1
|
Li Y, Zhao A, Yu Q, Yu N, Cui Y, Ma X, Liu H, Wang R. Effect of Stenotrophomonas maltophilia on Tuberculosis. Microbiol Spectr 2023; 11:e0094423. [PMID: 37306591 PMCID: PMC10433947 DOI: 10.1128/spectrum.00944-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/22/2023] [Indexed: 06/13/2023] Open
Abstract
Tuberculosis (TB) is an important infectious disease suffered by many countries, including China. In this stage, accurate diagnosis and treatment are key measures for the prevention and control of TB. Stenotrophomonas maltophilia is a global emerging Gram-negative, multidrug-resistant (MDR) organism characterized by its high contribution to the increase in crude mortality rates. By single cell preparation and strain identification, we isolated S. maltophilia from stored cultures of Mycobacterium tuberculosis (Mtb). We found that S. maltophilia could not be removed from sputum by alkali treatment or inhibited by antibiotic mixture added to MGIT 960 indicator tubes. When co-cultured with Mtb on a Löwenstein-Jensen (L-J) slant, it could inhibit the growth of Mtb and liquefy the medium. More seriously, it was resistant to 10 of the 12 anti-TB drugs, including isoniazid and rifampin, and made the mixed samples display multidrug-resistant Mtb (MDR-TB) results in the drug sensitivity test, which might change a treatment regimen and increase disease burden. Following, we conducted a small-scale surveillance which showed that the isolation rate of S. maltophilia in TB patients was 6.74%, but these patients had no special characteristics and the presence of S. maltophilia was hidden. The effect of S. maltophilus on TB and its mechanism are unclear and require more attention. IMPORTANCE China is a high-burden country for tuberculosis (TB), multidrug-resistant/rifampicin-resistant tuberculosis (MDR/RR-TB), and HIV-associated TB. Increasing the positive rate of culture and the accuracy of antibiotic susceptibility testing (AST) are important for diagnosis, treatment, and control of TB. In our study, we found that the isolation rate of Stenotrophomonas maltophilia in TB patients was not neglectable and that this bacterium affects the isolation and AST results of TB. Due to a lack of relevant research, the impact of S. maltophilia on the course and outcome of TB is unclear. However, the characteristics of S. maltophilia that increase disease mortality require attention. Therefore, in the clinical testing of TB, in addition to mycobacteria, it is recommended to increase the detection of co-infected bacteria and improve the awareness of TB clinicians of these bacteria.
Collapse
Affiliation(s)
- Yue Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Centre for Disease Control and Prevention, Beijing, China
| | - Ailan Zhao
- Tuberculosis Clinic, Chaoyang District Centre for Disease Control and Prevention, Beijing, China
| | - Qin Yu
- Tuberculosis Clinic, Chaoyang District Centre for Disease Control and Prevention, Beijing, China
| | - Nan Yu
- Tuberculosis Clinic, Chaoyang District Centre for Disease Control and Prevention, Beijing, China
| | - Yao Cui
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Centre for Disease Control and Prevention, Beijing, China
| | - Xiaohan Ma
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Centre for Disease Control and Prevention, Beijing, China
| | - Haican Liu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Centre for Disease Control and Prevention, Beijing, China
| | - Ruibai Wang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Centre for Disease Control and Prevention, Beijing, China
| |
Collapse
|
2
|
Marques-Neto LM, Piwowarska Z, Kanno AI, Moraes L, Trentini MM, Rodriguez D, Silva JLSC, Leite LCC. Thirty years of recombinant BCG: new trends for a centenary vaccine. Expert Rev Vaccines 2021; 20:1001-1011. [PMID: 34224293 DOI: 10.1080/14760584.2021.1951243] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Global perception of the potential for Bacille Calmette-Guérin (BCG), and consequently recombinant BCG (rBCG), in a variety of prophylactic and therapeutic applications has been increasing. A century of information on BCG, and three decades of experience with rBCG, has generated solid knowledge in this field.Area covered: Here, we review the current state of knowledge of BCG and rBCG development. Molecular tools have facilitated the expression of a variety of molecules in BCG, with the aim of improving its efficacy as a tuberculosis vaccine, generating polyvalent vaccines against other pathogens, including viruses, bacteria, and parasites, and developing immunotherapy approaches against noninvasive bladder cancer. BCG's recently appraised heterologous effects and prospects for expanding its application to other diseases are also addressed.Expert opinion: There are high expectations for new tuberculosis vaccines currently undergoing advanced clinical trials, which could change the prospects of the field. Systems biology could reveal effective biomarkers of protection, which would greatly support vaccine development. The development of appropriate large-scale production processes would further support implementation of new vaccines and rBCG products. The next few years should consolidate the broader applications of BCG and produce insights into improvements using the recombinant BCG technology.
Collapse
Affiliation(s)
| | - Zuzanna Piwowarska
- Laboratório De Desenvolvimento De Vacinas, Instituto Butantan, São Paulo, Brazil.,UnivLyon, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Alex I Kanno
- Laboratório De Desenvolvimento De Vacinas, Instituto Butantan, São Paulo, Brazil
| | - Luana Moraes
- Laboratório De Desenvolvimento De Vacinas, Instituto Butantan, São Paulo, Brazil.,Programa De Pós-Graduação Interunidades Em Biotecnologia USP-Instituto Butantan-IPT, São Paulo, Brazil
| | - Monalisa M Trentini
- Laboratório De Desenvolvimento De Vacinas, Instituto Butantan, São Paulo, Brazil
| | - Dunia Rodriguez
- Laboratório De Desenvolvimento De Vacinas, Instituto Butantan, São Paulo, Brazil
| | - Jose L S C Silva
- Laboratório De Desenvolvimento De Vacinas, Instituto Butantan, São Paulo, Brazil.,Programa De Pós-Graduação Interunidades Em Biotecnologia USP-Instituto Butantan-IPT, São Paulo, Brazil
| | - Luciana C C Leite
- Laboratório De Desenvolvimento De Vacinas, Instituto Butantan, São Paulo, Brazil
| |
Collapse
|
3
|
Construction of a novel CRISPRi-based tool for silencing of multiple genes in Mycobacterium tuberculosis. Plasmid 2020; 110:102515. [DOI: 10.1016/j.plasmid.2020.102515] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 05/09/2020] [Accepted: 05/10/2020] [Indexed: 12/15/2022]
|
4
|
Issa SA, Abdulnabi HA, Jameel ME. Orofacial tuberculosis: A diagnostic challenge. IDCases 2020; 21:e00825. [PMID: 32461909 PMCID: PMC7242870 DOI: 10.1016/j.idcr.2020.e00825] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/12/2020] [Accepted: 05/12/2020] [Indexed: 12/03/2022] Open
Abstract
Tuberculosis is typically a pulmonary chronic infectious disease with a high prevalence in developing countries which carries a substantial rate of mortality. Extrapulmonary disease may occur, mainly second to the endogenous spread of the pathogen from the primary site. Oral or mandibular involvement represents a minority among the reported cases. A 12-year-old female patient with a diffuse left-sided facial swelling and dull pain that gradually developed over 8 months, presented to us with misdiagnosis and poor management. Examination was found to have a firm swelling involving the buccal region, and left posterior mandible with intact overlying skin and mucosa, and palpable cervical lymphadenopathy. Imaging showed a heterogeneous osteolytic lesion of left ramus extending to the surrounding soft tissue. The diagnosis with oro-facial tuberculosis was established by histopathological study and confirmed by the Mantoux test and polymerase chain reaction. Although it occurs rarely, oro-facial tuberculosis has detrimental local and systemic effects, and devoid of characteristic clinical and radiographic features, poses a diagnostic challenge.
Collapse
Affiliation(s)
- Sabah Abdulaziz Issa
- Consultant Oral and Maxillofacial Surgeon, Department of Oral and Maxillofacial Surgery, Medical City Complex, Bab Al Muadham, 10047, Baghdad, Iraq
| | - Hussein Ali Abdulnabi
- Oral and Maxillofacial Surgery Board Resident, Department of Oral and Maxillofacial Surgery, Medical City Complex, Bab Al Muadham, 10047, Baghdad, Iraq
| | - Mustafa Emaduldeen Jameel
- Oral and Maxillofacial Surgery Board Resident, Department of Oral and Maxillofacial Surgery, Medical City Complex, Bab Al Muadham, 10047, Baghdad, Iraq
| |
Collapse
|
5
|
Bucsan AN, Mehra S, Khader SA, Kaushal D. The current state of animal models and genomic approaches towards identifying and validating molecular determinants of Mycobacterium tuberculosis infection and tuberculosis disease. Pathog Dis 2020; 77:5543892. [PMID: 31381766 PMCID: PMC6687098 DOI: 10.1093/femspd/ftz037] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 07/25/2019] [Indexed: 12/31/2022] Open
Abstract
Animal models are important in understanding both the pathogenesis of and immunity to tuberculosis (TB). Unfortunately, we are beginning to understand that no animal model perfectly recapitulates the human TB syndrome, which encompasses numerous different stages. Furthermore, Mycobacterium tuberculosis infection is a very heterogeneous event at both the levels of pathogenesis and immunity. This review seeks to establish the current understanding of TB pathogenesis and immunity, as validated in the animal models of TB in active use today. We especially focus on the use of modern genomic approaches in these models to determine the mechanism and the role of specific molecular pathways. Animal models have significantly enhanced our understanding of TB. Incorporation of contemporary technologies such as single cell transcriptomics, high-parameter flow cytometric immune profiling, proteomics, proteomic flow cytometry and immunocytometry into the animal models in use will further enhance our understanding of TB and facilitate the development of treatment and vaccination strategies.
Collapse
Affiliation(s)
- Allison N Bucsan
- Tulane Center for Tuberculosis Research, Covington, LA, USA.,Tulane National Primate Research Center, Covington, LA, USA
| | - Smriti Mehra
- Tulane National Primate Research Center, Covington, LA, USA
| | | | - Deepak Kaushal
- Tulane Center for Tuberculosis Research, Covington, LA, USA.,Tulane National Primate Research Center, Covington, LA, USA.,Southwest National Primate Research Center, San Antonio, TX, USA.,Texas Biomedical Research Institute, San Antonio, TX, USA
| |
Collapse
|
6
|
Yan MY, Li SS, Ding XY, Guo XP, Jin Q, Sun YC. A CRISPR-Assisted Nonhomologous End-Joining Strategy for Efficient Genome Editing in Mycobacterium tuberculosis. mBio 2020; 11:e02364-19. [PMID: 31992616 PMCID: PMC6989103 DOI: 10.1128/mbio.02364-19] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/09/2019] [Indexed: 11/20/2022] Open
Abstract
New tools for genetic manipulation of Mycobacterium tuberculosis are needed for the development of new drug regimens and vaccines aimed at curing tuberculosis infections. Clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR-associated protein (Cas) systems generate a highly specific double-strand break at the target site that can be repaired via nonhomologous end joining (NHEJ), resulting in the desired genome alteration. In this study, we first improved the NHEJ repair pathway and developed a CRISPR-Cas-mediated genome-editing method that allowed us to generate markerless deletion in Mycobacterium smegmatis, Mycobacterium marinum, and M. tuberculosis Then, we demonstrated that this system could efficiently achieve simultaneous generation of double mutations and large-scale genetic mutations in M. tuberculosis Finally, we showed that the strategy we developed can also be used to facilitate genome editing in Escherichia coli IMPORTANCE The global health impact of M. tuberculosis necessitates the development of new genetic tools for its manipulation, to facilitate the identification and characterization of novel drug targets and vaccine candidates. Clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR-associated protein (Cas) genome editing has proven to be a powerful genetic tool in various organisms; to date, however, attempts to use this approach in M. tuberculosis have failed. Here, we describe a genome-editing tool based on CRISPR cleavage and the nonhomologous end-joining (NHEJ) repair pathway that can efficiently generate deletion mutants in M. tuberculosis More importantly, this system can generate simultaneous double mutations and large-scale genetic mutations in this species. We anticipate that this CRISPR-NHEJ-assisted genome-editing system will be broadly useful for research on mycobacteria, vaccine development, and drug target profiling.
Collapse
Affiliation(s)
- Mei-Yi Yan
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Si-Shang Li
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin-Yuan Ding
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao-Peng Guo
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qi Jin
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi-Cheng Sun
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Sanming Project of Medicine in Shenzhen on Construction of Novel Systematic Network against Tuberculosis, National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
7
|
Lupien A, Foo CSY, Savina S, Vocat A, Piton J, Monakhova N, Benjak A, Lamprecht DA, Steyn AJC, Pethe K, Makarov VA, Cole ST. New 2-Ethylthio-4-methylaminoquinazoline derivatives inhibiting two subunits of cytochrome bc1 in Mycobacterium tuberculosis. PLoS Pathog 2020; 16:e1008270. [PMID: 31971990 PMCID: PMC6999911 DOI: 10.1371/journal.ppat.1008270] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 02/04/2020] [Accepted: 12/10/2019] [Indexed: 12/21/2022] Open
Abstract
The emergence of multi-drug (MDR-TB) and extensively-drug resistant tuberculosis (XDR-TB) is a major threat to the global management of tuberculosis (TB) worldwide. New chemical entities are of need to treat drug-resistant TB. In this study, the mode of action of new, potent quinazoline derivatives was investigated against Mycobacterium tuberculosis (M. tb). Four derivatives 11626141, 11626142, 11626252 and 11726148 showed good activity (MIC ranging from 0.02-0.09 μg/mL) and low toxicity (TD50 ≥ 5μg/mL) in vitro against M. tb strain H37Rv and HepG2 cells, respectively. 11626252 was the most selective compound from this series. Quinazoline derivatives were found to target cytochrome bc1 by whole-genome sequencing of mutants selected with 11626142. Two resistant mutants harboured the transversion T943G (Trp312Gly) and the transition G523A (Gly175Ser) in the cytochrome bc1 complex cytochrome b subunit (QcrB). Interestingly, a third mutant QuinR-M1 contained a mutation in the Rieske iron-sulphur protein (QcrA) leading to resistance to quinazoline and other QcrB inhibitors, the first report of cross-resistance involving QcrA. Modelling of both QcrA and QcrB revealed that all three resistance mutations are located in the stigmatellin pocket, as previously observed for other QcrB inhibitors such as Q203, AX-35, and lansoprazole sulfide (LPZs). Further analysis of the mode of action in vitro revealed that 11626252 exposure leads to ATP depletion, a decrease in the oxygen consumption rate and also overexpression of the cytochrome bd oxidase in M. tb. Our findings suggest that quinazoline-derived compounds are a new and attractive chemical entity for M. tb drug development targeting two separate subunits of the cytochrome bc1 complex.
Collapse
Affiliation(s)
- Andréanne Lupien
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Caroline Shi-Yan Foo
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Svetlana Savina
- Department of Stresses of Microorganisms, A. N. Bach Institute of Biochemistry, Moscow, Russian Federation
| | - Anthony Vocat
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jérémie Piton
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Natalia Monakhova
- Department of Stresses of Microorganisms, A. N. Bach Institute of Biochemistry, Moscow, Russian Federation
| | - Andrej Benjak
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | - Adrie J. C. Steyn
- Africa Health Research Institute, Durban, South Africa
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Kevin Pethe
- Lee Kong Chian School of Medicine and School of Biological Sciences, Nanyang Technological University, Singapore
| | - Vadim A. Makarov
- Department of Stresses of Microorganisms, A. N. Bach Institute of Biochemistry, Moscow, Russian Federation
| | - Stewart T. Cole
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Institut Pasteur, rue du Docteur Roux, France
| |
Collapse
|
8
|
Buonsenso D, Sali M, Pata D, Masiello E, Salerno G, Ceccarelli M, Delogu G, Valentini P. Vitamin D Levels in Active TB, Latent TB, Non-TB Pneumonia and Healthy Children: A Prospective Observational Study. Fetal Pediatr Pathol 2018; 37:337-347. [PMID: 30260729 DOI: 10.1080/15513815.2018.1509407] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
BACKGROUND Growing evidence suggests that vitamin D deficiency might be implicated in the development of active tuberculosis (TB). We evaluated vitamin D levels in children with active TB compared to children with latent TB infection (LTBI), non-TB pneumonia (NTBP) and healthy controls to determine if there was a difference. METHODS In this prospective study, vitamin D levels were measured and compared between the four groups and adjusted for age, ethnicity, gender and season of sample collection. RESULTS Fifty-seven children were included: 24.6% active TB, 28.1% LTBI, 22.8% NPTB and 24.6% healthy controls. 36.8% of all children tested had an insufficient or deficient vitamin D level. Vitamin D level was significantly lower in active TB compared to other groups (p = 0.004). CONCLUSIONS Our study showed a correlation between hypovitaminosis D and active pulmonary TB.
Collapse
Affiliation(s)
- Danilo Buonsenso
- a Department of Pediatrics, Fondazione Policlinico Universitario A. Gemelli, IRCCS , Roma , Italy
| | - Michela Sali
- b Institute of Microbiology, Catholic University of Rome, A. Gemelli Hospital , Roma , Italy
| | - Davide Pata
- a Department of Pediatrics, Fondazione Policlinico Universitario A. Gemelli, IRCCS , Roma , Italy
| | - Enrico Masiello
- c Department of Pediatrics , Catholic University of Rome, A. Gemelli Hospital , Roma , Italy
| | - Gilda Salerno
- c Department of Pediatrics , Catholic University of Rome, A. Gemelli Hospital , Roma , Italy
| | - Manuela Ceccarelli
- c Department of Pediatrics , Catholic University of Rome, A. Gemelli Hospital , Roma , Italy
| | - Giovanni Delogu
- b Institute of Microbiology, Catholic University of Rome, A. Gemelli Hospital , Roma , Italy
| | - Piero Valentini
- a Department of Pediatrics, Fondazione Policlinico Universitario A. Gemelli, IRCCS , Roma , Italy
| |
Collapse
|
9
|
A uniform cloning platform for mycobacterial genetics and protein production. Sci Rep 2018; 8:9539. [PMID: 29934571 PMCID: PMC6015033 DOI: 10.1038/s41598-018-27687-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 06/08/2018] [Indexed: 12/31/2022] Open
Abstract
Molecular research on mycobacteria relies on a multitude of tools for the genetic manipulation of these clinically important bacteria. However, a uniform set of vectors allowing for standardized cloning procedures is not available. Here, we developed a versatile series of mycobacterial vectors for gene deletion, complementation and protein production and purification. The vectors are compatible with fragment exchange (FX) cloning, a recently developed high-throughput cloning principle taking advantage of the type IIS restriction enzyme SapI and its capacity to generate sticky trinucleotide ends outside of its recognition sequence. FX cloning allows for the efficient cloning into an entry vector and the facile transfer of the sequenced insert into a variety of destination vectors. We generated a set of mycobacterial expression vectors spanning a wide range of expression strengths, tagging variants and selection markers to rapidly screen for the optimal expression construct in order to purify membrane proteins from the model organism Mycobacterium smegmatis. Further, we generated a series of suicide vectors containing two counterselection markers and used them to delete twenty genes encoding for potential drug efflux pumps in M. smegmatis. The vectors will further facilitate genetic and biochemical research on various mycobacterial species.
Collapse
|
10
|
Chhotaray C, Tan Y, Mugweru J, Islam MM, Adnan Hameed HM, Wang S, Lu Z, Wang C, Li X, Tan S, Liu J, Zhang T. Advances in the development of molecular genetic tools for Mycobacterium tuberculosis. J Genet Genomics 2018; 45:S1673-8527(18)30114-0. [PMID: 29941353 DOI: 10.1016/j.jgg.2018.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Mycobacterium tuberculosis, a clinically relevant Gram-positive bacterium of great clinical relevance, is a lethal pathogen owing to its complex physiological characteristics and development of drug resistance. Several molecular genetic tools have been developed in the past few decades to study this microorganism. These tools have been instrumental in understanding how M. tuberculosis became a successful pathogen. Advanced molecular genetic tools have played a significant role in exploring the complex pathways involved in M. tuberculosis pathogenesis. Here, we review various molecular genetic tools used in the study of M. tuberculosis. Further, we discuss the applications of clustered regularly interspaced short palindromic repeat interference (CRISPRi), a novel technology recently applied in M. tuberculosis research to study target gene functions. Finally, prospective outcomes of the applications of molecular techniques in the field of M. tuberculosis genetic research are also discussed.
Collapse
Affiliation(s)
- Chiranjibi Chhotaray
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaoju Tan
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, Guangzhou Chest Hospital, Guangzhou 510095, China
| | - Julius Mugweru
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China; Department of Biological Sciences, University of Embu, P.O Box 6 -60100, Embu, Kenya
| | - Md Mahmudul Islam
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - H M Adnan Hameed
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuai Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhili Lu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Changwei Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xinjie Li
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, Guangzhou Chest Hospital, Guangzhou 510095, China
| | - Shouyong Tan
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, Guangzhou Chest Hospital, Guangzhou 510095, China
| | - Jianxiong Liu
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, Guangzhou Chest Hospital, Guangzhou 510095, China.
| | - Tianyu Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
11
|
Malapati P, Krishna VS, Nallangi R, Srilakshmi RR, Sriram D. Identification and development of benzoxazole derivatives as novel bacterial glutamate racemase inhibitors. Eur J Med Chem 2017; 145:23-34. [PMID: 29310027 DOI: 10.1016/j.ejmech.2017.12.088] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 12/27/2017] [Accepted: 12/27/2017] [Indexed: 02/07/2023]
Abstract
In the present study, we attempted to develop novel class of Mycobacterium tuberculosis (Mtb) inhibitors by exploring the pharmaceutically underexploited enzyme targets which are majorly involved in cell wall biosynthesis of mycobacteria. For this purpose glutamate racemase was selected which racemizes d-glutamate from l-glutamate, a key step in peptidoglycan synthesis. Furthermore, enzyme is neither expressed nor its product, d-glutamate is produced in mammals, and hence inhibiting this enzyme will have no vulnerable effect in host organism. A library of our in-house compounds were screened against glutamate racemase using a biophysical technique; thermal shift assay and further by enzyme inhibition assay to identify Lead 1 molecule. Lead 1 optimization and expansion resulted in twenty four compounds. Among the synthesized compounds twelve compounds shown good enzyme inhibition than Lead 1 (IC50 20.07 ± 0.29 μM). Among all the compounds; compound 22 (IC50 1.1 ± 0.52 μM) showed potent non-competitive mode of inhibition in enzyme assay. Further showed good susceptibility (in replicating bacteria) of MIC 8.72 μM and bactericidal time dependant kill on dormant culture. It also exhibited significant activity in Mtb nutrient starvation model (2.5) and Mtb biofilm model (2.4) and in vivo M. marinum infected Zebra fish model studies (3.6) reduction at logarithmic scale.
Collapse
Affiliation(s)
- Prasanthi Malapati
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Shameerpet, Jawaharnagar, RangaReddy District, Hyderabad 500 078, India
| | - Vagolu Siva Krishna
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Shameerpet, Jawaharnagar, RangaReddy District, Hyderabad 500 078, India
| | - Radhika Nallangi
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Shameerpet, Jawaharnagar, RangaReddy District, Hyderabad 500 078, India
| | - Rudraraju Reshma Srilakshmi
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Shameerpet, Jawaharnagar, RangaReddy District, Hyderabad 500 078, India
| | - Dharmarajan Sriram
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Shameerpet, Jawaharnagar, RangaReddy District, Hyderabad 500 078, India.
| |
Collapse
|
12
|
Mishra SK, Tripathi G, Kishore N, Singh RK, Singh A, Tiwari VK. Drug development against tuberculosis: Impact of alkaloids. Eur J Med Chem 2017. [DOI: 10.1016/j.ejmech.2017.06.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
13
|
Abstract
Clustered regularly interspaced short palindromic repeat (CRISPR)-Cas12a (Cpf1) has emerged as an effective genome editing tool in many organisms. Here, we developed and optimized a CRISPR-Cas12a-assisted recombineering system to facilitate genetic manipulation in bacteria. Using this system, point mutations, deletions, insertions, and gene replacements can be easily generated on the chromosome or native plasmids in Escherichia coli, Yersinia pestis, and Mycobacterium smegmatis Because CRISPR-Cas12a-assisted recombineering does not require introduction of an antibiotic resistance gene into the chromosome to select for recombinants, it is an efficient approach for generating markerless and scarless mutations in bacteria.IMPORTANCE The CRISPR-Cas9 system has been widely used to facilitate genome editing in many bacteria. CRISPR-Cas12a (Cpf1), a new type of CRISPR-Cas system, allows efficient genome editing in bacteria when combined with recombineering. Cas12a and Cas9 recognize different target sites, which allows for more precise selection of the cleavage target and introduction of the desired mutation. In addition, CRISPR-Cas12a-assisted recombineering can be used for genetic manipulation of plasmids and plasmid curing. Finally, Cas12a-assisted recombineering in the generation of point mutations, deletions, insertions, and replacements in bacteria has been systematically analyzed. Taken together, our findings will guide efficient Cas12a-mediated genome editing in bacteria.
Collapse
|
14
|
Fluorescent Reporter DS6A Mycobacteriophages Reveal Unique Variations in Infectibility and Phage Production in Mycobacteria. J Bacteriol 2016; 198:3220-3232. [PMID: 27672191 DOI: 10.1128/jb.00592-16] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/13/2016] [Indexed: 12/22/2022] Open
Abstract
Mycobacteriophage DS6A is unique among the more than 8,000 isolated mycobacteriophages due to its ability to form plaques exclusively on mycobacteria belonging to the Mycobacterium tuberculosis complex (MTBC). Speculation surrounding this specificity has led to unsupported assertions in published studies and patents that nontuberculous mycobacteria (NTM) are wholly resistant to DS6A infection. In this study, we identified two independent nonessential regions in the DS6A genome and replaced them with an mVenus-expressing plasmid to generate fluorescent reporter phages Φ2GFP12 and Φ2GFP13. We show that even though DS6A is able to form plaques only on MTBC bacteria, infection of various NTM results in mVenus expression in transduced cells. The efficiency of DS6A in delivering DNA varied between NTM species. Additionally, we saw a striking difference in the efficiency of DNA delivery between the closely related members of the Mycobacterium abscessus complex, M. abscessus and Mycobacterium massiliense We also demonstrated that TM4 and DS6A, two phages that do not form plaques on M. massiliense, differ in their ability to deliver DNA, suggesting that there is a phage-specific restriction between mycobacterial species. Phylogenetic analysis reveals that the DS6A genome has a characteristically mosaic structure but provided few insights into the basis for the specificity for MTBC hosts. This study demonstrates that the inability of the MTBC-specific phage DS6A to form plaques on NTM is more complex than previously thought. Moreover, the DS6A-derived fluorophages provide important new tools for the study of mycobacterial biology. IMPORTANCE The coevolution of bacteria and their infecting phages involves a constant arms race for bacteria to prevent phage infection and phage to overcome these preventions. Although a diverse array of phage defense systems is well characterized in bacteria, very few phage restriction systems are known in mycobacteria. The DS6A mycobacteriophage is unique in the mycobacterial world in that it forms plaques only on members of the Mycobacterium tuberculosis complex. However, the novel DS6A reporter phages developed in this work demonstrate that DS6A can infect nontuberculous mycobacteria at various efficiencies. By comparing the abilities of DS6A and another phage, TM4, to infect and form plaques on various mycobacterial species, we can begin to discern new phage restriction systems employed within the genus.
Collapse
|
15
|
Anti-dormant mycobacterial activity and target molecule of melophlins, tetramic acid derivatives isolated from a marine sponge of Melophlus sp. J Nat Med 2016; 70:467-75. [DOI: 10.1007/s11418-016-1005-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/25/2016] [Indexed: 10/21/2022]
|
16
|
Choudhary E, Lunge A, Agarwal N. Strategies of genome editing in mycobacteria: Achievements and challenges. Tuberculosis (Edinb) 2016; 98:132-8. [PMID: 27156629 DOI: 10.1016/j.tube.2016.03.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/14/2016] [Accepted: 03/21/2016] [Indexed: 01/07/2023]
Abstract
Tremendous amount of physiological and functional complexities acquired through decades of evolutionary pressure makes Mycobacterium tuberculosis (Mtb) one of the most dreadful microorganisms infecting humans from centuries. Astonishing advances in genomics and genome editing tools substantially grew our knowledge about Mtb as an organism but dramatically failed to completely understand it as a pathogen. Though conventional tools based on homologous recombination, antisense, controlled proteolysis, etc. have made important contributions in advancing our understanding of the pathophysiology of Mtb, yet these approaches have not accentuated our exploration of mycobacterium on account of certain technical limitations. In this review article we have compiled various approaches implemented in genome editing of mycobacteria along with the latest adaptation of clustered regularly interspaced short palindromic repeat (CRISPR)-interference (CRISPRi), emphasizing the achievements and challenges associated with these techniques.
Collapse
Affiliation(s)
- Eira Choudhary
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India; Symbiosis School of Biomedical Sciences, Symbiosis International University, Lavale, Pune 412115, Maharashtra, India
| | - Ajitesh Lunge
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India; Jawaharlal Nehru University, New Mehrauli Road, Near Munirka, New Delhi 110067, Delhi, India
| | - Nisheeth Agarwal
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India.
| |
Collapse
|
17
|
Efficient and simple generation of multiple unmarked gene deletions in Mycobacterium smegmatis. Sci Rep 2016; 6:22922. [PMID: 26972108 PMCID: PMC4789726 DOI: 10.1038/srep22922] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/24/2016] [Indexed: 11/27/2022] Open
Abstract
Research on mycobacterial genetics relies heavily on techniques for directed gene mutation, but genetic studies are often hampered by the difficulty of generating gene deletions in mycobacteria. We developed an efficient and improved deletion system, described here in detail, which can be used to construct multiple unmarked recombinants in mycobacteria. We tested this system by using it to sequentially delete four pairs of toxin-antitoxin genes in Mycobacterium smegmatis.
Collapse
|
18
|
Arai M, Kamiya K, Pruksakorn P, Sumii Y, Kotoku N, Joubert JP, Moodley P, Han C, Shin D, Kobayashi M. Anti-dormant mycobacterial activity and target analysis of nybomycin produced by a marine-derived Streptomyces sp. Bioorg Med Chem 2015; 23:3534-41. [DOI: 10.1016/j.bmc.2015.04.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/07/2015] [Accepted: 04/09/2015] [Indexed: 11/16/2022]
|
19
|
Gene silencing by CRISPR interference in mycobacteria. Nat Commun 2015; 6:6267. [PMID: 25711368 DOI: 10.1038/ncomms7267] [Citation(s) in RCA: 174] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 01/12/2015] [Indexed: 11/08/2022] Open
Abstract
Recombination-based tools for introducing targeted genomic mutations in Mycobacterium tuberculosis are not efficient due to higher rate of illegitimate recombination compared with homologous DNA exchange. Moreover, involvement of multiple steps and specialized reagents make these tools cost ineffective. Here we introduce a novel clustered regularly interspaced short palindromic repeat (CRISPR) interference (CRISPRi) approach that efficiently represses expression of target genes in mycobacteria. CRISPRi system involves co-expression of the catalytically dead form of RNA-guided DNA endonuclease from the type II CRISPR system known as dCas9 and the small guide RNA specific to a target sequence, resulting in the DNA recognition complex that interferes with the transcription of corresponding DNA sequence. We show that co-expression of the codon-optimized dCas9 of S. pyogenes with sequence-specific guide RNA results in complete repression of individual or multiple targets in mycobacteria. CRISPRi thus offers a simple, rapid and cost-effective tool for selective control of gene expression in mycobacteria.
Collapse
|
20
|
Specialized transduction designed for precise high-throughput unmarked deletions in Mycobacterium tuberculosis. mBio 2014; 5:e01245-14. [PMID: 24895308 PMCID: PMC4049104 DOI: 10.1128/mbio.01245-14] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Specialized transduction has proven to be useful for generating deletion mutants in most mycobacteria, including virulent Mycobacterium tuberculosis. We have improved this system by developing (i) a single-step strategy for the construction of allelic exchange substrates (AES), (ii) a temperature-sensitive shuttle phasmid with a greater cloning capacity than phAE87, and (iii) bacteriophage-mediated transient expression of site-specific recombinase to precisely excise antibiotic markers. The methods ameliorate rate-limiting steps in strain construction in these difficult-to-manipulate bacteria. The new methods for strain construction were demonstrated to generalize to all classes of genes and chromosomal loci by generating more than 100 targeted single- or multiple-deletion substitutions. These improved methods pave the way for the generation of a complete ordered library of M. tuberculosis null strains, where each strain is deleted for a single defined open reading frame in M. tuberculosis. This work reports major advances in the methods of genetics applicable to all mycobacteria, including but not limited to virulent M. tuberculosis, which would facilitate comparative genomics to identify drug targets, genetic validation of proposed pathways, and development of an effective vaccine. This study presents all the new methods developed and the improvements to existing methods in an integrated way. The work presented in this study could increase the pace of mycobacterial genetics significantly and will immediately be of wide use. These new methods are transformative and allow for the undertaking of construction of what has been one of the most fruitful resources in model systems: a comprehensive, ordered library set of the strains, each of which is deleted for a single defined open reading frame.
Collapse
|
21
|
The biology of mycobacterium tuberculosis infection. Mediterr J Hematol Infect Dis 2013; 5:e2013070. [PMID: 24363885 PMCID: PMC3867229 DOI: 10.4084/mjhid.2013.070] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 11/15/2013] [Indexed: 01/13/2023] Open
Abstract
Tuberculosis (TB) still poses a major threat to mankind and during the last thirty years we have seen a recrudescence of the disease even in countries where TB was thought to be conquered. It is common opinion that more effective control tools such as new diagnostics, a new vaccine and new drugs are urgently needed to control the global pandemic, though the so far insufficient understanding of the Mycobacterium tuberculosis (Mtb) mechanism of pathogenesis is a major obstacle for the development of these control tools. In this review, we will summarize the recent advancement in the understanding of Mtb biology and on the pathogenesis of Mtb infection with emphasis on latent infection, with the change in paradigm of the last few years where the dichotomy between latent and active disease has been reconsidered in favor of a dynamic equilibrium between the host and the bacilli, encompassing a continuous spectrum of conditions that has been named TB spectrum. Implications for the diagnosis and control of disease in certain population will also be discussed.
Collapse
|
22
|
Arai M, Yamano Y, Setiawan A, Kobayashi M. Identification of the Target Protein of Agelasine D, a Marine Sponge Diterpene Alkaloid, as an Anti-dormant Mycobacterial Substance. Chembiochem 2013; 15:117-23. [DOI: 10.1002/cbic.201300470] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Indexed: 11/07/2022]
|
23
|
Shenkerman Y, Elharar Y, Vishkautzan M, Gur E. Efficient and simple generation of unmarked gene deletions in Mycobacterium smegmatis. Gene 2013; 533:374-8. [PMID: 24100088 DOI: 10.1016/j.gene.2013.09.082] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 09/15/2013] [Accepted: 09/23/2013] [Indexed: 10/26/2022]
Abstract
Genetic research in molecular laboratories relies heavily on directed mutagenesis and gene deletion techniques. In mycobacteria, however, genetic analysis is often hindered by difficulties in the preparation of deletion mutants. Indeed, in comparison to the allelic exchange systems available for the study of other common model organisms, such as Saccharomyces cerevisiae and Escherichia coli, mycobacterial gene disruption systems suffer from low mutant isolation success rates, mostly due to inefficient homologous recombination and a high degree of non-specific recombination. Here, we present a gene deletion system that combines efficient homologous recombination with advanced screening of mutants. This novel methodology allows for gene disruption in three consecutive steps. The first step relies on the use of phage Che9c recombineering proteins for directed insertion into the chromosome of a linear DNA fragment that encodes GFP and confers hygromycin resistance. In the second step, GFP positive and hygromycin resistant colonies are selected, and in the last step, the gfp-hyg cassette is excised from the chromosome, thus resulting in the formation of an unmarked deletion. We provide a detailed gene deletion methodology and demonstrate the use of this genetic system by deleting the prcSBA operon of Mycobacterium smegmatis.
Collapse
Affiliation(s)
- Yael Shenkerman
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | | | | | | |
Collapse
|
24
|
Tsai SH, Shen GH, Lin CH, Liau JR, Lai HC, Hu ST. Mab_3168c, a putative acetyltransferase, enhances adherence, intracellular survival and antimicrobial resistance of Mycobacterium abscessus. PLoS One 2013; 8:e67563. [PMID: 23840740 PMCID: PMC3695912 DOI: 10.1371/journal.pone.0067563] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 05/22/2013] [Indexed: 12/18/2022] Open
Abstract
Mycobacterium abscessus is a non-tuberculous mycobacterium. It can cause diseases in both immunosuppressed and immunocompetent patients and is highly resistant to multiple antimicrobial agents. M. abscessus displays two different colony morphology types: smooth and rough morphotypes. Cells with a rough morphotype are more virulent. The purpose of this study was to identify genes responsible for M. abscessus morphotype switching. With transposon mutagenesis, a mutant with a Tn5 inserted into the promoter region of the mab_3168c gene was found to switch its colonies from a rough to a smooth morphotype. This mutant had a higher sliding motility but a lower ability to form biofilms, aggregate in culture, and survive inside macrophages. Results of bioinformatic analyses suggest that the putative Mab_3168c protein is a member of the GCN5-related N-acetyltransferase superfamily. This prediction was supported by the demonstration that the mab_3168c gene conferred M. abscessus and M. smegmatis cells resistance to amikacin. The multiple roles of mab_3168c suggest that it could be a potential target for development of therapeutic regimens to treat diseases caused by M. abscessus.
Collapse
Affiliation(s)
- Sheng-Hui Tsai
- Institute of Microbiology and Immunology, School of Life Science, National Yang-Ming University, Taipei, Taiwan, R.O.C.
| | - Gwan-Han Shen
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Veterans General Hospital, Taichung, Taiwan, R.O.C.
- Institute of Respiratory Therapy, China Medical University, Taichung, Taiwan, R.O.C.
- Institute of Nursing Care, Hungkuang University, Taichung, Taiwan, R.O.C.
| | - Chao-Hsiung Lin
- Department of Life Sciences and Institute of Genome Sciences, School of Life Science, National Yang-Ming University, Taipei, Taiwan, R.O.C.
| | - Jiue-Ru Liau
- Institute of Microbiology and Immunology, School of Life Science, National Yang-Ming University, Taipei, Taiwan, R.O.C.
| | - Hsin-Chih Lai
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan, R.O.C.
- Department of Medical Biotechnology and Laboratory Sciences, Chang Gung University, Taoyuan, Taiwan, R.O.C.
- Research Center of Bacterial Pathogenesis, Chang Gung University, Taoyuan, Taiwan, R.O.C.
| | - Shiau-Ting Hu
- Institute of Microbiology and Immunology, School of Life Science, National Yang-Ming University, Taipei, Taiwan, R.O.C.
- * E-mail:
| |
Collapse
|
25
|
Khattak FA, Kumar A, Kamal E, Kunisch R, Lewin A. Illegitimate recombination: an efficient method for random mutagenesis in Mycobacterium avium subsp. hominissuis. BMC Microbiol 2012; 12:204. [PMID: 22966811 PMCID: PMC3511198 DOI: 10.1186/1471-2180-12-204] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 09/07/2012] [Indexed: 01/04/2023] Open
Abstract
Background The genus Mycobacterium (M.) comprises highly pathogenic bacteria such as M. tuberculosis as well as environmental opportunistic bacteria called non-tuberculous mycobacteria (NTM). While the incidence of tuberculosis is declining in the developed world, infection rates by NTM are increasing. NTM are ubiquitous and have been isolated from soil, natural water sources, tap water, biofilms, aerosols, dust and sawdust. Lung infections as well as lymphadenitis are most often caused by M. avium subsp. hominissuis (MAH), which is considered to be among the clinically most important NTM. Only few virulence genes from M. avium have been defined among other things due to difficulties in generating M. avium mutants. More efforts in developing new methods for mutagenesis of M. avium and identification of virulence-associated genes are therefore needed. Results We developed a random mutagenesis method based on illegitimate recombination and integration of a Hygromycin-resistance marker. Screening for mutations possibly affecting virulence was performed by monitoring of pH resistance, colony morphology, cytokine induction in infected macrophages and intracellular persistence. Out of 50 randomly chosen Hygromycin-resistant colonies, four revealed to be affected in virulence-related traits. The mutated genes were MAV_4334 (nitroreductase family protein), MAV_5106 (phosphoenolpyruvate carboxykinase), MAV_1778 (GTP-binding protein LepA) and MAV_3128 (lysyl-tRNA synthetase LysS). Conclusions We established a random mutagenesis method for MAH that can be easily carried out and combined it with a set of phenotypic screening methods for the identification of virulence-associated mutants. By this method, four new MAH genes were identified that may be involved in virulence.
Collapse
Affiliation(s)
- Faisal Asghar Khattak
- Robert Koch-Institute, Division 16 Mycology/Parasitology/Intracellular Pathogens, Nordufer 20, Berlin 13353, Germany
| | | | | | | | | |
Collapse
|
26
|
Lamrabet O, Drancourt M. Genetic engineering of Mycobacterium tuberculosis: a review. Tuberculosis (Edinb) 2012; 92:365-76. [PMID: 22789498 DOI: 10.1016/j.tube.2012.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 06/06/2012] [Indexed: 01/01/2023]
Abstract
Genetic engineering has been used for decades to mutate and delete genes in the Mycobacterium tuberculosis genome with the translational goal of producing attenuated mutants with conserved susceptibility to antituberculous antibiotics. The development of plasmids and mycobacteriophages that can transfer DNA into the M. tuberculosis chromosome has effectively overcome M. tuberculosis slow growth rate and the capsule and mycolic acid wall, which limit DNA uptake. The use of genetic engineering techniques has shed light on many aspects of pathogenesis mechanisms, including cellular growth, mycolic acid biosynthesis, metabolism, drug resistance and virulence. Moreover, such research gave clues to the development of new vaccines or new drugs for routine clinical practice. The use of genetic engineering tools is mainly based on the underlying concept that altering or reducing the M. tuberculosis genome could decrease its virulence. A contrario, recent post-genomic analyses indicated that reduced bacterial genomes are often associated with increased bacterial virulence and that M. tuberculosis acquired genes by lateral genetic exchange during its evolution. Therefore, ancestors utilizing genetic engineering to add genes to the M. tuberculosis genome may lead to new vaccines and the availability of M. tuberculosis isolates with increased susceptibility to antituberculous antibiotics.
Collapse
Affiliation(s)
- Otmane Lamrabet
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UMR CNRS 6236 IRD 3R198, Méditerranée Infection, FRIDMM, Aix-Marseille Université, Marseille, France.
| | | |
Collapse
|
27
|
Generation of a novel nucleic acid-based reporter system to detect phenotypic susceptibility to antibiotics in Mycobacterium tuberculosis. mBio 2012; 3:mBio.00312-11. [PMID: 22415006 PMCID: PMC3312217 DOI: 10.1128/mbio.00312-11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We designed, constructed, and evaluated a prototype novel reporter system comprised of two functional cassettes: (i) the SP6 RNA polymerase gene under transcriptional control of a promoter active in mycobacteria and (ii) the consensus SP6 polymerase promoter that directs expression of an otherwise unexpressed sequence. We incorporated the reporter system into a mycobacteriophage for delivery into viable Mycobacterium tuberculosis, and introduction led to synthesis of an SP6 polymerase-dependent surrogate marker RNA that we detected by reverse transcriptase PCR (RT-PCR). The reporter confirmed the susceptibility profile of both drug-susceptible and drug-resistant M. tuberculosis strains exposed to first-line antitubercular drugs and required as little as 16 h of exposure to antibacterial agents targeting bacterial metabolic processes to accurately read the reaction. The reporter system translated the bacterial phenotype into a language interpretable by rapid and sensitive nucleic acid detection. As a phenotypic assay that works only on viable M. tuberculosis, it could be used to rapidly assess resistance to any drug, including drugs for which the mechanism of resistance is unknown or which result from many potential known (and unknown) genetic alterations. The ability to detect antibiotic resistance of slow-growing bacteria (i.e., Mycobacterium tuberculosis) is hampered by two factors, the time to detection (weeks to months) and the resistance mechanism (unknown for many drugs), delaying the appropriate treatment of patients with drug-resistant or multidrug-resistant tuberculosis (TB). The novel technique described in this article uses a unique surrogate nucleic acid marker produced by phage that infects M. tuberculosis to record phenotypic antibiotic susceptibility in less than a day.
Collapse
|
28
|
Pruksakorn P, Arai M, Liu L, Moodley P, Jacobs WR, Kobayashi M. Action-mechanism of trichoderin A, an anti-dormant mycobacterial aminolipopeptide from marine sponge-derived Trichoderma sp. Biol Pharm Bull 2012; 34:1287-90. [PMID: 21804219 DOI: 10.1248/bpb.34.1287] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the course of our search for anti-dormant mycobacterial substances from marine organisms, we previously isolated three new aminolipopeptides, named trichoderins A, A1 and B, from the culture of the marine sponge-derived fungus of Trichoderma sp. and determined their chemical structures. To identify the gene that could confer a resistance to trichoderin A, we prepared transformants of Mycobacterium (M.) smegmatis, which were transformed with the genomic DNA library of M. bovis BCG constructed in the multi-copy shuttle cosmid pYUB145. Then, the transformant of M. smegmatis, which over-expressed a part of genes that coded mycobacterial ATP synthase, was found to exhibit a resistance to trichoderin A. In addition, trichoderin A reduced ATP contents in M. bovis BCG. These findings elucidated that the anti-mycobacterial activity of trichoderins comes from the inhibition of ATP synthesis.
Collapse
Affiliation(s)
- Patamaporn Pruksakorn
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565–0871, Japan
| | | | | | | | | | | |
Collapse
|
29
|
DedA protein relates to action-mechanism of halicyclamine A, a marine spongean macrocyclic alkaloid, as an anti-dormant mycobacterial substance. Mar Drugs 2011; 9:984-993. [PMID: 21747743 PMCID: PMC3131556 DOI: 10.3390/md9060984] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 05/25/2011] [Accepted: 06/03/2011] [Indexed: 11/25/2022] Open
Abstract
A macrocyclic alkaloid, halicyclamine A, was re-discovered from an Indonesian marine sponge of Haliclona sp. 05A08 as an anti-dormant mycobacterial substance. To clarify action-mechanism of halicyclamine A, halicyclamine A-resistant strains were screened from the transformants of Mycobacterium smegmatis with the genomic DNA library of M. bovis BCG, which were constructed in the multi-copy shuttle cosmid pYUB145. Sequencing analysis of the cosmids isolated from the halicyclamine A-resistant transformants revealed that the responsible gene was involved in the genome region between 2920.549 kb and 2933.210 kb. Further experiments using the transformants over-expressing individual gene contained in the responsible region were executed, and the transformant, which over-expressed BCG2664 gene assigned as dedA gene, was found to become halicyclamine A-resistant. This evidence strongly suggested that DedA protein correlates with the action-mechanism of halicyclamine A as an anti-dormant mycobacterial substance.
Collapse
|
30
|
Kendall SL, Frita R. Construction of targeted mycobacterial mutants by homologous recombination. Methods Mol Biol 2010; 465:297-310. [PMID: 20560068 DOI: 10.1007/978-1-59745-207-6_20] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The ability to select genes to knock out of mycobacterial genomes has greatly improved our understanding of mycobacteria. This chapter describes a method for doing this. The gene (including a 1-kb flanking region) is cloned into a pNIL series vector and disrupted by deletion or insertion of a cassette. A selection of marker genes obtained from the pGOAL series of vectors are inserted into the pNIL vector to create a suicide delivery system. This delivery vector is introduced into mycobacteria where the disrupted version of the gene replaces the wild-type version by a two-step homologous recombination process. The method involves selecting for a single crossover event followed by selection of double crossovers. Single crossovers have incorporated plasmid marker genes and are sucrose(S), kanamycin(R) and blue on media containing X-gal. Double crossovers have lost plasmid markers and are sucrose(R), kanamycin(S) and white on media containing X-gal.
Collapse
Affiliation(s)
- Sharon L Kendall
- Department of Pathology and Infectious Diseases, The Royal Veterinary College, Royal College Street, London NW1 OTU, UK.
| | | |
Collapse
|
31
|
A role for the class A penicillin-binding protein PonA2 in the survival of Mycobacterium smegmatis under conditions of nonreplication. J Bacteriol 2010; 192:3043-54. [PMID: 20400545 DOI: 10.1128/jb.00025-10] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Class A penicillin-binding proteins (PBPs) are large, bifunctional proteins that are responsible for glycan chain assembly and peptide cross-linking of bacterial peptidoglycan. Bacteria in the genus Mycobacterium have been reported to have only two class A PBPs, PonA1 and PonA2, that are encoded in their genomes. We report here that the genomes of Mycobacterium smegmatis and other soil mycobacteria contain an additional gene encoding a third class A penicillin-binding protein, PonA3, which is a paralog of PonA2. Both the PonA2 and PonA3 proteins contain a penicillin-binding protein and serine/threonine protein kinase-associated (PASTA) domain that we propose may be involved in sensing the cell cycle and a C-terminal proline-rich region (PRR) that may have a role in protein-protein or protein-carbohydrate interactions. We show here that an M. smegmatis Delta ponA2 mutant has an unusual antibiotic susceptibility profile, exhibits a spherical morphology and an altered cell surface in stationary phase, and is defective for stationary-phase survival and recovery from anaerobic culture. In contrast, a Delta ponA3 mutant has no discernible phenotype under laboratory conditions. We demonstrate that PonA2 and PonA3 can bind penicillin and that PonA3 can partially substitute for PonA2 when ponA3 is expressed from a constitutive promoter on a multicopy plasmid. Our studies suggest that PonA2 is involved in adaptation to periods of nonreplication in response to starvation or anaerobiosis and that PonA3 may have a similar role. However, the regulation of PonA3 is likely different, suggesting that its importance could be related to stresses encountered in the environmental niches occupied by M. smegmatis and other soil-dwelling mycobacteria.
Collapse
|
32
|
Abstract
Antibiotics target functions that are required for bacterial growth and survival. As genetic tools for studying Mycobacterium tuberculosis continue to improve we are increasingly able to identify genes that encode these important effectors. Here we review the strategies that have been used to identify and validate essential genes in mycobacteria and look forward to possible future advances.
Collapse
Affiliation(s)
- Jun-Rong Wei
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, 200 Longwood Ave, Boston, MA 02115, USA
| | | |
Collapse
|
33
|
van Kessel JC, Marinelli LJ, Hatfull GF. Recombineering mycobacteria and their phages. Nat Rev Microbiol 2008; 6:851-7. [PMID: 18923412 DOI: 10.1038/nrmicro2014] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacteriophages are central components in the development of molecular tools for microbial genetics. Mycobacteriophages have proven to be a rich resource for tuberculosis genetics, and the recent development of a mycobacterial recombineering system based on mycobacteriophage Che9c-encoded proteins offers new approaches to mycobacterial mutagenesis. Expression of the phage exonuclease and recombinase substantially enhances recombination frequencies in both fast- and slow-growing mycobacteria, thereby facilitating construction of both gene knockout and point mutants; it also provides a simple and efficient method for constructing mycobacteriophage mutants. Exploitation of host-specific phages thus provides a general strategy for recombineering and mutagenesis in genetically naive systems.
Collapse
Affiliation(s)
- Julia C van Kessel
- Pittsburgh Bacteriophage Institute and Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | | |
Collapse
|
34
|
Frequent homologous recombination events in Mycobacterium tuberculosis PE/PPE multigene families: potential role in antigenic variability. J Bacteriol 2008; 190:7838-46. [PMID: 18820012 DOI: 10.1128/jb.00827-08] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The PE and PPE (PE/PPE) multigene families of Mycobacterium tuberculosis are particularly GC-rich and share extensive homologous repetitive sequences. We hypothesized that they may undergo homologous recombination events, a mechanism rarely described in the natural evolution of mycobacteria. To test our hypothesis, we developed a specific oligonucleotide-based microarray targeting nearly all of the PE/PPE genes, aimed at detecting signals for homologous recombination. Such a microarray has never before been reported due to the multiplicity and highly repetitive and homologous nature of these sequences. Application of the microarray to a collection of M. tuberculosis clinical isolates (n = 33) representing prevalent spoligotype strain families in Tunisia allowed successful detection of six deleted genomic regions involving a total of two PE and seven PPE genes. Some of these deleted genes are known to be immunodominant or involved in virulence. The four precisely determined deletions were flanked by 400- to 500-bp stretches of nearly identical sequences lying mainly at the conserved N-terminal region of the PE/PPE genes. These highly homologous sequences thus serve as substrates to mediate both intergenic and intragenic homologous recombination events, indicating an important function in generating strain variation. Importantly, all recombination events yielded a new in-frame fusion chimeric gene. Hence, homologous recombination within and between PE/PPE genes likely increased their antigenic variability, which may have profound implications in pathogenicity and/or host adaptation. The finding of high prevalence (approximately 45% and approximately 58%) for at least two of the genomic deletions suggests that they likely confer advantageous biological attributes.
Collapse
|
35
|
Abstract
Mycobacterium tuberculosis has been studied since the 19th century, but genetic manipulation of this organism has only become possible within the last decade of the 20th century. One key methodology is the allelic exchange of unmarked, in-frame deletion mutations and point mutations using counter-selectable suicide plasmids. I describe below the challenges of allelic exchange in M. tuberculosis, the overall mechanism of a suicide vector system, and how it can be used for efficient allelic exchange in this formally intractable organism.
Collapse
Affiliation(s)
- Martin S Pavelka
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
36
|
Demonstration of allelic exchange in the slow-growing bacterium Mycobacterium avium subsp. paratuberculosis, and generation of mutants with deletions at the pknG, relA, and lsr2 loci. Appl Environ Microbiol 2008; 74:1687-95. [PMID: 18192416 DOI: 10.1128/aem.01208-07] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Mycobacterium avium subsp. paratuberculosis is the causative pathogen of Johne's disease, a chronic inflammatory wasting disease in ruminants. This disease has been difficult to control because of the lack of an effective vaccine. To address this need, we adapted a specialized transduction system originally developed for M. tuberculosis and modified it to improve the efficiency of allelic exchange in order to generate site-directed mutations in preselected M. avium subsp. paratuberculosis genes. With our novel optimized method, the allelic exchange frequency was 78 to 100% and the transduction frequency was 1.1 x 10(-7) to 2.9 x 10(-7). Three genes were selected for mutagenesis: pknG and relA, which are genes that are known to be important virulence factors in M. tuberculosis and M. bovis, and lsr2, a gene regulating lipid biosynthesis and antibiotic resistance. Mutants were successfully generated with a virulent strain of M. avium subsp. paratuberculosis (M. avium subsp. paratuberculosis K10) and with a recombinant K10 strain expressing the green fluorescent protein gene, gfp. The improved efficiency of disruption of selected genes in M. avium subsp. paratuberculosis should accelerate development of additional mutants for vaccine testing and functional studies.
Collapse
|
37
|
Nguyen L, Scherr N, Gatfield J, Walburger A, Pieters J, Thompson CJ. Antigen 84, an effector of pleiomorphism in Mycobacterium smegmatis. J Bacteriol 2007; 189:7896-910. [PMID: 17766411 PMCID: PMC2168712 DOI: 10.1128/jb.00726-07] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
While in most rod-shaped bacteria, morphology is based on MreB-like proteins that form an actin-like cytoskeletal scaffold for cell wall biosynthesis, the factors that determine the more flexible rod-like shape in actinobacteria such as Mycobacterium species are unknown. Here we show that a Mycobacterium smegmatis protein homologous to eubacterial DivIVA-like proteins, including M. tuberculosis antigen 84 (Ag84), localized symmetrically to centers of peptidoglycan biosynthesis at the poles and septa. Controlled gene disruption experiments indicated that the gene encoding Ag84, wag31, was essential; when overexpressed, cells became longer and wider, with Ag84 asymmetrically distributed at one pole. Many became grossly enlarged, bowling-pin-shaped cells having up to 80-fold-increased volume. In these cells, Ag84 accumulated predominantly at a bulbous pole that was apparently generated by uncontrolled cell wall expansion. In some cells, Ag84 was associated with exceptional sites of cell wall expansion (buds) that evolved into branches. M. bovis BCG Ag84 was able to form oligomers in vitro, perhaps reflecting its superstructure in vivo. These data suggested a role for Ag84 in cell division and modulating cell shape in pleiomorphic actinobacteria.
Collapse
Affiliation(s)
- Liem Nguyen
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | | | |
Collapse
|
38
|
Gokhale RS, Saxena P, Chopra T, Mohanty D. Versatile polyketide enzymatic machinery for the biosynthesis of complex mycobacterial lipids. Nat Prod Rep 2007; 24:267-77. [PMID: 17389997 DOI: 10.1039/b616817p] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The cell envelope of Mycobacterium tuberculosis (Mtb) is a treasure house of a variety of biologically active molecules with fascinating architectures. The decoding of the genetic blueprint of Mtb in recent years has provided the impetus for dissecting the metabolic pathways involved in the biosynthesis of lipidic metabolites. The focus of the Highlight is to emphasize the functional role of polyketide synthase (PKS) proteins in the biosynthesis of complex mycobacterial lipids. The catalytic as well as mechanistic versatility of PKS. in generating metabolic diversity and the significance of recently discovered fatty acyl-AMP ligases in establishing "biochemical crosstalk" between fatty acid synthases (FASs) and PKSs is described. The phenotypic heterogeneity and remodeling of the mycobacterial cell wall in its aetiopathogenesis is discussed.
Collapse
Affiliation(s)
- Rajesh S Gokhale
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110 067, India.
| | | | | | | |
Collapse
|
39
|
van Kessel JC, Hatfull GF. Recombineering in Mycobacterium tuberculosis. Nat Methods 2006; 4:147-52. [PMID: 17179933 DOI: 10.1038/nmeth996] [Citation(s) in RCA: 411] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Accepted: 11/09/2006] [Indexed: 01/26/2023]
Abstract
Genetic dissection of M. tuberculosis is complicated by its slow growth and its high rate of illegitimate recombination relative to homologous DNA exchange. We report here the development of a facile allelic exchange system by identification and expression of mycobacteriophage-encoded recombination proteins, adapting a strategy developed previously for recombineering in Escherichia coli. Identifiable recombination proteins are rare in mycobacteriophages, and only 1 of 30 genomically characterized mycobacteriophages (Che9c) encodes homologs of both RecE and RecT. Expression and biochemical characterization show that Che9c gp60 and gp61 encode exonuclease and DNA-binding activities, respectively, and expression of these proteins substantially elevates recombination facilitating allelic exchange in both M. smegmatis and M. tuberculosis. Mycobacterial recombineering thus provides a simple approach for the construction of gene replacement mutants in both slow- and fast-growing mycobacteria.
Collapse
Affiliation(s)
- Julia C van Kessel
- Pittsburgh Bacteriophage Institute and Department of Biological Sciences, 376 Crawford Hall, 4249 Fifth Ave., University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | |
Collapse
|
40
|
Lane JM, Rubin EJ. Scaling down: a PCR-based method to efficiently screen for desired knockouts in a high density Mycobacterium tuberculosis picked mutant library. Tuberculosis (Edinb) 2006; 86:310-3. [PMID: 16527544 DOI: 10.1016/j.tube.2006.01.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Accepted: 01/20/2006] [Indexed: 11/25/2022]
Abstract
Transposon mutagenesis produces random mycobacterial mutants at high frequency. Because they are random, however, it is difficult to isolate mutations in particular target genes. Here we describe the use of an arrayed library of Mycobacterium tuberculosis together with a PCR screening strategy to rapidly identify strains with defined insertion mutations. This method is useful for many genetic applications.
Collapse
Affiliation(s)
- James M Lane
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
41
|
Krzywinska E, Bhatnagar S, Sweet L, Chatterjee D, Schorey JS. Mycobacterium avium 104 deleted of the methyltransferase D gene by allelic replacement lacks serotype-specific glycopeptidolipids and shows attenuated virulence in mice. Mol Microbiol 2005; 56:1262-73. [PMID: 15882419 DOI: 10.1111/j.1365-2958.2005.04608.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mycobacterium avium is a major opportunistic pathogen of AIDS patients in the United States. The understanding of M. avium pathogenesis has been hampered by the inability to create gene knockouts by homologous recombination, an important mechanism for defining and characterizing virulence factors. In this study a functional methyltransferase D (mtfD) gene was deleted by allelic replacement in the M. avium strain 104. Methyltransferase D is involved in the methylation of glycopeptidolipids (GPLs); highly antigenic glycolipids found in copious amounts on the M. avium cell surface. Interestingly, the loss of mtfD resulted in M. avium 104 containing only the non-serotype specific GPL. Results also suggest that the mtfD encodes for a 3-O-methyltransferase. The absence of significant amounts of any serotype-specific GPLs as a consequence of mtfD deletion indicates that the synthesis of the core 3,4-di-O-methyl rhamnose is a prerequisite for synthesis of the serotype-specific GPLs. Macrophages infected with the mtfD mutant show elevated production of tumour necrosis factor-alpha (TNF-alpha) and RANTES compared to control infections. In addition, the M. avium 104 mtfD mutant exhibits decreased ability to survive/proliferate in mouse liver and lung compared to wild-type 104, as assessed by bacterial counts. Importantly, the mtfD mutant complemented with a wild-type mtfD gene maintained an infection level similar to wild-type. These experiments demonstrate that the loss of mtfD results in a M. avium 104 strain, which preferentially activates macrophages in vitro and shows attenuated virulence in mice. Together our data support a role for GPLs in M. avium pathogenesis.
Collapse
Affiliation(s)
- Elzbieta Krzywinska
- Department of Biological Sciences, Center for Tropical Disease Research and Training, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | | | | | |
Collapse
|
42
|
Abstract
Modern chemotherapy has played a major role in our control of tuberculosis. Yet tuberculosis still remains a leading infectious disease worldwide, largely owing to persistence of tubercle bacillus and inadequacy of the current chemotherapy. The increasing emergence of drug-resistant tuberculosis along with the HIV pandemic threatens disease control and highlights both the need to understand how our current drugs work and the need to develop new and more effective drugs. This review provides a brief historical account of tuberculosis drugs, examines the problem of current chemotherapy, discusses the targets of current tuberculosis drugs, focuses on some promising new drug candidates, and proposes a range of novel drug targets for intervention. Finally, this review addresses the problem of conventional drug screens based on inhibition of replicating bacilli and the challenge to develop drugs that target nonreplicating persistent bacilli. A new generation of drugs that target persistent bacilli is needed for more effective treatment of tuberculosis.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA.
| |
Collapse
|
43
|
Flores AR, Parsons LM, Pavelka MS. Characterization of novel Mycobacterium tuberculosis and Mycobacterium smegmatis mutants hypersusceptible to beta-lactam antibiotics. J Bacteriol 2005; 187:1892-900. [PMID: 15743935 PMCID: PMC1064048 DOI: 10.1128/jb.187.6.1892-1900.2005] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Our laboratory previously constructed mutants of Mycobacterium tuberculosis and Mycobacterium smegmatis with deletions in the genes for their major beta-lactamases, BlaC and BlaS, respectively, and showed that the mutants have increased susceptibilities to most beta-lactam antibiotics, particularly the penicillins. However, there is still a basal level of resistance in the mutants to certain penicillins, and the susceptibilities of the mutants to some cephalosporin-based beta-lactams are essentially the same as those of the wild types. We hypothesized that characterizing additional mutants (derived from beta-lactamase deletion mutants) that are hypersusceptible to beta-lactam antibiotics might reveal novel genes involved with other mechanisms of beta-lactam resistance, peptidoglycan assembly, and cell envelope physiology. We report here the isolation and characterization of nine beta-lactam antibiotic-hypersusceptible transposon mutants, two of which have insertions in genes known to be involved with peptidoglycan biosynthesis (ponA2 and dapB); the other seven mutants have insertions which affect novel genes. These genes can be classified into three groups: those involved with peptidoglycan biosynthesis, cell division, and other cell envelope processes. Two of the peptidoglycan-biosynthetic genes (ponA2 and pbpX) may encode beta-lactam antibiotic-resistant enzymes proposed to be involved with the synthesis of the unusual diaminopimelyl linkages within the mycobacterial peptidoglycan.
Collapse
Affiliation(s)
- Anthony R Flores
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | | |
Collapse
|
44
|
|
45
|
Machowski EE, Dawes S, Mizrahi V. TB tools to tell the tale–molecular genetic methods for mycobacterial research. Int J Biochem Cell Biol 2005; 37:54-68. [PMID: 15381150 DOI: 10.1016/j.biocel.2004.06.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2004] [Indexed: 10/26/2022]
Abstract
In spite of the availability of drugs and a vaccine, tuberculosis--one of man's medical nemeses--remains a formidable public health problem, particularly in the developing world. The persistent nature of the tubercle bacillus, with one third of the world's population is estimated to be infected, combined with the emergence of multi drug-resistant strains and the exquisite susceptibility of HIV-positive individuals, has underscored the urgent need for in-depth study of the biology of Mycobacterium tuberculosis address the resurgence of TB. In aiming to understand the mechanisms by which mycobacteria react to their immediate environments, molecular genetic tools have been developed from naturally occurring genetic elements. These include protein expressing genes, and episomal and integrating elements, which have been derived mainly from prokaryotic but also from eukaryotic organisms. Molecular genetic tools that had been established as routine procedures in other prokaryotic genera were thus mimicked. Knowledge of the underlying mechanisms greatly expedited the harnessing of these elements for mycobacteriological research and has brought us to a point where these molecular genetic tools are now employed routinely in laboratories worldwide.
Collapse
Affiliation(s)
- Edith E Machowski
- MRC/NHLS/WITS Molecular Mycobacteriology Research Unit, School of Pathology, University of the Witwatersrand and National Health Laboratory Service, P.O. Box 1038, Johannesburg 2000, South Africa.
| | | | | |
Collapse
|
46
|
Krzywinska E, Krzywinski J, Schorey JS. Naturally occurring horizontal gene transfer and homologous recombination in Mycobacterium. MICROBIOLOGY-SGM 2004; 150:1707-1712. [PMID: 15184557 DOI: 10.1099/mic.0.27088-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Acquisition of genetic information through horizontal gene transfer (HGT) is an important evolutionary process by which micro-organisms gain novel phenotypic characteristics. In pathogenic bacteria, for example, it facilitates maintenance and enhancement of virulence and spread of drug resistance. In the genus Mycobacterium, to which several primary human pathogens belong, HGT has not been clearly demonstrated. The few existing reports suggesting this process are based on circumstantial evidence of similarity of sequences found in distantly related species. Here, direct evidence of HGT between strains of Mycobacterium avium representing two different serotypes is presented. Conflicting evolutionary histories of genes encoding elements of the glycopeptidolipid (GPL) biosynthesis pathway led to an analysis of the GPL cluster genomic sequences from four Mycobacterium avium strains. The sequence of M. avium strain 2151 appeared to be a mosaic consisting of three regions having alternating identities to either M. avium strains 724 or 104. Maximum-likelihood estimation of two breakpoints allowed a approximately 4100 bp region horizontally transferred into the strain 2151 genome to be pinpointed with confidence. The maintenance of sequence continuity at both breakpoints and the lack of insertional elements at these sites strongly suggest that the integration of foreign DNA occurred by homologous recombination. To our knowledge, this is the first report to demonstrate naturally occurring homologous recombination in Mycobacterium. This previously undiscovered mechanism of genetic exchange may have major implications for the understanding of Mycobacterium pathogenesis.
Collapse
Affiliation(s)
- Elzbieta Krzywinska
- Department of Biological Sciences, Center for Tropical Disease Research and Training, University of Notre Dame, 130 Galvin Life Science Center, Notre Dame, IN 46556, USA
| | - Jaroslaw Krzywinski
- Department of Biological Sciences, Center for Tropical Disease Research and Training, University of Notre Dame, 130 Galvin Life Science Center, Notre Dame, IN 46556, USA
| | - Jeffrey S Schorey
- Department of Biological Sciences, Center for Tropical Disease Research and Training, University of Notre Dame, 130 Galvin Life Science Center, Notre Dame, IN 46556, USA
| |
Collapse
|
47
|
White EL, Ross LJ, Cunningham A, Escuyer V. Cloning, expression, and characterization of Mycobacterium tuberculosis dihydrofolate reductase. FEMS Microbiol Lett 2004; 232:101-5. [PMID: 15019741 DOI: 10.1016/s0378-1097(04)00038-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2003] [Revised: 01/06/2004] [Accepted: 01/12/2004] [Indexed: 10/26/2022] Open
Abstract
The gene for dihydrofolate reductase of Mycobacterium tuberculosis was amplified by polymerase chain reaction (PCR) from M. tuberculosis H37Rv strain genomic DNA. The protein was expressed in inclusion bodies in high yield in Escherichia coli under the control of the T7 promoter. Active enzyme was obtained by refolding from guanidine HCl and after a single chromatography step the sample was > 99% homogeneous with a specific activity of approximately 15.5 micromol min(-1) mg(-1). Mass spectrometry analysis confirmed the expected mass of 17.6 kDa. Gel filtration of the enzyme indicated that it was a monomer. Steady-state kinetic parameters were determined and the effect of pH and KCl on the enzyme examined. Methotrexate and trimethoprim inhibited the enzyme.
Collapse
Affiliation(s)
- E Lucile White
- Drug Discovery Division, Southern Research Institute, 2000 Ninth Avenue South, Birmingham, AL 35205, USA.
| | | | | | | |
Collapse
|
48
|
Stermann M, Sedlacek L, Maass S, Bange FC. A promoter mutation causes differential nitrate reductase activity of Mycobacterium tuberculosis and Mycobacterium bovis. J Bacteriol 2004; 186:2856-61. [PMID: 15090527 PMCID: PMC387782 DOI: 10.1128/jb.186.9.2856-2861.2004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The recent publication of the genome sequence of Mycobacterium bovis showed >99.95% identity to M. tuberculosis. No genes unique to M. bovis were found. Instead numerous single-nucleotide polymorphisms (SNPs) were identified. This has led to the hypothesis that differential gene expression due to SNPs might explain the differences between the human and bovine tubercle bacilli. One phenotypic distinction between M. tuberculosis and M. bovis is nitrate reduction, which not only is an essential diagnostic tool but also contributes to mycobacterial pathogenesis. We previously showed that narGHJI encodes a nitrate reductase in both M. tuberculosis and M. bovis and that NarGHJI-mediated nitrate reductase activity was substantially higher in the human tubercle bacillus. In the present study we used a genetic approach to demonstrate that an SNP within the promoter of the nitrate reductase gene cluster narGHJI is responsible for the different nitrate reductase activity of M. tuberculosis and M. bovis. This is the first example of an SNP that leads to differential gene expression between the human and bovine tubercle bacilli.
Collapse
Affiliation(s)
- Marion Stermann
- Department of Medical Microbiology and Hospital Epidemiology, Medical School Hannover, Carl-Neuberg-Strasse 1, 30625 Hanover, Germany
| | | | | | | |
Collapse
|
49
|
Abstract
Tuberculosis (TB) has afflicted humankind throughout history. Approximately one third of the world's population is currently infected with Mycobacterium tuberculosis and nearly two million people die of TB annually. Although much has been learned about the structure of the tubercle bacillus, the epidemiology of TB, the physiological and immunological responses of the host to infection, and the physiology of M. tuberculosis in laboratory broth cultures, much of the basic biology of M. tuberculosis in its natural setting (the infected human) remains to be elucidated. Within the past decade, there have been remarkable advances in the development of genetic and molecular biological tools with which to study M. tuberculosis. This review discusses the approaches that have been employed and the progress that has been made in discovering how M. tuberculosis has achieved its prowess as a successful pathogen.
Collapse
|
50
|
Kana BD, Mizrahi V. Molecular genetics of Mycobacterium tuberculosis in relation to the discovery of novel drugs and vaccines. Tuberculosis (Edinb) 2004; 84:63-75. [PMID: 14670347 DOI: 10.1016/j.tube.2003.08.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Genetic systems that allow mycobacterial genomes to be mutagenized in a targeted or random fashion have provided the means for developing new tools for the diagnosis, prevention and treatment of tuberculosis by allowing potential targets to be identified and validated. In this review, we highlight key historical developments in the field of mycobacterial genetics, which have yielded the powerful repertoire of genetic tools that are now in hand and provide examples that illustrate their use in exploring specific aspects of mycobacterial metabolism.
Collapse
Affiliation(s)
- Bavesh D Kana
- MRC/NHLS/WITS Molecular Mycobacteriology Research Unit, National Health Laboratory Service and School of Pathology, University of the Witwatersrand, NHLS P.O. Box 1038, Room 311 James Gear Building, Johannesburg 2000, South Africa
| | | |
Collapse
|