mostly relied on radioactive methods. This study describes a fluorometric approach to assess in vitro activity of viral RdRp for drug screening. Using readily available DNA- and RNA-specific fluorophores, we determined an optimum fluorometric approach that could be used in antiviral discovery specifically for RNA viruses by targeting RdRp. Here, we show that double-stranded RNA could be successfully distinguished from single-stranded RNA. In addition, we provide a strategy based on self-priming RNA to assess RdRp activity.
Collapse
Affiliation(s)
- Fatih Kocabas
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, 34755, Istanbul, Turkey,
| | | | | |
Collapse
|
34
|
Boehr DD, Liu X, Yang X. Targeting structural dynamics of the RNA-dependent RNA polymerase for anti-viral strategies. Curr Opin Virol 2014; 9:194-200. [PMID: 25224392 DOI: 10.1016/j.coviro.2014.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 08/28/2014] [Indexed: 10/24/2022]
Abstract
The RNA-dependent RNA polymerase is responsible for genome replication of RNA viruses. Nuclear magnetic resonance experiments and molecular dynamics simulations have indicated that efficient and faithful polymerase function requires highly coordinated internal protein motions. Interference with these motions, either through amino acid substitutions or small molecule binding, can disrupt polymerase and virus function. In particular, these studies have pointed toward highly conserved structural elements, like the motif-D active-site loop, that can be modified to generate polymerases with desired properties. Viruses encoding engineered polymerases might serve as live, attenuated vaccine strains. Further elucidation of polymerase structural dynamics will also provide new avenues for anti-viral drug design.
Collapse
Affiliation(s)
- David D Boehr
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Xinran Liu
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Xiaorong Yang
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
35
|
Barnes-Seeman D, Boiselle C, Capacci-Daniel C, Chopra R, Hoffmaster K, Jones CT, Kato M, Lin K, Ma S, Pan G, Shu L, Wang J, Whiteman L, Xu M, Zheng R, Fu J. Design and synthesis of lactam–thiophene carboxylic acids as potent hepatitis C virus polymerase inhibitors. Bioorg Med Chem Lett 2014; 24:3979-85. [DOI: 10.1016/j.bmcl.2014.06.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 06/08/2014] [Accepted: 06/11/2014] [Indexed: 10/25/2022]
|
36
|
Mönttinen HAM, Ravantti JJ, Stuart DI, Poranen MM. Automated structural comparisons clarify the phylogeny of the right-hand-shaped polymerases. Mol Biol Evol 2014; 31:2741-52. [PMID: 25063440 DOI: 10.1093/molbev/msu219] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Polymerases are essential for life, being responsible for replication, transcription, and the repair of nucleic acid molecules. Those that share a right-hand-shaped fold and catalytic site structurally similar to the DNA polymerase I of Escherichia coli may catalyze RNA- or DNA-dependent RNA polymerization, reverse transcription, or DNA replication in eukarya, archaea, bacteria, and their viruses. We have applied novel computational methods for structure-based clustering and phylogenetic analyses of this functionally diverse polymerase superfamily, which currently comprises six families. We identified a structural core common to all right-handed polymerases, composed of 57 amino acid residues, harboring two positionally and chemically conserved residues, the catalytic aspartates. The structural conservation within each of the six families is considerable, for example, the structural core shared by family Y DNA polymerases covers over 90% of the polymerase domain of the Sulfolobus solfataricus Dpo4. Our phylogenetic analyses propose an early separation of RNA-dependent polymerases that use primers from those that are primer-independent. Furthermore, the exchange of polymerase genes between viruses and their hosts is evident. Because of this horizontal gene transfer, the phylogeny of polymerases does not always reflect the evolutionary history of the corresponding organisms.
Collapse
Affiliation(s)
- Heli A M Mönttinen
- Department of Biosciences, Viikki Biocenter, University of Helsinki, Helsinki, Finland
| | - Janne J Ravantti
- Department of Biosciences, Viikki Biocenter, University of Helsinki, Helsinki, Finland Institute of Biotechnology, Viikki Biocenter, University of Helsinki, Helsinki, Finland
| | - David I Stuart
- Division of Structural Biology and the Oxford Protein Production Facility, The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom Diamond Light Source Limited, Harwell Science and Innovation Campus, Oxfordshire, United Kingdom
| | - Minna M Poranen
- Department of Biosciences, Viikki Biocenter, University of Helsinki, Helsinki, Finland
| |
Collapse
|
37
|
Greenough L, Menin JF, Desai NS, Kelman Z, Gardner AF. Characterization of family D DNA polymerase from Thermococcus sp. 9°N. Extremophiles 2014; 18:653-64. [PMID: 24794034 PMCID: PMC4065339 DOI: 10.1007/s00792-014-0646-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 04/13/2014] [Indexed: 11/28/2022]
Abstract
Accurate DNA replication is essential for maintenance of every genome. All archaeal genomes except Crenarchaea, encode for a member of Family B (polB) and Family D (polD) DNA polymerases. Gene deletion studies in Thermococcus kodakaraensis and Methanococcus maripaludis show that polD is the only essential DNA polymerase in these organisms. Thus, polD may be the primary replicative DNA polymerase for both leading and lagging strand synthesis. To understand this unique archaeal enzyme, we report the biochemical characterization of a heterodimeric polD from Thermococcus. PolD contains both DNA polymerase and proofreading 3′–5′ exonuclease activities to ensure efficient and accurate genome duplication. The polD incorporation fidelity was determined for the first time. Despite containing 3′–5′ exonuclease proofreading activity, polD has a relatively high error rate (95 × 10−5) compared to polB (19 × 10−5) and at least 10-fold higher than the polB DNA polymerases from yeast (polε and polδ) or Escherichia coli DNA polIII holoenzyme. The implications of polD fidelity and biochemical properties in leading and lagging strand synthesis are discussed.
Collapse
Affiliation(s)
- Lucia Greenough
- New England Biolabs, Inc., 240 County Road, Ipswich, MA, 01938, USA
| | | | | | | | | |
Collapse
|
38
|
Bebenek K, Pedersen LC, Kunkel TA. Structure-function studies of DNA polymerase λ. Biochemistry 2014; 53:2781-92. [PMID: 24716527 PMCID: PMC4018081 DOI: 10.1021/bi4017236] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
![]()
DNA polymerase λ
(pol λ) functions in DNA repair with
its main roles considered to be filling short gaps during repair of
double-strand breaks by nonhomologous end joining and during base
excision repair. As indicated by structural and biochemical studies
over the past 10 years, pol λ shares many common properties
with other family X siblings (pol β, pol μ, and terminal
deoxynucleotidyl transferase) but also has unique structural features
that determine its specific functions. In this review, we consider
how structural studies over the past decade furthered our understanding
of the behavior and biological roles of pol λ.
Collapse
Affiliation(s)
- Katarzyna Bebenek
- Laboratory of Structural Biology and ‡Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health , Research Triangle Park, North Carolina 27709, United States
| | | | | |
Collapse
|
39
|
Abstract
![]()
This review will summarize our structural
and kinetic studies of
RB69 DNA polymerase (RB69pol) as well as selected variants of the
wild-type enzyme that were undertaken to obtain a deeper understanding
of the exquisitely high fidelity of B family replicative DNA polymerases.
We discuss how the structures of the various RB69pol ternary complexes
can be used to rationalize the results obtained from pre-steady-state
kinetic assays. Our main findings can be summarized as follows. (i)
Interbase hydrogen bond interactions can increase catalytic efficiency
by 5000-fold; meanwhile, base selectivity is not solely determined
by the number of hydrogen bonds between the incoming dNTP and the
templating base. (ii) Minor-groove hydrogen bond interactions at positions n – 1 and n – 2 of the primer
strand and position n – 1 of the template
strand in RB69pol ternary complexes are essential for efficient primer
extension and base selectivity. (iii) Partial charge interactions
among the incoming dNTP, the penultimate base pair, and the hydration
shell surrounding the incoming dNTP modulate nucleotide insertion
efficiency and base selectivity. (iv) Steric clashes between mismatched
incoming dNTPs and templating bases with amino acid side chains in
the nascent base pair binding pocket (NBP) as well as weak interactions
and large gaps between the incoming dNTPs and the templating base
are some of the reasons that incorrect dNTPs are incorporated so inefficiently
by wild-type RB69pol. In addition, we developed a tC°–tCnitro Förster resonance energy transfer assay to monitor
partitioning of the primer terminus between the polymerase and exonuclease
subdomains.
Collapse
Affiliation(s)
- Shuangluo Xia
- Department of Molecular Biophysics and Biochemistry, Yale University , New Haven, Connecticut 06520-8024, United States
| | | |
Collapse
|
40
|
Structure modeling and docking study of HCV NS5B-3a RNA polymerase for the identification of potent inhibitors. Med Chem Res 2013. [DOI: 10.1007/s00044-013-0666-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
41
|
Gridley CL, Rangarajan S, Firbank S, Dalal S, Sweasy JB, Jaeger J. Structural changes in the hydrophobic hinge region adversely affect the activity and fidelity of the I260Q mutator DNA polymerase β. Biochemistry 2013; 52:4422-32. [PMID: 23651085 DOI: 10.1021/bi301368f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The I260Q variant of DNA polymerase β is an efficient mutator polymerase with fairly indiscriminate misincorporation activities opposite all template bases. Previous modeling studies have suggested that I260Q harbors structural variations in its hinge region. Here, we present the crystal structures of wild type and I260Q rat polymerase β in the presence and absence of substrates. Both the I260Q apoenzyme structure and the closed ternary complex with double-stranded DNA and ddTTP show ordered water molecules in the hydrophobic hinge near Gln260, whereas this is not the case in the wild type polymerase. Compared to wild type polymerase β ternary complexes, there are subtle movements around residues 260, 272, 295, and 296 in the mutant. The rearrangements in this region, coupled with side chain movements in the immediate neighborhood of the dNTP-binding pocket, namely, residues 258 and 272, provide an explanation for the altered activity and fidelity profiles observed in the I260Q mutator polymerase.
Collapse
Affiliation(s)
- Chelsea L Gridley
- Division of Genetics, Wadsworth Center, New York State Department of Health, New Scotland Avenue, Albany, New York 12208, United States
| | | | | | | | | | | |
Collapse
|
42
|
Garriga D, Ferrer-Orta C, Querol-Audí J, Oliva B, Verdaguer N. Role of motif B loop in allosteric regulation of RNA-dependent RNA polymerization activity. J Mol Biol 2013; 425:2279-87. [PMID: 23542342 DOI: 10.1016/j.jmb.2013.03.034] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Revised: 03/15/2013] [Accepted: 03/21/2013] [Indexed: 01/22/2023]
Abstract
Increasing amounts of data show that conformational dynamics are essential for protein function. Unveiling the mechanisms by which this flexibility affects the activity of a given enzyme and how it is controlled by other effectors opens the door to the design of a new generation of highly specific drugs. Viral RNA-dependent RNA polymerases (RdRPs) are not an exception. These enzymes, essential for the multiplication of all RNA viruses, catalyze the formation of phosphodiester bonds between ribonucleotides in an RNA-template-dependent fashion. Inhibition of RdRP activity will prevent genome replication and virus multiplication. Thus, RdRPs, like the reverse transcriptase of retroviruses, are validated targets for the development of antiviral therapeutics. X-ray crystallography of RdRPs trapped in multiple steps throughout the catalytic process, together with NMR data and molecular dynamics simulations, have shown that all polymerase regions contributing to conserved motifs required for substrate binding, catalysis and product release are highly flexible and some of them are predicted to display correlated motions. All these dynamic elements can be modulated by external effectors, which appear as useful tools for the development of effective allosteric inhibitors that block or disturb the flexibility of these enzymes, ultimately impeding their function. Among all movements observed, motif B, and the B-loop at its N-terminus in particular, appears as a new potential druggable site.
Collapse
Affiliation(s)
- Damià Garriga
- Institut de Biología Molecular de Barcelona (CSIC), Parc Científic de Barcelona, Baldiri i Reixac 10-12, 08028 Barcelona, Spain
| | | | | | | | | |
Collapse
|
43
|
Prindle MJ, Schmitt MW, Parmeggiani F, Loeb LA. A substitution in the fingers domain of DNA polymerase δ reduces fidelity by altering nucleotide discrimination in the catalytic site. J Biol Chem 2013; 288:5572-80. [PMID: 23283971 DOI: 10.1074/jbc.m112.436410] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA polymerase δ (Pol δ) is one of the major replicative DNA polymerases in eukaryotic cells, catalyzing lagging strand synthesis as well as playing a role in many DNA repair pathways. The catalytic site for polymerization consists of a palm domain and mobile fingers domain that opens and closes each catalytic cycle. We explored the effect of amino acid substitutions in a region of the highly conserved sequence motif B in the fingers domain on replication fidelity. A novel substitution, A699Q, results in a marked increase in mutation rate at the yeast CAN1 locus, and is synthetic lethal with both proofreading deficiency and mismatch repair deficiency. Modeling the A699Q mutation onto the crystal structure of Saccharomyces cerevisiae Pol δ template reveals four potential contacts for A699Q but not for A699. We substituted alanine for each of these residues and determined that an interaction with multiple residues of the N-terminal domain is responsible for the mutator phenotype. The corresponding mutation in purified human Pol δ results in a similar 30-fold increase in mutation frequency when copying gapped DNA templates. Sequence analysis indicates that the most characteristic mutation is a guanine-to-adenine (G to A) transition. The increase in deoxythymidine 5'-triphosphate-G mispairs was confirmed by performing steady state single nucleotide addition studies. Our combined data support a model in which the Ala-to-Gln substitution in the fingers domain of Pol δ results in an interaction with the N-terminal domain that affects the base selectivity of the enzyme.
Collapse
Affiliation(s)
- Marc J Prindle
- Joseph Gottstein Memorial Laboratory, Department of Pathology, University of Washington, Seattle, Washington 98195, USA
| | | | | | | |
Collapse
|
44
|
Thiyagarajan A, Salim MT, Balaraju T, Bal C, Baba M, Sharon A. Structure based medicinal chemistry approach to develop 4-methyl-7-deazaadenine carbocyclic nucleosides as anti-HCV agent. Bioorg Med Chem Lett 2012; 22:7742-7. [DOI: 10.1016/j.bmcl.2012.09.072] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 09/16/2012] [Accepted: 09/19/2012] [Indexed: 11/30/2022]
|
45
|
Prindle MJ, Loeb LA. DNA polymerase delta in DNA replication and genome maintenance. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2012; 53:666-82. [PMID: 23065663 PMCID: PMC3694620 DOI: 10.1002/em.21745] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 09/09/2012] [Accepted: 09/12/2012] [Indexed: 05/12/2023]
Abstract
The eukaryotic genome is in a constant state of modification and repair. Faithful transmission of the genomic information from parent to daughter cells depends upon an extensive system of surveillance, signaling, and DNA repair, as well as accurate synthesis of DNA during replication. Often, replicative synthesis occurs over regions of DNA that have not yet been repaired, presenting further challenges to genomic stability. DNA polymerase δ (pol δ) occupies a central role in all of these processes: catalyzing the accurate replication of a majority of the genome, participating in several DNA repair synthetic pathways, and contributing structurally to the accurate bypass of problematic lesions during translesion synthesis. The concerted actions of pol δ on the lagging strand, pol ϵ on the leading strand, associated replicative factors, and the mismatch repair (MMR) proteins results in a mutation rate of less than one misincorporation per genome per replication cycle. This low mutation rate provides a high level of protection against genetic defects during development and may prevent the initiation of malignancies in somatic cells. This review explores the role of pol δ in replication fidelity and genome maintenance.
Collapse
Affiliation(s)
- Marc J Prindle
- Department of Pathology, The Joseph Gottstien Memorial Cancer Research Laboratory, University of Washington, Seattle, WA 98195-7705, USA
| | | |
Collapse
|
46
|
Menezes MR, Sweasy JB. Mouse models of DNA polymerases. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2012; 53:645-665. [PMID: 23001998 DOI: 10.1002/em.21731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 08/01/2012] [Accepted: 08/07/2012] [Indexed: 06/01/2023]
Abstract
In 1956, Arthur Kornberg discovered the mechanism of the biological synthesis of DNA and was awarded the Nobel Prize in Physiology or Medicine in 1959 for this contribution, which included the isolation and characterization of Escherichia coli DNA polymerase I. Now there are 15 known DNA polymerases in mammalian cells that belong to four different families. These DNA polymerases function in many different cellular processes including DNA replication, DNA repair, and damage tolerance. Several biochemical and cell biological studies have provoked a further investigation of DNA polymerase function using mouse models in which polymerase genes have been altered using gene-targeting techniques. The phenotypes of mice harboring mutant alleles reveal the prominent role of DNA polymerases in embryogenesis, prevention of premature aging, and cancer suppression.
Collapse
Affiliation(s)
- Miriam R Menezes
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA
| | | |
Collapse
|
47
|
Vaughan R, Fan B, You JS, Kao CC. Identification and functional characterization of the nascent RNA contacting residues of the hepatitis C virus RNA-dependent RNA polymerase. RNA (NEW YORK, N.Y.) 2012; 18:1541-52. [PMID: 22736798 PMCID: PMC3404374 DOI: 10.1261/rna.031914.111] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 05/30/2012] [Indexed: 05/21/2023]
Abstract
Understanding how the hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp) interacts with nascent RNA would provide valuable insight into the virus's mechanism for RNA synthesis. Using a peptide mass fingerprinting method and affinity capture of peptides reversibly cross-linked to an alkyn-labeled nascent RNA, we identified a region below the Δ1 loop in the fingers domain of the HCV RdRp that contacts the nascent RNA. A modification protection assay was used to confirm the assignment. Several mutations within the putative nascent RNA binding region were generated and analyzed for RNA synthesis in vitro and in the HCV subgenomic replicon. All mutations tested within this region showed a decrease in primer-dependent RNA synthesis and decreased stabilization of the ternary complex. The results from this study advance our understanding of the structure and function of the HCV RdRp and the requirements for HCV RNA synthesis. In addition, a model of nascent RNA interaction is compared with results from structural studies.
Collapse
Affiliation(s)
- Robert Vaughan
- The Biochemistry Interdisciplinary Program, Indiana University, Bloomington, Indiana 47405, USA
| | - Baochang Fan
- The Biochemistry Interdisciplinary Program, Indiana University, Bloomington, Indiana 47405, USA
| | - Jin-Sam You
- Indiana University School of Medicine, IUPUI, Indianapolis, Indiana 46202, USA
| | - C. Cheng Kao
- The Biochemistry Interdisciplinary Program, Indiana University, Bloomington, Indiana 47405, USA
- Corresponding authorE-mail
| |
Collapse
|
48
|
Yang X, Smidansky ED, Maksimchuk KR, Lum D, Welch JL, Arnold JJ, Cameron CE, Boehr DD. Motif D of viral RNA-dependent RNA polymerases determines efficiency and fidelity of nucleotide addition. Structure 2012; 20:1519-27. [PMID: 22819218 DOI: 10.1016/j.str.2012.06.012] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 05/23/2012] [Accepted: 06/18/2012] [Indexed: 01/13/2023]
Abstract
Fast, accurate nucleotide incorporation by polymerases facilitates expression and maintenance of genomes. Many polymerases use conformational dynamics of a conserved α helix to permit efficient nucleotide addition only when the correct nucleotide substrate is bound. This α helix is missing in structures of RNA-dependent RNA polymerases (RdRps) and RTs. Here, we use solution-state nuclear magnetic resonance to demonstrate that the conformation of conserved structural motif D of an RdRp is linked to the nature (correct versus incorrect) of the bound nucleotide and the protonation state of a conserved, motif-D lysine. Structural data also reveal the inability of motif D to achieve its optimal conformation after incorporation of an incorrect nucleotide. Functional data are consistent with the conformational change of motif D becoming rate limiting during and after nucleotide misincorporation. We conclude that motif D of RdRps and, by inference, RTs is the functional equivalent to the fidelity helix of other polymerases.
Collapse
Affiliation(s)
- Xiaorong Yang
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Mönttinen HAM, Ravantti JJ, Poranen MM. Evidence for a non-catalytic ion-binding site in multiple RNA-dependent RNA polymerases. PLoS One 2012; 7:e40581. [PMID: 22792374 PMCID: PMC3394715 DOI: 10.1371/journal.pone.0040581] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 06/09/2012] [Indexed: 11/18/2022] Open
Abstract
A high-affinity divalent cation-binding site located proximal to the catalytic center has been identified in several RNA-dependent RNA polymerases (RdRps), but the characteristics of such a site have not been systematically studied. Here, all available polymerase structures that follow the hand-like structural motif were screened for the presence of a divalent cation close to the catalytic site but distinct from catalytic metal ions. Such non-catalytic ions were found in all RNA virus families for which there were high-resolution RdRp structures available. Bound ions were always located in structurally similar locations at an approximate 6-Å distance from the catalytic site. Furthermore, the second aspartate residue in the highly conserved GDD sequence was found to be involved in the coordination of the bound ion in all viral RdRps studied. These results suggest that a non-catalytic ion-binding site is conserved across positive-sense, single-stranded, and double-stranded RNA viruses. Interestingly, a non-catalytic ion was also observed in a similar position in the reverse transcriptase of the human immunodeficiency virus. Moreover, two members of the DNA-dependent DNA polymerase B family displayed an ion at a comparable distance from the catalytic site, but the position was clearly distinct from the non-catalytic ion-binding sites of RdRps.
Collapse
Affiliation(s)
| | - Janne J. Ravantti
- Department of Biosciences, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Minna M. Poranen
- Department of Biosciences, University of Helsinki, Helsinki, Finland
- * E-mail:
| |
Collapse
|
50
|
Jackman JE, Gott JM, Gray MW. Doing it in reverse: 3'-to-5' polymerization by the Thg1 superfamily. RNA (NEW YORK, N.Y.) 2012; 18:886-99. [PMID: 22456265 PMCID: PMC3334698 DOI: 10.1261/rna.032300.112] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The tRNA(His) guanylyltransferase (Thg1) family of enzymes comprises members from all three domains of life (Eucarya, Bacteria, Archaea). Although the initial activity associated with Thg1 enzymes was a single 3'-to-5' nucleotide addition reaction that specifies tRNA(His) identity in eukaryotes, the discovery of a generalized base pair-dependent 3'-to-5' polymerase reaction greatly expanded the scope of Thg1 family-catalyzed reactions to include tRNA repair and editing activities in bacteria, archaea, and organelles. While the identification of the 3'-to-5' polymerase activity associated with Thg1 enzymes is relatively recent, the roots of this discovery and its likely physiological relevance were described ≈ 30 yr ago. Here we review recent advances toward understanding diverse Thg1 family enzyme functions and mechanisms. We also discuss possible evolutionary origins of Thg1 family-catalyzed 3'-to-5' addition activities and their implications for the currently observed phylogenetic distribution of Thg1-related enzymes in biology.
Collapse
Affiliation(s)
- Jane E Jackman
- Department of Biochemistry and Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA.
| | | | | |
Collapse
|