1
|
Li B, Gao W, Pan Y, Yao Y, Liu G. Progress in 1,3-propanediol biosynthesis. Front Bioeng Biotechnol 2024; 12:1507680. [PMID: 39677837 PMCID: PMC11637877 DOI: 10.3389/fbioe.2024.1507680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 11/15/2024] [Indexed: 12/17/2024] Open
Abstract
1,3-Propanediol (1,3-PDO) is one of the important organic chemical materials and is widely used in polyester synthesis, and it also shows great potential in medicine, cosmetics, resins, and biodegradable plastics. So far, 1,3-PDO mainly comes from chemical synthesis. However, the by-products and the side effects during chemical synthesis of 1,3-PDO bring about serious damage to the environment. In recent years, the biosynthetic pathway of 1,3-PDO has been elucidated in microorganisms. Under the action of glycerol dehydratase (GDHt) and propanediol oxidoreductase (PDOR), glycerol can be catalyzed to form 1,3-PDO through the reduction pathway. Compared to the chemical synthesis, the biosynthesis of 1,3-PDO is environmentally friendly but would face the problem of low production. To improve the yield, the native 1,3-PDO producing strains have been modified by genetic engineering, and the biosynthetic pathway has been reconstructed in the model microorganism, Escherichia coli. In this review, we summarize the research progress of the 1,3-PDO biosynthesis in microorganisms, and hopefully, it will provide reference for the renewable production of 1,3-PDO in industry.
Collapse
Affiliation(s)
- Boran Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wenyan Gao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yuanyuan Pan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yongpeng Yao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Gang Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Zhao J, Huang X, Li Q, Ren F, Hu H, Yuan J, Wang K, Hu Y, Huang J, Min X. DegS regulates the aerobic metabolism of Vibrio cholerae via the ArcA-isocitrate dehydrogenase pathway for growth and intestinal colonization. Front Cell Infect Microbiol 2024; 14:1482919. [PMID: 39554810 PMCID: PMC11564185 DOI: 10.3389/fcimb.2024.1482919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/14/2024] [Indexed: 11/19/2024] Open
Abstract
Aerobic respiration is the key driver of Vibrio cholerae proliferation and infection. Our previous transcriptome results suggested that degS knockout downregulates a few genes involved in NADH and ATP synthesis in the aerobic respiratory pathway. In this study, non-targeted metabolomics results showed that the differential metabolites affected by degS knockout were associated with aerobic respiration. Further results suggested that the key products of aerobic respiration, NADH and ATP, were reduced upon degS deletion and were not dependent on the classical σE pathway. The two-component system response factor aerobic respiration control A (ArcA) is involved in regulating NADH and ATP levels. qRT-PCR demonstrated that DegS negatively regulates the transcription of the arcA gene, which negatively regulates the expression of isocitrate dehydrogenase (ICDH), a key rate-limiting enzyme of the tricarboxylic acid cycle. NADH and ATP levels were partially restored with the knockout of the arcA gene in the ΔdegS strain, while levels were partially restored with overexpression of ICDH in the ΔdegS strain. In a growth experiment, compared to the ΔdegS strain, the growth rates of ΔdegSΔarcA and ΔdegS-overexpressed icdh strains (ΔdegS+icdh) were partially restored during the logarithmic growth period. Colonization of the intestines of suckling mice showed a significant reduction in the colonizing ability of the ΔdegS strain, similar colonizing ability of the ΔdegS::degS strain and the wild-type strain, and a partial recovery of the colonizing ability of the ΔdegS+icdh strain. Overall, these findings suggest that the DegS protease regulates the expression of ICDH through ArcA, thereby affecting the NADH and ATP levels of V. cholerae and its growth and intestinal colonization ability.
Collapse
Affiliation(s)
- Jiajun Zhao
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xiaoyu Huang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Qingqun Li
- Department of Laboratory Medicine, Kweichow Moutai Hospital, Zunyi, Guizhou, China
| | - Fangyu Ren
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Huaqin Hu
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jianbo Yuan
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Kaiying Wang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yuanqin Hu
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jian Huang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xun Min
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
3
|
Yang P, Liu W, Chen Y, Gong AD. Engineering the glyoxylate cycle for chemical bioproduction. Front Bioeng Biotechnol 2022; 10:1066651. [PMID: 36532595 PMCID: PMC9755347 DOI: 10.3389/fbioe.2022.1066651] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/17/2022] [Indexed: 07/24/2023] Open
Abstract
With growing concerns about environmental issues and sustainable economy, bioproduction of chemicals utilizing microbial cell factories provides an eco-friendly alternative to current petro-based processes. Creating high-performance strains (with high titer, yield, and productivity) through metabolic engineering strategies is critical for cost-competitive production. Commonly, it is inevitable to fine-tuning or rewire the endogenous or heterologous pathways in such processes. As an important pathway involved in the synthesis of many kinds of chemicals, the potential of the glyoxylate cycle in metabolic engineering has been studied extensively these years. Here, we review the metabolic regulation of the glyoxylate cycle and summarize recent achievements in microbial production of chemicals through tuning of the glyoxylate cycle, with a focus on studies implemented in model microorganisms. Also, future prospects for bioproduction of glyoxylate cycle-related chemicals are discussed.
Collapse
|
4
|
Price EE, Román-Rodríguez F, Boyd JM. Bacterial approaches to sensing and responding to respiration and respiration metabolites. Mol Microbiol 2021; 116:1009-1021. [PMID: 34387370 DOI: 10.1111/mmi.14795] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 11/29/2022]
Abstract
Bacterial respiration of diverse substrates is a primary contributor to the diversity of life. Respiration also drives alterations in the geosphere and tethers ecological nodes together. It provides organisms with a means to dissipate reductants and generate potential energy in the form of an electrochemical gradient. Mechanisms have evolved to sense flux through respiratory pathways and sense the altered concentrations of respiration substrates or byproducts. These genetic regulatory systems promote efficient utilization of respiration substrates, as well as fine tune metabolism to promote cellular fitness and negate the accumulation of toxic byproducts. Many bacteria can respire one or more chemicals, and these regulatory systems promote the prioritization of high energy metabolites. Herein we focus on regulatory paradigms and discuss systems that sense the concentrations of respiration substrates and flux through respiratory pathways. This is a broad field of study, and therefore we focus on key fundamental and recent developments and highlight specific systems that capture the diversity of sensing mechanisms.
Collapse
Affiliation(s)
- Erin E Price
- Department of Biochemistry & Microbiology, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Franklin Román-Rodríguez
- Department of Biochemistry & Microbiology, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Jeffrey M Boyd
- Department of Biochemistry & Microbiology, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| |
Collapse
|
5
|
Zhao L, Lu Y, Yang J, Fang Y, Zhu L, Ding Z, Wang C, Ma W, Hu X, Wang X. Expression regulation of multiple key genes to improve L-threonine in Escherichia coli. Microb Cell Fact 2020; 19:46. [PMID: 32093713 PMCID: PMC7041290 DOI: 10.1186/s12934-020-01312-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/18/2020] [Indexed: 11/28/2022] Open
Abstract
Background Escherichia coli is an important strain for l-threonine production. Genetic switch is a ubiquitous regulatory tool for gene expression in prokaryotic cells. To sense and regulate intracellular or extracellular chemicals, bacteria evolve a variety of transcription factors. The key enzymes required for l-threonine biosynthesis in E. coli are encoded by the thr operon. The thr operon could coordinate expression of these genes when l-threonine is in short supply in the cell. Results The thrL leader regulatory elements were applied to regulate the expression of genes iclR, arcA, cpxR, gadE, fadR and pykF, while the threonine-activating promoters PcysH, PcysJ and PcysD were applied to regulate the expression of gene aspC, resulting in the increase of l-threonine production in an l-threonine producing E. coli strain TWF001. Firstly, different parts of the regulator thrL were inserted in the iclR regulator region in TWF001, and the best resulting strain TWF063 produced 16.34 g l-threonine from 40 g glucose after 30 h cultivation. Secondly, the gene aspC following different threonine-activating promoters was inserted into the chromosome of TWF063, and the best resulting strain TWF066 produced 17.56 g l-threonine from 40 g glucose after 30 h cultivation. Thirdly, the effect of expression regulation of arcA, cpxR, gadE, pykF and fadR was individually investigated on l-threonine production in TWF001. Finally, using TWF066 as the starting strain, the expression of genes arcA, cpxR, gadE, pykF and fadR was regulated individually or in combination to obtain the best strain for l-threonine production. The resulting strain TWF083, in which the expression of seven genes (iclR, aspC, arcA, cpxR, gadE, pykF, fadR and aspC) was regulated, produced 18.76 g l-threonine from 30 g glucose, 26.50 g l-threonine from 40 g glucose, or 26.93 g l-threonine from 50 g glucose after 30 h cultivation. In 48 h fed-batch fermentation, TWF083 could produce 116.62 g/L l‐threonine with a yield of 0.486 g/g glucose and productivity of 2.43 g/L/h. Conclusion The genetic engineering through the expression regulation of key genes is a better strategy than simple deletion of these genes to improve l-threonine production in E. coli. This strategy has little effect on the intracellular metabolism in the early stage of the growth but could increase l-threonine biosynthesis in the late stage.
Collapse
Affiliation(s)
- Lei Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Ying Lu
- Nanjing Customs District P. R. China, Wuxi, 214122, China
| | - Jun Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Yu Fang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Lifei Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Zhixiang Ding
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Chenhui Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Wenjian Ma
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Xiaoqing Hu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China. .,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China. .,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
6
|
Correia DM, Sargo CR, Silva AJ, Santos ST, Giordano RC, Ferreira EC, Zangirolami TC, Ribeiro MPA, Rocha I. Mapping Salmonella typhimurium pathways using 13C metabolic flux analysis. Metab Eng 2019; 52:303-314. [PMID: 30529284 DOI: 10.1016/j.ymben.2018.11.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 11/26/2018] [Accepted: 11/28/2018] [Indexed: 12/20/2022]
Abstract
In the last years, Salmonella has been extensively studied not only due to its importance as a pathogen, but also as a host to produce pharmaceutical compounds. However, the full exploitation of Salmonella as a platform for bioproduct delivery has been hampered by the lack of information about its metabolism. Genome-scale metabolic models can be valuable tools to delineate metabolic engineering strategies as long as they closely represent the actual metabolism of the target organism. In the present study, a 13C-MFA approach was applied to map the fluxes at the central carbon pathways of S. typhimurium LT2 growing at glucose-limited chemostat cultures. The experiments were carried out in a 2L bioreactor, using defined medium enriched with 20% 13C-labeled glucose. Metabolic flux distributions in central carbon pathways of S. typhimurium LT2 were estimated using OpenFLUX2 based on the labeling pattern of biomass protein hydrolysates together with biomass composition. The results suggested that pentose phosphate is used to catabolize glucose, with minor fluxes through glycolysis. In silico simulations, using Optflux and pFBA as simulation method, allowed to study the performance of the genome-scale metabolic model. In general, the accuracy of in silico simulations was improved by the superimposition of estimated intracellular fluxes to the existing genome-scale metabolic model, showing a better fitting to the experimental extracellular fluxes, whereas the intracellular fluxes of pentose phosphate and anaplerotic reactions were poorly described.
Collapse
Affiliation(s)
- Daniela M Correia
- Graduate Program of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luís, Km 235, São Carlos, SP 13565-905, Brazil
| | - Cintia R Sargo
- Graduate Program of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luís, Km 235, São Carlos, SP 13565-905, Brazil
| | - Adilson J Silva
- Graduate Program of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luís, Km 235, São Carlos, SP 13565-905, Brazil
| | - Sophia T Santos
- CEB-Centre of Biological Engineering, University of Minho, Campus De Gualtar, Braga 4710-057, Portugal
| | - Roberto C Giordano
- Graduate Program of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luís, Km 235, São Carlos, SP 13565-905, Brazil
| | - Eugénio C Ferreira
- CEB-Centre of Biological Engineering, University of Minho, Campus De Gualtar, Braga 4710-057, Portugal
| | - Teresa C Zangirolami
- Graduate Program of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luís, Km 235, São Carlos, SP 13565-905, Brazil
| | - Marcelo P A Ribeiro
- Graduate Program of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luís, Km 235, São Carlos, SP 13565-905, Brazil
| | - Isabel Rocha
- CEB-Centre of Biological Engineering, University of Minho, Campus De Gualtar, Braga 4710-057, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-NOVA), Oeiras, Portugal.
| |
Collapse
|
7
|
Tan W, Jeong K, Pendru R, Puth S, Hong SH, Lee SE, Rhee JH. The cytochrome d oxidase complex regulated by fexA is an Achilles' heel in the in vivo survival of vibrio vulnificus. Emerg Microbes Infect 2019; 8:1406-1415. [PMID: 31544591 PMCID: PMC6764401 DOI: 10.1080/22221751.2019.1665972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/04/2019] [Indexed: 11/02/2022]
Abstract
Vibrio vulnificus is a halophilic estuarine bacterium causing severe opportunistic infections. To successfully establish an infection, V. vulnificus must adapt to redox fluctuations in vivo. In the present study, we show that deletion of V. vulnificus fexA gene caused hypersensitivity to acid and reactive oxygen species. The ΔfexA mutant exhibited severe in vivo survival defects. For deeper understanding the role of fexA gene on the successful V. vulnificus infection, we analyzed differentially expressed genes in ΔfexA mutant in comparison with wild type under aerobic, anaerobic or in vivo culture conditions by genome-scale DNA microarray analyses. Twenty-two genes were downregulated in the ΔfexA mutant under all three culture conditions. Among them, cydAB appeared to dominantly contribute to the defective phenotypes of the ΔfexA mutant. The fexA deletion induced compensatory point mutations in the cydAB promoter region over subcultures, suggesting essentiality. Those point mutations (PcydSMs) restored bacterial growth, motility, cytotoxicity ATP production and mouse lethality in the ΔfexA mutant. These results indicate that the cydAB operon, being regulated by FexA, plays a crucial role in V. vulnificus survival under redox-fluctuating in vivo conditions. The FexA-CydAB axis should serve an Achilles heel in the development of therapeutic regimens against V. vulnificus infection.
Collapse
Affiliation(s)
- Wenzhi Tan
- Clinical Vaccine R&D Center, Chonnam National University Medical School, Hwasun-gun, Republic of Korea
- Department of Microbiology, Chonnam National University Medical School, Hwasun-gun, Republic of Korea
- College of Biology, Hunan University, Changsha, People's People’s Republic of China
| | - Kwangjoon Jeong
- Clinical Vaccine R&D Center, Chonnam National University Medical School, Hwasun-gun, Republic of Korea
- Department of Microbiology, Chonnam National University Medical School, Hwasun-gun, Republic of Korea
- Vaxcell-Bio Therapeutics, Hwasun-gun, Republic of Korea
| | - Raghunath Pendru
- Clinical Vaccine R&D Center, Chonnam National University Medical School, Hwasun-gun, Republic of Korea
- Department of Microbiology, Chonnam National University Medical School, Hwasun-gun, Republic of Korea
| | - Sao Puth
- Clinical Vaccine R&D Center, Chonnam National University Medical School, Hwasun-gun, Republic of Korea
- Department of Microbiology, Chonnam National University Medical School, Hwasun-gun, Republic of Korea
- Combinatorial Tumor Immunotherapy Research Center, Chonnam National University, Hwasun-gun, Republic of Korea
| | - Seol Hee Hong
- Clinical Vaccine R&D Center, Chonnam National University Medical School, Hwasun-gun, Republic of Korea
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Shee Eun Lee
- Clinical Vaccine R&D Center, Chonnam National University Medical School, Hwasun-gun, Republic of Korea
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Joon Haeng Rhee
- Clinical Vaccine R&D Center, Chonnam National University Medical School, Hwasun-gun, Republic of Korea
- Department of Microbiology, Chonnam National University Medical School, Hwasun-gun, Republic of Korea
- Vaxcell-Bio Therapeutics, Hwasun-gun, Republic of Korea
- Combinatorial Tumor Immunotherapy Research Center, Chonnam National University, Hwasun-gun, Republic of Korea
| |
Collapse
|
8
|
Zhang L, Fan J, Feng G, Declerck S. The arbuscular mycorrhizal fungus Rhizophagus irregularis MUCL 43194 induces the gene expression of citrate synthase in the tricarboxylic acid cycle of the phosphate-solubilizing bacterium Rahnella aquatilis HX2. MYCORRHIZA 2019; 29:69-75. [PMID: 30368606 DOI: 10.1007/s00572-018-0871-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/19/2018] [Indexed: 06/08/2023]
Abstract
An increasing number of studies have demonstrated that arbuscular mycorrhizal fungi can cooperate with other soil microorganisms, e.g., bacteria, which develop near or on the surface of the extraradical hyphae where they perform multiple functions. However, the mechanisms involved in this privileged relationship are still poorly known. In the present study, we investigated how the arbuscular mycorrhizal fungus Rhizophagus irregularis MUCL 43194 influences the three pace-making enzymes (i.e., citrate synthase, isocitrate dehydrogenase, and α-oxoglutarate dehydrogenase) of the tricarboxylic acid (TCA) cycle in the phosphate-solubilizing bacterium Rahnella aquatilis HX2. The study was conducted under strict in vitro culture conditions and analysis made at the transcriptional level. Results showed that R. irregularis induced the expression of the gene-encoding citrate synthase (gltA), the pace-making enzyme involved in the first step of the TCA cycle, in R. aquatilis at all time points of observation (i.e., 1, 6, 12, 24, 48, and 72 h). The expression of the gene-encoding isocitrate dehydrogenase (icd) significantly decreased at 6, 12, 24, 48, and 72 h and the expression of the gene-encoding α-oxoglutarate dehydrogenase E1 component (kgdhc) significantly increased at 1, 6, and 48 h. The above results suggested that R. irregularis may influence the level of adenosine triphosphate production in R. aquatilis and thus the metabolism of the bacterium by stimulating the expression of gltA involved in the TCA cycle. Our results suggest a fine-tuned dialog between R. irregularis MUCL 43194 and R. aquatilis HX2 and emphasize the complexity of the interactions that might take place at the hyphal surface of arbuscular mycorrhizal fungi hosting communities of microbes.
Collapse
Affiliation(s)
- Lin Zhang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
- Earth and Life Institute, Applied microbiology, Mycology, Université catholique de Louvain, Croix du sud 2, bte L7.05.06, 1348, Louvain-la-Neuve, Belgium
| | - Jiequn Fan
- Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Gu Feng
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China.
| | - Stéphane Declerck
- Earth and Life Institute, Applied microbiology, Mycology, Université catholique de Louvain, Croix du sud 2, bte L7.05.06, 1348, Louvain-la-Neuve, Belgium
| |
Collapse
|
9
|
Chang P, Chen GS, Chu HY, Lu KW, Shen CR. Engineering efficient production of itaconic acid from diverse substrates in Escherichia coli. J Biotechnol 2017; 249:73-81. [DOI: 10.1016/j.jbiotec.2017.03.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/20/2017] [Accepted: 03/23/2017] [Indexed: 11/24/2022]
|
10
|
Liu M, Ding Y, Chen H, Zhao Z, Liu H, Xian M, Zhao G. Improving the production of acetyl-CoA-derived chemicals in Escherichia coli BL21(DE3) through iclR and arcA deletion. BMC Microbiol 2017; 17:10. [PMID: 28061812 PMCID: PMC5219675 DOI: 10.1186/s12866-016-0913-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/13/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Acetyl-CoA-derived chemicals are suitable for multiple applications in many industries. The bio-production of these chemicals has become imperative owing to the economic and environmental problems. However, acetate overflow is the major drawback for acetyl-CoA-derived chemicals production. Approaches for overcoming acetate overflow may be beneficial for the production of acetyl-CoA-derived chemicals. RESULTS In this study, a transcriptional regulator iclR was knocked out in E.coli BL21(DE3) to overcome acetate overflow and improve the chemicals production. Two important acetyl-CoA-derived chemicals, phloroglucinol (PG) and 3-hydroxypropionate (3HP) were used to evaluate it. It is revealed that knockout of iclR significantly increased expressions of aceBAK operon. The cell yields and glucose utilization efficiencies were higher than those of control strains. The acetate concentrations were decreased by more than 50% and the productions of PG and 3HP were increased more than twice in iclR mutants. The effects of iclR knockout on cell physiology, cell metabolism and production of acetyl-CoA-derived chemicals were similar to those of arcA knockout in our previous study. However, the arcA-iclR double mutants couldn't gain higher productions of PG and 3HP. The mechanisms are unclear and needed to be resolved in future. CONCLUSIONS Knockout of iclR significantly increased gene expression of aceBAK operon and concomitantly activated glyoxylate pathway. This genetic modification may be a good way to overcome acetate overflow, and improve the production of a wide range of acetyl-CoA-derived chemicals.
Collapse
Affiliation(s)
- Min Liu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Yamei Ding
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Hailin Chen
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhe Zhao
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huizhou Liu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Mo Xian
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
| | - Guang Zhao
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China. .,Randian Technology Company Limited, Tianjin, 300457, China.
| |
Collapse
|
11
|
Abstract
The tricarboxylic acid (TCA) cycle plays two essential roles in metabolism. First, under aerobic conditions the cycle is responsible for the total oxidation of acetyl-CoA that is derived mainly from the pyruvate produced by glycolysis. Second, TCA cycle intermediates are required in the biosynthesis of several amino acids. Although the TCA cycle has long been considered a "housekeeping" pathway in Escherichia coli and Salmonella enterica, the pathway is highly regulated at the transcriptional level. Much of this control is exerted in response to respiratory conditions. The TCA cycle gene-protein relationship and mutant phenotypes have been well studied, although a few loose ends remain. The realization that a "shadow" TCA cycle exists that proceeds through methylcitrate has cleared up prior ambiguities. The glyoxylate bypass has long been known to be essential for growth on carbon sources such as acetate or fatty acids because this pathway allowsnet conversion of acetyl-CoA to metabolic intermediates. Strains lacking this pathway fail to grow on these carbon sources, since acetate carbon entering the TCA cycle is quantitatively lost as CO2 resulting in the lack of a means to replenish the dicarboxylic acids consumed in amino acid biosynthesis. The TCA cycle gene-protein relationship and mutant phenotypes have been well studied, although the identity of the small molecule ligand that modulates transcriptional control of the glyoxylate cycle genes by binding to the IclR repressor remains unknown. The activity of the cycle is also exerted at the enzyme level by the reversible phosphorylation of the TCA cycle enzyme isocitrate dehydrogenase catalyzed by a specific kinase/phosphatase to allow isocitratelyase to compete for isocitrate and cleave this intermediate to glyoxylate and succinate.
Collapse
|
12
|
Abstract
How the architecture of DNA binding sites dictates the extent of repression of promoters is not well understood. Here, we addressed the importance of the number and information content of the three direct repeats (DRs) in the binding and repression of the icdA promoter by the phosphorylated form of the global Escherichia coli repressor ArcA (ArcA-P). We show that decreasing the information content of the two sites with the highest information (DR1 and DR2) eliminated ArcA binding to all three DRs and ArcA repression of icdA. Unexpectedly, we also found that DR3 occupancy functions principally in repression, since mutation of this low-information-content site both eliminated DNA binding to DR3 and significantly weakened icdA repression, despite the fact that binding to DR1 and DR2 was intact. In addition, increasing the information content of any one of the three DRs or addition of a fourth DR increased ArcA-dependent repression but perturbed signal-dependent regulation of repression. Thus, our data show that the information content and number of DR elements are critical architectural features for maintaining a balance between high-affinity binding and signal-dependent regulation of icdA promoter function in response to changes in ArcA-P levels. Optimization of such architectural features may be a common strategy to either dampen or enhance the sensitivity of DNA binding among the members of the large OmpR/PhoB family of regulators as well as other transcription factors. In Escherichia coli, the response regulator ArcA maintains homeostasis of redox carriers under O2-limiting conditions through a comprehensive repression of carbon oxidation pathways that require aerobic respiration to recycle redox carriers. Although a binding site architecture comprised of a variable number of sequence recognition elements has been identified within the promoter regions of ArcA-repressed operons, it is unclear how this variable architecture dictates transcriptional regulation. By dissecting the role of multiple sequence elements within the icdA promoter, we provide insight into the design principles that allow ArcA to repress transcription within diverse promoter contexts. Our data suggest that the arrangement of recognition elements is tailored to achieve sufficient repression of a given promoter while maintaining appropriate signal-dependent regulation of repression, providing insight into how diverse binding site architectures link changes in O2 with the fine-tuning of carbon oxidation pathway levels.
Collapse
|
13
|
Hong EJ, Park JS, Kim Y, Lee HS. Role of Corynebacterium glutamicum sprA encoding a serine protease in glxR-mediated global gene regulation. PLoS One 2014; 9:e93587. [PMID: 24691519 PMCID: PMC3972247 DOI: 10.1371/journal.pone.0093587] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 03/05/2014] [Indexed: 11/19/2022] Open
Abstract
The global regulator glxR of Corynebacterium glutamicum is involved in many cellular activities. Considering its role, the GlxR protein likely interacts with other proteins to obtain, maintain, and control its activity. To isolate proteins interacting with GlxR, we used a two-hybrid system with GlxR as the bait. Subsequently, the partner, a subtilisin-like serine protease, was isolated from a C. glutamicum genomic library. Unlike glxR, which showed constitutive expression, the expression of sprA, encoding a serine protease, was maximal in the log phase. Purified His6-SprA protein underwent self-proteolysis and proteolyzed purified GlxR. The proteolytic action of SprA on GlxR was not observed in the presence of cyclic adenosine monophosphate, which modulates GlxR activity. The C. glutamicum sprA deletion mutant (ΔsprA) and sprA-overexpressing (P180-sprA) strains showed reduced growth. The activity of isocitrate dehydrogenase (a tricarboxylic acid cycle enzyme) in these strains decreased to 30–50% of that in the wild-type strain. In the P180-sprA strain, proteins involved in diverse cellular functions such as energy and carbon metabolism (NCgl2809), nitrogen metabolism (NCgl0049), methylation reactions (NCgl0719), and peptidoglycan biosynthesis (NCgl1267), as well as stress, starvation, and survival (NCgl0938) were affected and showed decreased transcription. Taken together, these data suggest that SprA, as a serine protease, performs a novel regulatory role not only in glxR-mediated gene expression but also in other areas of cell physiology. In addition, the tight control of SprA and GlxR availability may indicate their importance in global gene regulation.
Collapse
Affiliation(s)
- Eun-Ji Hong
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro, Sejong-si, Korea
| | - Joon-Song Park
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro, Sejong-si, Korea
| | - Younhee Kim
- Department of Oriental Medicine, Semyung University, Checheon, Chungbuk, Korea
| | - Heung-Shick Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro, Sejong-si, Korea
- * E-mail:
| |
Collapse
|
14
|
Microaerobic conversion of glycerol to ethanol in Escherichia coli. Appl Environ Microbiol 2014; 80:3276-82. [PMID: 24584248 DOI: 10.1128/aem.03863-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glycerol has become a desirable feedstock for the production of fuels and chemicals due to its availability and low price, but many barriers to commercialization remain. Previous investigators have made significant improvements in the yield of ethanol from glycerol. We have developed a fermentation process for the efficient microaerobic conversion of glycerol to ethanol by Escherichia coli that presents solutions to several other barriers to commercialization: rate, titer, specific productivity, use of inducers, use of antibiotics, and safety. To increase the rate, titer, and specific productivity to commercially relevant levels, we constructed a plasmid that overexpressed glycerol uptake genes dhaKLM, gldA, and glpK, as well as the ethanol pathway gene adhE. To eliminate the cost of inducers and antibiotics from the fermentation, we used the adhE and icd promoters from E. coli in our plasmid, and we implemented glycerol addiction to retain the plasmid. To address the safety issue of off-gas flammability, we optimized the fermentation process with reduced-oxygen sparge gas to ensure that the off-gas remained nonflammable. These advances represent significant progress toward the commercialization of an E. coli-based glycerol-to-ethanol process.
Collapse
|
15
|
Carpenter C, Payne SM. Regulation of iron transport systems in Enterobacteriaceae in response to oxygen and iron availability. J Inorg Biochem 2014; 133:110-7. [PMID: 24485010 DOI: 10.1016/j.jinorgbio.2014.01.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 01/09/2014] [Accepted: 01/09/2014] [Indexed: 10/25/2022]
Abstract
Iron is an essential nutrient for most bacteria. Depending on the oxygen available in the surrounding environment, iron is found in two distinct forms: ferrous (Fe(II)) or ferric (Fe(III)). Bacteria utilize different transport systems for the uptake of the two different forms of iron. In oxic growth conditions, iron is found in its insoluble, ferric form, and in anoxic growth conditions iron is found in its soluble, ferrous form. Enterobacteriaceae have adapted to transporting the two forms of iron by utilizing the global, oxygen-sensing regulators, ArcA and Fnr to regulate iron transport genes in response to oxygen.
Collapse
Affiliation(s)
- Chandra Carpenter
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, United States
| | - Shelley M Payne
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, United States.
| |
Collapse
|
16
|
A role for EIIA Ntr in controlling fluxes in the central metabolism of E. coli K12. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2879-2889. [DOI: 10.1016/j.bbamcr.2013.07.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 07/04/2013] [Accepted: 07/15/2013] [Indexed: 11/21/2022]
|
17
|
Park DM, Akhtar MS, Ansari AZ, Landick R, Kiley PJ. The bacterial response regulator ArcA uses a diverse binding site architecture to regulate carbon oxidation globally. PLoS Genet 2013; 9:e1003839. [PMID: 24146625 PMCID: PMC3798270 DOI: 10.1371/journal.pgen.1003839] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 08/13/2013] [Indexed: 12/02/2022] Open
Abstract
Despite the importance of maintaining redox homeostasis for cellular viability, how cells control redox balance globally is poorly understood. Here we provide new mechanistic insight into how the balance between reduced and oxidized electron carriers is regulated at the level of gene expression by mapping the regulon of the response regulator ArcA from Escherichia coli, which responds to the quinone/quinol redox couple via its membrane-bound sensor kinase, ArcB. Our genome-wide analysis reveals that ArcA reprograms metabolism under anaerobic conditions such that carbon oxidation pathways that recycle redox carriers via respiration are transcriptionally repressed by ArcA. We propose that this strategy favors use of catabolic pathways that recycle redox carriers via fermentation akin to lactate production in mammalian cells. Unexpectedly, bioinformatic analysis of the sequences bound by ArcA in ChIP-seq revealed that most ArcA binding sites contain additional direct repeat elements beyond the two required for binding an ArcA dimer. DNase I footprinting assays suggest that non-canonical arrangements of cis-regulatory modules dictate both the length and concentration-sensitive occupancy of DNA sites. We propose that this plasticity in ArcA binding site architecture provides both an efficient means of encoding binding sites for ArcA, σ(70)-RNAP and perhaps other transcription factors within the same narrow sequence space and an effective mechanism for global control of carbon metabolism to maintain redox homeostasis.
Collapse
Affiliation(s)
- Dan M. Park
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Md. Sohail Akhtar
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Aseem Z. Ansari
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Bacteriology; University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Patricia J. Kiley
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
18
|
Waegeman H, Beauprez J, Moens H, Maertens J, De Mey M, Foulquié-Moreno MR, Heijnen JJ, Charlier D, Soetaert W. Effect of iclR and arcA knockouts on biomass formation and metabolic fluxes in Escherichia coli K12 and its implications on understanding the metabolism of Escherichia coli BL21 (DE3). BMC Microbiol 2011; 11:70. [PMID: 21481254 PMCID: PMC3094197 DOI: 10.1186/1471-2180-11-70] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 04/11/2011] [Indexed: 11/10/2022] Open
Abstract
Background Gene expression is regulated through a complex interplay of different transcription factors (TFs) which can enhance or inhibit gene transcription. ArcA is a global regulator that regulates genes involved in different metabolic pathways, while IclR as a local regulator, controls the transcription of the glyoxylate pathway genes of the aceBAK operon. This study investigates the physiological and metabolic consequences of arcA and iclR deletions on E. coli K12 MG1655 under glucose abundant and limiting conditions and compares the results with the metabolic characteristics of E. coli BL21 (DE3). Results The deletion of arcA and iclR results in an increase in the biomass yield both under glucose abundant and limiting conditions, approaching the maximum theoretical yield of 0.65 c-mole/c-mole glucose under glucose abundant conditions. This can be explained by the lower flux through several CO2 producing pathways in the E. coli K12 ΔarcAΔiclR double knockout strain. Due to iclR gene deletion, the glyoxylate pathway is activated resulting in a redirection of 30% of the isocitrate molecules directly to succinate and malate without CO2 production. Furthermore, a higher flux at the entrance of the TCA was noticed due to arcA gene deletion, resulting in a reduced production of acetate and less carbon loss. Under glucose limiting conditions the flux through the glyoxylate pathway is further increased in the ΔiclR knockout strain, but this effect was not observed in the double knockout strain. Also a striking correlation between the glyoxylate flux data and the isocitrate lyase activity was observed for almost all strains and under both growth conditions, illustrating the transcriptional control of this pathway. Finally, similar central metabolic fluxes were observed in E. coli K12 ΔarcA ΔiclR compared to the industrially relevant E. coli BL21 (DE3), especially with respect to the pentose pathway, the glyoxylate pathway, and the TCA fluxes. In addition, a comparison of the genome sequences of the two strains showed that BL21 possesses two mutations in the promoter region of iclR and rare codons are present in arcA implying a lower tRNA acceptance. Both phenomena presumably result in a reduced ArcA and IclR synthesis in BL21, which contributes to the similar physiology as observed in E. coli K12 ΔarcAΔiclR. Conclusions The deletion of arcA results in a decrease of repression on transcription of TCA cycle genes under glucose abundant conditions, without significantly affecting the glyoxylate pathway activity. IclR clearly represses transcription of glyoxylate pathway genes under glucose abundance, a condition in which Crp activation is absent. Under glucose limitation, Crp is responsible for the high glyoxylate flux, but IclR still represses transcription. Finally, in E. coli BL21 (DE3), ArcA and IclR are poorly expressed, explaining the similar fluxes observed compared to the ΔarcAΔiclR strain.
Collapse
Affiliation(s)
- Hendrik Waegeman
- Centre of Expertise-Industrial Biotechnology and Biocatalysis, Department of Biochemical and Microbial Technology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Evans MR, Fink RC, Vazquez-Torres A, Porwollik S, Jones-Carson J, McClelland M, Hassan HM. Analysis of the ArcA regulon in anaerobically grown Salmonella enterica sv. Typhimurium. BMC Microbiol 2011; 11:58. [PMID: 21418628 PMCID: PMC3075218 DOI: 10.1186/1471-2180-11-58] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 03/21/2011] [Indexed: 12/18/2022] Open
Abstract
Background Salmonella enterica serovar Typhimurium (S. Typhimurium) is a Gram-negative pathogen that must successfully adapt to the broad fluctuations in the concentration of dissolved dioxygen encountered in the host. In Escherichia coli, ArcA (Aerobic Respiratory Control) helps the cells to sense and respond to the presence of dioxygen. The global role of ArcA in E. coli is well characterized; however, little is known about its role in anaerobically grown S. Typhimurium. Results We compared the transcriptional profiles of the virulent wild-type (WT) strain (ATCC 14028s) and its isogenic arcA mutant grown under anaerobic conditions. We found that ArcA directly or indirectly regulates 392 genes (8.5% of the genome); of these, 138 genes are poorly characterized. Regulation by ArcA in S. Typhimurium is similar, but distinct from that in E. coli. Thus, genes/operons involved in core metabolic pathways (e.g., succinyl-CoA, fatty acid degradation, cytochrome oxidase complexes, flagellar biosynthesis, motility, and chemotaxis) were regulated similarly in the two organisms. However, genes/operons present in both organisms, but regulated differently by ArcA in S. Typhimurium included those coding for ethanolamine utilization, lactate transport and metabolism, and succinate dehydrogenases. Salmonella-specific genes/operons regulated by ArcA included those required for propanediol utilization, flagellar genes (mcpAC, cheV), Gifsy-1 prophage genes, and three SPI-3 genes (mgtBC, slsA, STM3784). In agreement with our microarray data, the arcA mutant was non-motile, lacked flagella, and was as virulent in mice as the WT. Additionally, we identified a set of 120 genes whose regulation was shared with the anaerobic redox regulator, Fnr. Conclusion(s) We have identified the ArcA regulon in anaerobically grown S. Typhimurium. Our results demonstrated that in S. Typhimurium, ArcA serves as a transcriptional regulator coordinating cellular metabolism, flagella biosynthesis, and motility. Furthermore, ArcA and Fnr share in the regulation of 120 S. Typhimurium genes.
Collapse
Affiliation(s)
- Matthew R Evans
- Department of Microbiology, North Carolina State University, Raleigh, North Carolina 27695-7615, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Batinic-Haberle I, Benov LT. An SOD mimic protects NADP+-dependent isocitrate dehydrogenase against oxidative inactivation. Free Radic Res 2008; 42:618-24. [PMID: 18608518 DOI: 10.1080/10715760802209639] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The isocitrate dehydrogenases (ICDs) catalyse the oxidative decarboxylation of isocitrate to alpha-ketoglutarate and can use either NAD(+) or NADP(+) as a cofactor. Recent studies demonstrate that the NADP(+)-dependent isocitrate dehydrogenase, as a source of electrons for cellular antioxidants, is important for protection against oxidative damage. ICD, however, is susceptible to oxidative inactivation, which in turn compromises cellular antioxidant defense. This study investigates the effect of a superoxide dismutase (SOD) mimic, MnTM-2-PyP(5+), on the inactivation of NADP(+)-dependent ICD in SOD-deficient Escherichia coli and in diabetic rats. The findings show that E. coli ICD is inactivated by superoxide, but the inactivated enzyme is replaced by de novo protein synthesis. Statistically significant decrease of ICD activity was found in the hearts of diabetic rats. MnTM-2-PyP(5+) protected ICD in both models.
Collapse
Affiliation(s)
- Ines Batinic-Haberle
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
21
|
Gao H, Wang X, Yang ZK, Palzkill T, Zhou J. Probing regulon of ArcA in Shewanella oneidensis MR-1 by integrated genomic analyses. BMC Genomics 2008; 9:42. [PMID: 18221523 PMCID: PMC2262068 DOI: 10.1186/1471-2164-9-42] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Accepted: 01/25/2008] [Indexed: 01/02/2023] Open
Abstract
Background The Arc two-component system is a global regulator controlling many genes involved in aerobic/anaerobic respiration and fermentative metabolism in Escherichia coli. Shewanella oneidensis MR-1 contains a gene encoding a putative ArcA homolog with ~81% amino acid sequence identity to the E. coli ArcA protein but not a full-length arcB gene. Results To understand the role of ArcA in S. oneidensis, an arcA deletion strain was constructed and subjected to both physiological characterization and microarray analysis. Compared to the wild-type MR-1, the mutant exhibited impaired aerobic growth and a defect in utilizing DMSO in the absence of O2. Microarray analyses on cells grown aerobically and anaerobically on fumarate revealed that expression of 1009 genes was significantly affected (p < 0.05) by the mutation. In contrast to E. coli ArcA, the protein appears to be dispensable in regulation of the TCA cycle in S. oneidensis. To further determine genes regulated by the Arc system, an ArcA recognition weight matrix from DNA-binding data and bioinformatics analysis was generated and used to produce an ArcA sequence affinity map. By combining both techniques, we identified an ArcA regulon of at least 50 operons, of which only 6 were found to be directly controlled by ArcA in E. coli. Conclusion These results indicate that the Arc system in S. oneidensis differs from that in E. coli substantially in terms of its physiological function and regulon while their binding motif are strikingly similar.
Collapse
Affiliation(s)
- Haichun Gao
- Institute for Environmental Genomics and Department of Botany and Microbiology, University of Oklahoma, Norman, Oklahoma 73019, USA.
| | | | | | | | | |
Collapse
|
22
|
Physiology and genetic traits of reverse osmosis membrane biofilms: a case study with Pseudomonas aeruginosa. ISME JOURNAL 2007; 2:180-94. [PMID: 18049459 DOI: 10.1038/ismej.2007.108] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Biofilm formation of Pseudomonas aeruginosa on the surface of a reverse osmosis (RO) membrane was studied using a synthetic wastewater medium to simulate conditions relevant to reclamation of secondary wastewater effluent. P. aeruginosa biofilm physiology and spatial activity were analyzed following growth on the membrane using a short-life green fluorescent protein derivative expressed in a growth-dependent manner. As a consequence of the limiting carbon source prevailing in the suspended culture of the RO unit, a higher distribution of active cells was observed in the biofilm close to the membrane surface, likely due to the higher nutrient levels induced by concentration polarization effects. The faster growth of the RO-sessile cells compared to the planktonic cells in the RO unit was reflected by the transcriptome of the two cultures analyzed with DNA microarrays. In contrast to the findings recently reported in gene expression studies of P. aeruginosa biofilms, in the RO system, genes related to stress, adaptation, chemotaxis and resistance to antibacterial agents were induced in the planktonic cells. In agreement with the findings of previous P. aeruginosa biofilm studies, motility- and attachment-related genes were repressed in the RO P. aeruginosa biofilm. Supported by the microarray data, an increase in both motility and chemotaxis phenotypes was observed in the suspended cells. The increase in nutrient concentration in close proximity to the membrane is suggested to enhance biofouling by chemotaxis response of the suspended cells and their swimming toward the membrane surface.
Collapse
|
23
|
Flores N, Leal L, Sigala JC, de Anda R, Escalante A, Martínez A, Ramírez OT, Gosset G, Bolivar F. Growth recovery on glucose under aerobic conditions of an Escherichia coli strain carrying a phosphoenolpyruvate:carbohydrate phosphotransferase system deletion by inactivating arcA and overexpressing the genes coding for glucokinase and galactose permease. J Mol Microbiol Biotechnol 2007; 13:105-16. [PMID: 17693718 DOI: 10.1159/000103602] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
In Escherichia coli the phosphotransferase system (PTS) consumes one molecule of phosphoenolpyruvate (PEP) to phosphorylate each molecule of internalized glucose. PEP bioavailability into the aromatic pathway can be increased by inactivating the PTS. However, the lack of the PTS results in decreased glucose transport and growth rates. To overcome such drawbacks in a PTS(-) strain and reconstitute rapid growth on glucose phenotype (Glc(+)), the glk and galP genes were cloned into a plasmid and the arcA gene was inactivated. Simultaneous overexpression of glk and galP increased the growth rate and regenerated a Glc(+) phenotype. However, the highest growth rate was obtained when glk and galP were overexpressed in the arcA(-) background. These results indicated that the arcA mutation enhanced glycolytic and respiratory capacities of the engineered strain.
Collapse
Affiliation(s)
- Noemí Flores
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Tsiganova MO, Gelfand MS, Ravcheev DA. Regulation of bacterial respiration: Comparison of microarray and comparative genomics data. Mol Biol 2007. [DOI: 10.1134/s0026893307030168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Cho BK, Knight EM, Palsson BØ. Transcriptional regulation of the fad regulon genes of Escherichia coli by ArcA. MICROBIOLOGY-SGM 2006; 152:2207-2219. [PMID: 16849788 DOI: 10.1099/mic.0.28912-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
ArcA is a global transcription factor required for optimal growth of Escherichia coli during anaerobic growth. In this study, the role of ArcA on the transcriptional regulatory subnetwork of the fad regulon was investigated. Gene expression profiles of deletion mutants (Delta arcA, Delta fadR and Delta arcA/Delta fadR) indicated that (i) ArcA is a major transcription factor for the transcriptional regulation of fatty acid metabolism in the absence of oxygen, and (ii) ArcA and FadR cooperatively regulate the fad regulon under anaerobic conditions. To determine the direct interaction between ArcA and the promoters of the fad regulon genes, chromatin immunoprecipitation (ChIP) analysis was performed. ChIP analysis suggested that ArcA directly binds to the promoter regions of the fad regulon genes in vivo. An ArcA-binding motif was identified from known binding sequences and predicted putative binding sites in the promoter regions of the fad regulon genes. These results indicate that ArcA directly represses the expression of fad regulon genes during anaerobic growth.
Collapse
Affiliation(s)
- Byung-Kwan Cho
- Department of Bioengineering, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0412, USA
| | - Eric M Knight
- Department of Bioengineering, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0412, USA
| | - Bernhard Ø Palsson
- Department of Bioengineering, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0412, USA
| |
Collapse
|
26
|
Sánchez AM, Bennett GN, San KY. Batch culture characterization and metabolic flux analysis of succinate-producing Escherichia coli strains. Metab Eng 2006; 8:209-26. [PMID: 16434224 DOI: 10.1016/j.ymben.2005.11.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2005] [Revised: 11/15/2005] [Accepted: 11/22/2005] [Indexed: 11/28/2022]
Abstract
This study presents an in-depth analysis of the anaerobic metabolic fluxes of various mutant strains of Escherichia coli overexpressing the Lactococcus lactis pyruvate carboxylase (PYC) for the production of succinate. Previously, a metabolic network design that includes an active glyoxylate pathway implemented in vivo increased succinate yield from glucose in an E. coli mutant to 1.6 mol/mol under fully anaerobic conditions. The design consists of a dual succinate synthesis route, which diverts required quantities of NADH through the traditional fermentative pathway and maximizes the carbon converted to succinate by balancing the carbon flux through the fermentative pathway and the glyoxylate pathway (which has a lower NADH requirement). Mutant strains previously constructed during the development of high-yield succinate-producing strains were selected for further characterization to understand their metabolic response as a result of several genetic manipulations and to determine the significance of the fermentative and the glyoxylate pathways in the production of succinate. Measured fluxes obtained under batch cultivation conditions were used to estimate intracellular fluxes and identify critical branch point flux split ratios. The comparison of changes in branch point flux split ratios to the glyoxylate pathway and the fermentative pathway at the oxaloacetate (OAA) node as a result of different mutations revealed the sensitivity of succinate yield to these manipulations. The most favorable split ratio to obtain the highest succinate yield was the fractional partition of OAA to glyoxylate of 0.32 and 0.68 to the fermentative pathway obtained in strains SBS550MG (pHL413) and SBS990MG (pHL413). The succinate yields achieved in these two strains were 1.6 and 1.7 mol/mol, respectively. In addition, an active glyoxylate pathway in an ldhA, adhE, ack-pta mutant strain is shown to be responsible for the high succinate yields achieved anaerobically. Furthermore, in vitro activity measurements of seven crucial enzymes involved in the pathways studied and intracellular measurements of key intermediate metabolite pools provided additional insights on the physiological perturbations caused by these mutations. The characterization of these recombinant mutant strains in terms of flux distribution pattern, in vitro enzyme activity and intracellular metabolite pools provides useful information for the rational modification of metabolic fluxes to improve succinate production.
Collapse
Affiliation(s)
- Ailen M Sánchez
- Department of Bioengineering, Rice University, Houston, TX, USA
| | | | | |
Collapse
|
27
|
Cozzone AJ, El-Mansi M. Control of Isocitrate Dehydrogenase Catalytic Activity by Protein Phosphorylation in Escherichia coli. J Mol Microbiol Biotechnol 2006; 9:132-46. [PMID: 16415587 DOI: 10.1159/000089642] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
During aerobic growth of Escherichia coli on acetate as sole source of carbon and energy, the organism requires the operation of the glyoxylate bypass enzymes, namely isocitrate lyase (ICL) and the anaplerotic enzyme malate synthase (MS). Under these conditions, the glyoxylate bypass enzyme ICL is in direct competition with the Krebs cycle enzyme isocitrate dehydrogenase (ICDH) for their common substrate and although ICDH has a much higher affinity for isocitrate, flux of carbon through ICL is assured by virtue of high intracellular level of isocitrate and the reversible phosphorylation/inactivation of a large fraction of ICDH. Reversible inactivation is due to reversible phosphorylation catalysed by ICDH kinase/phosphatase, which harbours both catalytic activities on the same polypeptide. The catalytic activities of ICDH kinase/phosphatase constitute a moiety conserved cycle, require ATP and exhibit 'zero-order ultrasensitivity'. The structural gene encoding ICDH kinase/phosphatase (aceK) together with those encoding ICL (aceA) and MS (aceB) form an operon (aceBAK; otherwise known as the ace operon) the expression of which is intricately regulated at the transcriptional level by IclR, FadR, FruR and IHF. Although ICDH, an NADP(+)-dependent, non-allosteric dimer, can be phosphorylated at multiple sites, it is the phosphorylation of the Ser-113 residue that renders the enzyme catalytically inactive as it prevents isocitrate from binding to the active site, which is a consequence of the negative charge carried on phosphoserine 113 and the conformational change associated with it. The ICDH molecule readily undergo domain shifts and/or induced-fit conformational changes to accommodate the binding of ICDH kinase/phosphatase, the function of which has now been shown to be central to successful adaptation and growth of E. coli and related genera on acetate and fatty acids.
Collapse
Affiliation(s)
- Alain J Cozzone
- Institut de Biologie et Chimie des Protéines, Centre National de la Recherche Scientifique, Université de Lyon, Lyon, France
| | | |
Collapse
|
28
|
Stevenson DM, Weimer PJ. Expression of 17 genes in Clostridium thermocellum ATCC 27405 during fermentation of cellulose or cellobiose in continuous culture. Appl Environ Microbiol 2005; 71:4672-8. [PMID: 16085862 PMCID: PMC1183361 DOI: 10.1128/aem.71.8.4672-4678.2005] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clostridium thermocellum is a thermophilic, anaerobic, cellulolytic bacterium that produces ethanol and acetic acid as major fermentation end products. The effect of growth conditions on gene expression in C. thermocellum ATCC 27405 was studied using cells grown in continuous culture under cellobiose or cellulose limitation over a approximately 10-fold range of dilution rates (0.013 to 0.16 h(-1)). Fermentation product distribution displayed similar patterns in cellobiose- or cellulose-grown cultures, including substantial shifts in the proportion of ethanol and acetic acid with changes in growth rate. Expression of 17 genes involved or potentially involved in cellulose degradation, intracellular phosphorylation, catabolite repression, and fermentation end product formation was quantified by real-time PCR, with normalization to two calibrator genes (recA and the 16S rRNA gene) to determine relative expression. Thirteen genes displayed modest (fivefold or less) differences in expression with growth rate or substrate type: sdbA (cellulosomal scaffoldin-dockerin binding protein), cdp (cellodextrin phosphorylase), cbp (cellobiose phosphorylase), hydA (hydrogenase), ldh (lactate dehydrogenase), ack (acetate kinase), one putative type IV alcohol dehydrogenase, two putative cyclic AMP binding proteins, three putative Hpr-like proteins, and a putative Hpr serine kinase. By contrast, four genes displayed >10-fold-reduced levels of expression when grown on cellobiose at dilution rates of >0.05 h(-1): cipA (cellulosomal scaffolding protein), celS (exoglucanase), manA (mannanase), and a second type IV alcohol dehydrogenase. The data suggest that at least some cellulosomal components are transcriptionally regulated but that differences in expression with growth rate or among substrates do not directly account for observed changes in fermentation end product distribution.
Collapse
Affiliation(s)
- David M Stevenson
- Department of Bacteriology, University of Wisconsin--Madison, WI 53706, USA
| | | |
Collapse
|
29
|
Sánchez AM, Bennett GN, San KY. Novel pathway engineering design of the anaerobic central metabolic pathway in Escherichia coli to increase succinate yield and productivity. Metab Eng 2005; 7:229-39. [PMID: 15885621 DOI: 10.1016/j.ymben.2005.03.001] [Citation(s) in RCA: 178] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2004] [Revised: 02/04/2005] [Accepted: 03/07/2005] [Indexed: 10/25/2022]
Abstract
A novel in vivo method of producing succinate has been developed. A genetically engineered Escherichia coli strain has been constructed to meet the NADH requirement and carbon demand to produce high quantities and yield of succinate by strategically implementing metabolic pathway alterations. Currently, the maximum theoretical succinate yield under strictly anaerobic conditions through the fermentative succinate biosynthesis pathway is limited to one mole per mole of glucose due to NADH limitation. The implemented strategic design involves the construction of a dual succinate synthesis route, which diverts required quantities of NADH through the traditional fermentative pathway and maximizes the carbon converted to succinate by balancing the carbon flux through the fermentative pathway and the glyoxylate pathway (which has less NADH requirement). The synthesis of succinate uses a combination of the two pathways to balance the NADH. Consequently, experimental results indicated that these combined pathways gave the most efficient conversion of glucose to succinate with the highest yield using only 1.25 moles of NADH per mole of succinate in contrast to the sole fermentative pathway, which uses 2 moles of NADH per mole of succinate. A recombinant E. coli strain, SBS550MG, was created by deactivating adhE, ldhA and ack-pta from the central metabolic pathway and by activating the glyoxylate pathway through the inactivation of iclR, which encodes a transcriptional repressor protein of the glyoxylate bypass. The inactivation of these genes in SBS550MG increased the succinate yield from glucose to about 1.6 mol/mol with an average anaerobic productivity rate of 10 mM/h (approximately 0.64 mM/h-OD600). This strain is capable of fermenting high concentrations of glucose in less than 24 h. Additional derepression of the glyxoylate pathway by inactivation of arcA, leading to a strain designated as SBS660MG, did not significantly increase the succinate yield and it decreased glucose consumption by 80%. It was also observed that an adhE, ldhA and ack-pta mutant designated as SBS990MG, was able to achieve a high succinate yield similar to SBS550MG when expressing a Bacillus subtilis NADH-insensitive citrate synthase from a plasmid.
Collapse
Affiliation(s)
- Ailen M Sánchez
- Department of Bioengineering, Rice University, 6100 Main St., Houston, TX 77005, USA
| | | | | |
Collapse
|
30
|
Ogasawara H, Teramoto J, Yamamoto S, Hirao K, Yamamoto K, Ishihama A, Utsumi R. Negative regulation of DNA repair gene (uvrA) expression by ArcA/ArcB two-component system inEscherichia coli. FEMS Microbiol Lett 2005; 251:243-9. [PMID: 16140472 DOI: 10.1016/j.femsle.2005.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2005] [Revised: 07/25/2005] [Accepted: 08/05/2005] [Indexed: 11/18/2022] Open
Abstract
The ArcA/ArcB two-component signal transduction system of Escherichia coli regulates gene expression in response to the redox conditions of growth. In this study, uvrA gene expression was repressed when ArcA was induced in E. coli. Transcription of uvrA increased in DeltaarcA and DeltaarcB strains more than in the wild-type strain, whose trend was remarkable under the anaerobic condition. In the wild-type strain grown in the presence of DTT (10 mM), the uvrA gene expression was also repressed. Furthermore, the results of in vitro transcription and DNase I footprinting experiments indicated that ArcA specifically bound to the ArcA box [(A/T)GTTAATTA(A/T)] in the uvrA promoter and represses its transcription. These results suggest that the ArcA/ArcB two-component system works to negatively regulate uvrA gene expression.
Collapse
Affiliation(s)
- Hiroshi Ogasawara
- Department of Bioscience and Biotechnology, Graduate School of Agriculture, Kinki University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | | | | | | | | | | | | |
Collapse
|
31
|
Gadgil M, Kapur V, Hu WS. Transcriptional response of Escherichia coli to temperature shift. Biotechnol Prog 2005; 21:689-99. [PMID: 15932244 DOI: 10.1021/bp049630l] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Temperature shift is often practiced in the cultivation of Escherichia coli to reduce undesired metabolite formation and to maximize synthesis of correctly folded heterologous protein. As the culture temperature is decreased below the optimal 37 degrees C, growth rate decreases and many physiological changes occur. In this study, we investigated the gene expression dynamics of E. coli on switching its cultivation temperature from 37 to 33 and 28 degrees C using whole genome DNA microarrays. Approximately 9% of the genome altered expression level on temperature shift. Overall, the alteration of transcription upon the downshift of temperature is rapid and globally distributed over a wide range of gene classes. The general trends of transcriptional changes at 28 and 33 degrees C were similar. The largest functional class among the differentially expressed genes was energy metabolism. About 12% of genes in energy metabolism show a decrease in their level of expression, and approximately 6% show an increase. Consistent with the decrease in the glucose uptake rate, many genes involved in glycolysis and the PTS sugar transport systems show decreased expression. Genes encoding enzymes related to amino acid biosynthesis and transport also have reduced expression levels. Such decrease in expression probably reflects the reduced growth rate and the accompanying reduction in energy and amino acid demand at lower temperatures. However, nearly all genes encoding enzymes in the TCA cycle have increased expression levels, which may well be compensating the reduction of the activity of TCA cycle enzymes at lower temperatures. Temperature shift also results in shift of the cytochromes from the high affinity cytochrome o system to the low affinity cytochrome d system. There is no evidence that protein processing genes are selectively altered to create favorable conditions for heterologous protein synthesis. Our results indicate that the beneficial effect of temperature shift in many biotechnological processes is likely to be attributed to the general effect of reduced growth and metabolism.
Collapse
Affiliation(s)
- Mugdha Gadgil
- Department of Chemical Engineering and Materials Science, Biomedical Genomics Center, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455-0132, USA
| | | | | |
Collapse
|
32
|
Shalel-Levanon S, San KY, Bennett GN. Effect of oxygen, and ArcA and FNR regulators on the expression of genes related to the electron transfer chain and the TCA cycle in Escherichia coli. Metab Eng 2005; 7:364-74. [PMID: 16140031 DOI: 10.1016/j.ymben.2005.07.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2005] [Revised: 05/24/2005] [Accepted: 07/05/2005] [Indexed: 10/25/2022]
Abstract
Microbial cells possess numerous sensing/regulator systems in order to respond rapidly to environmental changes. Escherichia coli has several elaborate sensing mechanisms for response to the availability of oxygen and the presence of other electron acceptors. A group of global regulators, which include the one component Fnr protein and the two-component Arc system, coordinate the adaptive responses. To quantitate the contribution of Arc and FNR-dependent regulation under microaerobic conditions, the gene expression pattern of the electron transfer chain genes and the TCA cycle genes in wild-type E. coli, an arcA mutant, an fnr mutant, and a double arcA, fnr mutant, in glucose limited cultures and different oxygen concentrations was studied in chemostat cultures at steady state using QRT-PCR. It was found that the TCA cycle genes, icd, gltA, sucC, and sdhC are repressed by ArcA while Fnr has a minor or no effect on the expression of these genes under microaerobic conditions. The expression levels of the electron transfer chain genes, nuoA, ndh, and ubiE, were not significantly affected by either ArcA or Fnr regulation proteins, while a lower expression of cydA (up to 9-fold lower) and a higher expression of cyoA (up to 31-fold higher) were observed in cultures of the arcA mutant strain compared to those of the wild type. Since significantly higher NADH/NAD+ ratios were previously observed in cultures of the arcA mutant strain compared to the wild type it seems that the cytochrome o oxidase (the product of cyoABCDE) cannot efficiently support aerobic respiration when the cells are grown under microaerobic conditions.
Collapse
Affiliation(s)
- Sagit Shalel-Levanon
- Department of Biochemistry and Cell Biology, Rice University, MS 140, 6100 Main Street, Houston, TX 77005-1892, USA
| | | | | |
Collapse
|
33
|
Cox SJ, Shalel Levanon S, Bennett GN, San KY. Genetically constrained metabolic flux analysis. Metab Eng 2005; 7:445-56. [PMID: 16143552 DOI: 10.1016/j.ymben.2005.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Accepted: 07/22/2005] [Indexed: 11/25/2022]
Abstract
Significant progress has been made in using existing metabolic databases to estimate metabolic fluxes. Traditional metabolic flux analysis generally starts with a predetermined metabolic network. This approach has been employed successfully to analyze the behaviors of recombinant strains by manually adding or removing the corresponding pathway(s) in the metabolic map. The current work focuses on the development of a new framework that utilizes genomic and metabolic databases, including available genetic/regulatory network structures and gene chip expression data, to constrain metabolic flux analysis. The genetic network consisting of the sensing/regulatory circuits will activate or deactivate a specific set of genes in response to external stimulus. The activation and/or repression of this set of genes will result in different gene expression levels that will in turn change the structure of the metabolic map. Hence, the metabolic map will automatically "adapt" to the external stimulus as captured by the genetic network. This adaptation selects a subnetwork from the pool of feasible reactions and so performs what we term "environmentally driven dimensional reduction." The Escherichia coli oxygen and redox sensing/regulatory system, which controls the metabolic patterns connected to glycolysis and the TCA cycle, was used as a model system to illustrate the proposed approach.
Collapse
Affiliation(s)
- Steven J Cox
- Department of Computational and Applied Mathematics, Rice University, Houston, TX 77005, USA
| | | | | | | |
Collapse
|
34
|
Perrenoud A, Sauer U. Impact of global transcriptional regulation by ArcA, ArcB, Cra, Crp, Cya, Fnr, and Mlc on glucose catabolism in Escherichia coli. J Bacteriol 2005; 187:3171-9. [PMID: 15838044 PMCID: PMC1082841 DOI: 10.1128/jb.187.9.3171-3179.2005] [Citation(s) in RCA: 218] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2004] [Accepted: 01/21/2005] [Indexed: 01/01/2023] Open
Abstract
Even though transcriptional regulation plays a key role in establishing the metabolic network, the extent to which it actually controls the in vivo distribution of metabolic fluxes through different pathways is essentially unknown. Based on metabolism-wide quantification of intracellular fluxes, we systematically elucidated the relevance of global transcriptional regulation by ArcA, ArcB, Cra, Crp, Cya, Fnr, and Mlc for aerobic glucose catabolism in batch cultures of Escherichia coli. Knockouts of ArcB, Cra, Fnr, and Mlc were phenotypically silent, while deletion of the catabolite repression regulators Crp and Cya resulted in a pronounced slow-growth phenotype but had only a nonspecific effect on the actual flux distribution. Knockout of ArcA-dependent redox regulation, however, increased the aerobic tricarboxylic acid (TCA) cycle activity by over 60%. Like aerobic conditions, anaerobic derepression of TCA cycle enzymes in an ArcA mutant significantly increased the in vivo TCA flux when nitrate was present as an electron acceptor. The in vivo and in vitro data demonstrate that ArcA-dependent transcriptional regulation directly or indirectly controls TCA cycle flux in both aerobic and anaerobic glucose batch cultures of E. coli. This control goes well beyond the previously known ArcA-dependent regulation of the TCA cycle during microaerobiosis.
Collapse
Affiliation(s)
- Annik Perrenoud
- Institute of Biotechnology, ETH Zürich, CH-8093 Zürich, Switzerland
| | | |
Collapse
|
35
|
Flores N, Flores S, Escalante A, de Anda R, Leal L, Malpica R, Georgellis D, Gosset G, Bolívar F. Adaptation for fast growth on glucose by differential expression of central carbon metabolism and gal regulon genes in an Escherichia coli strain lacking the phosphoenolpyruvate:carbohydrate phosphotransferase system. Metab Eng 2005; 7:70-87. [PMID: 15781417 DOI: 10.1016/j.ymben.2004.10.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2004] [Accepted: 10/05/2004] [Indexed: 11/18/2022]
Abstract
Phosphoenolpyruvate (PEP) is a key intermediate of cellular metabolism and a precursor of commercially relevant products. In Escherichia coli 50% of the glucose-derived PEP is consumed by the PEP:carbohydrate phosphotransferase system (PTS) for glucose transport. PTS, encoded by the ptsHIcrr operon, was deleted from JM101 to generate strain PB11 (PTS-Glc-). PB12, a mutant derived from PB11, grows faster than the parental strain on glucose (PTS-Glc+ phenotype). This strain can redirect some of the PEP not utilized by PTS into the high yield synthesis of aromatic compounds from glucose. Here, we report a comparative transcription analysis among these strains of more than 100 genes involved in central carbon metabolism during growth on glucose. It was found that in the PTS- strains that have reduced glucose transport capacities, several genes encoding proteins with functions related to carbon transport and metabolism were upregulated. Therefore, it could be inferred that these strains synthesize autoinducers of these genes when sensing very low internal glucose concentrations, probably for scavenging purposes. This condition that is permanently present in the PTS- strains even when growing in high glucose concentrations allowed the simultaneous utilization of glucose and acetate as carbon sources. It was found that the gal operon is upregulated in these strains, as well as the aceBAK, poxB and acs genes among others. In PB12, glk, pgi, the TCA cycle and certain respiratory genes are also upregulated. A mutation in arcB in PB12 is apparently responsible for the upregulation of the TCA cycle and certain respiratory genes.
Collapse
Affiliation(s)
- Noemí Flores
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca, Morelos 62271, México.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Kang Y, Weber KD, Qiu Y, Kiley PJ, Blattner FR. Genome-wide expression analysis indicates that FNR of Escherichia coli K-12 regulates a large number of genes of unknown function. J Bacteriol 2005; 187:1135-60. [PMID: 15659690 PMCID: PMC545700 DOI: 10.1128/jb.187.3.1135-1160.2005] [Citation(s) in RCA: 215] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The major regulator controlling the physiological switch between aerobic and anaerobic growth conditions in Escherichia coli is the DNA binding protein FNR. To identify genes controlled by FNR, we used Affymetrix Antisense GeneChips to compare global gene expression profiles from isogenic MG1655 wild-type and Deltafnr strains grown in glucose minimal media under aerobic or anaerobic conditions. We found that 297 genes contained within 184 operons were regulated by FNR and/or by O2 levels. The expression of many genes known to be involved in anaerobic respiration and fermentation was increased under anaerobic growth conditions, while that of genes involved in aerobic respiration and the tricarboxylic acid cycle were repressed as expected. The expression of nine operons associated with acid resistance was also increased under anaerobic growth conditions, which may reflect the production of acidic fermentation products. Ninety-one genes with no presently defined function were also altered in expression, including seven of the most highly anaerobically induced genes, six of which we found to be directly regulated by FNR. Classification of the 297 genes into eight groups by k-means clustering analysis indicated that genes with common gene expression patterns also had a strong functional relationship, providing clues for studying the function of unknown genes in each group. Six of the eight groups showed regulation by FNR; while some expression groups represent genes that are simply activated or repressed by FNR, others, such as those encoding functions for chemotaxis and motility, showed a more complex pattern of regulation. A computer search for FNR DNA binding sites within predicted promoter regions identified 63 new sites for 54 genes. We suggest that E. coli MG1655 has a larger metabolic potential under anaerobic conditions than has been previously recognized.
Collapse
Affiliation(s)
- Yisheng Kang
- Department of Genetics, 425 Henry Mall, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
37
|
Salmon KA, Hung SP, Steffen NR, Krupp R, Baldi P, Hatfield GW, Gunsalus RP. Global gene expression profiling in Escherichia coli K12: effects of oxygen availability and ArcA. J Biol Chem 2005; 280:15084-96. [PMID: 15699038 DOI: 10.1074/jbc.m414030200] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ArcAB two-component system of Escherichia coli regulates the aerobic/anaerobic expression of genes that encode respiratory proteins whose synthesis is coordinated during aerobic/anaerobic cell growth. A genomic study of E. coli was undertaken to identify other potential targets of oxygen and ArcA regulation. A group of 175 genes generated from this study and our previous study on oxygen regulation (Salmon, K., Hung, S. P., Mekjian, K., Baldi, P., Hatfield, G. W., and Gunsalus, R. P. (2003) J. Biol. Chem. 278, 29837-29855), called our gold standard gene set, have p values <0.00013 and a posterior probability of differential expression value of 0.99. These 175 genes clustered into eight expression patterns and represent genes involved in a large number of cell processes, including small molecule biosynthesis, macromolecular synthesis, and aerobic/anaerobic respiration and fermentation. In addition, 119 of these 175 genes were also identified in our previous study of the fnr allele. A MEME/weight matrix method was used to identify a new putative ArcA-binding site for all genes of the E. coli genome. 16 new sites were identified upstream of genes in our gold standard set. The strict statistical analyses that we have performed on our data allow us to predict that 1139 genes in the E. coli genome are regulated either directly or indirectly by the ArcA protein with a 99% confidence level.
Collapse
Affiliation(s)
- Kirsty A Salmon
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095-1489, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Liu X, De Wulf P. Probing the ArcA-P modulon of Escherichia coli by whole genome transcriptional analysis and sequence recognition profiling. J Biol Chem 2004; 279:12588-97. [PMID: 14711822 DOI: 10.1074/jbc.m313454200] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ArcB/ArcA two-component signal transduction system of Escherichia coli regulates gene expression in response to the redox conditions of growth. Over the years, genetic screens have lead to the identification of about 30 ArcA-P-controlled operons that are involved in redox metabolism. However, the discovery of 3 targets that are not implicated in respiratory metabolism (the tra operon for plasmid conjugation, psi site for Xer-based recombination, and oriC site for chromosome replication) suggests that the Arc modulon may comprise additional operons that are involved in a myriad of functions. To identify these operons, we derived the ArcA-P-dependent transcription profile of E. coli using oligonucleotide-based microarray analysis. The findings indicated that 9% of all open reading frames in E. coli are affected either directly or indirectly by ArcA-P. To identify which operons are under the direct control of ArcA-P, we developed the ArcA-P recognition weight matrix from footprinting data and used it to scan the genome, yielding an ArcA-P sequence affinity map. By overlaying both methods, we identified 55 new Arc-regulated operons that are implicated in energy metabolism, transport, survival, catabolism, and transcriptional regulation. The data also suggest that the Arc response pathway, which translates into a net global downscaling of gene expression, overlaps partly with the FNR regulatory network. A conservative but reasonable assessment is that the Arc pathway recruits 100-150 operons to mediate a role in cellular adaptation that is more extensive than hitherto anticipated.
Collapse
Affiliation(s)
- Xueqiao Liu
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
39
|
Kuo JT, Chang YJ, Tseng CP. Growth rate regulation of lac operon expression in Escherichia coli is cyclic AMP dependent. FEBS Lett 2003; 553:397-402. [PMID: 14572658 DOI: 10.1016/s0014-5793(03)01071-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In contrast to the ribosomal RNA gene expression increasing with growth rate, transcription of the lac operon is downregulated by cell growth rate. In continuous culture, growth rate regulation of lac promoter was independent of carbon substrate used and its location on the chromosome. Since the lac operon is activated by cyclic adenosine monophosphate (cAMP), which decreases with increasing cell growth rate, expression of plac-lacZ reporter fusion was analyzed in cya mutant under various growth conditions. The results demonstrated that expression of plac-lacZ in cya mutant was both lower and growth rate independent. In addition, ppGpp (guanosine tetraphosphate) was not involved in the mechanism of growth rate regulation of the lac promoter. Thus, the results of this study indicate that cAMP mediates the growth rate-dependent regulation of lac operon expression in Escherichia coli.
Collapse
Affiliation(s)
- Jong-Tar Kuo
- Department of Biological Science and Technology, National Chiao Tung University, 75 PO-Ai Street, Hsin-Chu, R.O.C., Taiwan
| | | | | |
Collapse
|
40
|
Abstract
We describe the identification of Rex, a novel redox-sensing repressor that appears to be widespread among Gram-positive bacteria. In Streptomyces coelicolor Rex binds to operator (ROP) sites located upstream of several respiratory genes, including the cydABCD and rex-hemACD operons. The DNA-binding activity of Rex appears to be controlled by the redox poise of the NADH/NAD+ pool. Using electromobility shift and surface plasmon resonance assays we show that NADH, but not NAD+, inhibits the DNA-binding activity of Rex. However, NAD+ competes with NADH for Rex binding, allowing Rex to sense redox poise over a range of NAD(H) concentrations. Rex is predicted to include a pyridine nucleotide-binding domain (Rossmann fold), and residues that might play key structural and nucleotide binding roles are highly conserved. In support of this, the central glycine in the signature motif (GlyXGlyXXGly) is shown to be essential for redox sensing. Rex homologues exist in most Gram-positive bacteria, including human pathogens such as Staphylococcus aureus, Listeria monocytogenes and Streptococcus pneumoniae.
Collapse
Affiliation(s)
- Dimitris Brekasis
- Department of Biochemistry, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | | |
Collapse
|
41
|
Smets I, Bernaerts K, Sun J, Marchal K, Vanderleyden J, Van Impe J. Sensitivity function-based model reduction: A bacterial gene expression case study. Biotechnol Bioeng 2002; 80:195-200. [PMID: 12209775 DOI: 10.1002/bit.10359] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mathematical models used to predict the behavior of genetically modified organisms require 1). a (rather) large number of state variables, and 2). complicated kinetic expressions containing a large number of parameters. Since these models are hardly identifiable and of limited use in model-based optimization and control strategies, a generic methodology based on sensitivity function analysis is presented to reduce the model complexity at the level of the kinetics, while maintaining high prediction power. As a case study to illustrate the method and results obtained, the influence of the dissolved oxygen concentration on the cytN gene expression in the bacterium Azospirillum brasilense Sp7 is modeled. As a first modeling approach, available mechanistic knowledge is incorporated into a mass balance equation model with 3 states and 14 parameters. The large differences in order of magnitude of the model parameters identified on the available experimental data indicate 1). possible structural problems in the kinetic model and, associated with this, 2). a possibly too high number of model parameters. A careful sensitivity function analysis reveals that a reduced model with only seven parameters is almost as accurate as the original model.
Collapse
Affiliation(s)
- Ilse Smets
- BioTeC - Bioprocess Technology and Control, Katholieke Universiteit Leuven, Kasteelpark Arenberg 22 B-3001, Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
42
|
Sun J, Smets I, Bernaerts K, Van Impe J, Vanderleyden J, Marchal K. Quantitative analysis of bacterial gene expression by using the gusA reporter gene system. Appl Environ Microbiol 2001; 67:3350-7. [PMID: 11472903 PMCID: PMC93027 DOI: 10.1128/aem.67.8.3350-3357.2001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2000] [Accepted: 05/02/2001] [Indexed: 11/20/2022] Open
Abstract
An Azospirillum brasilense Sp7 strain containing a plasmid-borne translational cytN-gusA fusion was grown in a continuous culture to quantitatively evaluate the influence of extracellular signals (such as O(2)) on expression of the cytNOQP operon. The dissolved oxygen concentration was shifted at regular time intervals before the steady state was reached. The measured beta-glucuronidase activity was used to monitor cytN gene expression. However, as the beta-glucuronidase activity in the experimental setup not only depended on altered transcription of the hybrid gene when the signal was varied but was also influenced by cellular accumulation, degradation, and dilution of the hybrid fusion protein, a mathematical method was developed to describe the intrinsic properties of the dynamic bioprocess. After identification and validation of the mathematical model, the apparent specific rate of expression of the fusion, which was independent of the experimental setup, could be deduced from the model and used to quantify gene expression regulated by extracellular environmental signals. In principle, this approach can be generalized to assess the effects of external signals on bacterial gene expression.
Collapse
Affiliation(s)
- J Sun
- Centre of Microbial and Plant Genetics, Department of Electrical Engineering, Katholieke Universiteit Leuven, B-3001 Heverlee, Belgium
| | | | | | | | | | | |
Collapse
|
43
|
Arfin SM, Long AD, Ito ET, Tolleri L, Riehle MM, Paegle ES, Hatfield GW. Global gene expression profiling in Escherichia coli K12. The effects of integration host factor. J Biol Chem 2000; 275:29672-84. [PMID: 10871608 DOI: 10.1074/jbc.m002247200] [Citation(s) in RCA: 190] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have used nylon membranes spotted in duplicate with full-length polymerase chain reaction-generated products of each of the 4,290 predicted Escherichia coli K12 open reading frames (ORFs) to measure the gene expression profiles in otherwise isogenic integration host factor IHF(+) and IHF(-) strains. Our results demonstrate that random hexamer rather than 3' ORF-specific priming of cDNA probe synthesis is required for accurate measurement of gene expression levels in bacteria. This is explained by the fact that the currently available set of 4,290 unique 3' ORF-specific primers do not hybridize to each ORF with equal efficiency and by the fact that widely differing degradation rates (steady-state levels) are observed for the 25-base pair region of each message complementary to each ORF-specific primer. To evaluate the DNA microarray data reported here, we used a linear analysis of variance (ANOVA) model appropriate for our experimental design. These statistical methods allowed us to identify and appropriately correct for experimental variables that affect the reproducibility and accuracy of DNA microarray measurements and allowed us to determine the statistical significance of gene expression differences between our IHF(+) and IHF(-) strains. Our results demonstrate that small differences in gene expression levels can be accurately measured and that the significance of differential gene expression measurements cannot be assessed simply by the magnitude of the fold difference. Our statistical criteria, supported by excellent agreement between previously determined effects of IHF on gene expression and the results reported here, have allowed us to identify new genes regulated by IHF with a high degree of confidence.
Collapse
Affiliation(s)
- S M Arfin
- Department of Biological Chemistry, College of Medicine, University of California, Irvine, 92697, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
This review discusses various mechanisms that regulatory proteins use to control gene expression in response to alterations in redox. The transcription factor SoxR contains stable [2Fe-2S] centers that promote transcription activation when oxidized. FNR contains [4Fe-4S] centers that disassemble under oxidizing conditions, which affects DNA-binding activity. FixL is a histidine sensor kinase that utilizes heme as a cofactor to bind oxygen, which affects its autophosphorylation activity. NifL is a flavoprotein that contains FAD as a redox responsive cofactor. Under oxidizing conditions, NifL binds and inactivates NifA, the transcriptional activator of the nitrogen fixation genes. OxyR is a transcription factor that responds to redox by breaking or forming disulfide bonds that affect its DNA-binding activity. The ability of the histidine sensor kinase ArcB to promote phosphorylation of the response regulator ArcA is affected by multiple factors such as anaerobic metabolites and the redox state of the membrane. The global regulator of anaerobic gene expression in alpha-purple proteobacteria, RegB, appears to directly monitor respiratory activity of cytochrome oxidase. The aerobic repressor of photopigment synthesis, CrtJ, seems to contain a redox responsive cysteine. Finally, oxygen-sensitive rhizobial NifA proteins presumably bind a metal cofactor that senses redox. The functional variability of these regulatory proteins demonstrates that prokaryotes apply many different mechanisms to sense and respond to alterations in redox.
Collapse
Affiliation(s)
- C E Bauer
- Department of Biology, Indiana University, Bloomington 47405, USA
| | | | | |
Collapse
|
45
|
Prost JF, Nègre D, Oudot C, Murakami K, Ishihama A, Cozzone AJ, Cortay JC. Cra-dependent transcriptional activation of the icd gene of Escherichia coli. J Bacteriol 1999; 181:893-8. [PMID: 9922253 PMCID: PMC93456 DOI: 10.1128/jb.181.3.893-898.1999] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The icd gene of Escherichia coli, encoding isocitrate dehydrogenase, was shown to be expressed from two different promoters: the previously identified icd P1 and a newly detected second promoter, icd P2, whose expression is positively regulated by the catabolite repressor-activator protein Cra, formerly called FruR. In each case, we determined the mRNA start site by primer extension analysis of in vivo transcripts and examined the interaction of the icd control region with either RNA polymerase or Cra. We observed that (i) the Cra factor binds to and activates transcription from a site centered at position -76.5 within the icd P2 promoter region and (ii) three particular mutations in the C-terminal end of the alpha subunit of RNA polymerase (L262A, R265A, and N268A) considerably diminish transcription initiating from the icd P2 promoter, as shown by in vitro experiments performed in the presence of mutant RNA polymerases carrying Ala substitutions.
Collapse
Affiliation(s)
- J F Prost
- Institut de Biologie et Chimie des Protéines, Centre National de la Recherche Scientifique, Lyon, France
| | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Growth of enteric bacteria on acetate as the sole source of carbon and energy requires operation of a particular anaplerotic pathway known as the glyoxylate bypass. In this pathway, two specific enzymes, isocitrate lyase and malate synthase, are activated to divert isocitrate from the tricarboxylic acid cycle and prevent the quantitative loss of acetate carbons as carbon dioxide. Bacteria are thus supplied with the metabolic intermediates they need for synthesizing their cellular components. The channeling of isocitrate through the glyoxylate bypass is regulated via the phosphorylation/dephosphorylation of isocitrate dehydrogenase, the enzyme of the tricarboxylic acid cycle which competes for a common substrate with isocitrate lyase. When bacteria are grown on acetate, isocitrate dehydrogenase is phosphorylated and, concomitantly, its activity declines drastically. Conversely, when cells are cultured on a preferred carbon source, such as glucose, the enzyme is dephosphorylated and recovers full activity. Such reversible phosphorylation is mediated by an unusual bifunctional enzyme, isocitrate dehydrogenase kinase/phosphatase, which contains both modifying and demodifying activities on the same polypeptide. The genes coding for malate synthase, isocitrate lyase, and isocitrate dehydrogenase kinase/phosphatase are located in the same operon. Their expression is controlled by a complex dual mechanism that involves several transcriptional repressors and activators. Recent developments have brought new insights into the nature and mode of action of these different regulators. Also, significant advances have been made lately in our understanding of the control of enzyme activity by reversible phosphorylation. In general, analyzing the physiological behavior of bacteria on acetate provides a valuable approach for deciphering at the molecular level the mechanisms of cell adaptation to the environment.
Collapse
Affiliation(s)
- A J Cozzone
- Institut de Biologie et Chimie des Protéines, Université de Lyon, France
| |
Collapse
|
47
|
Abstract
Krebs cycle enzyme activity in Bacillus subtilis was examined under aerobic and anaerobic conditions. Citrate synthase and aconitase activities in cells grown anaerobically in the presence of nitrate were reduced by as much as 10- and 30-fold, respectively, from levels observed under aerobic culture conditions. The maximum level of isocitrate dehydrogenase activity during anaerobic growth was only twofold lower than that in aerobic cultures. These reductions in activity under conditions of anaerobiosis were found to be primarily the result of reduced Krebs cycle gene transcription. This repression was not dependent on either the fnr or resDE gene products, which have been shown to regulate expression of other B. subtilis genes in response to anaerobic conditions. Additionally, catabolite control proteins CcpA and CcpB were not responsible for the repression. A dyad symmetry element located between positions -73 and -59 relative to the transcription start site of the aconitase gene (citB) promoter was previously shown to be a target of catabolite repression and the binding site for a putative negative regulator during aerobic growth. The deletion of the upstream arm of the dyad symmetry region abolished the citB repression observed during anaerobic growth. Furthermore, neither citZ or citB was repressed in an anaerobically grown citB mutant, an effect that was very likely the result of citrate accumulation. These results suggest that catabolite repression and anaerobic repression of citZ and citB are regulated by a common mechanism that does not involve CcpA, CcpB, Fnr, or ResDE.
Collapse
Affiliation(s)
- M M Nakano
- Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, Shreveport 71130, USA.
| | | | | |
Collapse
|
48
|
Colloms SD, Alén C, Sherratt DJ. The ArcA/ArcB two-component regulatory system of Escherichia coli is essential for Xer site-specific recombination at psi. Mol Microbiol 1998; 28:521-30. [PMID: 9632255 DOI: 10.1046/j.1365-2958.1998.00812.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Two recombinases, XerC and XerD, act at the recombination sites psi and cer in plasmids pSC101 and Co1E1 respectively. Recombination at these sites maintains the plasmids in a monomeric state and helps to promote stable plasmid inheritance. The accessory protein PepA acts at both psi and cer to ensure that only intramolecular recombination takes place. An additional accessory protein, ArgR, is required for recombination at cer but not at psi. Here, we demonstrate that the ArcA/ArcB two-component regulatory system of Escherichia coli, which mediates adaptation to anaerobic growth conditions, is required for efficient recombination in vivo at psi. Phosphorylated ArcA binds to psi in vitro and increases the efficiency of recombination at this site. Binding of ArcA to psi may contribute to the formation of a higher order synaptic complex between a pair of psi sites, thus helping to ensure that recombination is intramolecular.
Collapse
Affiliation(s)
- S D Colloms
- Department of Biochemistry, University of Oxford, UK.
| | | | | |
Collapse
|