1
|
Ovchinnikova OG, Treat LP, Teelucksingh T, Clarke BR, Miner TA, Whitfield C, Walker KA, Miller VL. Hypermucoviscosity Regulator RmpD Interacts with Wzc and Controls Capsular Polysaccharide Chain Length. mBio 2023; 14:e0080023. [PMID: 37140436 PMCID: PMC10294653 DOI: 10.1128/mbio.00800-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 05/05/2023] Open
Abstract
Klebsiella pneumoniae is a leading cause of nosocomial infections, including pneumonia, bacteremia, and urinary tract infections. Treatment options are increasingly restricted by the high prevalence of resistance to frontline antibiotics, including carbapenems, and the recently identified plasmid-conferred colistin resistance. The classical pathotype (cKp) is responsible for most of the nosocomial infections observed globally, and these isolates are often multidrug resistant. The hypervirulent pathotype (hvKp) is a primary pathogen capable of causing community-acquired infections in immunocompetent hosts. The hypermucoviscosity (HMV) phenotype is strongly associated with the increased virulence of hvKp isolates. Recent studies demonstrated that HMV requires capsule (CPS) synthesis and the small protein RmpD but is not dependent on the increased amount of capsule associated with hvKp. Here, we identified the structure of the capsular and extracellular polysaccharide isolated from hvKp strain KPPR1S (serotype K2) with and without RmpD. We found that the polymer repeat unit structure is the same in both strains and that it is identical to the K2 capsule. However, the chain length of CPS produced by strains expressing rmpD demonstrates more uniform length. This property was reconstituted in CPS from Escherichia coli isolates that possess the same CPS biosynthesis pathway as K. pneumoniae but naturally lack rmpD. Furthermore, we demonstrate that RmpD binds Wzc, a conserved capsule biosynthesis protein required for CPS polymerization and export. Based on these observations, we present a model for how the interaction of RmpD with Wzc could impact CPS chain length and HMV. IMPORTANCE Infections caused by Klebsiella pneumoniae continue to be a global public health threat; the treatment of these infections is complicated by the high frequency of multidrug resistance. K. pneumoniae produces a polysaccharide capsule required for virulence. Hypervirulent isolates also have a hypermucoviscous (HMV) phenotype that increases virulence, and we recently demonstrated that a horizontally acquired gene, rmpD, is required for HMV and hypervirulence but that the identity of the polymeric product(s) in HMV isolates is uncertain. Here, we demonstrate that RmpD regulates capsule chain length and interacts with Wzc, a part of the capsule polymerization and export machinery shared by many pathogens. We further show that RmpD confers HMV and regulates capsule chain length in a heterologous host (E. coli). As Wzc is a conserved protein found in many pathogens, it is possible that RmpD-mediated HMV and increased virulence may not be restricted to K. pneumoniae.
Collapse
Affiliation(s)
- Olga G. Ovchinnikova
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Logan P. Treat
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Tanisha Teelucksingh
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Bradley R. Clarke
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Taryn A. Miner
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Chris Whitfield
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Kimberly A. Walker
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Virginia L. Miller
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
- Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| |
Collapse
|
2
|
Yang Y, Liu J, Clarke BR, Seidel L, Bolla JR, Ward PN, Zhang P, Robinson CV, Whitfield C, Naismith JH. The molecular basis of regulation of bacterial capsule assembly by Wzc. Nat Commun 2021; 12:4349. [PMID: 34272394 PMCID: PMC8285477 DOI: 10.1038/s41467-021-24652-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/29/2021] [Indexed: 01/06/2023] Open
Abstract
Bacterial extracellular polysaccharides (EPSs) play critical roles in virulence. Many bacteria assemble EPSs via a multi-protein "Wzx-Wzy" system, involving glycan polymerization at the outer face of the cytoplasmic/inner membrane. Gram-negative species couple polymerization with translocation across the periplasm and outer membrane and the master regulator of the system is the tyrosine autokinase, Wzc. This near atomic cryo-EM structure of dephosphorylated Wzc from E. coli shows an octameric assembly with a large central cavity formed by transmembrane helices. The tyrosine autokinase domain forms the cytoplasm region, while the periplasmic region contains small folded motifs and helical bundles. The helical bundles are essential for function, most likely through interaction with the outer membrane translocon, Wza. Autophosphorylation of the tyrosine-rich C-terminus of Wzc results in disassembly of the octamer into multiply phosphorylated monomers. We propose that the cycling between phosphorylated monomer and dephosphorylated octamer regulates glycan polymerization and translocation.
Collapse
Affiliation(s)
- Yun Yang
- Rosalind Franklin Institute, Harwell Campus, Harwell, UK.,Division of Structural Biology, The University of Oxford, Oxford, UK.,The Research Complex at Harwell, Harwell Campus, Harwell, UK
| | - Jiwei Liu
- Rosalind Franklin Institute, Harwell Campus, Harwell, UK.,Division of Structural Biology, The University of Oxford, Oxford, UK
| | - Bradley R Clarke
- Department of Molecular and Cellular Biology, The University of Guelph, Guelph, ON, Canada
| | - Laura Seidel
- Department of Molecular and Cellular Biology, The University of Guelph, Guelph, ON, Canada
| | - Jani R Bolla
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, South Parks Road, The University of Oxford, Oxford, UK.,The Kavli Institute for Nanoscience Discovery, Oxford, UK
| | - Philip N Ward
- Rosalind Franklin Institute, Harwell Campus, Harwell, UK.,Division of Structural Biology, The University of Oxford, Oxford, UK.,The Research Complex at Harwell, Harwell Campus, Harwell, UK
| | - Peijun Zhang
- Division of Structural Biology, The University of Oxford, Oxford, UK.,Electron Bio-Imaging Centre, Diamond Light Source, Harwell Science and Innovation Campus, Harwell, UK
| | - Carol V Robinson
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, South Parks Road, The University of Oxford, Oxford, UK.,The Kavli Institute for Nanoscience Discovery, Oxford, UK
| | - Chris Whitfield
- Department of Molecular and Cellular Biology, The University of Guelph, Guelph, ON, Canada.
| | - James H Naismith
- Rosalind Franklin Institute, Harwell Campus, Harwell, UK. .,Division of Structural Biology, The University of Oxford, Oxford, UK. .,The Research Complex at Harwell, Harwell Campus, Harwell, UK.
| |
Collapse
|
3
|
Abstract
The outer membrane (OM) of Gram-negative bacteria poses a barrier to antibiotic entry due to its high impermeability. Thus, there is an urgent need to study the function and biogenesis of the OM. In Enterobacterales, an order of bacteria with many pathogenic members, one of the components of the OM is enterobacterial common antigen (ECA). We have known of the presence of ECA on the cell surface of Enterobacterales for many years, but its properties have only more recently begun to be unraveled. ECA is a carbohydrate antigen built of repeating units of three amino sugars, the structure of which is conserved throughout Enterobacterales. There are three forms of ECA, two of which (ECAPG and ECALPS) are located on the cell surface, while one (ECACYC) is located in the periplasm. Awareness of the importance of ECA has increased due to studies of its function that show it plays a vital role in bacterial physiology and interaction with the environment. Here, we review the discovery of ECA, the pathways for the biosynthesis of ECA, and the interactions of its various forms. In addition, we consider the role of ECA in the host immune response, as well as its potential roles in host-pathogen interaction. Furthermore, we explore recent work that offers insights into the cellular function of ECA. This review provides a glimpse of the biological significance of this enigmatic molecule.
Collapse
Affiliation(s)
- Ashutosh K Rai
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Angela M Mitchell
- Department of Biology, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
4
|
Structural and Functional Variation in Outer Membrane Polysaccharide Export (OPX) Proteins from the Two Major Capsule Assembly Pathways Present in Escherichia coli. J Bacteriol 2019; 201:JB.00213-19. [PMID: 31036729 DOI: 10.1128/jb.00213-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 04/26/2019] [Indexed: 11/20/2022] Open
Abstract
Capsular polysaccharides (CPSs) are virulence factors for many important pathogens. In Escherichia coli, CPSs are synthesized via two distinct pathways, but both require proteins from the outer membrane polysaccharide export (OPX) family to complete CPS export from the periplasm to the cell surface. In this study, we compare the properties of the OPX proteins from the prototypical group 1 (Wzy-dependent) and group 2 (ABC transporter-dependent) pathways in E. coli K30 (Wza) and E. coli K2 (KpsD), respectively. In addition, we compare an OPX from Salmonella enterica serovar Typhi (VexA), which shares structural properties with Wza, while operating in an ABC transporter-dependent pathway. These proteins differ in distribution in the cell envelope and formation of stable multimers, but these properties do not align with acylation or the interfacing biosynthetic pathway. In E. coli K2, murein lipoprotein (Lpp) plays a role in peptidoglycan association of KpsD, and loss of this interaction correlates with impaired group 2 capsule production. VexA also depends on Lpp for peptidoglycan association, but CPS production is unaffected in an lpp mutant. In contrast, Wza and group 1 capsule production is unaffected by the absence of Lpp. These results point to complex structure-function relationships between different OPX proteins.IMPORTANCE Capsules are protective layers of polysaccharides that surround the cell surface of many bacteria, including that of Escherichia coli isolates and Salmonella enterica serovar Typhi. Capsular polysaccharides (CPSs) are often essential for virulence because they facilitate evasion of host immune responses. The attenuation of unencapsulated mutants in animal models and the involvement of protein families with conserved features make the CPS export pathway a novel candidate for therapeutic strategies. However, appropriate "antivirulence" strategies require a fundamental understanding of the underpinning cellular processes. Investigating export proteins that are conserved across different biosynthesis strategies will give important insight into how CPS is transported to the cell surface.
Collapse
|
5
|
Wittmann A, Lamprinaki D, Bowles KM, Katzenellenbogen E, Knirel YA, Whitfield C, Nishimura T, Matsumoto N, Yamamoto K, Iwakura Y, Saijo S, Kawasaki N. Dectin-2 Recognizes Mannosylated O-antigens of Human Opportunistic Pathogens and Augments Lipopolysaccharide Activation of Myeloid Cells. J Biol Chem 2016; 291:17629-38. [PMID: 27358401 PMCID: PMC5016159 DOI: 10.1074/jbc.m116.741256] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Indexed: 12/20/2022] Open
Abstract
LPS consists of a relatively conserved region of lipid A and core oligosaccharide and a highly variable region of O-antigen polysaccharide. Whereas lipid A is known to bind to the Toll-like receptor 4 (TLR4)-myeloid differentiation factor 2 (MD2) complex, the role of the O-antigen remains unclear. Here we report a novel molecular interaction between dendritic cell-associated C-type lectin-2 (Dectin-2) and mannosylated O-antigen found in a human opportunistic pathogen, Hafnia alvei PCM 1223, which has a repeating unit of [-Man-α1,3-Man-α1,2-Man-α1,2-Man-α1,2-Man-α1,3-]. H. alvei LPS induced higher levels of TNFα and IL-10 from mouse bone marrow-derived dendritic cells (BM-DCs), when compared with Salmonella enterica O66 LPS, which has a repeat of [-Gal-α1,6-Gal-α1,4-[Glc-β1,3]GalNAc-α1,3-GalNAc-β1,3-]. In a cell-based reporter assay, Dectin-2 was shown to recognize H. alvei LPS. This binding was inhibited by mannosidase treatment of H. alvei LPS and by mutations in the carbohydrate-binding domain of Dectin-2, demonstrating that H. alvei LPS is a novel glycan ligand of Dectin-2. The enhanced cytokine production by H. alvei LPS was Dectin-2-dependent, because Dectin-2 knock-out BM-DCs failed to do so. This receptor cross-talk between Dectin-2 and TLR4 involved events including spleen tyrosine kinase (Syk) activation and receptor juxtaposition. Furthermore, another mannosylated LPS from Escherichia coli O9a also bound to Dectin-2 and augmented TLR4 activation of BM-DCs. Taken together, these data indicate that mannosylated O-antigens from several Gram-negative bacteria augment TLR4 responses through interaction with Dectin-2.
Collapse
Affiliation(s)
- Alexandra Wittmann
- From the Food and Health Institute Strategic Programme, Institute of Food Research, Norwich NR4 7UA, United Kingdom
| | - Dimitra Lamprinaki
- From the Food and Health Institute Strategic Programme, Institute of Food Research, Norwich NR4 7UA, United Kingdom
| | - Kristian M Bowles
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Ewa Katzenellenbogen
- the Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw 53-114, Poland
| | - Yuriy A Knirel
- the N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Chris Whitfield
- the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Takashi Nishimura
- the Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Chiba 277-8562, Japan
| | - Naoki Matsumoto
- the Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Chiba 277-8562, Japan
| | - Kazuo Yamamoto
- the Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Chiba 277-8562, Japan
| | - Yoichiro Iwakura
- the Center for Animal Disease Models, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba 278-0022, Japan, and
| | - Shinobu Saijo
- the Department of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan
| | - Norihito Kawasaki
- From the Food and Health Institute Strategic Programme, Institute of Food Research, Norwich NR4 7UA, United Kingdom, the Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Chiba 277-8562, Japan,
| |
Collapse
|
6
|
Mijakovic I, Grangeasse C, Turgay K. Exploring the diversity of protein modifications: special bacterial phosphorylation systems. FEMS Microbiol Rev 2016; 40:398-417. [PMID: 26926353 DOI: 10.1093/femsre/fuw003] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 02/02/2016] [Indexed: 12/31/2022] Open
Abstract
Protein modifications not only affect protein homeostasis but can also establish new cellular protein functions and are important components of complex cellular signal sensing and transduction networks. Among these post-translational modifications, protein phosphorylation represents the one that has been most thoroughly investigated. Unlike in eukarya, a large diversity of enzyme families has been shown to phosphorylate and dephosphorylate proteins on various amino acids with different chemical properties in bacteria. In this review, after a brief overview of the known bacterial phosphorylation systems, we focus on more recently discovered and less widely known kinases and phosphatases. Namely, we describe in detail tyrosine- and arginine-phosphorylation together with some examples of unusual serine-phosphorylation systems and discuss their potential role and function in bacterial physiology, and regulatory networks. Investigating these unusual bacterial kinase and phosphatases is not only important to understand their role in bacterial physiology but will help to generally understand the full potential and evolution of protein phosphorylation for signal transduction, protein modification and homeostasis in all cellular life.
Collapse
Affiliation(s)
- Ivan Mijakovic
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg 41296, Sweden Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2970 Hørsholm, Denmark
| | - Christophe Grangeasse
- Unité Microbiologie Moléculaire et Biochimie Structurale, UMR 5086-CNRS/ Université Lyon 1, Lyon 69367, France
| | - Kürşad Turgay
- Institut für Mikrobiologie, Leibniz Universität Hannover, D-30419 Hannover, Germany
| |
Collapse
|
7
|
Mainprize IL, Bean JD, Bouwman C, Kimber MS, Whitfield C. The UDP-glucose dehydrogenase of Escherichia coli K-12 displays substrate inhibition by NAD that is relieved by nucleotide triphosphates. J Biol Chem 2013; 288:23064-74. [PMID: 23792965 DOI: 10.1074/jbc.m113.486613] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
UDP-glucose dehydrogenase (Ugd) generates UDP-glucuronic acid, an important precursor for the production of many hexuronic acid-containing bacterial surface glycostructures. In Escherichia coli K-12, Ugd is important for biosynthesis of the environmentally regulated exopolysaccharide known as colanic acid, whereas in other E. coli isolates, the same enzyme is required for production of the constitutive group 1 capsular polysaccharides, which act as virulence determinants. Recent studies have implicated tyrosine phosphorylation in the activation of Ugd from E. coli K-12, although it is not known if this is a feature shared by bacterial Ugd proteins. The activities of Ugd from E. coli K-12 and from the group 1 capsule prototype (serotype K30) were compared. Surprisingly, for both enzymes, site-directed Tyr → Phe mutants affecting the previously proposed phosphorylation site retained similar kinetic properties to the wild-type protein. Purified Ugd from E. coli K-12 had significant levels of NAD substrate inhibition, which could be alleviated by the addition of ATP and several other nucleotide triphosphates. Mutations in a previously identified UDP-glucuronic acid allosteric binding site decreased the binding affinity of the nucleotide triphosphate. Ugd from E. coli serotype K30 was not inhibited by NAD, but its activity still increased in the presence of ATP.
Collapse
Affiliation(s)
- Iain L Mainprize
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | | | | | |
Collapse
|
8
|
Apicella MA, Post DMB, Fowler AC, Jones BD, Rasmussen JA, Hunt JR, Imagawa S, Choudhury B, Inzana TJ, Maier TM, Frank DW, Zahrt TC, Chaloner K, Jennings MP, McLendon MK, Gibson BW. Identification, characterization and immunogenicity of an O-antigen capsular polysaccharide of Francisella tularensis. PLoS One 2010; 5:e11060. [PMID: 20625403 PMCID: PMC2897883 DOI: 10.1371/journal.pone.0011060] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Accepted: 05/14/2010] [Indexed: 11/18/2022] Open
Abstract
Capsular polysaccharides are important factors in bacterial pathogenesis and have been the target of a number of successful vaccines. Francisella tularensis has been considered to express a capsular antigen but none has been isolated or characterized. We have developed a monoclonal antibody, 11B7, which recognizes the capsular polysaccharide of F. tularensis migrating on Western blot as a diffuse band between 100 kDa and 250 kDa. The capsule stains poorly on SDS-PAGE with silver stain but can be visualized using ProQ Emerald glycoprotein stain. The capsule appears to be highly conserved among strains of F. tularensis as antibody 11B7 bound to the capsule of 14 of 14 F. tularensis type A and B strains on Western blot. The capsular material can be isolated essentially free of LPS, is phenol and proteinase K resistant, ethanol precipitable and does not dissociate in sodium dodecyl sulfate. Immunoelectron microscopy with colloidal gold demonstrates 11B7 circumferentially staining the surface of F. tularensis which is typical of a polysaccharide capsule. Mass spectrometry, compositional analysis and NMR indicate that the capsule is composed of a polymer of the tetrasaccharide repeat, 4)-alpha-D-GalNAcAN-(1->4)-alpha-D-GalNAcAN-(1->3)-beta-D-QuiNAc-(1->2)-beta-D-Qui4NFm-(1-, which is identical to the previously described F. tularensis O-antigen subunit. This indicates that the F. tularensis capsule can be classified as an O-antigen capsular polysaccharide. Our studies indicate that F. tularensis O-antigen glycosyltransferase mutants do not make a capsule. An F. tularensis acyltransferase and an O-antigen polymerase mutant had no evidence of an O-antigen but expressed a capsular antigen. Passive immunization of BALB/c mice with 75 microg of 11B7 protected against a 150 fold lethal challenge of F. tularensis LVS. Active immunization of BALB/c mice with 10 microg of capsule showed a similar level of protection. These studies demonstrate that F. tularensis produces an O-antigen capsule that may be the basis of a future vaccine.
Collapse
Affiliation(s)
- Michael A Apicella
- Department of Microbiology, University of Iowa, Iowa City, Iowa, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
The potential application of Yersinia pestis for bioterrorism emphasizes the urgent need to develop more effective vaccines against airborne infection. The current status of plague vaccines has been reviewed. The present emphasis is on subunit vaccines based on the F1 and LcrV antigens. These provide good protection in animal models but may not protect against F1 strains with modifications to the type III secretion system. The duration of protection against pneumonic infection is also uncertain. Other strategies under investigation include defined live-attenuated vaccines, DNA vaccines, mucosal delivery systems and heterologous immunization. The live-attenuated strain Y. pestis EV NIIEG protects against aerosol challenge in animal models and, with further modification to reduce residual virulence and to optimize respiratory protection, it could provide a shortcut to improved vaccines. The regulatory problems inherent in licensing vaccines for which efficacy data are unavailable and their possible solutions are discussed herein.
Collapse
Affiliation(s)
- Valentina A Feodorova
- Scientific and Research Institute for Medical and Veterinary Biotechnologies, Russia-Switzerland, Branch in Saratov, 9 Proviantskaya Street, Box 1580, Saratov 410028, Russia.
| | | |
Collapse
|
10
|
Abstract
The capsule is a cell surface structure composed of long-chain polysaccharides that envelops many isolates of Escherichia coli. It protects the cell against host defenses or physical environmental stresses, such as desiccation. The component capsular polysaccharides (CPSs) are major surface antigens in E. coli. They are named K antigens (after the German word Kapsel). Due to variations in CPS structures, more than 80 serologically unique K antigens exist in E. coli. Despite the hypervariability in CPS structures, only two capsule-assembly strategies exist in E. coli. These have led to the assignment of group 1 and group 2 capsules, and many of the key elements of the corresponding assembly pathways have been resolved. Structural features, as well as genetic and regulatory variations, give rise to additional groups 3 and 4. These employ the same biosynthesis processes described in groups 2 and 1, respectively. Each isolate possesses a distinctive set of cytosolic and inner-membrane enzymes, which generate a precise CPS structure, defining a given K serotype. Once synthesized, a multiprotein complex is needed to translocate the nascent CPS across the Gram-negative cell envelope to the outer surface of the outer membrane, where the capsule structure is assembled. While the translocation machineries for group 1 and group 2 CPSs are fundamentally different from one another, they possess no specificity for a given CPS structure. Each is conserved in all isolates producing capsules belonging to a particular group.
Collapse
|
11
|
Structure-function relationships of the outer membrane translocon Wza investigated by cryo-electron microscopy and mutagenesis. J Struct Biol 2009; 166:172-82. [PMID: 19236919 DOI: 10.1016/j.jsb.2009.02.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 01/23/2009] [Accepted: 02/15/2009] [Indexed: 11/21/2022]
Abstract
The outer membrane protein Wza, from Escherichia coli K30, forms an octameric complex that is essential for capsular polysaccharide export. Homologs of Wza are widespread in gram-negative bacterial pathogens where capsules are critical virulence determinants. Wza is unusual in that it spans the outer membrane using a barrel composed of amphipathic alpha-helices, rather than being a beta-barrel like almost all other outer membrane channels. The transmembrane helical barrel of Wza also forms the external opening to a hydrophilic translocation pathway that spans the periplasm. Here, we have probed the structure and function of the Wza complex using both cryo-electron microscopy and mutagenesis. The helical barrel structure is stable in detergent micelles under mildly acidic conditions but is destabilized at basic pH, although the overall quaternary structure is retained. Truncation of the C-terminal region that forms the helical barrel by 4 residues has no effect on the ability of Wza to oligomerize and support capsule export, but larger truncations of 18, 24 or 35 amino acids abolish its function. The bulk of the C-terminal domain is essential for the stability and assembly of the E. coli Wza complex.
Collapse
|
12
|
Larue K, Kimber MS, Ford R, Whitfield C. Biochemical and structural analysis of bacterial O-antigen chain length regulator proteins reveals a conserved quaternary structure. J Biol Chem 2009; 284:7395-403. [PMID: 19129185 DOI: 10.1074/jbc.m809068200] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lipopolysaccharide (LPS) is a major component of the Gram-negative outer membrane and is an important virulence determinant. The O-antigen polysaccharide of the LPS molecule provides protection from host defenses, and the length of O-antigen chains plays a pivotal role. In the Wzy-dependent O-antigen biosynthesis pathway, the integral inner membrane protein Wzz determines the O-antigen chain length. How these proteins function is currently unknown, but the hypothesis includes activities such as a "molecular ruler" or a "molecular stopwatch," and other possibilities may exist. Wzz homologs are membrane proteins with two transmembrane helices that flank a large periplasmic domain. Recent x-ray crystallographic studies of the periplasmic portions of Wzz proteins found multiple oligomeric forms, with quaternary structures favoring the "molecular ruler" interpretation. Here, we have studied full-length Wzz proteins with the transmembrane portions embedded in lipid membranes. Using electron microscopy and image analysis we find a unique hexameric state rather than differing oligomeric forms. The data suggest that in vivo Wzz proteins determine O-antigen chain length via subtle structure-function relationships at the level of primary, secondary, or tertiary structure within the context of a hexameric complex.
Collapse
Affiliation(s)
- Kane Larue
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | | | |
Collapse
|
13
|
Modifications and applications of the Acinetobacter venetianus RAG-1 exopolysaccharide, the emulsan complex and its components. Appl Microbiol Biotechnol 2008; 81:201-10. [DOI: 10.1007/s00253-008-1664-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Revised: 08/06/2008] [Accepted: 08/08/2008] [Indexed: 11/28/2022]
|
14
|
Construction of a chimeric gene cluster for the biosynthesis of apoemulsan with altered molecular weight. Appl Microbiol Biotechnol 2008; 78:677-83. [PMID: 18239917 DOI: 10.1007/s00253-008-1346-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 12/28/2007] [Accepted: 12/30/2007] [Indexed: 10/22/2022]
Abstract
Acinetobacter venetianus RAG-1 produces an extracellular protein/high-molecular-weight (HMW) polysaccharide complex termed emulsan. As an emulsion stabilizer, emulsan has potential industrial applications. To control the molecular weight of the polymer, a stable chromosomal mutant was generated where RAG-1 wza, wzb, wzc genes were replaced by Escherichia coli homologs. The heterologous Wza, Wzb, Wzc proteins restored production of HMW polysaccharide. The polymer produced was of higher molecular weight than from the parent strain and with the cells exhibiting modified hydrophobicity.
Collapse
|
15
|
Corbett D, Roberts IS. Capsular Polysaccharides in Escherichia coli. ADVANCES IN APPLIED MICROBIOLOGY 2008; 65:1-26. [DOI: 10.1016/s0065-2164(08)00601-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Dams-Kozlowska H, Kaplan DL. Protein engineering of wzc to generate new emulsan analogs. Appl Environ Microbiol 2007; 73:4020-8. [PMID: 17449706 PMCID: PMC1932745 DOI: 10.1128/aem.00401-07] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acinetobacter venetianus Rag1 produces an extracellular, polymeric lipoheteropolysaccharide termed apoemulsan. This polymer is putatively produced via a Wzy-dependent pathway. According to this model, the length of the polymer is regulated by polysaccharide-copolymerase (PCP) protein. A highly conserved proline and glycine motif was identified in all members of the PCP family of proteins and is involved in regulation of polymer chain length. In order to control the structure of apoemulsan, defined point mutations in the proline-glycine-rich region of the apoemulsan PCP protein (Wzc) were introduced. Modified wzc variants were introduced into the Rag1 genome via homologous recombination. Stable chromosomal mutants were confirmed by Southern blot analysis. The molecular weight of the polymer was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Five of the eight point mutants produced polymers having molecular weights higher than the molecular weight of the polymer produced by the wild type. Moreover, four of these five polymers had modified biological properties. Replacement of arginine by leucine (R418L) resulted in the most significant change in the molecular weight of the polymer. The R418L mutant was the most hydrophilic mutant, exhibiting decreased adherence to polystyrene, and inhibited biofilm formation. The results described in this report show the functional effect of Wzc modification on the molecular weight of a high-molecular-weight polysaccharide. Moreover, in the present study we developed a genetic system to control polymerization of apoemulsan. The use of selective exogenous fatty acid feeding strategies, as well as genetic manipulation of sugar backbone chain length, is a promising new approach for bioengineering emulsan analogs.
Collapse
Affiliation(s)
- Hanna Dams-Kozlowska
- Tufts University, Department of Biomedical Engineering, 4 Colby St., Rm. 153, Medford, MA 02155, USA
| | | |
Collapse
|
17
|
Steiner K, Novotny R, Patel K, Vinogradov E, Whitfield C, Valvano MA, Messner P, Schäffer C. Functional characterization of the initiation enzyme of S-layer glycoprotein glycan biosynthesis in Geobacillus stearothermophilus NRS 2004/3a. J Bacteriol 2007; 189:2590-8. [PMID: 17237178 PMCID: PMC1855796 DOI: 10.1128/jb.01592-06] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The glycan chain of the S-layer glycoprotein of Geobacillus stearothermophilus NRS 2004/3a is composed of repeating units [-->2)-alpha-l-Rhap-(1-->3)-beta-l-Rhap-(1-->2)-alpha-l-Rhap-(1-->], with a 2-O-methyl modification of the terminal trisaccharide at the nonreducing end of the glycan chain, a core saccharide composed of two or three alpha-l-rhamnose residues, and a beta-d-galactose residue as a linker to the S-layer protein. In this study, we report the biochemical characterization of WsaP of the S-layer glycosylation gene cluster as a UDP-Gal:phosphoryl-polyprenol Gal-1-phosphate transferase that primes the S-layer glycoprotein glycan biosynthesis of Geobacillus stearothermophilus NRS 2004/3a. Our results demonstrate that the enzyme transfers in vitro a galactose-1-phosphate from UDP-galactose to endogenous phosphoryl-polyprenol and that the C-terminal half of WsaP carries the galactosyltransferase function, as already observed for the UDP-Gal:phosphoryl-polyprenol Gal-1-phosphate transferase WbaP from Salmonella enterica. To confirm the function of the enzyme, we show that WsaP is capable of reconstituting polysaccharide biosynthesis in WbaP-deficient strains of Escherichia coli and Salmonella enterica serovar Typhimurium.
Collapse
Affiliation(s)
- Kerstin Steiner
- Zentrum für NanoBiotechnologie, Universität für Bodenkultur Wien, A-1180 Wien, Austria
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Capsules are protective structures on the surfaces of many bacteria. The remarkable structural diversity in capsular polysaccharides is illustrated by almost 80 capsular serotypes in Escherichia coli. Despite this variation, the range of strategies used for capsule biosynthesis and assembly is limited, and E. coli isolates provide critical prototypes for other bacterial species. Related pathways are also used for synthesis and export of other bacterial glycoconjugates and some enzymes/processes have counterparts in eukaryotes. In gram-negative bacteria, it is proposed that biosynthesis and translocation of capsular polysaccharides to the cell surface are temporally and spatially coupled by multiprotein complexes that span the cell envelope. These systems have an impact on both a general understanding of membrane trafficking in bacteria and on bacterial pathogenesis.
Collapse
Affiliation(s)
- Chris Whitfield
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
19
|
Wacker M, Feldman MF, Callewaert N, Kowarik M, Clarke BR, Pohl NL, Hernandez M, Vines ED, Valvano MA, Whitfield C, Aebi M. Substrate specificity of bacterial oligosaccharyltransferase suggests a common transfer mechanism for the bacterial and eukaryotic systems. Proc Natl Acad Sci U S A 2006; 103:7088-93. [PMID: 16641107 PMCID: PMC1459022 DOI: 10.1073/pnas.0509207103] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The PglB oligosaccharyltransferase (OTase) of Campylobacter jejuni can be functionally expressed in Escherichia coli, and its relaxed oligosaccharide substrate specificity allows the transfer of different glycans from the lipid carrier undecaprenyl pyrophosphate to an acceptor protein. To investigate the substrate specificity of PglB, we tested the transfer of a set of lipid-linked polysaccharides in E. coli and Salmonella enterica serovar Typhimurium. A hexose linked to the C-6 of the monosaccharide at the reducing end did not inhibit the transfer of the O antigen to the acceptor protein. However, PglB required an acetamido group at the C-2. A model for the mechanism of PglB involving this functional group was proposed. Previous experiments have shown that eukaryotic OTases have the same requirement, suggesting that eukaryotic and prokaryotic OTases catalyze the transfer of oligosaccharides by a conserved mechanism. Moreover, we demonstrated the functional transfer of the C. jejuni glycosylation system into S. enterica. The elucidation of the mechanism of action and the substrate specificity of PglB represents the foundation for engineering glycoproteins that will have an impact on biotechnology.
Collapse
Affiliation(s)
- Michael Wacker
- *Institute of Microbiology, Department of Biology, Swiss Federal Institute of Technology, CH-8093 Zurich, Switzerland
| | - Mario F. Feldman
- *Institute of Microbiology, Department of Biology, Swiss Federal Institute of Technology, CH-8093 Zurich, Switzerland
| | - Nico Callewaert
- *Institute of Microbiology, Department of Biology, Swiss Federal Institute of Technology, CH-8093 Zurich, Switzerland
| | - Michael Kowarik
- *Institute of Microbiology, Department of Biology, Swiss Federal Institute of Technology, CH-8093 Zurich, Switzerland
| | - Bradley R. Clarke
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Nicola L. Pohl
- **Department of Chemistry and Plant Sciences Institute, Gilman Hall, Iowa State University, Ames, IA 50011-3111; and
| | - Marcela Hernandez
- *Institute of Microbiology, Department of Biology, Swiss Federal Institute of Technology, CH-8093 Zurich, Switzerland
| | - Enrique D. Vines
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada N6A 5C1
| | - Miguel A. Valvano
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada N6A 5C1
| | - Chris Whitfield
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Markus Aebi
- *Institute of Microbiology, Department of Biology, Swiss Federal Institute of Technology, CH-8093 Zurich, Switzerland
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
20
|
Peleg A, Shifrin Y, Ilan O, Nadler-Yona C, Nov S, Koby S, Baruch K, Altuvia S, Elgrably-Weiss M, Abe CM, Knutton S, Saper MA, Rosenshine I. Identification of an Escherichia coli operon required for formation of the O-antigen capsule. J Bacteriol 2005; 187:5259-66. [PMID: 16030220 PMCID: PMC1196049 DOI: 10.1128/jb.187.15.5259-5266.2005] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli produces polysaccharide capsules that, based on their mechanisms of synthesis and assembly, have been classified into four groups. The group 4 capsule (G4C) polysaccharide is frequently identical to that of the cognate lipopolysaccharide O side chain and has, therefore, also been termed the O-antigen capsule. The genes involved in the assembly of the group 1, 2, and 3 capsules have been described, but those required for G4C assembly remained obscure. We found that enteropathogenic E. coli (EPEC) produces G4C, and we identified an operon containing seven genes, ymcD, ymcC, ymcB, ymcA, yccZ, etp, and etk, which are required for formation of the capsule. The encoded proteins appear to constitute a polysaccharide secretion system. The G4C operon is absent from the genomes of enteroaggregative E. coli and uropathogenic E. coli. E. coli K-12 contains the G4C operon but does not express it, because of the presence of IS1 at its promoter region. In contrast, EPEC, enterohemorrhagic E. coli, and Shigella species possess an intact G4C operon.
Collapse
Affiliation(s)
- Adi Peleg
- Department of Molecular Genetics and Biotechnology, Faculty of Medicine, The Hebrew University, POB 12272, Jerusalem 91120, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Reid AN, Whitfield C. functional analysis of conserved gene products involved in assembly of Escherichia coli capsules and exopolysaccharides: evidence for molecular recognition between Wza and Wzc for colanic acid biosynthesis. J Bacteriol 2005; 187:5470-81. [PMID: 16030241 PMCID: PMC1196018 DOI: 10.1128/jb.187.15.5470-5481.2005] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Group 1 capsular polysaccharides (CPSs) of Escherichia coli and some loosely cell-associated exopolysaccharides (EPSs), such as colanic acid, are assembled by a Wzy-dependent polymerization system. In this biosynthesis pathway, Wza, Wzb, and Wzc homologues are required for surface expression of wild-type CPS or EPS. Multimeric complexes of Wza in the outer membrane are believed to provide a channel for polymer export; Wzc is an inner membrane tyrosine autokinase and Wzb is its cognate phosphatase. This study was performed to determine whether the Wza, Wzb, and Wzc proteins for colanic acid expression in E. coli K-12 could function in the E. coli K30 prototype group 1 capsule system. When expressed together, colanic acid Wza, Wzb, and Wzc could complement a wza-wzb-wzc defect in E. coli K30, suggesting conservation in their collective function in Wzy-dependent CPS and EPS systems. Expressed individually, colanic acid Wza and Wzb could also function in K30 CPS expression. In contrast, the structural requirements for Wzc function were more stringent because colanic acid Wzc could restore translocation of K30 CPS to the cell surface only when expressed with its cognate Wza protein. Chimeric colanic acid-K30 Wzc proteins were constructed to further study this interaction. These proteins could restore K30 biosynthesis but were unable to couple synthesis to export. The chimeric protein comprising the periplasmic domain of colanic acid Wzc was functional for effective K30 CPS surface expression only when coexpressed with colanic acid Wza. These data highlight the importance of Wza-Wzc interactions in group 1 CPS assembly.
Collapse
Affiliation(s)
- Anne N Reid
- Department of Molecular and Cellular Biology, New Science Complex, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | |
Collapse
|
22
|
Feodorova VA, Golova AB. Antigenic and phenotypic modifications of Yersinia pestis under calcium and glucose concentrations simulating the mammalian bloodstream environment. J Med Microbiol 2005; 54:435-441. [PMID: 15824419 DOI: 10.1099/jmm.0.45932-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To study the possible mechanism of extracellular resistance to phagocytes developed byYersinia pestisin the early stage of plague infection, the behaviour of twoY. pestisstrains, the vaccine EV-76 and fully virulent 231 (LD50, 10 c.f.u.), was studied in-depth after cultivationin vitroat the host temperature in conditions simulating the bloodstream environment of mammals. For this, two standard basal media supplemented with calcium and glucose in appropriate concentrations were employed: Hottinger broth, routinely used for growth ofY. pestis in vitro, and RPMI 1640, simulating human extracellular fluid. Although both media permittedY. pestisto achieve the resistant state, RPMI enabled significantly higher bacterial proliferation and increased modifications in the production of the principal surface antigens that affect the relevant phenotype characteristics. In general, our results indicate that theY. pestisbacteria in the resistant state do not produce species-specific antigens, i.e. fraction 1 or F1, ‘murine’ toxin or Ymt, plasminogen activator (Pla) and any surface-specific polysaccharides, resulting in unmasking of the cross-reactive epitopes of lipid A in reducedY. pestislipopolysaccharide. This may produce mimicry byY. pestisof some human tissue and blood cell components, with no immune response and inflammation at the site of infection at the early stage, which enablesY. pestisto survive, extensively multiply and spread into the circulation.
Collapse
Affiliation(s)
- Valentina A Feodorova
- Laboratory of Hybridomas, Russia State Antiplague Research Institute 'Microbe', Saratov, Universitetskaya, 46, Saratov, 410005, Russia
| | - Alina B Golova
- Laboratory of Hybridomas, Russia State Antiplague Research Institute 'Microbe', Saratov, Universitetskaya, 46, Saratov, 410005, Russia
| |
Collapse
|
23
|
Whitfield C, Paiment A. Biosynthesis and assembly of Group 1 capsular polysaccharides in Escherichia coli and related extracellular polysaccharides in other bacteria. Carbohydr Res 2004; 338:2491-502. [PMID: 14670711 DOI: 10.1016/j.carres.2003.08.010] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Extracellular and capsular polysaccharides (EPSs and CPSs) are produced by a wide range of bacteria, including important pathogens of humans, livestock, and plants. These polymers are major surface antigens and serve a variety of roles in virulence, depending on the biology of the producing organism. In addition to their importance in disease, some EPSs also have industrial applications as gelling and emulsifying agents. An understanding of the processes involved in the synthesis and regulation of CPSs and EPSs therefore potentially contributes to an understanding of the disease state, surface expression of protective antigens, and modulation of polymer structure to give defined physical properties. Escherichia coli has provided important model systems for EPS and CPS biosynthesis. Here we describe current knowledge concerning assembly of the Group 1 CPSs of E. coli and the conservation of similar mechanisms in other bacteria.
Collapse
Affiliation(s)
- Chris Whitfield
- Department of Microbiology, University of Guelph, Guelph, Ontario, Canada N1G 2W1.
| | | |
Collapse
|
24
|
Rahn A, Beis K, Naismith JH, Whitfield C. A novel outer membrane protein, Wzi, is involved in surface assembly of the Escherichia coli K30 group 1 capsule. J Bacteriol 2003; 185:5882-90. [PMID: 13129961 PMCID: PMC193962 DOI: 10.1128/jb.185.19.5882-5890.2003] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli group 1 K antigens form a tightly associated capsule structure on the cell surface. Although the general features of the early steps in capsular polysaccharide biosynthesis have been described, little is known about the later stages that culminate in assembly of a capsular structure on the cell surface. Group 1 capsule biosynthesis gene clusters (cps) in E. coli and Klebsiella pneumoniae include a conserved open reading frame, wzi. The wzi gene is the first of a block of four conserved genes (wzi-wza-wzb-wzc) found in all group 1 K-antigen serotypes. Unlike wza, wzb, and wzc homologs that are found in gene clusters responsible for production of exopolysaccharides (i.e., predominantly cell-free polymer) in a range of bacteria, wzi is found only in systems that assemble capsular polysaccharides. The predicted Wzi protein shows no similarity to any other known proteins in the databases, but computer analysis of Wzi predicted a cleavable signal sequence. Wzi was expressed with a C-terminal hexahistidine tag, purified, and used for the production of specific antibodies that facilitated localization of Wzi to the outer membrane. Circular dichroism spectroscopy indicates that Wzi consists primarily of a beta-barrel structure, and dynamic light scattering studies established that the protein behaves as a monomer in solution. A nonpolar wzi chromosomal mutant retained a mucoid phenotype and remained sensitive to lysis by a K30-specific bacteriophage. However, the mutant showed a significant reduction in cell-bound polymer, with a corresponding increase in cell-free material. Furthermore, examination of the mutant by electron microscopy showed that it lacked a coherent capsule structure. It is proposed that the Wzi protein plays a late role in capsule assembly, perhaps in the process that links high-molecular-weight capsule to the cell surface.
Collapse
Affiliation(s)
- Andrea Rahn
- Department of Microbiology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | | | | | |
Collapse
|
25
|
Rahn A, Whitfield C. Transcriptional organization and regulation of the Escherichia coli K30 group 1 capsule biosynthesis (cps) gene cluster. Mol Microbiol 2003; 47:1045-60. [PMID: 12581358 DOI: 10.1046/j.1365-2958.2003.03354.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Escherichia coli group 1 capsules are important virulence determinants, yet little is known about the transcriptional organization or regulation of their biosynthetic (cps) operons. Transcription of the prototype serotype K30 cluster is modulated by the JUMPStart-RfaH antitermination mechanism, with the cps promoter being localized to a region immediately upstream of the JUMPStart sequence. A putative stem-loop structure located within the K30 cps cluster separates conserved genes with products that are required for surface expression of capsule from serotype-specific genes encoding enzymes for polymer repeat-unit synthesis and polymerization. This putative stem-loop structure significantly reduces transcription in a termination-probe vector and may contribute to differential expression of the cps genes. Previous work indicated that increased amounts of group 1 capsular polysaccharide synthesis resulted from the overexpression of the Rcs (regulator of capsule synthesis) proteins. However, neither overexpression of the transcriptional activator RcsB nor an rcsB::aadA chromosomal insertion altered the level of transcription measured by cps::lacZ fusions. In the group 1 strains examined, an RcsAB box was found immediately upstream of galF, a gene involved in the production of sugar nucleotide precursors. Overexpression of RcsB was found to result in a threefold increase in transcription of a galF::lacZ chromosomal fusion. Moreover, overexpression of GalF gave rise to a two- to threefold increase in cell-free as well as cell-associated capsule, without affecting cps::lacZ activity. These results indicate that transcription of the E. coli group 1 capsule cluster itself is not regulated by the Rcs system and may, in fact, be constitutive. However, the Rcs system can potentially influence levels of capsular polysaccharide production by increasing galF transcription and influencing the available pool of biosynthetic precursors.
Collapse
Affiliation(s)
- Andrea Rahn
- Department of Microbiology, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | | |
Collapse
|
26
|
Paiment A, Hocking J, Whitfield C. Impact of phosphorylation of specific residues in the tyrosine autokinase, Wzc, on its activity in assembly of group 1 capsules in Escherichia coli. J Bacteriol 2002; 184:6437-47. [PMID: 12426330 PMCID: PMC135428 DOI: 10.1128/jb.184.23.6437-6447.2002] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Wzc(CPS) is a tyrosine autokinase essential for the assembly of a high-molecular-weight (HMW) group 1 capsular polysaccharide (CPS) in Escherichia coli. Homologues of Wzc participate in the formation of CPS and exopolysaccharides in a variety of gram-positive and gram-negative bacteria. Phosphorylation of tyrosine residues in the Wzc(CPS) C terminus is essential for HMW CPS assembly. Overexpression of Wzb(CPS) (phosphatase) in a wild-type background caused a 3.7-fold decrease in the amount of cell-associated K30 CPS produced, confirming the importance of Wzc(CPS) phosphorylation for capsule assembly. In this study, the tyrosine-rich region was dissected in an attempt to identify residues critical for Wzc(CPS) phosphorylation and/or capsule expression. Site-directed mutagenesis demonstrated that no single tyrosine residue in this region is sufficient for detectable phosphorylation of Wzc(CPS) in vivo or for HMW CPS expression. Furthermore, no single tyrosine residue is essential for phosphorylation or capsule assembly, since removal of any one tyrosine residue has no detectable effect. Altering combinations of tyrosine residues (from two to five) led to Wzc(CPS) derivatives that were still competent for phosphorylation but that could not support assembly of HMW CPS, showing that phosphorylation of Wzc per se is not an accurate measure of its ability to function in capsule assembly. One interpretation of these data is that the overall level of phosphorylation in this region, rather than the precise combination of residues accessible to phosphorylation, is important for the activity of Wzc(CPS). Tyrosine 569, a residue shown to modulate the in vitro phosphorylation of Wzc(CA) from E. coli K-12, was also mutated. The derivative with this mutation still functioned in capsule assembly. Quantitation of K30(CPS) from this mutant revealed no difference in the amount of polymer produced. Finally, dithiobis(succinimidylpropionate) cross-linking was used to confirm that Wzc(CPS) forms complexes in vivo, independent of the phosphorylation state of the protein.
Collapse
Affiliation(s)
- Anne Paiment
- Department of Microbiology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | | | |
Collapse
|
27
|
Daniels C, Griffiths C, Cowles B, Lam JS. Pseudomonas aeruginosa O-antigen chain length is determined before ligation to lipid A core. Environ Microbiol 2002; 4:883-97. [PMID: 12534470 DOI: 10.1046/j.1462-2920.2002.00288.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen that infects immunocompromised patients and trauma victims and causes fatal lung infections in people with cystic fibrosis. This microorganism produces a number of virulence factors, one of which is lipopolysaccharide (LPS), which has been shown to mediate many biological effects including resistance to serum killing and phagocytosis. These biological activities have been correlated to the length of the O-polysaccharide and its distribution on the outer membrane. Wzz is responsible for regulation of the size distribution of the O-antigen. Wzz has been found to participate solely in the Wzy-dependent pathway for LPS biosynthesis, which produces heteropolymeric O-polysaccharide such as the B-band LPS of P. aeruginosa. Our laboratory has previously reported characterization of a Wzz protein encoded in the B-band O-antigen biosynthesis cluster of PAO1. The availability of the genome sequence of P. aeruginosa PAO1 has made it possible to identify a second functional Wzz protein (PA0938, Wzz2). Gene replacement was used to generate an unmarked wzz2delta knock-out and a wzz2delta/wzz1::Gm double knock-out. As expected, the wzz2delta strain produced LPS with modal length imparted by Wzz1, and the wzz2delta/wzz1::Gm strain produced LPS O-antigen with a non-modal (random) length. Both wzz1 and wzz2 from P. aeruginosa PAO1 were cloned and expressed with an N-terminal His6 tag. His6-Wzz1 and His6-Wzz2 were purified to near homogeneity by immobilized metal affinity chromatography (IMAC). These preparations were used to develop specific polyclonal antibodies against each of the proteins. In vivo protein cross-linking followed by Western immunoblotting indicated that Wzz1 forms dimers whereas Wzz2 forms octamers. By generation of a wzz2delta/rmlC double mutant and analysis of the LPS, we have made the novel observation that polymerization of modal chain length-distributed O-antigen occurred before ligation to the lipid A core. We have shown an association between the Wzz proteins and O-antigen polymer chains using immunoprecipitation with anti-O5 O-antigen monoclonal antibody MF15-4. Both Wzz1 and Wzz2 could be co-precipitated with O5 polymer.
Collapse
Affiliation(s)
- Craig Daniels
- Department of Microbiology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | | | | | |
Collapse
|
28
|
Genomic Structure of Capsular Determinants. Curr Top Microbiol Immunol 2002. [DOI: 10.1007/978-3-642-56031-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
|
30
|
Wugeditsch T, Paiment A, Hocking J, Drummelsmith J, Forrester C, Whitfield C. Phosphorylation of Wzc, a tyrosine autokinase, is essential for assembly of group 1 capsular polysaccharides in Escherichia coli. J Biol Chem 2001; 276:2361-71. [PMID: 11053445 DOI: 10.1074/jbc.m009092200] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Wzc proteins are tyrosine autokinases. They are found in some important bacterial pathogens of humans and livestock as well as plant-associated bacteria, and are often encoded within gene clusters determining synthesis and assembly of capsular and extracellular polysaccharides. Autophosphorylation of Wzc(cps) is essential for assembly of the serotype K30 group 1 capsule in Escherichia coli O9a:K30, although a genetically unlinked Wzc(cps)-homologue (Etk) can also participate with low efficiency. While autophosphorylation of Wzc(cps) is required for assembly of high molecular weight K30 capsular polysaccharide, it is not essential for either the synthesis of the K30 repeat units or for activity of the K30 polymerase enzyme. Paradoxically, the cognate phosphotyrosine protein phosphatase for Wzc(cps), Wzb(cps), is also required for capsule expression. The tyrosine-rich domain at the C terminus of Wzc(cps) was identified as the site of phosphorylation and autophosphorylation of Wzc requires a functional Walker A motif. Intermolecular transphosphorylation of Wzc(cps) was detected in strains expressing a combination of mutant Wzc(cps) derivatives. The N- and C-terminal domains of Wzc(cps) were expressed independently to mimic the situation found naturally in Gram-positive bacteria. In this format, both domains were required for phosphorylation of the Wzc(cps) C terminus, and for capsule assembly. Regulation by a post-translational phosphorylation event represents a new dimension in the assembly of bacterial cell-surface polysaccharides.
Collapse
Affiliation(s)
- T Wugeditsch
- Department of Microbiology, University of Guelph, Guelph, Ontario, N1G 2W1 Canada
| | | | | | | | | | | |
Collapse
|
31
|
Coimbra RS, Grimont F, Lenormand P, Burguière P, Beutin L, Grimont PA. Identification of Escherichia coli O-serogroups by restriction of the amplified O-antigen gene cluster (rfb-RFLP). Res Microbiol 2000; 151:639-54. [PMID: 11081579 DOI: 10.1016/s0923-2508(00)00134-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The precise serotyping of clinical Escherichia coli isolates is a crucial step for diagnostic and epidemiological purposes. Epidemiological knowledge associated with serotyping is so important that no alternative method may be considered if it does not correlate with serotyping. Unfortunately, E. coli are difficult to serotype. Genes specifically involved in O-antigen synthesis are clustered in E. coli, Shigella and Salmonella. Published oligonucleotide sequences complementary to JUMPstart and the gnd gene (the conserved flanking sequences upstream and downstream of O-antigen gene clusters, respectively) were used to amplify the O-antigen gene cluster of representative strains of 148 E. coli O-serogroups. A unique amplified fragment was observed for each serogroup (size ranging from 1.7 to 20 kbp). Clearly identifiable and reproducible O-patterns were obtained for the great majority of O-serogroups after MboII digestion of amplified products. The number of bands composing each pattern varied from five to 25. A database was built with the patterns obtained. A total of 147 O-patterns were obtained. Thirteen O-serogroups were subdivided into different O-patterns. However, each of 13 other O-patterns was shared by two or more O-serogroups. 0-serogroups of clinical isolates were deduced accurately from O-patterns in all cases, even for some rough or nonagglutinating isolates. The restriction method (rfb-RFLP) may prove to be better than serotyping since 100% of strains are typable, which is not the case with serotyping.
Collapse
Affiliation(s)
- R S Coimbra
- Unité des entérobactéries, Inserm 389, Institut Pasteur, Paris, France
| | | | | | | | | | | |
Collapse
|
32
|
Rodríguez-Herva JJ, Reniero D, Galli E, Ramos JL. Cell envelope mutants of Pseudomonas putida: physiological characterization and analysis of their ability to survive in soil. Environ Microbiol 1999; 1:479-88. [PMID: 11207769 DOI: 10.1046/j.1462-2920.1999.00058.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To generate mutants with altered lipopolysaccharides (LPS) of the wild-type Pseudomonas putida KT2442, we used the mini-Tn5luxAB-Km transposon. A mutant was found among luminescent colonies and selected as a negative clone in enzyme-linked immunosorbent assay (ELISA) with monoclonal antibody (mAb) 7.3B, which recognizes the O-antigen of P. putida LPS. The DNA region of the LPS mutant interrupted by the minitransposon insertion was cloned and sequenced. Comparison of the deduced amino acid sequence with protein sequence databases showed similarity to the O-antigen polymerase (Wzy) of Salmonella enterica (muenchen). The wild-type gene was rescued by polymerase chain reaction (PCR), cloned into a broad-host-range plasmid and used to carry out complementation assays. The cloned gene was able to restore the wild-type phenotype of the P. putida wzy mutant. We constructed an isogenic mutant of the luminescent wzy mutant to which an oprL mutation was transferred by homologous recombination with an oprL::xylE cassette. The wzy mutants of P. putida were more sensitive to SDS, deoxycholate and EDTA than the corresponding parental strains. We analysed the ability of wzy, oprL and wzy oprL mutants of P. putida to colonize soil. In comparison with the wild-type strain, the ability of single mutants to colonize soil decreased; this characteristic was more evident for the double mutant, especially at high temperatures.
Collapse
Affiliation(s)
- J J Rodríguez-Herva
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | | | | | | |
Collapse
|
33
|
Barr K, Klena J, Rick PD. The modality of enterobacterial common antigen polysaccharide chain lengths is regulated by o349 of the wec gene cluster of Escherichia coli K-12. J Bacteriol 1999; 181:6564-8. [PMID: 10515954 PMCID: PMC103799 DOI: 10.1128/jb.181.20.6564-6568.1999] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The assembly of the phosphoglyceride-linked form of enterobacterial common antigen (ECA(PG)) occurs by a mechanism that involves modulation of polysaccharide chain length. However, the genetic determinant of this modulation has not been identified. Site-directed mutagenesis of o349 of the Escherichia coli K-12 wec gene cluster revealed that this locus encodes a Wzz protein that specifically modulates the chain length of ECA(PG) polysaccharides, and we have designated this locus wzz(ECA). The Wzz(ECA)-mediated modulation of ECA(PG) polysaccharide chains is the first demonstrated example of Wzz regulation involving a polysaccharide that is not linked to the core-lipid A structure of lipopolysaccharide.
Collapse
Affiliation(s)
- K Barr
- Department of Microbiology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814-4799, USA
| | | | | |
Collapse
|
34
|
Rocchetta HL, Burrows LL, Lam JS. Genetics of O-antigen biosynthesis in Pseudomonas aeruginosa. Microbiol Mol Biol Rev 1999; 63:523-53. [PMID: 10477307 PMCID: PMC103745 DOI: 10.1128/mmbr.63.3.523-553.1999] [Citation(s) in RCA: 267] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pathogenic bacteria produce an elaborate assortment of extracellular and cell-associated bacterial products that enable colonization and establishment of infection within a host. Lipopolysaccharide (LPS) molecules are cell surface factors that are typically known for their protective role against serum-mediated lysis and their endotoxic properties. The most heterogeneous portion of LPS is the O antigen or O polysaccharide, and it is this region which confers serum resistance to the organism. Pseudomonas aeruginosa is capable of concomitantly synthesizing two types of LPS referred to as A band and B band. The A-band LPS contains a conserved O polysaccharide region composed of D-rhamnose (homopolymer), while the B-band O-antigen (heteropolymer) structure varies among the 20 O serotypes of P. aeruginosa. The genes coding for the enzymes that direct the synthesis of these two O antigens are organized into two separate clusters situated at different chromosomal locations. In this review, we summarize the organization of these two gene clusters to discuss how A-band and B-band O antigens are synthesized and assembled by dedicated enzymes. Examples of unique proteins required for both A-band and B-band O-antigen synthesis and for the synthesis of both LPS and alginate are discussed. The recent identification of additional genes within the P. aeruginosa genome that are homologous to those in the A-band and B-band gene clusters are intriguing since some are able to influence O-antigen synthesis. These studies demonstrate that P. aeruginosa represents a unique model system, allowing studies of heteropolymeric and homopolymeric O-antigen synthesis, as well as permitting an examination of the interrelationship of the synthesis of LPS molecules and other virulence determinants.
Collapse
Affiliation(s)
- H L Rocchetta
- Canadian Bacterial Diseases Network, Department of Microbiology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | | | |
Collapse
|
35
|
Rahn A, Drummelsmith J, Whitfield C. Conserved organization in the cps gene clusters for expression of Escherichia coli group 1 K antigens: relationship to the colanic acid biosynthesis locus and the cps genes from Klebsiella pneumoniae. J Bacteriol 1999; 181:2307-13. [PMID: 10094716 PMCID: PMC93651 DOI: 10.1128/jb.181.7.2307-2313.1999] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Group 1 capsules of Escherichia coli are similar to the capsules produced by strains of Klebsiella spp. in terms of structure, genetics, and patterns of expression. The striking similarities between the capsules of these organisms prompted a more detailed investigation of the cps loci encoding group 1 capsule synthesis. Six strains of K. pneumoniae and 12 strains of E. coli were examined. PCR analysis showed that the clusters in these strains are conserved in their chromosomal locations. A highly conserved block of four genes, orfX-wza-wzb-wzc, was identified in all of the strains. The wza and wzc genes are required for translocation and surface assembly of E. coli K30 antigen. The conservation of these genes points to a common pathway for capsule translocation. A characteristic JUMPstart sequence was identified upstream of each cluster which may function in conjunction with RfaH to inhibit transcriptional termination at a stem-loop structure found immediately downstream of the "translocation-surface assembly" region of the cluster. Interestingly, the sequence upstream of the cps clusters in five E. coli strains and one Klebsiella strain indicated the presence of IS elements. We propose that the IS elements were responsible for the transfer of the cps locus between organisms and that they may continue to mediate recombination between strains.
Collapse
Affiliation(s)
- A Rahn
- Department of Microbiology, The University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | | | |
Collapse
|
36
|
Drummelsmith J, Whitfield C. Gene products required for surface expression of the capsular form of the group 1 K antigen in Escherichia coli (O9a:K30). Mol Microbiol 1999; 31:1321-32. [PMID: 10200954 DOI: 10.1046/j.1365-2958.1999.01277.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The group 1 K30 antigen from Escherichia coli (O9a:K30) is present on the cell surface as both a capsular structure composed of high-molecular-weight K30 polysaccharide and as short K30 oligosaccharides linked to lipid A-core in a lipopolysaccharide molecule (K30LPS). To determine the molecular processes that are responsible for the two forms of K antigen, the 16 kb chromosomal cps region has been characterized. This region encodes 12 gene products required for the synthesis, polymerization and translocation of the K30 antigen. The gene products include four glycosyltransferases responsible for synthesis of the K30 repeat unit; a PST (1) exporter (Wzx), required to transfer lipid-linked K30 units across the plasma membrane to the periplasmic space; and a K30-antigen polymerase (Wzy). These gene products are typical of those seen in O-antigen biosynthesis gene clusters and they interact with the lipopolysaccharide translocation pathway to express K30LPS on the cell surface. The same gene products also provide the biosynthetic intermediates for the capsule assembly pathway, although they are not in themselves sufficient for synthesis of the K30 capsule. Three additional genes, wza, wzb and wzc, encode homologues to proteins that are encoded by gene clusters involved in expression of a variety of bacterial exopolysaccharides. Mutant analysis indicates that Wza and Wzc are required for wild-type surface expression of the capsular structure but are not essential for polymerization and play no role in the translocation of K30LPS. These surface expression components provide the key feature that distinguishes the assembly systems for O antigens and capsules.
Collapse
Affiliation(s)
- J Drummelsmith
- Department of Microbiology, University of Guelph, Ontario, Canada
| | | |
Collapse
|
37
|
Abstract
Many Escherichia coli strains are covered in a layer of surface-associated polysaccharide called the capsule. Capsular polysaccharides represent a major surface antigen, the K antigen, and more than 80 distinct K serotypes result from structural diversity in these polymers. However, not all capsules consist of K antigen. Some are due to production of an extensive layer of a polymer structurally identical to a lipopolysaccharide O antigen, but distinguished from lipopolysaccharide by the absence of terminal lipid A-core. Recent research has provided insight into the manner in which capsules are organized on the Gram-negative cell surface, the pathways used for their assembly, and the regulatory processes used to control their expression. A limited repertoire of capsule expression systems are available, despite the fact that the producing bacteria occupy a variety of ecological niches and possess diverse physiologies. All of the known capsule assembly systems seen in Gram-negative bacteria are represented in E. coli, as are the majority of the regulatory strategies. Escherichia coli therefore provides a variety of working models on which studies in other bacteria are (or can be) based. In this review, we present an overview of the current molecular and biochemical models for capsule expression in E. coli. By taking into account the organization of capsule gene clusters, details of the assembly pathway, and regulatory features that dictate capsule expression, we provide a new classification system that separates the known capsules of E. coli into four distinct groups.
Collapse
Affiliation(s)
- C Whitfield
- Department of Microbiology, University of Guelph, Ontario, Canada.
| | | |
Collapse
|
38
|
Amor PA, Yethon JA, Monteiro MA, Whitfield C. Assembly of the K40 antigen in Escherichia coli: identification of a novel enzyme responsible for addition of L-serine residues to the glycan backbone and its requirement for K40 polymerization. J Bacteriol 1999; 181:772-80. [PMID: 9922239 PMCID: PMC93442 DOI: 10.1128/jb.181.3.772-780.1999] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli O8:K40 coexpresses two distinct lipopolysaccharide (LPS) structures on its surface. The O8 polysaccharide is a mannose homopolymer with a trisaccharide repeat unit and is synthesized by an ABC-2 transport-dependent pathway. The K40LPS backbone structure is composed of a trisaccharide repeating unit of N-acetylglucosamine (GlcNAc) and glucuronic acid (GlcA) and has an uncommon substitution, an L-serine moiety attached to glucuronic acid. The gene cluster responsible for synthesis of the K40 polysaccharide has previously been cloned and sequenced and was found to contain six open reading frames (ORFs) (P. A. Amor and C. Whitfield, Mol. Microbiol. 26:145-161, 1997). Here, we demonstrate that insertional inactivation of orf1 results in the accumulation of a semirough (SR)-K40LPS form which retains reactivity with specific polyclonal serum in Western immunoblots. Structural and compositional analysis of the SR-K40LPS reveals that it comprises a single K40 repeat unit attached to lipid A core. The lack of polymerization of the K40 polysaccharide indicates that orf1 encodes the K40 polymerase (Wzy) and that assembly of the K40 polysaccharide occurs via a Wzy-dependent pathway (in contrast to that of the O8 polysaccharide). Inactivation of orf3 also results in the accumulation of an SR-LPS form which fails to react with specific polyclonal K40 serum in Western immunoblots. Methylation linkage analysis and fast atom bombardment-mass spectrometry of this SR-LPS reveals that the biological repeat unit of the K40 polysaccharide is GlcNAc-GlcA-GlcNAc. Additionally, this structure lacks the L-serine substitution of GlcA. These results show that (i) orf3 encodes the enzyme responsible for the addition of the L-serine residue to the K40 backbone and (ii) substitution of individual K40 repeats with L-serine is essential for their recognition and polymerization into the K40 polysaccharide by Wzy.
Collapse
Affiliation(s)
- P A Amor
- Department of Microbiology, University of Guelph, Guelph, Ontario N1G 2W1
| | | | | | | |
Collapse
|
39
|
Burrows LL, Lam JS. Effect of wzx (rfbX) mutations on A-band and B-band lipopolysaccharide biosynthesis in Pseudomonas aeruginosa O5. J Bacteriol 1999; 181:973-80. [PMID: 9922263 PMCID: PMC93466 DOI: 10.1128/jb.181.3.973-980.1999] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The wbp cluster of Pseudomonas aeruginosa O5 encodes a number of proteins involved in biosynthesis of the heteropolymeric and Wzy-dependent B-band O antigen, including Wzy, the O-antigen polymerase, and Wzz, the regulator of O-antigen chain length. A gene (formerly wbpF), contiguous with wzy in the wbp cluster, is predicted to encode a highly hydrophobic protein with multiple membrane-spanning domains. This secondary structure is consistent with that of Wzx (RfbX), the putative O-antigen unit translocase or "flippase." Insertion of a Gmr cassette at two separate sites within the putative wzx gene led in both cases to the loss of B-band lipopolysaccharide (LPS) O-antigen production. To our knowledge, this is the first report of the successful generation of chromosomal wzx gene replacement mutations. Surprisingly, inactivation of wzx also led to a marked delay in production of the ATP-binding cassette-transporter-dependent, D-rhamnose homopolymer, A-band LPS. This effect on A-band LPS synthesis was alleviated by supplying multiple copies of WbpL in trans. WbpL, a WecA (Rfe) homologue, was shown recently to be essential for the initiation of both A-band and B-band LPS synthesis in P. aeruginosa O5 (H. L. Rocchetta, L. L. Burrows, J. C. Pacan, and J. S. Lam, Mol. Microbiol. 28:1103-1119, 1998). These results suggest that the delay in A-band LPS production may arise from insufficient access to WbpL when the completed B-band O unit is not successfully translocated to the periplasm. Without adequate WbpL, A-band LPS synthesis is delayed. A subset of wzx mutants appeared to have accumulated second-site mutations which either restored the normal expression of A-band LPS or abolished A-band expression completely. Complementation studies showed that all of the additional mutations affecting LPS synthesis that were characterized in this study were located within the B-band LPS genes.
Collapse
Affiliation(s)
- L L Burrows
- Department of Microbiology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | |
Collapse
|
40
|
Abstract
This map is an update of the edition 9 map by Berlyn et al. (M. K. B. Berlyn, K. B. Low, and K. E. Rudd, p. 1715-1902, in F. C. Neidhardt et al., ed., Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed., vol. 2, 1996). It uses coordinates established by the completed sequence, expressed as 100 minutes for the entire circular map, and adds new genes discovered and established since 1996 and eliminates those shown to correspond to other known genes. The latter are included as synonyms. An alphabetical list of genes showing map location, synonyms, the protein or RNA product of the gene, phenotypes of mutants, and reference citations is provided. In addition to genes known to correspond to gene sequences, other genes, often older, that are described by phenotype and older mapping techniques and that have not been correlated with sequences are included.
Collapse
Affiliation(s)
- M K Berlyn
- Department of Biology and School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06520-8104, USA.
| |
Collapse
|
41
|
Rocchetta HL, Pacan JC, Lam JS. Synthesis of the A-band polysaccharide sugar D-rhamnose requires Rmd and WbpW: identification of multiple AlgA homologues, WbpW and ORF488, in Pseudomonas aeruginosa. Mol Microbiol 1998; 29:1419-34. [PMID: 9781879 DOI: 10.1046/j.1365-2958.1998.01024.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pseudomonas aeruginosa is capable of producing various cell-surface polysaccharides including alginate, A-band and B-band lipopolysaccharides (LPS). The D-mannuronic acid residues of alginate and the D-rhamnose (D-Rha) residues of A-band polysaccharide are both derived from the common sugar nucleotide precursor GDP-D-mannose (D-Man). Three genes, rmd, gmd and wbpW, which encode proteins involved in the synthesis of GDP-D-Rha, have been localized to the 5' end of the A-band gene cluster. In this study, WbpW was found to be homologous to phosphomannose isomerases (PMIs) and GDP-mannose pyrophosphorylases (GMPs) involved in GDP-D-Man biosynthesis. To confirm the enzymatic activity of WbpW, Escherichia coli PMI and GMP mutants deficient in the K30 capsule were complemented with wbpW, and restoration of K30 capsule production was observed. This indicates that WbpW, like AlgA, is a bifunctional enzyme that possesses both PMI and GMP activities for the synthesis of GDP-D-Man. No gene encoding a phosphomannose mutase (PMM) enzyme could be identified within the A-band gene cluster. This suggests that the PMM activity of AlgC may be essential for synthesis of the precursor pool of GDP-D-Man, which is converted to GDP-D-Rha for A-band synthesis. Gmd, a previously reported A-band enzyme, and Rmd are predicted to perform the two-step conversion of GDP-D-Man to GDP-D-Rha. Chromosomal mutants were generated in both rmd and wbpW. The Rmd mutants do not produce A-band LPS, while the WbpW mutants synthesize very low amounts of A band after 18 h of growth. The latter observation was thought to result from the presence of the functional homologue AlgA, which may compensate for the WbpW deficiency in these mutants. Thus, WbpW AlgA double mutants were constructed. These mutants also produced low levels of A-band LPS. A search of the PAO1 genome sequence identified a second AlgA homologue, designated ORF488, which may be responsible for the synthesis of GDP-D-Man in the absence of WbpW and AlgA. Polymerase chain reaction (PCR) amplification and sequence analysis of this region reveals three open reading frames (ORFs), orf477, orf488 and orf303, arranged as an operon. ORF477 is homologous to initiating enzymes that transfer glucose 1-phosphate onto undecaprenol phosphate (Und-P), while ORF303 is homologous to L-rhamnosyltransferases involved in polysaccharide assembly. Chromosomal mapping using pulsed field gel electrophoresis (PFGE) and Southern hybridization places orf477, orf488 and orf303 between 0.3 and 0.9 min on the 75 min map of PAO1, giving it a map location distinct from that of previously described polysaccharide genes. This region may represent a unique locus within P. aeruginosa responsible for the synthesis of another polysaccharide molecule.
Collapse
Affiliation(s)
- H L Rocchetta
- Department of Microbiology and Canadian Bacterial Diseases Network, University of Guelph, ON
| | | | | |
Collapse
|
42
|
Drummelsmith J, Amor PA, Whitfield C. Polymorphism, duplication, and IS1-mediated rearrangement in the chromosomal his-rfb-gnd region of Escherichia coli strains with group IA and capsular K antigens. J Bacteriol 1997; 179:3232-8. [PMID: 9150218 PMCID: PMC179101 DOI: 10.1128/jb.179.10.3232-3238.1997] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Individual Escherichia coli strains produce several cell surface polysaccharides. In E. coli E69, the his region of the chromosome contains the rfb (serotype O9 lipopolysaccharide O-antigen biosynthesis) and cps (serotype K30 group IA capsular polysaccharide biosynthesis) loci. Polymorphisms in this region of the Escherichia coli chromosome reflect extensive antigenic diversity in the species. Previously, we reported a duplication of the manC-manB genes, encoding enzymes involved in GDP-mannose formation, upstream of rfb in strain E69 (P. Jayaratne et al., J. Bacteriol. 176:3126-3139, 1994). Here we show that one of the manC-manB copies is flanked by IS1 elements, providing a potential mechanism for the gene duplication. Adjacent to manB1 on the IS1-flanked segment is a further open reading frame (ugd), encoding uridine-5'-diphosphoglucose dehydrogenase. The Ugd enzyme is responsible for the production of UDP-glucuronic acid, a precursor required for K30 antigen synthesis. Construction of a chromosomal ugd::Gm(r) insertion mutation demonstrated the essential role for Ugd in the biosynthesis of the K30 antigen and confirmed that there is no additional functional ugd copy in strain E69. PCR amplification and Southern hybridization were used to examine the distribution of IS1 elements and ugd genes in the vicinity of rfb in other E. coli strains, producing different group IA K antigens. The relative order of genes and, where present, IS1 elements was established in these strains. The regions adjacent to rfb in these strains are highly variable in both size and gene order, but in all cases where a ugd homolog was present, it was found near rfb. The presence of IS1 elements in the rfb regions of several of these strains provides a potential mechanism for recombination and deletion events which could contribute to the antigenic diversity seen in surface polysaccharides.
Collapse
Affiliation(s)
- J Drummelsmith
- Department of Microbiology, University of Guelph, Ontario, Canada
| | | | | |
Collapse
|
43
|
Burrows LL, Chow D, Lam JS. Pseudomonas aeruginosa B-band O-antigen chain length is modulated by Wzz (Ro1). J Bacteriol 1997; 179:1482-9. [PMID: 9045803 PMCID: PMC178856 DOI: 10.1128/jb.179.5.1482-1489.1997] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The wbp gene cluster, encoding the B-band lipopolysaccharide O antigen of Pseudomonas aeruginosa serotype O5 strain PAO1, was previously shown to contain a wzy (rfc) gene encoding the O-antigen polymerase. This study describes the molecular characterization of the corresponding wzz (rol) gene, responsible for modulating O-antigen chain length. P. aeruginosa O5 Wzz has 19 to 20% amino acid identity with Wzz of Escherichia coli, Salmonella enterica, and Shigella flexneri. Knockout mutations of the wzz gene in serotypes O5 and O16 (which has an O antigen structurally related to that of O5) yielded mutants expressing O antigens with a distribution of chain lengths differing markedly from that of the parent strains. Unlike enteric wzz mutants, the P. aeruginosa wzz mutants continued to display some chain length modulation. The P. aeruginosa O5 wzz gene complemented both O5 and O16 wzz mutants as well as an E. coli wzz mutant. Coexpression of E. coli and P. aeruginosa wzz genes in a rough strain of E. coli carrying the P. aeruginosa wbp cluster resulted in the expression of two populations of O-antigen chain lengths. Sequence analysis of the region upstream of wzz led to identification of the genes rpsA and himD, encoding 30S ribosomal subunit protein S1 and integration host factor, respectively. This finding places rpsA and himD adjacent to wzz and the wbp cluster at 37 min on the PAO1 chromosomal map and completes the delineation of the O5 serogroup-specific region of the wbp cluster.
Collapse
Affiliation(s)
- L L Burrows
- Department of Microbiology, University of Guelph, Ontario, Canada
| | | | | |
Collapse
|
44
|
Franco AV, Liu D, Reeves PR. A Wzz (Cld) protein determines the chain length of K lipopolysaccharide in Escherichia coli O8 and O9 strains. J Bacteriol 1996; 178:1903-7. [PMID: 8606163 PMCID: PMC177884 DOI: 10.1128/jb.178.7.1903-1907.1996] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The modal distribution of O-antigen chain length is determined by the Wzz (Cld/Rol) protein in those cases in which it has been studied. The system of O-antigen synthesis in Escherichia coli serotypes O8 and O9 is different from that reported for most other bacteria, and chain length distribution is thought not to be determined by a Wzz protein. We report the existence in E. coli O8 and O9 strains of wzz genes which are very similar to and have sequences within the range of variation of those which determine the chain length of typical O antigens. We also find that wzz genes previously identified by their effect on O-antigen chain length, when cloned and transferred to O8 and O9 strains, affect the chain length of a capsule-related form of LPS, K(LPS). We conclude that in at least some O8 and O9 strains there is a wzz gene which controls the chain length of K(LPS) but has no effect on the O8 or O9 antigen.
Collapse
Affiliation(s)
- A V Franco
- Department of Microbiology, University of Sydney, New South Wales, Australia
| | | | | |
Collapse
|