1
|
Jahn M, Crang N, Gynnå AH, Kabova D, Frielingsdorf S, Lenz O, Charpentier E, Hudson EP. The energy metabolism of Cupriavidus necator in different trophic conditions. Appl Environ Microbiol 2024; 90:e0074824. [PMID: 39320125 PMCID: PMC11540253 DOI: 10.1128/aem.00748-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/29/2024] [Indexed: 09/26/2024] Open
Abstract
The "knallgas" bacterium Cupriavidus necator is attracting interest due to its extremely versatile metabolism. C. necator can use hydrogen or formic acid as an energy source, fixes CO2 via the Calvin-Benson-Bassham (CBB) cycle, and grows on organic acids and sugars. Its tripartite genome is notable for its size and duplications of key genes (CBB cycle, hydrogenases, and nitrate reductases). Little is known about which of these isoenzymes and their cofactors are actually utilized for growth on different substrates. Here, we investigated the energy metabolism of C. necator H16 by growing a barcoded transposon knockout library on succinate, fructose, hydrogen (H2/CO2), and formic acid. The fitness contribution of each gene was determined from enrichment or depletion of the corresponding mutants. Fitness analysis revealed that (i) some, but not all, molybdenum cofactor biosynthesis genes were essential for growth on formate and nitrate respiration. (ii) Soluble formate dehydrogenase (FDH) was the dominant enzyme for formate oxidation, not membrane-bound FDH. (iii) For hydrogenases, both soluble and membrane-bound enzymes were utilized for lithoautotrophic growth. (iv) Of the six terminal respiratory complexes in C. necator H16, only some are utilized, and utilization depends on the energy source. (v) Deletion of hydrogenase-related genes boosted heterotrophic growth, and we show that the relief from associated protein cost is responsible for this phenomenon. This study evaluates the contribution of each of C. necator's genes to fitness in biotechnologically relevant growth regimes. Our results illustrate the genomic redundancy of this generalist bacterium and inspire future engineering strategies.IMPORTANCEThe soil bacterium Cupriavidus necator can grow on gas mixtures of CO2, H2, and O2. It also consumes formic acid as carbon and energy source and various other substrates. This metabolic flexibility comes at a price, for example, a comparatively large genome (6.6 Mb) and a significant background expression of lowly utilized genes. In this study, we mutated every non-essential gene in C. necator using barcoded transposons in order to determine their effect on fitness. We grew the mutant library in various trophic conditions including hydrogen and formate as the sole energy source. Fitness analysis revealed which of the various energy-generating iso-enzymes are actually utilized in which condition. For example, only a few of the six terminal respiratory complexes are used, and utilization depends on the substrate. We also show that the protein cost for the various lowly utilized enzymes represents a significant growth disadvantage in specific conditions, offering a route to rational engineering of the genome. All fitness data are available in an interactive app at https://m-jahn.shinyapps.io/ShinyLib/.
Collapse
Affiliation(s)
- Michael Jahn
- School of Engineering
Sciences in Chemistry, Biotechnology and Health, Science for Life
Laboratory, KTH—Royal Institute of
Technology, Stockholm,
Sweden
- Max Planck Unit for
the Science of Pathogens,
Berlin, Germany
| | - Nick Crang
- School of Engineering
Sciences in Chemistry, Biotechnology and Health, Science for Life
Laboratory, KTH—Royal Institute of
Technology, Stockholm,
Sweden
| | - Arvid H. Gynnå
- School of Engineering
Sciences in Chemistry, Biotechnology and Health, Science for Life
Laboratory, KTH—Royal Institute of
Technology, Stockholm,
Sweden
| | - Deria Kabova
- Department of
Chemistry, Technical University Berlin,
Berlin, Germany
| | | | - Oliver Lenz
- Department of
Chemistry, Technical University Berlin,
Berlin, Germany
| | - Emmanuelle Charpentier
- Max Planck Unit for
the Science of Pathogens,
Berlin, Germany
- Humboldt-Universität
zu Berlin, Institute for Biology,
Berlin, Germany
| | - Elton P. Hudson
- School of Engineering
Sciences in Chemistry, Biotechnology and Health, Science for Life
Laboratory, KTH—Royal Institute of
Technology, Stockholm,
Sweden
| |
Collapse
|
2
|
Barco RA, Merino N, Lam B, Budnik B, Kaplan M, Wu F, Amend JP, Nealson KH, Emerson D. Comparative proteomics of a versatile, marine, iron-oxidizing chemolithoautotroph. Environ Microbiol 2024; 26:e16632. [PMID: 38861374 DOI: 10.1111/1462-2920.16632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/20/2024] [Indexed: 06/13/2024]
Abstract
This study conducted a comparative proteomic analysis to identify potential genetic markers for the biological function of chemolithoautotrophic iron oxidation in the marine bacterium Ghiorsea bivora. To date, this is the only characterized species in the class Zetaproteobacteria that is not an obligate iron-oxidizer, providing a unique opportunity to investigate differential protein expression to identify key genes involved in iron-oxidation at circumneutral pH. Over 1000 proteins were identified under both iron- and hydrogen-oxidizing conditions, with differentially expressed proteins found in both treatments. Notably, a gene cluster upregulated during iron oxidation was identified. This cluster contains genes encoding for cytochromes that share sequence similarity with the known iron-oxidase, Cyc2. Interestingly, these cytochromes, conserved in both Bacteria and Archaea, do not exhibit the typical β-barrel structure of Cyc2. This cluster potentially encodes a biological nanowire-like transmembrane complex containing multiple redox proteins spanning the inner membrane, periplasm, outer membrane, and extracellular space. The upregulation of key genes associated with this complex during iron-oxidizing conditions was confirmed by quantitative reverse transcription-PCR. These findings were further supported by electromicrobiological methods, which demonstrated negative current production by G. bivora in a three-electrode system poised at a cathodic potential. This research provides significant insights into the biological function of chemolithoautotrophic iron oxidation.
Collapse
Affiliation(s)
- Roman A Barco
- Department of Earth Sciences, University of Southern California, Los Angeles, California, USA
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
- Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine, USA
| | - N Merino
- Department of Earth Sciences, University of Southern California, Los Angeles, California, USA
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
- Lawrence Livermore National Lab, Biosciences and Biotechnology Division, Livermore, California, USA
| | - B Lam
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - B Budnik
- Mass Spectrometry and Proteomics Resource Laboratory, Harvard University, Cambridge, Massachusetts, USA
| | - M Kaplan
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - F Wu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang, China
| | - J P Amend
- Department of Earth Sciences, University of Southern California, Los Angeles, California, USA
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - K H Nealson
- Department of Earth Sciences, University of Southern California, Los Angeles, California, USA
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - D Emerson
- Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine, USA
| |
Collapse
|
3
|
Tang R, Yuan X, Yang J. Problems and corresponding strategies for converting CO 2 into value-added products in Cupriavidus necator H16 cell factories. Biotechnol Adv 2023; 67:108183. [PMID: 37286176 DOI: 10.1016/j.biotechadv.2023.108183] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/17/2023] [Accepted: 05/31/2023] [Indexed: 06/09/2023]
Abstract
Elevated CO2 emissions have substantially altered the worldwide climate, while the excessive reliance on fossil fuels has exacerbated the energy crisis. Therefore, the conversion of CO2 into fuel, petroleum-based derivatives, drug precursors, and other value-added products is expected. Cupriavidus necator H16 is the model organism of the "Knallgas" bacterium and is considered to be a microbial cell factory as it can convert CO2 into various value-added products. However, the development and application of C. necator H16 cell factories has several limitations, including low efficiency, high cost, and safety concerns arising from the autotrophic metabolic characteristics of the strains. In this review, we first considered the autotrophic metabolic characteristics of C. necator H16, and then categorized and summarized the resulting problems. We also provided a detailed discussion of some corresponding strategies concerning metabolic engineering, trophic models, and cultivation mode. Finally, we provided several suggestions for improving and combining them. This review might help in the research and application of the conversion of CO2 into value-added products in C. necator H16 cell factories.
Collapse
Affiliation(s)
- Ruohao Tang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, Shandong Province, People's Republic of China; Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, Shandong Province, People's Republic of China
| | - Xianzheng Yuan
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, Shandong Province, People's Republic of China
| | - Jianming Yang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, Shandong Province, People's Republic of China.
| |
Collapse
|
4
|
Stepwise assembly of the active site of [NiFe]-hydrogenase. Nat Chem Biol 2023; 19:498-506. [PMID: 36702959 DOI: 10.1038/s41589-022-01226-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 11/16/2022] [Indexed: 01/27/2023]
Abstract
[NiFe]-hydrogenases are biotechnologically relevant enzymes catalyzing the reversible splitting of H2 into 2e- and 2H+ under ambient conditions. Catalysis takes place at the heterobimetallic NiFe(CN)2(CO) center, whose multistep biosynthesis involves careful handling of two transition metals as well as potentially harmful CO and CN- molecules. Here, we investigated the sequential assembly of the [NiFe] cofactor, previously based on primarily indirect evidence, using four different purified maturation intermediates of the catalytic subunit, HoxG, of the O2-tolerant membrane-bound hydrogenase from Cupriavidus necator. These included the cofactor-free apo-HoxG, a nickel-free version carrying only the Fe(CN)2(CO) fragment, a precursor that contained all cofactor components but remained redox inactive and the fully mature HoxG. Through biochemical analyses combined with comprehensive spectroscopic investigation using infrared, electronic paramagnetic resonance, Mössbauer, X-ray absorption and nuclear resonance vibrational spectroscopies, we obtained detailed insight into the sophisticated maturation process of [NiFe]-hydrogenase.
Collapse
|
5
|
Finney AJ, Buchanan G, Palmer T, Coulthurst SJ, Sargent F. Activation of a [NiFe]-hydrogenase-4 isoenzyme by maturation proteases. MICROBIOLOGY (READING, ENGLAND) 2020; 166:854-860. [PMID: 32731905 PMCID: PMC7654741 DOI: 10.1099/mic.0.000963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 07/22/2020] [Indexed: 12/23/2022]
Abstract
Maturation of [NiFe]-hydrogenases often involves specific proteases responsible for cleavage of the catalytic subunits. Escherichia coli HycI is the protease dedicated to maturation of the Hydrogenase-3 isoenzyme, a component of formate hydrogenlyase-1. In this work, it is demonstrated that a Pectobacterium atrosepticum HycI homologue, HyfK, is required for hydrogenase-4 activity, a component of formate hydrogenlyase-2, in that bacterium. The P. atrosepticum ΔhyfK mutant phenotype could be rescued by either P. atrosepticum hyfK or E. coli hycI on a plasmid. Conversely, an E. coli ΔhycI mutant was complemented by either E. coli hycI or P. atrosepticum hyfK in trans. E. coli is a rare example of a bacterium containing both hydrogenase-3 and hydrogenase-4, however the operon encoding hydrogenase-4 has no maturation protease gene. This work suggests HycI should be sufficient for maturation of both E. coli formate hydrogenlyases, however no formate hydrogenlyase-2 activity was detected in any E. coli strains tested here.
Collapse
Affiliation(s)
- Alexander J. Finney
- School of Natural & Environmental Sciences, Faculty of Science, Agriculture & Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - Grant Buchanan
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
- Institute of Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Tracy Palmer
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
- Institute of Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | | | - Frank Sargent
- School of Natural & Environmental Sciences, Faculty of Science, Agriculture & Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| |
Collapse
|
6
|
Hartmann S, Frielingsdorf S, Caserta G, Lenz O. A membrane-bound [NiFe]-hydrogenase large subunit precursor whose C-terminal extension is not essential for cofactor incorporation but guarantees optimal maturation. Microbiologyopen 2020; 9:1197-1206. [PMID: 32180370 PMCID: PMC7294309 DOI: 10.1002/mbo3.1029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 01/20/2023] Open
Abstract
[NiFe]‐hydrogenases catalyze the reversible conversion of molecular hydrogen into protons end electrons. This reaction takes place at a NiFe(CN)2(CO) cofactor located in the large subunit of the bipartite hydrogenase module. The corresponding apo‐protein carries usually a C‐terminal extension that is cleaved off by a specific endopeptidase as soon as the cofactor insertion has been accomplished by the maturation machinery. This process triggers complex formation with the small, electron‐transferring subunit of the hydrogenase module, revealing catalytically active enzyme. The role of the C‐terminal extension in cofactor insertion, however, remains elusive. We have addressed this problem by using genetic engineering to remove the entire C‐terminal extension from the apo‐form of the large subunit of the membrane‐bound [NiFe]‐hydrogenase (MBH) from Ralstonia eutropha. Unexpectedly, the MBH holoenzyme derived from this precleaved large subunit was targeted to the cytoplasmic membrane, conferred H2‐dependent growth of the host strain, and the purified protein showed exactly the same catalytic activity as native MBH. The only difference was a reduced hydrogenase content in the cytoplasmic membrane. These results suggest that in the case of the R. eutropha MBH, the C‐terminal extension is dispensable for cofactor insertion and seems to function only as a maturation facilitator.
Collapse
Affiliation(s)
- Sven Hartmann
- Institut für Chemie, Physikalische Chemie, Technische Universität Berlin, Berlin, Germany
| | - Stefan Frielingsdorf
- Institut für Chemie, Physikalische Chemie, Technische Universität Berlin, Berlin, Germany
| | - Giorgio Caserta
- Institut für Chemie, Physikalische Chemie, Technische Universität Berlin, Berlin, Germany
| | - Oliver Lenz
- Institut für Chemie, Physikalische Chemie, Technische Universität Berlin, Berlin, Germany
| |
Collapse
|
7
|
Inactivation of the uptake hydrogenase in the purple non-sulfur photosynthetic bacterium Rubrivivax gelatinosus CBS enables a biological water–gas shift platform for H2 production. ACTA ACUST UNITED AC 2019; 46:993-1002. [DOI: 10.1007/s10295-019-02173-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/03/2019] [Indexed: 10/27/2022]
Abstract
Abstract
Biological H2 production has potential to address energy security and environmental concerns if produced from renewable or waste sources. The purple non-sulfur photosynthetic bacterium Rubrivivax gelatinosus CBS produces H2 while oxidizing CO, a component of synthesis gas (Syngas). CO-linked H2 production is facilitated by an energy-converting hydrogenase (Ech), while a subsequent H2 oxidation reaction is catalyzed by a membrane-bound hydrogenase (MBH). Both hydrogenases contain [NiFe] active sites requiring 6 maturation factors (HypA-F) for assembly, but it is unclear which of the two annotated sets of hyp genes are required for each in R. gelatinosus CBS. Herein, we report correlated expression of hyp1 genes with Ech genes and hyp2 expression with MBH genes. Moreover, we find that while Ech H2 evolving activity is only delayed when hyp1 is deleted, hyp2 deletion completely disrupts MBH H2 uptake, providing a platform for a biologically driven water–gas shift reaction to produce H2 from CO.
Collapse
|
8
|
Hartmann S, Frielingsdorf S, Ciaccafava A, Lorent C, Fritsch J, Siebert E, Priebe J, Haumann M, Zebger I, Lenz O. O2-Tolerant H2 Activation by an Isolated Large Subunit of a [NiFe] Hydrogenase. Biochemistry 2018; 57:5339-5349. [DOI: 10.1021/acs.biochem.8b00760] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sven Hartmann
- Department of Chemistry, Sekr. PC14, Technische Universität Berlin, 10623 Berlin, Germany
| | - Stefan Frielingsdorf
- Department of Chemistry, Sekr. PC14, Technische Universität Berlin, 10623 Berlin, Germany
| | - Alexandre Ciaccafava
- Department of Chemistry, Sekr. PC14, Technische Universität Berlin, 10623 Berlin, Germany
| | - Christian Lorent
- Department of Chemistry, Sekr. PC14, Technische Universität Berlin, 10623 Berlin, Germany
| | - Johannes Fritsch
- Department of Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Elisabeth Siebert
- Department of Chemistry, Sekr. PC14, Technische Universität Berlin, 10623 Berlin, Germany
| | - Jacqueline Priebe
- Department of Chemistry, Sekr. PC14, Technische Universität Berlin, 10623 Berlin, Germany
| | - Michael Haumann
- Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany
| | - Ingo Zebger
- Department of Chemistry, Sekr. PC14, Technische Universität Berlin, 10623 Berlin, Germany
| | - Oliver Lenz
- Department of Chemistry, Sekr. PC14, Technische Universität Berlin, 10623 Berlin, Germany
| |
Collapse
|
9
|
Albareda M, Buchanan G, Sargent F. Identification of a stable complex between a [NiFe]-hydrogenase catalytic subunit and its maturation protease. FEBS Lett 2017; 591:338-347. [PMID: 28029689 PMCID: PMC5299533 DOI: 10.1002/1873-3468.12540] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 12/21/2016] [Accepted: 12/21/2016] [Indexed: 11/11/2022]
Abstract
Salmonella enterica serovar Typhimurium has the ability to use molecular hydrogen as a respiratory electron donor. This is facilitated by three [NiFe]‐hydrogenases termed Hyd‐1, Hyd‐2, and Hyd‐5. Hyd‐1 and Hyd‐5 are homologous oxygen‐tolerant [NiFe]‐hydrogenases. A critical step in the biosynthesis of a [NiFe]‐hydrogenase is the proteolytic processing of the catalytic subunit. In this work, the role of the maturation protease encoded within the Hyd‐5 operon, HydD, was found to be partially complemented by the maturation protease encoded in the Hyd‐1 operon, HyaD. In addition, both maturation proteases were shown to form stable complexes, in vivo and in vitro, with the catalytic subunit of Hyd‐5. The protein–protein interactions were not detectable in a strain that could not make the enzyme metallocofactor.
Collapse
|
10
|
Puggioni V, Tempel S, Latifi A. Distribution of Hydrogenases in Cyanobacteria: A Phylum-Wide Genomic Survey. Front Genet 2016; 7:223. [PMID: 28083017 PMCID: PMC5186783 DOI: 10.3389/fgene.2016.00223] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 12/13/2016] [Indexed: 01/02/2023] Open
Abstract
Microbial Molecular hydrogen (H2) cycling plays an important role in several ecological niches. Hydrogenases (H2ases), enzymes involved in H2 metabolism, are of great interest for investigating microbial communities, and producing BioH2. To obtain an overall picture of the genetic ability of Cyanobacteria to produce H2ases, we conducted a phylum wide analysis of the distribution of the genes encoding these enzymes in 130 cyanobacterial genomes. The concomitant presence of the H2ase and genes involved in the maturation process, and that of well-conserved catalytic sites in the enzymes were the three minimal criteria used to classify a strain as being able to produce a functional H2ase. The [NiFe] H2ases were found to be the only enzymes present in this phylum. Fifty-five strains were found to be potentially able produce the bidirectional Hox enzyme and 33 to produce the uptake (Hup) enzyme. H2 metabolism in Cyanobacteria has a broad ecological distribution, since only the genomes of strains collected from the open ocean do not possess hox genes. In addition, the presence of H2ase was found to increase in the late branching clades of the phylogenetic tree of the species. Surprisingly, five cyanobacterial genomes were found to possess homologs of oxygen tolerant H2ases belonging to groups 1, 3b, and 3d. Overall, these data show that H2ases are widely distributed, and are therefore probably of great functional importance in Cyanobacteria. The present finding that homologs to oxygen-tolerant H2ases are present in this phylum opens new perspectives for applying the process of photosynthesis in the field of H2 production.
Collapse
Affiliation(s)
- Vincenzo Puggioni
- Laboratoire de Chimie Bactérienne UMR 7283, Centre National de la Recherche Scientifique (CNRS), Aix-Marseille University Marseille, France
| | - Sébastien Tempel
- Laboratoire de Chimie Bactérienne UMR 7283, Centre National de la Recherche Scientifique (CNRS), Aix-Marseille University Marseille, France
| | - Amel Latifi
- Laboratoire de Chimie Bactérienne UMR 7283, Centre National de la Recherche Scientifique (CNRS), Aix-Marseille University Marseille, France
| |
Collapse
|
11
|
Biosynthesis of Salmonella enterica [NiFe]-hydrogenase-5: probing the roles of system-specific accessory proteins. J Biol Inorg Chem 2016; 21:865-73. [PMID: 27566174 DOI: 10.1007/s00775-016-1385-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 08/04/2016] [Indexed: 10/21/2022]
Abstract
A subset of bacterial [NiFe]-hydrogenases have been shown to be capable of activating dihydrogen-catalysis under aerobic conditions; however, it remains relatively unclear how the assembly and activation of these enzymes is carried out in the presence of air. Acquiring this knowledge is important if a generic method for achieving production of O2-resistant [NiFe]-hydrogenases within heterologous hosts is to be developed. Salmonella enterica serovar Typhimurium synthesizes the [NiFe]-hydrogenase-5 (Hyd-5) enzyme under aerobic conditions. As well as structural genes, the Hyd-5 operon also contains several accessory genes that are predicted to be involved in different stages of biosynthesis of the enzyme. In this work, deletions in the hydF, hydG, and hydH genes have been constructed. The hydF gene encodes a protein related to Ralstonia eutropha HoxO, which is known to interact with the small subunit of a [NiFe]-hydrogenase. HydG is predicted to be a fusion of the R. eutropha HoxQ and HoxR proteins, both of which have been implicated in the biosynthesis of an O2-tolerant hydrogenase, and HydH is a homologue of R. eutropha HoxV, which is a scaffold for [NiFe] cofactor assembly. It is shown here that HydG and HydH play essential roles in Hyd-5 biosynthesis. Hyd-5 can be isolated and characterized from a ΔhydF strain, indicating that HydF may not play the same vital role as the orthologous HoxO. This study, therefore, emphasises differences that can be observed when comparing the function of hydrogenase maturases in different biological systems.
Collapse
|
12
|
Abstract
In Escherichia coli, hydrogen metabolism plays a prominent role in anaerobic physiology. The genome contains the capability to produce and assemble up to four [NiFe]-hydrogenases, each of which are known, or predicted, to contribute to different aspects of cellular metabolism. In recent years, there have been major advances in the understanding of the structure, function, and roles of the E. coli [NiFe]-hydrogenases. The membrane-bound, periplasmically oriented, respiratory Hyd-1 isoenzyme has become one of the most important paradigm systems for understanding an important class of oxygen-tolerant enzymes, as well as providing key information on the mechanism of hydrogen activation per se. The membrane-bound, periplasmically oriented, Hyd-2 isoenzyme has emerged as an unusual, bidirectional redox valve able to link hydrogen oxidation to quinone reduction during anaerobic respiration, or to allow disposal of excess reducing equivalents as hydrogen gas. The membrane-bound, cytoplasmically oriented, Hyd-3 isoenzyme is part of the formate hydrogenlyase complex, which acts to detoxify excess formic acid under anaerobic fermentative conditions and is geared towards hydrogen production under those conditions. Sequence identity between some Hyd-3 subunits and those of the respiratory NADH dehydrogenases has led to hypotheses that the activity of this isoenzyme may be tightly coupled to the formation of transmembrane ion gradients. Finally, the E. coli genome encodes a homologue of Hyd-3, termed Hyd-4, however strong evidence for a physiological role for E. coli Hyd-4 remains elusive. In this review, the versatile hydrogen metabolism of E. coli will be discussed and the roles and potential applications of the spectrum of different types of [NiFe]-hydrogenases available will be explored.
Collapse
|
13
|
Fritsch J, Siebert E, Priebe J, Zebger I, Lendzian F, Teutloff C, Friedrich B, Lenz O. Rubredoxin-related maturation factor guarantees metal cofactor integrity during aerobic biosynthesis of membrane-bound [NiFe] hydrogenase. J Biol Chem 2014; 289:7982-93. [PMID: 24448806 DOI: 10.1074/jbc.m113.544668] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The membrane-bound [NiFe] hydrogenase (MBH) supports growth of Ralstonia eutropha H16 with H2 as the sole energy source. The enzyme undergoes a complex biosynthesis process that proceeds during cell growth even at ambient O2 levels and involves 14 specific maturation proteins. One of these is a rubredoxin-like protein, which is essential for biosynthesis of active MBH at high oxygen concentrations but dispensable under microaerobic growth conditions. To obtain insights into the function of HoxR, we investigated the MBH protein purified from the cytoplasmic membrane of hoxR mutant cells. Compared with wild-type MBH, the mutant enzyme displayed severely decreased hydrogenase activity. Electron paramagnetic resonance and infrared spectroscopic analyses revealed features resembling those of O2-sensitive [NiFe] hydrogenases and/or oxidatively damaged protein. The catalytic center resided partially in an inactive Niu-A-like state, and the electron transfer chain consisting of three different Fe-S clusters showed marked alterations compared with wild-type enzyme. Purification of HoxR protein from its original host, R. eutropha, revealed only low protein amounts. Therefore, recombinant HoxR protein was isolated from Escherichia coli. Unlike common rubredoxins, the HoxR protein was colorless, rather unstable, and essentially metal-free. Conversion of the atypical iron-binding motif into a canonical one through genetic engineering led to a stable reddish rubredoxin. Remarkably, the modified HoxR protein did not support MBH-dependent growth at high O2. Analysis of MBH-associated protein complexes points toward a specific interaction of HoxR with the Fe-S cluster-bearing small subunit. This supports the previously made notion that HoxR avoids oxidative damage of the metal centers of the MBH, in particular the unprecedented Cys6[4Fe-3S] cluster.
Collapse
Affiliation(s)
- Johannes Fritsch
- From the Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Chausseestrasse 117, 10115 Berlin
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Engineering Hydrogenases for H2 Production: Bolts and Goals. MICROBIAL BIOENERGY: HYDROGEN PRODUCTION 2014. [DOI: 10.1007/978-94-017-8554-9_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
15
|
|
16
|
Zymographic differentiation of [NiFe]-hydrogenases 1, 2 and 3 of Escherichia coli K-12. BMC Microbiol 2012; 12:134. [PMID: 22769583 PMCID: PMC3431244 DOI: 10.1186/1471-2180-12-134] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Accepted: 06/25/2012] [Indexed: 11/10/2022] Open
Abstract
Background When grown under anaerobic conditions, Escherichia coli K-12 is able to synthesize three active [NiFe]-hydrogenases (Hyd1-3). Two of these hydrogenases are respiratory enzymes catalysing hydrogen oxidation, whereby Hyd-1 is oxygen-tolerant and Hyd-2 is considered a standard oxygen-sensitive hydrogenase. Hyd-3, together with formate dehydrogenase H (Fdh-H), forms the formate hydrogenlyase (FHL) complex, which is responsible for H2 evolution by intact cells. Hydrogen oxidation activity can be assayed for all three hydrogenases using benzyl viologen (BV; Eo′ = -360 mV) as an artificial electron acceptor; however ascribing activities to specific isoenzymes is not trivial. Previously, an in-gel assay could differentiate Hyd-1 and Hyd-2, while Hyd-3 had long been considered too unstable to be visualized on such native gels. This study identifies conditions allowing differentiation of all three enzymes using simple in-gel zymographic assays. Results Using a modified in-gel assay hydrogen-dependent BV reduction catalyzed by Hyd-3 has been described for the first time. High hydrogen concentrations facilitated visualization of Hyd-3 activity. The activity was membrane-associated and although not essential for visualization of Hyd-3, the activity was maximal in the presence of a functional Fdh-H enzyme. Furthermore, through the use of nitroblue tetrazolium (NBT; Eo′ = -80 mV) it was demonstrated that Hyd-1 reduces this redox dye in a hydrogen-dependent manner, while neither Hyd-2 nor Hyd-3 could couple hydrogen oxidation to NBT reduction. Hydrogen-dependent reduction of NBT was also catalysed by an oxygen-sensitive variant of Hyd-1 that had a supernumerary cysteine residue at position 19 of the small subunit substituted for glycine. This finding suggests that tolerance toward oxygen is not the main determinant that governs electron donation to more redox-positive electron acceptors such as NBT. Conclusions The utilization of particular electron acceptors at different hydrogen concentrations and redox potentials correlates with the known physiological functions of the respective hydrogenase. The ability to rapidly distinguish between oxygen-tolerant and standard [NiFe]-hydrogenases provides a facile new screen for the discovery of novel enzymes. A reliable assay for Hyd-3 will reinvigorate studies on the characterisation of the hydrogen-evolving FHL complex.
Collapse
|
17
|
Frielingsdorf S, Schubert T, Pohlmann A, Lenz O, Friedrich B. A Trimeric Supercomplex of the Oxygen-Tolerant Membrane-Bound [NiFe]-Hydrogenase from Ralstonia eutropha H16. Biochemistry 2011; 50:10836-43. [DOI: 10.1021/bi201594m] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Stefan Frielingsdorf
- Institut für Biologie-Mikrobiologie, Humboldt-Universität zu Berlin, Chausseestraβe
117, 10115 Berlin, Germany
| | - Torsten Schubert
- Institut für Biologie-Mikrobiologie, Humboldt-Universität zu Berlin, Chausseestraβe
117, 10115 Berlin, Germany
| | - Anne Pohlmann
- Institut für Biologie-Mikrobiologie, Humboldt-Universität zu Berlin, Chausseestraβe
117, 10115 Berlin, Germany
| | - Oliver Lenz
- Institut für Biologie-Mikrobiologie, Humboldt-Universität zu Berlin, Chausseestraβe
117, 10115 Berlin, Germany
| | - Bärbel Friedrich
- Institut für Biologie-Mikrobiologie, Humboldt-Universität zu Berlin, Chausseestraβe
117, 10115 Berlin, Germany
| |
Collapse
|
18
|
Hydrogen is an energy source for hydrothermal vent symbioses. Nature 2011; 476:176-80. [PMID: 21833083 DOI: 10.1038/nature10325] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 06/20/2011] [Indexed: 11/08/2022]
Abstract
The discovery of deep-sea hydrothermal vents in 1977 revolutionized our understanding of the energy sources that fuel primary productivity on Earth. Hydrothermal vent ecosystems are dominated by animals that live in symbiosis with chemosynthetic bacteria. So far, only two energy sources have been shown to power chemosynthetic symbioses: reduced sulphur compounds and methane. Using metagenome sequencing, single-gene fluorescence in situ hybridization, immunohistochemistry, shipboard incubations and in situ mass spectrometry, we show here that the symbionts of the hydrothermal vent mussel Bathymodiolus from the Mid-Atlantic Ridge use hydrogen to power primary production. In addition, we show that the symbionts of Bathymodiolus mussels from Pacific vents have hupL, the key gene for hydrogen oxidation. Furthermore, the symbionts of other vent animals such as the tubeworm Riftia pachyptila and the shrimp Rimicaris exoculata also have hupL. We propose that the ability to use hydrogen as an energy source is widespread in hydrothermal vent symbioses, particularly at sites where hydrogen is abundant.
Collapse
|
19
|
Holmqvist M, Lindberg P, Agervald A, Stensjö K, Lindblad P. Transcript analysis of the extended hyp-operon in the cyanobacteria Nostoc sp. strain PCC 7120 and Nostoc punctiforme ATCC 29133. BMC Res Notes 2011; 4:186. [PMID: 21672234 PMCID: PMC3126725 DOI: 10.1186/1756-0500-4-186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 06/14/2011] [Indexed: 11/13/2022] Open
Abstract
Background Cyanobacteria harbor two [NiFe]-type hydrogenases consisting of a large and a small subunit, the Hup- and Hox-hydrogenase, respectively. Insertion of ligands and correct folding of nickel-iron hydrogenases require assistance of accessory maturation proteins (encoded by the hyp-genes). The intergenic region between the structural genes encoding the uptake hydrogenase (hupSL) and the accessory maturation proteins (hyp genes) in the cyanobacteria Nostoc PCC 7120 and N. punctiforme were analysed using molecular methods. Findings The five ORFs, located in between the uptake hydrogenase structural genes and the hyp-genes, can form a transcript with the hyp-genes. An identical genomic localization of these ORFs are found in other filamentous, N2-fixing cyanobacterial strains. In N. punctiforme and Nostoc PCC 7120 the ORFs upstream of the hyp-genes showed similar transcript level profiles as hupS (hydrogenase structural gene), nifD (nitrogenase structural gene), hypC and hypF (accessory hydrogenase maturation genes) after nitrogen depletion. In silico analyzes showed that these ORFs in N. punctiforme harbor the same conserved regions as their homologues in Nostoc PCC 7120 and that they, like their homologues in Nostoc PCC 7120, can be transcribed together with the hyp-genes forming a larger extended hyp-operon. DNA binding studies showed interactions of the transcriptional regulators CalA and CalB to the promoter regions of the extended hyp-operon in N. punctiforme and Nostoc PCC 7120. Conclusions The five ORFs upstream of the hyp-genes in several filamentous N2-fixing cyanobacteria have an identical genomic localization, in between the genes encoding the uptake hydrogenase and the maturation protein genes. In N. punctiforme and Nostoc PCC 7120 they are transcribed as one operon and may form transcripts together with the hyp-genes. The expression pattern of the five ORFs within the extended hyp-operon in both Nostoc punctiforme and Nostoc PCC 7120 is similar to the expression patterns of hupS, nifD, hypF and hypC. CalA, a known transcription factor, interacts with the promoter region between hupSL and the five ORFs in the extended hyp-operon in both Nostoc strains.
Collapse
Affiliation(s)
- Marie Holmqvist
- Department of Photochemistry and Molecular Science, The Ångström Laboratories, Uppsala University, Box 523, SE-751 20 Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
20
|
Fritsch J, Löscher S, Sanganas O, Siebert E, Zebger I, Stein M, Ludwig M, De Lacey AL, Dau H, Friedrich B, Lenz O, Haumann M. [NiFe] and [FeS] Cofactors in the Membrane-Bound Hydrogenase of Ralstonia eutropha Investigated by X-ray Absorption Spectroscopy: Insights into O2-Tolerant H2 Cleavage. Biochemistry 2011; 50:5858-69. [DOI: 10.1021/bi200367u] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Johannes Fritsch
- Humboldt-Universität zu Berlin, Institut für Biologie/Mikrobiologie, 10115 Berlin, Germany
| | - Simone Löscher
- Freie Universität Berlin, Institut für Experimentalphysik, 14195 Berlin, Germany
| | - Oliver Sanganas
- Freie Universität Berlin, Institut für Experimentalphysik, 14195 Berlin, Germany
| | - Elisabeth Siebert
- Technische Universität Berlin, Max-Volmer Institut, 10623 Berlin, Germany
| | - Ingo Zebger
- Technische Universität Berlin, Max-Volmer Institut, 10623 Berlin, Germany
| | - Matthias Stein
- Max-Planck-Institut für Dynamik komplexer technischer Systeme, 39106 Magdeburg, Germany
| | - Marcus Ludwig
- Humboldt-Universität zu Berlin, Institut für Biologie/Mikrobiologie, 10115 Berlin, Germany
| | | | - Holger Dau
- Freie Universität Berlin, Institut für Experimentalphysik, 14195 Berlin, Germany
| | - Bärbel Friedrich
- Humboldt-Universität zu Berlin, Institut für Biologie/Mikrobiologie, 10115 Berlin, Germany
| | - Oliver Lenz
- Humboldt-Universität zu Berlin, Institut für Biologie/Mikrobiologie, 10115 Berlin, Germany
| | - Michael Haumann
- Freie Universität Berlin, Institut für Experimentalphysik, 14195 Berlin, Germany
| |
Collapse
|
21
|
The maturation factors HoxR and HoxT contribute to oxygen tolerance of membrane-bound [NiFe] hydrogenase in Ralstonia eutropha H16. J Bacteriol 2011; 193:2487-97. [PMID: 21441514 DOI: 10.1128/jb.01427-10] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The membrane-bound [NiFe] hydrogenase (MBH) of Ralstonia eutropha H16 undergoes a complex maturation process comprising cofactor assembly and incorporation, subunit oligomerization, and finally twin-arginine-dependent membrane translocation. Due to its outstanding O(2) and CO tolerance, the MBH is of biotechnological interest and serves as a molecular model for a robust hydrogen catalyst. Adaptation of the enzyme to oxygen exposure has to take into account not only the catalytic reaction but also biosynthesis of the intricate redox cofactors. Here, we report on the role of the MBH-specific accessory proteins HoxR and HoxT, which are key components in MBH maturation at ambient O(2) levels. MBH-driven growth on H(2) is inhibited or retarded at high O(2) partial pressure (pO(2)) in mutants inactivated in the hoxR and hoxT genes. The ratio of mature and nonmature forms of the MBH small subunit is shifted toward the precursor form in extracts derived from the mutant cells grown at high pO(2). Lack of hoxR and hoxT can phenotypically be restored by providing O(2)-limited growth conditions. Analysis of copurified maturation intermediates leads to the conclusion that the HoxR protein is a constituent of a large transient protein complex, whereas the HoxT protein appears to function at a final stage of MBH maturation. UV-visible spectroscopy of heterodimeric MBH purified from hoxR mutant cells points to alterations of the Fe-S cluster composition. Thus, HoxR may play a role in establishing a specific Fe-S cluster profile, whereas the HoxT protein seems to be beneficial for cofactor stability under aerobic conditions.
Collapse
|
22
|
Weyman PD, Vargas WA, Chuang RY, Chang Y, Smith HO, Xu Q. Heterologous expression of Alteromonas macleodii and Thiocapsa roseopersicina [NiFe] hydrogenases in Escherichia coli. MICROBIOLOGY-SGM 2011; 157:1363-1374. [PMID: 21349975 DOI: 10.1099/mic.0.044834-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
HynSL from Alteromonas macleodii 'deep ecotype' (AltDE) is an oxygen-tolerant and thermostable [NiFe] hydrogenase. Its two structural genes (hynSL), encoding small and large hydrogenase subunits, are surrounded by eight genes (hynD, hupH and hypCABDFE) predicted to encode accessory proteins involved in maturation of the hydrogenase. A 13 kb fragment containing the ten structural and accessory genes along with three additional adjacent genes (orf2, cyt and orf1) was cloned into an IPTG-inducible expression vector and transferred into an Escherichia coli mutant strain lacking its native hydrogenases. Upon induction, HynSL from AltDE was expressed in E. coli and was active, as determined by an in vitro hydrogen evolution assay. Subsequent genetic analysis revealed that orf2, cyt, orf1 and hupH are not essential for assembling an active hydrogenase. However, hupH and orf2 can enhance the activity of the heterologously expressed hydrogenase. We used this genetic system to compare maturation mechanisms between AltDE HynSL and its Thiocapsa roseopersicina homologue. When the structural genes for the T. roseopersicina hydrogenase, hynSL, were expressed along with known T. roseopersicina accessory genes (hynD, hupK, hypC1C2 and hypDEF), no active hydrogenase was produced. Further, co-expression of AltDE accessory genes hypA and hypB with the entire set of the T. roseopersicina genes did not produce an active hydrogenase. However, co-expression of all AltDE accessory genes with the T. roseopersicina structural genes generated an active T. roseopersicina hydrogenase. This result demonstrates that the accessory genes from AltDE can complement their counterparts from T. roseopersicina and that the two hydrogenases share similar maturation mechanisms.
Collapse
Affiliation(s)
- P D Weyman
- Department of Synthetic Biology and Bioenergy, The J. Craig Venter Institute, Rockville, MD 20850, USA
| | - W A Vargas
- Department of Synthetic Biology and Bioenergy, The J. Craig Venter Institute, Rockville, MD 20850, USA
| | - R-Y Chuang
- Department of Synthetic Biology and Bioenergy, The J. Craig Venter Institute, Rockville, MD 20850, USA
| | - Y Chang
- Department of Synthetic Biology and Bioenergy, The J. Craig Venter Institute, Rockville, MD 20850, USA
| | - H O Smith
- Department of Synthetic Biology and Bioenergy, The J. Craig Venter Institute, Rockville, MD 20850, USA
| | - Q Xu
- Department of Synthetic Biology and Bioenergy, The J. Craig Venter Institute, Rockville, MD 20850, USA
| |
Collapse
|
23
|
Barz M, Beimgraben C, Staller T, Germer F, Opitz F, Marquardt C, Schwarz C, Gutekunst K, Vanselow KH, Schmitz R, LaRoche J, Schulz R, Appel J. Distribution analysis of hydrogenases in surface waters of marine and freshwater environments. PLoS One 2010; 5:e13846. [PMID: 21079771 PMCID: PMC2974642 DOI: 10.1371/journal.pone.0013846] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 09/17/2010] [Indexed: 12/31/2022] Open
Abstract
Background Surface waters of aquatic environments have been shown to both evolve and consume hydrogen and the ocean is estimated to be the principal natural source. In some marine habitats, H2 evolution and uptake are clearly due to biological activity, while contributions of abiotic sources must be considered in others. Until now the only known biological process involved in H2 metabolism in marine environments is nitrogen fixation. Principal Findings We analyzed marine and freshwater environments for the presence and distribution of genes of all known hydrogenases, the enzymes involved in biological hydrogen turnover. The total genomes and the available marine metagenome datasets were searched for hydrogenase sequences. Furthermore, we isolated DNA from samples from the North Atlantic, Mediterranean Sea, North Sea, Baltic Sea, and two fresh water lakes and amplified and sequenced part of the gene encoding the bidirectional NAD(P)-linked hydrogenase. In 21% of all marine heterotrophic bacterial genomes from surface waters, one or several hydrogenase genes were found, with the membrane-bound H2 uptake hydrogenase being the most widespread. A clear bias of hydrogenases to environments with terrestrial influence was found. This is exemplified by the cyanobacterial bidirectional NAD(P)-linked hydrogenase that was found in freshwater and coastal areas but not in the open ocean. Significance This study shows that hydrogenases are surprisingly abundant in marine environments. Due to its ecological distribution the primary function of the bidirectional NAD(P)-linked hydrogenase seems to be fermentative hydrogen evolution. Moreover, our data suggests that marine surface waters could be an interesting source of oxygen-resistant uptake hydrogenases. The respective genes occur in coastal as well as open ocean habitats and we presume that they are used as additional energy scavenging devices in otherwise nutrient limited environments. The membrane-bound H2-evolving hydrogenases might be useful as marker for bacteria living inside of marine snow particles.
Collapse
Affiliation(s)
- Martin Barz
- Botanisches Institut, Christian-Albrechts-Universität, Kiel, Germany
| | | | - Torsten Staller
- Forschungs- und Technologiezentrum Westküste (FTZ) der Christian-Albrechts-Universität, Büsum, Germany
| | - Frauke Germer
- Botanisches Institut, Christian-Albrechts-Universität, Kiel, Germany
| | - Friederike Opitz
- Botanisches Institut, Christian-Albrechts-Universität, Kiel, Germany
| | - Claudia Marquardt
- Botanisches Institut, Christian-Albrechts-Universität, Kiel, Germany
| | - Christoph Schwarz
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Kirstin Gutekunst
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Klaus Heinrich Vanselow
- Forschungs- und Technologiezentrum Westküste (FTZ) der Christian-Albrechts-Universität, Büsum, Germany
| | - Ruth Schmitz
- Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität, Kiel, Germany
| | - Julie LaRoche
- Leibniz-Institute of Marine Sciences, IFM-GEOMAR, Kiel, Germany
| | - Rüdiger Schulz
- Botanisches Institut, Christian-Albrechts-Universität, Kiel, Germany
| | - Jens Appel
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- * E-mail:
| |
Collapse
|
24
|
Abstract
Proteins that reside partially or completely outside the bacterial cytoplasm require specialized pathways to facilitate their localization. Globular proteins that function in the periplasm must be translocated across the hydrophobic barrier of the inner membrane. While the Sec pathway transports proteins in a predominantly unfolded conformation, the Tat pathway exports folded protein substrates. Protein transport by the Tat machinery is powered solely by the transmembrane proton gradient, and there is no requirement for nucleotide triphosphate hydrolysis. Proteins are targeted to the Tat machinery by N-terminal signal peptides that contain a consensus twin arginine motif. In Escherichia coli and Salmonella there are approximately thirty proteins with twin arginine signal peptides that are transported by the Tat pathway. The majority of these bind complex redox cofactors such as iron sulfur clusters or the molybdopterin cofactor. Here we describe what is known about Tat substrates in E. coli and Salmonella, the function and mechanism of Tat protein export, and how the cofactor insertion step is coordinated to ensure that only correctly assembled substrates are targeted to the Tat machinery.
Collapse
|
25
|
Lenz O, Ludwig M, Schubert T, Bürstel I, Ganskow S, Goris T, Schwarze A, Friedrich B. H2 conversion in the presence of O2 as performed by the membrane-bound [NiFe]-hydrogenase of Ralstonia eutropha. Chemphyschem 2010; 11:1107-19. [PMID: 20186906 DOI: 10.1002/cphc.200901002] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
[NiFe]-hydrogenases catalyze the oxidation of H(2) to protons and electrons. This reversible reaction is based on a complex interplay of metal cofactors including the Ni-Fe active site and several [Fe-S] clusters. H(2) catalysis of most [NiFe]-hydrogenases is sensitive to dioxygen. However, some bacteria contain hydrogenases that activate H(2) even in the presence of O(2). There is now compelling evidence that O(2) affects hydrogenase on three levels: 1) H(2) catalysis, 2) hydrogenase maturation, and 3) H(2)-mediated signal transduction. Herein, we summarize the genetic, biochemical, electrochemical, and spectroscopic properties related to the O(2) tolerance of hydrogenases resident in the facultative chemolithoautotroph Ralstonia eutropha H16. A focus is given to the membrane-bound [NiFe]-hydogenase, which currently represents the best-characterized member of O(2)-tolerant hydrogenases.
Collapse
Affiliation(s)
- Oliver Lenz
- Department of Microbiology, Humboldt-Universität zu Berlin, Chausseestrasse 117, 10115 Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Requirements for construction of a functional hybrid complex of photosystem I and [NiFe]-hydrogenase. Appl Environ Microbiol 2010; 76:2641-51. [PMID: 20154103 DOI: 10.1128/aem.02700-09] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The development of cellular systems in which the enzyme hydrogenase is efficiently coupled to the oxygenic photosynthesis apparatus represents an attractive avenue to produce H(2) sustainably from light and water. Here we describe the molecular design of the individual components required for the direct coupling of the O(2)-tolerant membrane-bound hydrogenase (MBH) from Ralstonia eutropha H16 to the acceptor site of photosystem I (PS I) from Synechocystis sp. PCC 6803. By genetic engineering, the peripheral subunit PsaE of PS I was fused to the MBH, and the resulting hybrid protein was purified from R. eutropha to apparent homogeneity via two independent affinity chromatographical steps. The catalytically active MBH-PsaE (MBH(PsaE)) hybrid protein could be isolated only from the cytoplasmic fraction. This was surprising, since the MBH is a substrate of the twin-arginine translocation system and was expected to reside in the periplasm. We conclude that the attachment of the additional PsaE domain to the small, electron-transferring subunit of the MBH completely abolished the export competence of the protein. Activity measurements revealed that the H(2) production capacity of the purified MBH(PsaE) fusion protein was very similar to that of wild-type MBH. In order to analyze the specific interaction of MBH(PsaE) with PS I, His-tagged PS I lacking the PsaE subunit was purified via Ni-nitrilotriacetic acid affinity and subsequent hydrophobic interaction chromatography. Formation of PS I-hydrogenase supercomplexes was demonstrated by blue native gel electrophoresis. The results indicate a vital prerequisite for the quantitative analysis of the MBH(PsaE)-PS I complex formation and its light-driven H(2) production capacity by means of spectroelectrochemistry.
Collapse
|
27
|
Parish D, Benach J, Liu G, Singarapu KK, Xiao R, Acton T, Su M, Bansal S, Prestegard JH, Hunt J, Montelione GT, Szyperski T. Protein chaperones Q8ZP25_SALTY from Salmonella typhimurium and HYAE_ECOLI from Escherichia coli exhibit thioredoxin-like structures despite lack of canonical thioredoxin active site sequence motif. JOURNAL OF STRUCTURAL AND FUNCTIONAL GENOMICS 2008; 9:41-9. [PMID: 19039680 PMCID: PMC2850599 DOI: 10.1007/s10969-008-9050-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Accepted: 11/10/2008] [Indexed: 10/21/2022]
Abstract
The structure of the 142-residue protein Q8ZP25_SALTY encoded in the genome of Salmonella typhimurium LT2 was determined independently by NMR and X-ray crystallography, and the structure of the 140-residue protein HYAE_ECOLI encoded in the genome of Escherichia coli was determined by NMR. The two proteins belong to Pfam (Finn et al. 34:D247-D251, 2006) PF07449, which currently comprises 50 members, and belongs itself to the 'thioredoxin-like clan'. However, protein HYAE_ECOLI and the other proteins of Pfam PF07449 do not contain the canonical Cys-X-X-Cys active site sequence motif of thioredoxin. Protein HYAE_ECOLI was previously classified as a [NiFe] hydrogenase-1 specific chaperone interacting with the twin-arginine translocation (Tat) signal peptide. The structures presented here exhibit the expected thioredoxin-like fold and support the view that members of Pfam family PF07449 specifically interact with Tat signal peptides.
Collapse
Affiliation(s)
- David Parish
- David Parish · Gaohua Liu · Kiran Kumar Singarapu · Thomas Szyperski, Department of Chemistry, Northeast Structural Genomics Consortium, The State University of New York at Buffalo, Buffalo, NY 14260,
- Jordi Benach · Min Su · John F. Hunt, Department of Biological Sciences, Northeast Structural Genomics Consortium, Columbia University, New York, NY 10027
- Rong Xiao · Thomas Acton · Gaetano T. Montelione, The Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Northeast Structural Genomics Consortium, Rutgers University and Robert Wood Johnson Medical School, Piscataway, NJ 08854
- Sonal Bansal · James H. Prestegard, Complex Carbohydrate Research Center and Department of Chemistry, University of Georgia, Athens, Georgia, 30602-4712
| | - Jordi Benach
- David Parish · Gaohua Liu · Kiran Kumar Singarapu · Thomas Szyperski, Department of Chemistry, Northeast Structural Genomics Consortium, The State University of New York at Buffalo, Buffalo, NY 14260,
- Jordi Benach · Min Su · John F. Hunt, Department of Biological Sciences, Northeast Structural Genomics Consortium, Columbia University, New York, NY 10027
- Rong Xiao · Thomas Acton · Gaetano T. Montelione, The Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Northeast Structural Genomics Consortium, Rutgers University and Robert Wood Johnson Medical School, Piscataway, NJ 08854
- Sonal Bansal · James H. Prestegard, Complex Carbohydrate Research Center and Department of Chemistry, University of Georgia, Athens, Georgia, 30602-4712
| | - Goahua Liu
- David Parish · Gaohua Liu · Kiran Kumar Singarapu · Thomas Szyperski, Department of Chemistry, Northeast Structural Genomics Consortium, The State University of New York at Buffalo, Buffalo, NY 14260,
- Jordi Benach · Min Su · John F. Hunt, Department of Biological Sciences, Northeast Structural Genomics Consortium, Columbia University, New York, NY 10027
- Rong Xiao · Thomas Acton · Gaetano T. Montelione, The Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Northeast Structural Genomics Consortium, Rutgers University and Robert Wood Johnson Medical School, Piscataway, NJ 08854
- Sonal Bansal · James H. Prestegard, Complex Carbohydrate Research Center and Department of Chemistry, University of Georgia, Athens, Georgia, 30602-4712
| | - Kiran Kumar Singarapu
- David Parish · Gaohua Liu · Kiran Kumar Singarapu · Thomas Szyperski, Department of Chemistry, Northeast Structural Genomics Consortium, The State University of New York at Buffalo, Buffalo, NY 14260,
- Jordi Benach · Min Su · John F. Hunt, Department of Biological Sciences, Northeast Structural Genomics Consortium, Columbia University, New York, NY 10027
- Rong Xiao · Thomas Acton · Gaetano T. Montelione, The Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Northeast Structural Genomics Consortium, Rutgers University and Robert Wood Johnson Medical School, Piscataway, NJ 08854
- Sonal Bansal · James H. Prestegard, Complex Carbohydrate Research Center and Department of Chemistry, University of Georgia, Athens, Georgia, 30602-4712
| | - Rong Xiao
- David Parish · Gaohua Liu · Kiran Kumar Singarapu · Thomas Szyperski, Department of Chemistry, Northeast Structural Genomics Consortium, The State University of New York at Buffalo, Buffalo, NY 14260,
- Jordi Benach · Min Su · John F. Hunt, Department of Biological Sciences, Northeast Structural Genomics Consortium, Columbia University, New York, NY 10027
- Rong Xiao · Thomas Acton · Gaetano T. Montelione, The Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Northeast Structural Genomics Consortium, Rutgers University and Robert Wood Johnson Medical School, Piscataway, NJ 08854
- Sonal Bansal · James H. Prestegard, Complex Carbohydrate Research Center and Department of Chemistry, University of Georgia, Athens, Georgia, 30602-4712
| | - Thomas Acton
- David Parish · Gaohua Liu · Kiran Kumar Singarapu · Thomas Szyperski, Department of Chemistry, Northeast Structural Genomics Consortium, The State University of New York at Buffalo, Buffalo, NY 14260,
- Jordi Benach · Min Su · John F. Hunt, Department of Biological Sciences, Northeast Structural Genomics Consortium, Columbia University, New York, NY 10027
- Rong Xiao · Thomas Acton · Gaetano T. Montelione, The Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Northeast Structural Genomics Consortium, Rutgers University and Robert Wood Johnson Medical School, Piscataway, NJ 08854
- Sonal Bansal · James H. Prestegard, Complex Carbohydrate Research Center and Department of Chemistry, University of Georgia, Athens, Georgia, 30602-4712
| | - Min Su
- David Parish · Gaohua Liu · Kiran Kumar Singarapu · Thomas Szyperski, Department of Chemistry, Northeast Structural Genomics Consortium, The State University of New York at Buffalo, Buffalo, NY 14260,
- Jordi Benach · Min Su · John F. Hunt, Department of Biological Sciences, Northeast Structural Genomics Consortium, Columbia University, New York, NY 10027
- Rong Xiao · Thomas Acton · Gaetano T. Montelione, The Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Northeast Structural Genomics Consortium, Rutgers University and Robert Wood Johnson Medical School, Piscataway, NJ 08854
- Sonal Bansal · James H. Prestegard, Complex Carbohydrate Research Center and Department of Chemistry, University of Georgia, Athens, Georgia, 30602-4712
| | - Sonal Bansal
- David Parish · Gaohua Liu · Kiran Kumar Singarapu · Thomas Szyperski, Department of Chemistry, Northeast Structural Genomics Consortium, The State University of New York at Buffalo, Buffalo, NY 14260,
- Jordi Benach · Min Su · John F. Hunt, Department of Biological Sciences, Northeast Structural Genomics Consortium, Columbia University, New York, NY 10027
- Rong Xiao · Thomas Acton · Gaetano T. Montelione, The Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Northeast Structural Genomics Consortium, Rutgers University and Robert Wood Johnson Medical School, Piscataway, NJ 08854
- Sonal Bansal · James H. Prestegard, Complex Carbohydrate Research Center and Department of Chemistry, University of Georgia, Athens, Georgia, 30602-4712
| | - James H. Prestegard
- David Parish · Gaohua Liu · Kiran Kumar Singarapu · Thomas Szyperski, Department of Chemistry, Northeast Structural Genomics Consortium, The State University of New York at Buffalo, Buffalo, NY 14260,
- Jordi Benach · Min Su · John F. Hunt, Department of Biological Sciences, Northeast Structural Genomics Consortium, Columbia University, New York, NY 10027
- Rong Xiao · Thomas Acton · Gaetano T. Montelione, The Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Northeast Structural Genomics Consortium, Rutgers University and Robert Wood Johnson Medical School, Piscataway, NJ 08854
- Sonal Bansal · James H. Prestegard, Complex Carbohydrate Research Center and Department of Chemistry, University of Georgia, Athens, Georgia, 30602-4712
| | - John Hunt
- David Parish · Gaohua Liu · Kiran Kumar Singarapu · Thomas Szyperski, Department of Chemistry, Northeast Structural Genomics Consortium, The State University of New York at Buffalo, Buffalo, NY 14260,
- Jordi Benach · Min Su · John F. Hunt, Department of Biological Sciences, Northeast Structural Genomics Consortium, Columbia University, New York, NY 10027
- Rong Xiao · Thomas Acton · Gaetano T. Montelione, The Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Northeast Structural Genomics Consortium, Rutgers University and Robert Wood Johnson Medical School, Piscataway, NJ 08854
- Sonal Bansal · James H. Prestegard, Complex Carbohydrate Research Center and Department of Chemistry, University of Georgia, Athens, Georgia, 30602-4712
| | - Gaetano T. Montelione
- David Parish · Gaohua Liu · Kiran Kumar Singarapu · Thomas Szyperski, Department of Chemistry, Northeast Structural Genomics Consortium, The State University of New York at Buffalo, Buffalo, NY 14260,
- Jordi Benach · Min Su · John F. Hunt, Department of Biological Sciences, Northeast Structural Genomics Consortium, Columbia University, New York, NY 10027
- Rong Xiao · Thomas Acton · Gaetano T. Montelione, The Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Northeast Structural Genomics Consortium, Rutgers University and Robert Wood Johnson Medical School, Piscataway, NJ 08854
- Sonal Bansal · James H. Prestegard, Complex Carbohydrate Research Center and Department of Chemistry, University of Georgia, Athens, Georgia, 30602-4712
| | - Thomas Szyperski
- David Parish · Gaohua Liu · Kiran Kumar Singarapu · Thomas Szyperski, Department of Chemistry, Northeast Structural Genomics Consortium, The State University of New York at Buffalo, Buffalo, NY 14260,
- Jordi Benach · Min Su · John F. Hunt, Department of Biological Sciences, Northeast Structural Genomics Consortium, Columbia University, New York, NY 10027
- Rong Xiao · Thomas Acton · Gaetano T. Montelione, The Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Northeast Structural Genomics Consortium, Rutgers University and Robert Wood Johnson Medical School, Piscataway, NJ 08854
- Sonal Bansal · James H. Prestegard, Complex Carbohydrate Research Center and Department of Chemistry, University of Georgia, Athens, Georgia, 30602-4712
| |
Collapse
|
28
|
Palágyi-Mészáros LS, Maróti J, Latinovics D, Balogh T, Klement É, Medzihradszky KF, Rákhely G, Kovács KL. Electron-transfer subunits of the NiFe hydrogenases in Thiocapsa roseopersicina BBS. FEBS J 2008; 276:164-74. [DOI: 10.1111/j.1742-4658.2008.06770.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Ludwig M, Cracknell JA, Vincent KA, Armstrong FA, Lenz O. Oxygen-tolerant H2 oxidation by membrane-bound [NiFe] hydrogenases of ralstonia species. Coping with low level H2 in air. J Biol Chem 2008; 284:465-477. [PMID: 18990688 DOI: 10.1074/jbc.m803676200] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Knallgas bacteria such as certain Ralstonia spp. are able to obtain metabolic energy by oxidizing trace levels of H2 using O2 as the terminal electron acceptor. The [NiFe] hydrogenases produced by these organisms are unusual in their ability to oxidize H2 in the presence of O2, which is a potent inactivator of most hydrogenases through attack at the active site. To probe the origin of this unusual O2 tolerance, we conducted a study on the membrane-bound hydrogenase from Ralstonia eutropha H16 and that of the closely related organism Ralstonia metallidurans CH34, which was purified using a new heterologous overproduction system. Direct electrochemical methods were used to determine apparent inhibition constants for O2 inhibition of H2 oxidation (K I(app)O2) for each enzyme. These values were at least 2 orders of magnitude higher than those of "standard" [NiFe] hydrogenases. Amino acids close to the active site were exchanged in the membrane-bound hydrogenase of R. eutropha H16 for those from standard hydrogenases to probe the role of individual residues in conferring O2 sensitivity. Michaelis constants for H2 (K M H2) were determined, and for some mutants these were increased more than 20-fold relative to the wild type. Mutations resulting in membrane-bound hydrogenase enzymes with increased K M H2 or decreased K I(app)O2 values were associated with impaired lithoautotrophic growth in the presence of high O2 concentrations.
Collapse
Affiliation(s)
- Marcus Ludwig
- Institut fu¨r Biologie/Mikrobiologie, Humboldt-Universita¨t zu Berlin, Chausseestrasse 117, 10115 Berlin, Germany and the Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - James A Cracknell
- Institut fu¨r Biologie/Mikrobiologie, Humboldt-Universita¨t zu Berlin, Chausseestrasse 117, 10115 Berlin, Germany and the Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Kylie A Vincent
- Institut fu¨r Biologie/Mikrobiologie, Humboldt-Universita¨t zu Berlin, Chausseestrasse 117, 10115 Berlin, Germany and the Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Fraser A Armstrong
- Institut fu¨r Biologie/Mikrobiologie, Humboldt-Universita¨t zu Berlin, Chausseestrasse 117, 10115 Berlin, Germany and the Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Oliver Lenz
- Institut fu¨r Biologie/Mikrobiologie, Humboldt-Universita¨t zu Berlin, Chausseestrasse 117, 10115 Berlin, Germany and the Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom.
| |
Collapse
|
30
|
Schubert T, Lenz O, Krause E, Volkmer R, Friedrich B. Chaperones specific for the membrane-bound [NiFe]-hydrogenase interact with the Tat signal peptide of the small subunit precursor in Ralstonia eutropha H16. Mol Microbiol 2007; 66:453-67. [PMID: 17850259 DOI: 10.1111/j.1365-2958.2007.05933.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Periplasmic membrane-bound [NiFe]-hydrogenases undergo a complex maturation pathway, including cofactor incorporation, subunit assembly, and finally twin-arginine-dependent membrane translocation (Tat). In this study, the role of the two accessory proteins HoxO and HoxQ in the maturation of the membrane-bound [NiFe]-hydrogenase (MBH) of Ralstonia eutropha H16 was investigated. MBH activity was absent in soluble as well as membrane fractions of cells with deletions in the respective genes. The absence of HoxO and HoxQ led to degradation of the small subunit precursor (preHoxK) of the MBH. The two accessory proteins directly interacted with preHoxK prior to assembly of active MBH dimer in the cytoplasm. MBH mutants with modified Tat signal peptides were disrupted in preHoxK/HoxO/HoxQ complex formation. Isolated HoxO and HoxQ proteins formed a complex in vitro with the chemically synthesized HoxK Tat signal peptide. Two functions of the two chaperones are discussed: (i) protection of the Fe-S cluster containing HoxK subunit under oxygenic conditions, and (ii) avoidance of HoxK export prior to dimerization with the large MBH subunit HoxG.
Collapse
Affiliation(s)
- Torsten Schubert
- Institut für Biologie, Humboldt-Universität zu Berlin, Chausseestr. 117, D-10115 Berlin, Germany
| | | | | | | | | |
Collapse
|
31
|
Sargent F. Constructing the wonders of the bacterial world: biosynthesis of complex enzymes. Microbiology (Reading) 2007; 153:633-651. [PMID: 17322183 DOI: 10.1099/mic.0.2006/004762-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The prokaryotic cytoplasmic membrane not only maintains cell integrity and forms a barrier between the cell and its outside environment, but is also the location for essential biochemical processes. Microbial model systems provide excellent bases for the study of fundamental problems in membrane biology including signal transduction, chemotaxis, solute transport and, as will be the topic of this review, energy metabolism. Bacterial respiration requires a diverse array of complex, multi-subunit, cofactor-containing redox enzymes, many of which are embedded within, or located on the extracellular side of, the membrane. The biosynthesis of these enzymes therefore requires carefully controlled expression, assembly, targeting and transport processes. Here, focusing on the molybdenum-containing respiratory enzymes central to anaerobic respiration in Escherichia coli, recent descriptions of a chaperone-mediated 'proofreading' system involved in coordinating assembly and export of complex extracellular enzymes will be discussed. The paradigm proofreading chaperones are members of a large group of proteins known as the TorD family, and recent research in this area highlights common principles that underpin biosynthesis of both exported and non-exported respiratory enzymes.
Collapse
Affiliation(s)
- Frank Sargent
- Centre for Metalloprotein Spectroscopy and Biology, School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| |
Collapse
|
32
|
Burgdorf T, Lenz O, Buhrke T, van der Linden E, Jones AK, Albracht SPJ, Friedrich B. [NiFe]-Hydrogenases of Ralstonia eutropha H16: Modular Enzymes for Oxygen-Tolerant Biological Hydrogen Oxidation. J Mol Microbiol Biotechnol 2006; 10:181-96. [PMID: 16645314 DOI: 10.1159/000091564] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Recent research on hydrogenases has been notably motivated by a desire to utilize these remarkable hydrogen oxidation catalysts in biotechnological applications. Progress in the development of such applications is substantially hindered by the oxygen sensitivity of the majority of hydrogenases. This problem tends to inspire the study of organisms such as Ralstonia eutropha H16 that produce oxygen-tolerant [NiFe]-hydrogenases. R. eutropha H16 serves as an excellent model system in that it produces three distinct [NiFe]-hydrogenases that each serve unique physiological roles: a membrane-bound hydrogenase (MBH) coupled to the respiratory chain, a cytoplasmic, soluble hydrogenase (SH) able to generate reducing equivalents by reducing NAD+ at the expense of hydrogen, and a regulatory hydrogenase (RH) which acts in a signal transduction cascade to control hydrogenase gene transcription. This review will present recent results regarding the biosynthesis, regulation, structure, activity, and spectroscopy of these enzymes. This information will be discussed in light of the question how do organisms adapt the prototypical [NiFe]-hydrogenase system to function in the presence of oxygen.
Collapse
Affiliation(s)
- Tanja Burgdorf
- Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
33
|
van der Linden E, Burgdorf T, de Lacey AL, Buhrke T, Scholte M, Fernandez VM, Friedrich B, Albracht SPJ. An improved purification procedure for the soluble [NiFe]-hydrogenase of Ralstonia eutropha: new insights into its (in)stability and spectroscopic properties. J Biol Inorg Chem 2006; 11:247-60. [PMID: 16418856 DOI: 10.1007/s00775-005-0075-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2005] [Accepted: 12/12/2005] [Indexed: 11/28/2022]
Abstract
Infrared (IR) spectra in combination with chemical analyses have recently shown that the active Ni-Fe site of the soluble NAD(+)-reducing [NiFe]-hydrogenase from Ralstonia eutropha contains four cyanide groups and one carbon monoxide as ligands. Experiments presented here confirm this result, but show that a variable percentage of enzyme molecules loses one or two of the cyanide ligands from the active site during routine purification. For this reason the redox conditions during the purification have been optimized yielding hexameric enzyme preparations (HoxFUYHI(2)) with aerobic specific H(2)-NAD(+) activities of 150-185 mumol/min/mg of protein (up to 200% of the highest activity previously reported in the literature). The preparations were highly homogeneous in terms of the active site composition and showed superior IR spectra. IR spectro-electrochemical studies were consistent with the hypothesis that only reoxidation of the reduced enzyme with dioxygen leads to the inactive state, where it is believed that a peroxide group is bound to nickel. Electron paramagnetic resonance experiments showed that the radical signal from the NADH-reduced enzyme derives from the semiquinone form of the flavin (FMN-a) in the hydrogenase module (HoxYH dimer), but not of the flavin (FMN-b) in the NADH-dehydrogenase module (HoxFU dimer). It is further demonstrated that the hexameric enzyme remains active in the presence of NADPH and air, whereas NADH and air lead to rapid destruction of enzyme activity. It is proposed that the presence of NADPH in cells keeps the enzyme in the active state.
Collapse
Affiliation(s)
- Eddy van der Linden
- Swammerdam Institute for Life Sciences, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Manyani H, Rey L, Palacios JM, Imperial J, Ruiz-Argüeso T. Gene products of the hupGHIJ operon are involved in maturation of the iron-sulfur subunit of the [NiFe] hydrogenase from Rhizobium leguminosarum bv. viciae. J Bacteriol 2005; 187:7018-26. [PMID: 16199572 PMCID: PMC1251625 DOI: 10.1128/jb.187.20.7018-7026.2005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the present study, we investigate the functions of the hupGHIJ operon in the synthesis of an active [NiFe] hydrogenase in the legume endosymbiont Rhizobium leguminosarum bv. viciae. These genes are clustered with 14 other genes including the hydrogenase structural genes hupSL. A set of isogenic mutants with in-frame deletions (deltahupG, deltahupH, deltahupI, and deltahupJ) was generated and tested for hydrogenase activity in cultures grown at different oxygen concentrations (0.2 to 2.0%) and in symbiosis with peas. In free-living cultures, deletions in these genes severely reduced hydrogenase activity. The deltahupH mutant was totally devoid of hydrogenase activity at any of the O2 concentration tested, whereas the requirement of hupGIJ for hydrogenase activity varied with the O2 concentration, being more crucial at higher pO2. Pea bacteroids from the mutant strains affected in hupH, hupI, and hupJ exhibited reduced (20 to 50%) rates of hydrogenase activity compared to the wild type, whereas rates were not affected in the deltahupG mutant. Immunoblot experiments with HupL- and HupS-specific antisera showed that free-living cultures from deltahupH, deltahupI, and deltahupJ mutants synthesized a fully processed mature HupL protein and accumulated an unprocessed form of HupS (pre-HupS). Both the mature HupL and the pre-HupS forms were located in the cytoplasmic fraction of cultures from the deltahupH mutant. Affinity chromatography experiments revealed that cytoplasmic pre-HupS binds to the HupH protein before the pre-HupS-HupL complex is formed. From these results we propose that hupGHIJ gene products are involved in the maturation of the HupS hydrogenase subunit.
Collapse
Affiliation(s)
- Hamid Manyani
- Laboratorio de Microbiología, Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
35
|
Lenz O, Gleiche A, Strack A, Friedrich B. Requirements for heterologous production of a complex metalloenzyme: the membrane-bound [NiFe] hydrogenase. J Bacteriol 2005; 187:6590-5. [PMID: 16159796 PMCID: PMC1236620 DOI: 10.1128/jb.187.18.6590-6595.2005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
By taking advantage of the tightly clustered genes for the membrane-bound [NiFe] hydrogenase of Ralstonia eutropha H16, broad-host-range recombinant plasmids were constructed carrying the entire membrane-bound hydrogenase (MBH) operon encompassing 21 genes. We demonstrate that the complex MBH biosynthetic apparatus is actively produced in hydrogenase-free hosts yielding fully assembled and functional MBH protein.
Collapse
Affiliation(s)
- Oliver Lenz
- Institut für Biologie, Humboldt-Universität zu Berlin, Chausseestrasse 117, D-10115 Berlin, Germany
| | | | | | | |
Collapse
|
36
|
Burgdorf T, van der Linden E, Bernhard M, Yin QY, Back JW, Hartog AF, Muijsers AO, de Koster CG, Albracht SPJ, Friedrich B. The soluble NAD+-Reducing [NiFe]-hydrogenase from Ralstonia eutropha H16 consists of six subunits and can be specifically activated by NADPH. J Bacteriol 2005; 187:3122-32. [PMID: 15838039 PMCID: PMC1082810 DOI: 10.1128/jb.187.9.3122-3132.2005] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The soluble [NiFe]-hydrogenase (SH) of the facultative lithoautotrophic proteobacterium Ralstonia eutropha H16 has up to now been described as a heterotetrameric enzyme. The purified protein consists of two functionally distinct heterodimeric moieties. The HoxHY dimer represents the hydrogenase module, and the HoxFU dimer constitutes an NADH-dehydrogenase. In the bimodular form, the SH mediates reduction of NAD(+) at the expense of H(2). We have purified a new high-molecular-weight form of the SH which contains an additional subunit. This extra subunit was identified as the product of hoxI, a member of the SH gene cluster (hoxFUYHWI). Edman degradation, in combination with protein sequencing of the SH high-molecular-weight complex, established a subunit stoichiometry of HoxFUYHI(2). Cross-linking experiments indicated that the two HoxI subunits are the closest neighbors. The stability of the hexameric SH depended on the pH and the ionic strength of the buffer. The tetrameric form of the SH can be instantaneously activated with small amounts of NADH but not with NADPH. The hexameric form, however, was also activated by adding small amounts of NADPH. This suggests that HoxI provides a binding domain for NADPH. A specific reaction site for NADPH adds to the list of similarities between the SH and mitochondrial NADH:ubiquinone oxidoreductase (Complex I).
Collapse
Affiliation(s)
- Tanja Burgdorf
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Chausseestrasse 117, D-10115 Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Burgdorf T, Löscher S, Liebisch P, Van der Linden E, Galander M, Lendzian F, Meyer-Klaucke W, Albracht SPJ, Friedrich B, Dau H, Haumann M. Structural and oxidation-state changes at its nonstandard Ni-Fe site during activation of the NAD-reducing hydrogenase from Ralstonia eutropha detected by X-ray absorption, EPR, and FTIR spectroscopy. J Am Chem Soc 2005; 127:576-92. [PMID: 15643882 DOI: 10.1021/ja0461926] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Structure and oxidation state of the Ni-Fe cofactor of the NAD-reducing soluble hydrogenase (SH) from Ralstonia eutropha were studied employing X-ray absorption spectroscopy (XAS) at the Ni K-edge, EPR, and FTIR spectroscopy. The SH comprises a nonstandard (CN)Ni-Fe(CN)(3)(CO) site; its hydrogen-cleavage reaction is resistant against inhibition by dioxygen and carbon monoxide. Simulations of the XANES and EXAFS regions of XAS spectra revealed that, in the oxidized SH, the Ni(II) is six-coordinated ((CN)O(3)S(2)); only two of the four conserved cysteines, which bind the Ni in standard Ni-Fe hydrogenases, provide thiol ligands to the Ni. Upon the exceptionally rapid reductive activation of the SH by NADH, an oxygen species is detached from the Ni; hydrogen may subsequently bind to the vacant coordination site. Prolonged reducing conditions cause the two thiols that are remote from the Ni in the native SH to become direct Ni ligands, creating a standardlike Ni(II)(CysS)(4) site, which could be further reduced to form the Ni-C (Ni(III)-H(-)) state. The Ni-C state does not seem to be involved in hydrogen cleavage. Two site-directed mutants (HoxH-I64A, HoxH-L118F) revealed structural changes at their Ni sites and were employed to further dissect the role of the extra CN ligand at the Ni. It is proposed that the predominant coordination by (CN),O ligands stabilizes the Ni(II) oxidation state throughout the catalytic cycle and is a prerequisite for the rapid activation of the SH in the presence of oxygen.
Collapse
Affiliation(s)
- Tanja Burgdorf
- Humboldt-Universität zu Berlin, Mikrobiologie, Chausseestr. 117, D-10115 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Friedrich B, Buhrke T, Burgdorf T, Lenz O. A hydrogen-sensing multiprotein complex controls aerobic hydrogen metabolism in Ralstonia eutropha. Biochem Soc Trans 2005; 33:97-101. [PMID: 15667276 DOI: 10.1042/bst0330097] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
H2 is an attractive energy source for many microorganisms and is mostly consumed before it enters oxic habitats. Thus aerobic H2-oxidizing organisms receive H2 only occasionally and in limited amounts. Metabolic adaptation requires a robust oxygen-tolerant hydrogenase enzyme system and special regulatory devices that enable the organism to respond rapidly to a changing supply of H2. The proteobacterium Ralstonia eutropha strain H16 that harbours three [NiFe] hydrogenases perfectly meets these demands. The unusual biochemical and structural properties of the hydrogenases are described, including the strategies that confer O2 tolerance to the NAD-reducing soluble hydrogenase and the H2-sensing regulatory hydrogenase. The regulatory hydrogenase that forms a complex with a histidine protein kinase recognizes H2 in the environment and transmits the signal to a response regulator, which in turn controls transcription of the hydrogenase genes.
Collapse
Affiliation(s)
- B Friedrich
- Institute of Biology, Humboldt University, Berlin, Germany.
| | | | | | | |
Collapse
|
39
|
Abstract
Members of the genus Methanosarcina are strictly anaerobic archaea that derive their metabolic energy from the conversion of a restricted number of substrates to methane. H2 + CO2 are converted to CH4 via the CO2-reducing pathway, while methanol and methylamines are metabolized by the methylotrophic pathway. Two novel electron transport systems are involved in the process of methanogenesis. Both systems are able to use a heterodisulfide as electron acceptor and either H2 or F420H2 as electron acceptors and generate a proton-motive force by redox potential-driven H(+)-translocation. The H2:heterodisulfide oxidoreductase is composed of an F420-nonreducing hydrogenase and the heterodisulfide reductase. The latter protein is also part of the F420H2:heterodisulfide oxidoreductase system. The second component of this system is referred to as F420H2 dehydrogenase. The archaeal protein is a homologue of complex I of the respiratory chain from bacteria and mitochondria. This review focuses on the biochemical and genetic characteristics of the three energy-transducing enzymes and on the mechanisms of ion translocation.
Collapse
Affiliation(s)
- Uwe Deppenmeier
- Department of Biological Sciences, University of Wisconsin-Milwaukee, PO Box 413, Milwaukee, Wisconsin 53201, USA.
| |
Collapse
|
40
|
Bleijlevens B, Buhrke T, van der Linden E, Friedrich B, Albracht SPJ. The auxiliary protein HypX provides oxygen tolerance to the soluble [NiFe]-hydrogenase of ralstonia eutropha H16 by way of a cyanide ligand to nickel. J Biol Chem 2004; 279:46686-91. [PMID: 15342627 DOI: 10.1074/jbc.m406942200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The hypX gene of the facultative lithoautotrophic bacterium Ralstonia eutropha is part of a cassette of accessory genes (the hyp cluster) required for the proper assembly of the active site of the [NiFe]-hydrogenases in the bacterium. A deletion of the hypX gene led to a severe growth retardation under lithoautotrophic conditions with 5 or 15% oxygen, when the growth was dependent on the activity of the soluble NAD+ -reducing hydrogenase. The enzymatic and infrared spectral properties of the soluble hydrogenase purified from a HypX-negative strain were compared with those from an enzyme purified from a HypX-positive strain. In activity assays under anaerobic conditions both enzyme preparations behaved the same. Under aerobic conditions, however, the mutant enzyme became irreversibly inactivated during H2 oxidation with NAD+ or benzyl viologen as the electron acceptor. Infrared spectra and chemical determination of cyanide showed that one of the four cyanide groups in the wild-type enzyme was missing in the mutant enzyme. The data are consistent with the proposal that the HypX protein is specifically involved in the biosynthetic pathway that delivers the nickel-bound cyanide. The data support the proposal that this cyanide is crucial for the enzyme to function under aerobic conditions.
Collapse
Affiliation(s)
- Boris Bleijlevens
- Swammerdam Institute for Life Sciences, Biochemistry, University of Amsterdam, Plantage Muidergracht 12, NL-1018 TV Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
41
|
Buhrke T, Lenz O, Porthun A, Friedrich B. The H2-sensing complex of Ralstonia eutropha: interaction between a regulatory [NiFe] hydrogenase and a histidine protein kinase. Mol Microbiol 2004; 51:1677-89. [PMID: 15009894 DOI: 10.1111/j.1365-2958.2003.03933.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Two [NiFe] hydrogenases enable the proteobacterium Ralstonia eutropha H16 to grow on molecular hydrogen as the sole energy source. A third [NiFe] hydrogenase (RH) acts as an H2 sensor in a multiple component signal transduction chain that controls hydrogenase gene transcription. The RH forms a dimeric heterodimer (HoxBC)2 in which HoxC contains the H2-sensing active site and HoxB the electron-transferring components including an organic, not yet identified redox cofactor. This oligomer forms a tight complex with the histidine protein kinase HoxJ. Both the sensor and the kinase were analysed by mutagenesis for functional domains that are instrumental in H2 signal transmission. A mutant deleted for a C-terminal peptide of 55 amino acids in HoxB lost its H2-sensing ability but still catalysed H2 oxidation. The mutant protein failed to form the dimeric heterodimer and a complex with HoxJ. The organic redox cofactor was no longer detectable in the truncated sensor. H2 sensing was also abolished by deletion of the PAS domain of HoxJ, indicating that this domain is involved in signal transduction. A truncated version of HoxJ consisting of only the input domain of the kinase was still capable of forming a complex with the RH. Mass determination of the purified HoxJ protein revealed that the kinase forms a homotetramer. The unique oligomeric structure of the H2-sensing complex with respect to its regulatory function is discussed.
Collapse
Affiliation(s)
- Thorsten Buhrke
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Chausseestr 117, 10115 Berlin, Germany
| | | | | | | |
Collapse
|
42
|
Affiliation(s)
- Jason Kuchar
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan 48824-4320, USA
| | | |
Collapse
|
43
|
Van der Linden E, Burgdorf T, Bernhard M, Bleijlevens B, Friedrich B, Albracht SPJ. The soluble [NiFe]-hydrogenase from Ralstonia eutropha contains four cyanides in its active site, one of which is responsible for the insensitivity towards oxygen. J Biol Inorg Chem 2004; 9:616-26. [PMID: 15164270 DOI: 10.1007/s00775-004-0555-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2003] [Accepted: 04/27/2004] [Indexed: 11/30/2022]
Abstract
Infrared spectra of (15)N-enriched preparations of the soluble cytoplasmic NAD(+)-reducing [NiFe]-hydrogenase from Ralstonia eutropha are presented. These spectra, together with chemical analyses, show that the Ni-Fe active site contains four cyanide groups and one carbon monoxide molecule. It is proposed that the active site is a (RS)(2)(CN)Ni(micro-RS)(2)Fe(CN)(3)(CO) centre (R=Cys) and that H(2) activation solely takes place on nickel. One of the two FMN groups (FMN-a) in the enzyme can be reversibly released upon reduction of the enzyme. It is now reported that at longer times also one of the cyanide groups, the one proposed to be bound to the nickel atom, could be removed from the enzyme. This process was irreversible and induced the inhibition of the enzyme activity by oxygen; the enzyme remained insensitive to carbon monoxide. The Ni-Fe active site was EPR undetectable under all conditions tested. It is concluded that the Ni-bound cyanide group is responsible for the oxygen insensitivity of the enzyme.
Collapse
Affiliation(s)
- Eddy Van der Linden
- Swammerdam Institute for Life Sciences, Biochemistry, University of Amsterdam, Plantage Muidergracht 12, 1018 TV Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
44
|
van der Linden E, Faber BW, Bleijlevens B, Burgdorf T, Bernhard M, Friedrich B, Albracht SPJ. Selective release and function of one of the two FMN groups in the cytoplasmic NAD+-reducing [NiFe]-hydrogenase from Ralstonia eutropha. ACTA ACUST UNITED AC 2004; 271:801-8. [PMID: 14764097 DOI: 10.1111/j.1432-1033.2004.03984.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The soluble, cytoplasmic NAD+-reducing [NiFe]-hydrogenase from Ralstonia eutropha is a heterotetrameric enzyme (HoxFUYH) and contains two FMN groups. The purified oxidized enzyme is inactive in the H2-NAD+ reaction, but can be activated by catalytic amounts of NADH. It was discovered that one of the FMN groups (FMN-a) is selectively released upon prolonged reduction of the enzyme with NADH. During this process, the enzyme maintained its tetrameric form, with one FMN group (FMN-b) firmly bound, but it lost its physiological activity--the reduction of NAD+ by H2. This activity could be reconstituted by the addition of excess FMN to the reduced enzyme. The rate of reduction of benzyl viologen by H2 was not dependent on the presence of FMN-a. Enzyme devoid of FMN-a could not be activated by NADH. As NADH-dehydrogenase activity was not dependent on the presence of FMN-a, and because FMN-b did not dissociate from the reduced enzyme, we conclude that FMN-b is functional in the NADH-dehydrogenase activity catalyzed by the HoxFU dimer. The possible function of FMN-a as a hydride acceptor in the hydrogenase reaction catalyzed by the HoxHY dimer is discussed.
Collapse
Affiliation(s)
- Eddy van der Linden
- Swammerdam Institute for Life Sciences, Biochemistry, University of Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
45
|
Martínez M, Brito B, Imperial J, Ruiz-Argüeso T. Characterization of a new internal promoter (P3) for Rhizobium leguminosarum hydrogenase accessory genes hupGHIJ. Microbiology (Reading) 2004; 150:665-675. [PMID: 14993316 DOI: 10.1099/mic.0.26623-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Synthesis of the Rhizobium leguminosarum [NiFe] hydrogenase requires the participation of 16 accessory genes (hupCDEFGHIJKhypABFCDEX) besides the genes encoding the structural proteins (hupSL). Transcription of hupSL is controlled by a -24/-12-type promoter (P(1)), located upstream of hupS and regulated by NifA. In this work, a second -24/-12-type promoter (P(3)), located upstream of the hupG gene and transcribing hupGHIJ genes in R. leguminosarum pea (Pisum sativum L.) bacteroids, has been identified in the hup gene cluster. Promoter P(3) was also active in R. leguminosarum free-living cells, as evidenced by genetic complementation of hydrogenase mutants. Both NifA and NtrC activated P(3) expression in the heterologous host Klebsiella pneumoniae. Also, P(3) activity was highly stimulated by K. pneumoniae NifA in Escherichia coli. This NifA activation of P(3) expression only required the sigma(54)-binding site, and it was independent of any cis-acting element upstream of the sigma(54) box, which suggests a direct interaction of free NifA with the RNA polymerase holoenzyme. P(3)-dependent hupGHIJ expression in pea nodules started in interzone II/III, spanned through nitrogen-fixing zone III, and was coincident with the NifA-dependent nifH expression pattern. However, P(3) was dispensable for hupGHIJ transcription and hydrogenase activity in pea bacteroids due to transcription initiated at P(1). This fact and the lack of an activator recruitment system suggest that P(3) plays a secondary role in symbiotic hupGHIJ expression.
Collapse
Affiliation(s)
- Marta Martínez
- Departamento de Biotecnología, E. T. S. de Ingenieros Agrónomos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Belén Brito
- Departamento de Biotecnología, E. T. S. de Ingenieros Agrónomos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Juan Imperial
- Consejo Superior de Investigaciones Científicas (C.S.I.C.), 28040 Madrid, Spain
| | - Tomás Ruiz-Argüeso
- Departamento de Biotecnología, E. T. S. de Ingenieros Agrónomos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| |
Collapse
|
46
|
Gross R, Simon J. The hydE gene is essential for the formation of Wolinella succinogenes NiFe-hydrogenase. FEMS Microbiol Lett 2004; 227:197-202. [PMID: 14592709 DOI: 10.1016/s0378-1097(03)00681-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Wolinella succinogenes grows by anaerobic respiration using hydrogen gas as electron donor. The hydE gene is located on the genome downstream of the structural genes encoding the membrane-bound NiFe-hydrogenase complex (HydABC) and a putative protease (HydD) possibly involved in hydrogenase maturation. Homologs of hydE are found in the vicinity of NiFe-hydrogenase-encoding genes on the genomes of several other proteobacteria. A hydE deletion mutant of W. succinogenes does not catalyze hydrogen oxidation with various electron acceptors. The hydrogenase iron-sulfur subunit HydA is absent in mutant cells whereas the apparently processed NiFe subunit (HydB) is located exclusively in the soluble cell fraction. It is suggested that HydE is involved in the maturation and/or stability of HydA or the HydAB complex in some, but not all bacteria containing NiFe-hydrogenases.
Collapse
Affiliation(s)
- Roland Gross
- Institut für Mikrobiologie, Johann Wolfgang Goethe-Universität, Marie-Curie-Str. 9, 60439, Frankfurt am Main, Germany
| | | |
Collapse
|
47
|
Fuhrmann S, Ferner M, Jeffke T, Henne A, Gottschalk G, Meyer O. Complete nucleotide sequence of the circular megaplasmid pHCG3 of Oligotropha carboxidovorans: function in the chemolithoautotrophic utilization of CO, H2 and CO2. Gene 2003; 322:67-75. [PMID: 14644498 DOI: 10.1016/j.gene.2003.08.027] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Oligotropha carboxidovorans harbors the low-copy-number, circular, 133,058-bp DNA megaplasmid pHCG3, which is essential in the chemolithoautotrophic utilization of CO (carboxidotrophy), H(2) (hydrogenotrophy) and CO(2) under aerobic conditions. The complete nucleotide sequence of pHCG3 revealed 125 open reading frames. Of these, 95 were identified as putative structural genes. The plasmid carries the four gene clusters cox (14.54 kb, 12 genes), cbb (13.33 kb, 13 genes), hox (23.35 kb, 19 genes plus one ORF) and tra/trb (25.01 kb, 22 genes plus 2 ORFs), which assemble the functions required for the utilization of CO, CO(2) or H(2), and the conjugal transfer of the plasmid, respectively. The gene clusters cox, cbb and hox form a 51.2-kb chemolithoautotrophy module. The tra/trb cluster on the plasmid pHCG3 of O. carboxidovorans has a similar architecture as the Ti-plasmid of Agrobacterium tumefaciens. The tra/trb cluster is separated from the chemolithoautotrophy module by two regions (25.2 and 29.6 kb) with miscellaneous or mostly unknown functions. These regions carry a number of single genes coding for replication and stabilization of pHCG3 as well as the components of a putative system of global regulation of plasmid replication in O. carboxidovorans. An oriV encodes the replication proteins RepABC. Sequence comparisons of pHCG3-encoded genes suggest that major genetic exchange between O. carboxidovorans and the proteobacteria has occurred.
Collapse
Affiliation(s)
- Sven Fuhrmann
- Department of Microbiology and Bayreuth Center of Molecular Biosciences, University of Bayreuth, D-95440 Bayreuth, Germany
| | | | | | | | | | | |
Collapse
|
48
|
Berks BC, Palmer T, Sargent F. The Tat protein translocation pathway and its role in microbial physiology. Adv Microb Physiol 2003; 47:187-254. [PMID: 14560665 DOI: 10.1016/s0065-2911(03)47004-5] [Citation(s) in RCA: 193] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Tat (twin arginine translocation) protein transport system functions to export folded protein substrates across the bacterial cytoplasmic membrane and to insert certain integral membrane proteins into that membrane. It is entirely distinct from the Sec pathway. Here, we describe our current knowledge of the molecular features of the Tat transport system. In addition, we discuss the roles that the Tat pathway plays in the bacterial cell, paying particular attention to the involvement of the Tat pathway in the biogenesis of cofactor-containing proteins, in cell wall biosynthesis and in bacterial pathogenicity.
Collapse
Affiliation(s)
- Ben C Berks
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | | | |
Collapse
|
49
|
Dubini A, Sargent F. Assembly of Tat-dependent [NiFe] hydrogenases: identification of precursor-binding accessory proteins. FEBS Lett 2003; 549:141-6. [PMID: 12914940 DOI: 10.1016/s0014-5793(03)00802-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Escherichia coli twin-arginine translocation (Tat) system serves to export fully folded protein substrates across the bacterial cytoplasmic membrane. Respiratory [NiFe] hydrogenases are synthesised as precursors with twin-arginine signal peptides and transported as large, cofactor-containing, multi-subunit complexes by the Tat system. Cofactor insertion and assembly of [NiFe] hydrogenases requires coordination of networks of accessory proteins. In this work we utilise a bacterial two-hybrid assay to demonstrate protein-protein interactions between the uncharacterised chaperones HyaE and HybE with Tat signal peptide-bearing hydrogenase precursors. It is proposed that the chaperones act at a 'proofreading' stage in hydrogenase assembly and police the protein transport pathway preventing premature targeting of Tat-dependent hydrogenases.
Collapse
Affiliation(s)
- Alexandra Dubini
- Centre for Metalloprotein Spectroscopy and Biology, School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | | |
Collapse
|
50
|
Sebat JL, Colwell FS, Crawford RL. Metagenomic profiling: microarray analysis of an environmental genomic library. Appl Environ Microbiol 2003; 69:4927-34. [PMID: 12902288 PMCID: PMC169101 DOI: 10.1128/aem.69.8.4927-4934.2003] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Genomic libraries derived from environmental DNA (metagenomic libraries) are useful for characterizing uncultured microorganisms. However, conventional library-screening techniques permit characterization of relatively few environmental clones. Here we describe a novel approach for characterization of a metagenomic library by hybridizing the library with DNA from a set of groundwater isolates, reference strains, and communities. A cosmid library derived from a microcosm of groundwater microorganisms was used to construct a microarray (COSMO) containing approximately 1-kb PCR products amplified from the inserts of 672 cosmids plus a set of 16S ribosomal DNA controls. COSMO was hybridized with Cy5-labeled genomic DNA from each bacterial strain, and the results were compared with the results for a common Cy3-labeled reference DNA sample consisting of a composite of genomic DNA from multiple species. The accuracy of the results was confirmed by the preferential hybridization of each strain to its corresponding rDNA probe. Cosmid clones were identified that hybridized specifically to each of 10 microcosm isolates, and other clones produced positive results with multiple related species, which is indicative of conserved genes. Many clones did not hybridize to any microcosm isolate; however, some of these clones hybridized to community genomic DNA, suggesting that they were derived from microbes that we failed to isolate in pure culture. Based on identification of genes by end sequencing of 17 such clones, DNA could be assigned to functions that have potential ecological importance, including hydrogen oxidation, nitrate reduction, and transposition. Metagenomic profiling offers an effective approach for rapidly characterizing many clones and identifying the clones corresponding to unidentified species of microorganisms.
Collapse
Affiliation(s)
- Jonathan L Sebat
- Environmental Research Institute, University of Idaho, Moscow, Idaho 83844-1052, USA
| | | | | |
Collapse
|