1
|
Babitzke P, Lai YJ, Renda AJ, Romeo T. Posttranscription Initiation Control of Gene Expression Mediated by Bacterial RNA-Binding Proteins. Annu Rev Microbiol 2019; 73:43-67. [PMID: 31100987 PMCID: PMC9404307 DOI: 10.1146/annurev-micro-020518-115907] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
RNA-binding proteins play vital roles in regulating gene expression and cellular physiology in all organisms. Bacterial RNA-binding proteins can regulate transcription termination via attenuation or antitermination mechanisms, while others can repress or activate translation initiation by affecting ribosome binding. The RNA targets for these proteins include short repeated sequences, longer single-stranded sequences, RNA secondary or tertiary structure, and a combination of these features. The activity of these proteins can be influenced by binding of metabolites, small RNAs, or other proteins, as well as by phosphorylation events. Some of these proteins regulate specific genes, while others function as global regulators. As the regulatory mechanisms, components, targets, and signaling circuitry surrounding RNA-binding proteins have become better understood, in part through rapid advances provided by systems approaches, a sense of the true nature of biological complexity is becoming apparent, which we attempt to capture for the reader of this review.
Collapse
Affiliation(s)
- Paul Babitzke
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA; ,
| | - Ying-Jung Lai
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32611, USA; ,
| | - Andrew J Renda
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA; ,
| | - Tony Romeo
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32611, USA; ,
| |
Collapse
|
2
|
Insight into bacterial phosphotransferase system-mediated signaling by interspecies transplantation of a transcriptional regulator. J Bacteriol 2011; 193:2013-26. [PMID: 21335451 DOI: 10.1128/jb.01459-10] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bacterial sugar:phosphotransferase system (PTS) delivers phosphoryl groups via proteins EI and HPr to the EII sugar transporters. The antitermination protein LicT controls β-glucoside utilization in Bacillus subtilis and belongs to a family of bacterial transcriptional regulators that are antagonistically controlled by PTS-catalyzed phosphorylations at two homologous PTS regulation domains (PRDs). LicT is inhibited by phosphorylation of PRD1, which is mediated by the β-glucoside transporter EII(Bgl). Phosphorylation of PRD2 is catalyzed by HPr and stimulates LicT activity. Here, we report that LicT, when artificially expressed in the nonrelated bacterium Escherichia coli, is likewise phosphorylated at both PRDs, but the phosphoryl group donors differ. Surprisingly, E. coli HPr phosphorylates PRD1 rather than PRD2, while the stimulatory phosphorylation of PRD2 is carried out by the HPr homolog NPr. This demonstrates that subtle differences in the interaction surface of HPr can switch its affinities toward the PRDs. NPr transfers phosphoryl groups from EI(Ntr) to EIIA(Ntr). Together these proteins form the paralogous PTS(Ntr), which controls the activity of K(+) transporters in response to unknown signals. This is achieved by binding of dephosphorylated EIIA(Ntr) to other proteins. We generated LicT mutants that were controlled either negatively by HPr or positively by NPr and were suitable bio-bricks, in order to monitor or to couple gene expression to the phosphorylation states of these two proteins. With the aid of these tools, we identified the stringent starvation protein SspA as a regulator of EIIA(Ntr) phosphorylation, indicating that PTS(Ntr) represents a stress-related system in E. coli.
Collapse
|
3
|
Servinsky MD, Kiel JT, Dupuy NF, Sund CJ. Transcriptional analysis of differential carbohydrate utilization by Clostridium acetobutylicum. Microbiology (Reading) 2010; 156:3478-3491. [DOI: 10.1099/mic.0.037085-0] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transcriptional analysis was performed on Clostridium acetobutylicum with the goal of identifying sugar-specific mechanisms for the transcriptional regulation of transport and metabolism genes. DNA microarrays were used to determine transcript levels from total RNA isolated from cells grown on media containing eleven different carbohydrates, including two pentoses (xylose, arabinose), four hexoses (glucose, mannose, galactose, fructose), four disaccharides (sucrose, lactose, maltose, cellobiose) and one polysaccharide (starch). Sugar-specific induction of many transport and metabolism genes indicates that these processes are regulated at the transcriptional level and are subject to carbon catabolite repression. The results show that C. acetobutylicum utilizes symporters and ATP-binding cassette (ABC) transporters for the uptake of pentose sugars, while disaccharides and hexoses are primarily taken up by phosphotransferase system (PTS) transporters and a gluconate : H+ (GntP) transporter. The transcription of some transporter genes was induced by specific sugars, while others were induced by a subset of the sugars tested. Sugar-specific transport roles are suggested, based on expression comparisons, for various transporters of the PTS, the ABC superfamily and members of the major facilitator superfamily (MFS), including the GntP symporter family and the glycoside-pentoside-hexuronide (GPH)-cation symporter family. Additionally, updates to the C. acetobutylicum genome annotation are proposed, including the identification of genes likely to encode proteins involved in the metabolism of arabinose and xylose via the pentose phosphate pathway.
Collapse
Affiliation(s)
- Matthew D. Servinsky
- U S Army Research Laboratory, 2800 Powder Mill Road, Adelphi, Maryland 20783, USA
| | - James T. Kiel
- U S Army Research Laboratory, 2800 Powder Mill Road, Adelphi, Maryland 20783, USA
| | - Nicole F. Dupuy
- U S Army Research Laboratory, 2800 Powder Mill Road, Adelphi, Maryland 20783, USA
| | - Christian J. Sund
- U S Army Research Laboratory, 2800 Powder Mill Road, Adelphi, Maryland 20783, USA
| |
Collapse
|
4
|
Bortoni ME, Terra VS, Hinds J, Andrew PW, Yesilkaya H. The pneumococcal response to oxidative stress includes a role for Rgg. MICROBIOLOGY-SGM 2009; 155:4123-4134. [PMID: 19762446 PMCID: PMC2885668 DOI: 10.1099/mic.0.028282-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Streptococcus pneumoniae resides in the oxygen-rich environment of the upper respiratory tract, and therefore the ability to survive in the presence of oxygen is an important aspect of its in vivo survival. To investigate how S. pneumoniae adapts to oxygen, we determined the global gene expression profile of the micro-organism in aerobiosis and anaerobiosis. It was found that exposure to aerobiosis elevated the expression of 54 genes, while the expression of 15 genes was downregulated. Notably there were significant changes in putative genome plasticity and hypothetical genes. In addition, increased expression of rgg, a putative transcriptional regulator, was detected. To test the role of Rgg in the pneumococcal oxidative stress response, an isogenic mutant was constructed. It was found that the mutant was sensitive to oxygen and paraquat, but not to H2O2. In addition, the absence of Rgg strongly reduced the biofilm-forming ability of an unencapsulated pneumococcus. Virulence studies showed that the median survival time of mice infected intranasally with the rgg mutant was significantly longer than that of the wild-type-infected group, and the animals infected with the mutant developed septicaemia later than those infected intranasally with the wild-type.
Collapse
Affiliation(s)
- Magda E Bortoni
- Department of Basic Sciences, Universidad De Monterrey, Monterrey 66238, Mexico.,Department of Infection, Immunity and Inflammation, University of Leicester, Leicester LE1 9HN, UK
| | - Vanessa S Terra
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester LE1 9HN, UK
| | - Jason Hinds
- Division of Cellular and Molecular Medicine, St George's Hospital Medical School, University of London, London SW17 0RE, UK
| | - Peter W Andrew
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester LE1 9HN, UK
| | - Hasan Yesilkaya
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester LE1 9HN, UK
| |
Collapse
|
5
|
Grundy FJ, Henkin TM. From ribosome to riboswitch: control of gene expression in bacteria by RNA structural rearrangements. Crit Rev Biochem Mol Biol 2007; 41:329-38. [PMID: 17092822 DOI: 10.1080/10409230600914294] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Structural elements in the 5' region of a bacterial mRNA can have major effects on expression of downstream coding sequences. Folding of the nascent RNA into the helix of an intrinsic transcriptional terminator results in premature termination of transcription and in failure to synthesize the full-length transcript. Structure in the translation initiation region of an mRNA blocks access of the translation initiation complex to the ribosome binding site, thereby preventing protein synthesis. RNA structures can also affect the stability of an RNA by altering sensitivity to ribonucleases. A wide variety of mechanisms have been uncovered in which changes in mRNA structure in response to a regulatory signal are used to modulate gene expression in bacteria. These systems allow the cell to recognize an impressive array of signals, and to monitor those signals in many different ways.
Collapse
Affiliation(s)
- Frank J Grundy
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, USA
| | | |
Collapse
|
6
|
McNally DJ, Lamoureux M, Li J, Kelly J, Brisson JR, Szymanski CM, Jarrell HC. HR-MAS NMR studies of 15N-labeled cells confirm the structure of the O-methyl phosphoramidate CPS modification in Campylobacter jejuni and provide insight into its biosynthesis. CAN J CHEM 2006. [DOI: 10.1139/v06-028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Because Campylobacter jejuni is the leading cause of bacterial food-borne gastroenteritis throughout the world, there is intense effort to determine the mechanisms of infectivity associated with this bacterium. Capsular polysaccharide (CPS) has been shown to be an important virulence factor for C. jejuni and a recent study that examined the 11168V26 strain identified several phase-variable CPS modifications including an unusual O-methyl phosphoramidate (MeOPN) group on C-3 of the GalfNAc residue. In this study, we examined the MeOPN group using homo- and hetero-nuclear high-resolution magic angle spinning (HR-MAS) NMR experiments of whole bacterial cells grown on 15NH4Cl-enriched media. 1H31P HSQC NMR experiments showed that the level of 15N labeling within the MeOPN reached 80%, and a large 1J(15N31P) scalar coupling provided direct evidence that confirmed the structure of the MeOPN as CH3OP(O)(NH2)(OR). Because 15N was also detected within the major outer membrane protein as well as the NAc and NGro groups of CPS, ammonium was concluded to be an important building block used in the synthesis of amino acids and glycan structures in C. jejuni. HR-MAS NMR studies of 15N-labeled cells revealed an unanticipated level of complexity as multiple MeOPN signals were observed within 1H-31P HSQC spectra for the 11168V26 and 11168H strains. While some signals originated from the MeOPN at C-3 of GalfNAc, others were attributed to a novel MeOPN located on D-glycero-α-L-gluco-heptopyranose. Together, these HR-MAS NMR findings shed light on nitrogen metabolism in C. jejuni, confirm the chemical structure of the MeOPN, and demonstrate that the modification occurs on both furanose and pyranose CPS sugars for this bacterium.Key words: Campylobacter jejuni, capsular polysaccharide, HR-MAS NMR, isotope labeling, phosphoramidate.
Collapse
|
7
|
McNally DJ, Jarrell HC, Li J, Khieu NH, Vinogradov E, Szymanski CM, Brisson JR. The HS:1 serostrain of Campylobacter jejuni has a complex teichoic acid-like capsular polysaccharide with nonstoichiometric fructofuranose branches and O-methyl phosphoramidate groups. FEBS J 2005; 272:4407-22. [PMID: 16128810 DOI: 10.1111/j.1742-4658.2005.04856.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recently, the CPS biosynthetic loci for several strains of Campylobacter jejuni were sequenced and revealed evidence for multiple mechanisms of structural variation. In this study, the CPS structure for the HS:1 serostrain of C. jejuni was determined using mass spectrometry and NMR at 600 MHz equipped with an ultra-sensitive cryogenically cooled probe. Analysis of CPS purified using a mild enzymatic method revealed a teichoic acid-like [-4)-alpha-d-Galp-(1-2)-(R)-Gro-(1-P](n), repeating unit, where Gro is glycerol. Two branches at C-2 and C-3 of galactose were identified as beta-d-fructofuranoses substituted at C-3 with CH(3)OP(O)(NH(2))(OR) groups. Structural heterogeneity was due to nonstoichiometric glycosylation at C-3 of galactose and variable phosphoramidate groups. Identical structural features were found for cell-bound CPS on intact cells using proton homonuclear and (31)P heteronuclear two-dimensional HR-MAS NMR at 500 MHz. In contrast, spectroscopic data acquired for hot water/phenol purified CPS was complicated by the hydrolysis and subsequent loss of labile groups during extraction. Collectively, the results of this study established the importance of using sensitive isolation techniques and HR-MAS NMR to examine CPS structures in vivo when labile groups are present. This study uncovered how incorporation of variable O-methyl phosphoramidate groups on nonstoichiometric fructose branches is used in C. jejuni HS:1 as a strategy to produce a highly complex polysaccharide from its small CPS biosynthetic locus and a limited number of sugars.
Collapse
Affiliation(s)
- David J McNally
- Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
8
|
Amster-Choder O. The bgl sensory system: a transmembrane signaling pathway controlling transcriptional antitermination. Curr Opin Microbiol 2005; 8:127-34. [PMID: 15802242 DOI: 10.1016/j.mib.2005.02.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The bgl system represents a family of sensory systems composed of membrane-bound sugar-sensors and transcriptional antiterminators, which regulate expression of genes involved in sugar utilization in response to the presence of the corresponding sugar in the growth medium. The BglF sensor catalyzes different activities depending on its stimulation state: in its non-stimulated state, it phosphorylates the BglG transcriptional regulator, thus inactivating it; in the presence of the stimulating sugar, it transports the sugar and phosphorylates it and also activates BglG by dephosphorylation, leading to bgl operon expression. The sugar stimulates BglF by inducing a change in its membrane topology. BglG exists in several conformations: a dimer, which is active, and compact and non-compact monomers, which are inactive. BglF modulates the transition of BglG from one conformation to another, depending on sugar availability. The two Bgl proteins form a pre-complex at the membrane that dissociates upon stimulation, enabling BglG to exert its effect on transcription.
Collapse
Affiliation(s)
- Orna Amster-Choder
- Department of Molecular Biology, The Hebrew University, Hadassah Medical School, P.O.Box 12272, Jerusalem 91120, Israel.
| |
Collapse
|
9
|
Schmalisch MH, Bachem S, Stülke J. Control of the Bacillus subtilis Antiterminator Protein GlcT by Phosphorylation. J Biol Chem 2003; 278:51108-15. [PMID: 14527945 DOI: 10.1074/jbc.m309972200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacillus subtilis transports glucose by the phosphotransferase system (PTS). The genes for this system are encoded in the ptsGHI operon, which is induced by glucose and depends on a termination/antitermination mechanism involving a riboswitch and the RNA-binding antitermination protein GlcT. In the absence of glucose, GlcT is inactive, and a terminator is formed in the leader region of the ptsG mRNA. If glucose is present, GlcT can bind to its RNA target and prevent transcription termination. The GlcT protein is composed of three domains, an N-terminal RNA binding domain and two PTS regulation domains, PTS regulation domain (PRD) I and PRD-II. In this work, we demonstrate that GlcT can be phosphorylated by two PTS proteins, HPr and the glucose-specific enzyme II (EIIGlc). HPr-dependent phosphorylation occurs on PRD-II and has a slight stimulatory effect on GlcT activity. In contrast, EIIGlc phosphorylates the PRD-I of GlcT, and this phosphorylation inactivates GlcT. This latter phosphorylation event links the availability of glucose to the expression of the ptsGHI operon via the phosphorylation state of EIIGlc and GlcT. This is the first in vitro demonstration of a direct phosphorylation of an antiterminator of the BglG family by the corresponding PTS permease.
Collapse
Affiliation(s)
- Matthias H Schmalisch
- Lehrstuhl für Mikrobiologie, Friedrich-Alexander-Universität Erlangen-Nuremberg, Staudtstrasse 5, D-91058 Erlangen, Germany
| | | | | |
Collapse
|
10
|
Görke B. Regulation of the Escherichia coli antiterminator protein BglG by phosphorylation at multiple sites and evidence for transfer of phosphoryl groups between monomers. J Biol Chem 2003; 278:46219-29. [PMID: 12963714 DOI: 10.1074/jbc.m308002200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activity of antiterminator protein BglG regulating the beta-glucoside operon in Escherichia coli is controlled by the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) in a dual manner. It requires HPr phosphorylation to be active, whereas phosphorylation by the beta-glucoside-specific transport protein EIIBgl inhibits its activity. BglG and its relatives carry two PTS regulation domains (PRD1 and PRD2), each containing two conserved histidines. For BglG, histidine 208 in PRD2 was reported to be the negative phosphorylation site. In contrast, other antiterminators of this family are negatively regulated by phosphorylation of the first histidine in PRD1, and presumably activated by phosphorylation of the histidines in PRD2. In this work, a screen for mutant BglG proteins that escape repression by EIIBgl yielded exchanges of nine residues within PRD1, including conserved histidines His-101 and His-160, and C-terminally truncated proteins. Genetic and phosphorylation analyses indicate that His-101 in PRD1 is phosphorylated by EIIBgl and that His-160 contributes to negative regulation. His-208 in PRD2 is essential for BglG activity, suggesting that it is phosphorylated by HPr. Surprisingly, phosphorylation by HPr is not fully abolished by exchanges of His-208. However, phosphorylation by HPr is inhibited by exchanges in PRD1 and the phosphorylation of these mutants is restored in the presence of wild-type BglG. These results suggest that the activating phosphoryl group is transiently donated from HPr to PRD1 and subsequently transferred to His-208 of a second BglG monomer. The active His-208-phosphorylated BglG dimer can subsequently be inhibited in its activity by EIIBgl-catalyzed phosphorylation at His-101.
Collapse
Affiliation(s)
- Boris Görke
- Institut für Biologie III, Universität Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany.
| |
Collapse
|
11
|
Greenberg DB, Stülke J, Saier MH. Domain analysis of transcriptional regulators bearing PTS regulatory domains. Res Microbiol 2002; 153:519-26. [PMID: 12437213 DOI: 10.1016/s0923-2508(02)01362-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Multidomain transcriptional activators and antiterminators that include PTS regulatory domains (PRDs) were subjected to sequence analyses. All of these transcriptional regulators exhibit one or more N-terminal nucleic acid binding site(s) and two PRD regions. Additionally, we show that the activators contain C-terminal PTS IIB and IIA domains with fully conserved phosphorylation sites (cysteine and histidine, respectively). One activator, LevR has a different domain order than all other activators with a truncated IIA domain preceding (rather than following) the IIB domain, and it has a C-terminal PRD, rather than two adjacent PRDs. Our analyses suggest that the activators and antiterminators arose early, and that domain shuffling either within or between proteins has occurred rarely. The results allow us to propose an evolutionary pathway for the appearance of these transcription factors and to suggest functional significance for these domains and specific residues within them.
Collapse
Affiliation(s)
- David B Greenberg
- Division of Biology, University of California at San Diego, La Jolla 92093-0116, USA
| | | | | |
Collapse
|
12
|
Henkin TM, Yanofsky C. Regulation by transcription attenuation in bacteria: how RNA provides instructions for transcription termination/antitermination decisions. Bioessays 2002; 24:700-7. [PMID: 12210530 DOI: 10.1002/bies.10125] [Citation(s) in RCA: 214] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Regulation of gene expression by premature termination of transcription, or transcription attenuation, is a common regulatory strategy in bacteria. Various mechanisms of regulating transcription termination have been uncovered, each can be placed in either of two broad categories of termination events. Many mechanisms involve choosing between two alternative hairpin structures in an RNA transcript, with the decision dependent on interactions between ribosome and transcript, tRNA and transcript, or protein and transcript. In other examples, modification of the transcription elongation complex is the crucial event. This article will describe and compare several of these regulatory strategies, and will cite specific examples to illustrate the different mechanisms employed.
Collapse
Affiliation(s)
- Tina M Henkin
- Department of Microbiology, Ohio State University, USA
| | | |
Collapse
|
13
|
Declerck N, Dutartre H, Receveur V, Dubois V, Royer C, Aymerich S, van Tilbeurgh H. Dimer stabilization upon activation of the transcriptional antiterminator LicT. J Mol Biol 2001; 314:671-81. [PMID: 11733988 DOI: 10.1006/jmbi.2001.5185] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
LicT belongs to the BglG/SacY family of transcriptional antiterminators that induce the expression of sugar metabolizing operons in Gram positive and Gram negative bacteria. These proteins contain a N-terminal RNA-binding domain and a regulatory domain called PRD which is phosphorylated on conserved histidine residues by components of the phosphoenolpyruvate:sugar phosphotransferase system (PTS). Although it is now well established that phosphorylation of PRD-containing transcriptional regulators tunes their functional response, the molecular and structural basis of the regulation mechanism remain largely unknown.A constitutively active LicT variant has been obtained by introducing aspartic acid in replacement of His207 and His269, the two phosphorylatable residues of the PRD2 regulatory sub-domain. Here, the functional and structural consequences of these activating mutations have been evaluated in vitro using various techniques including surface plasmon resonance, limited proteolysis, analytical centrifugation and X-ray scattering. Comparison with the native, unphosphorylated form shows that the activating mutations enhance the RNA-binding activity and induce tertiary and quaternary structural changes. Both mutant and native LicT form dimers in solution but the native dimer exhibits a less stable and more open conformation than the activated mutant form. Examination of the recently determined crystal structure of mutant LicT regulatory domain suggests that dimer stabilization is accomplished through salt-bridge formation at the PRD2:PRD2 interface, resulting in domain motion and dimer closure propagating the stabilizing effect from the protein C-terminal end to the N-terminal effector domain. These results suggest that LicT activation arises from a conformational switch inducing long range rearrangement of the dimer interaction surface, rather than from an oligomerization switch converting an inactive monomer into an active dimer.
Collapse
Affiliation(s)
- N Declerck
- Génétique Moléculaire et Cellulaire, INRA-UMR216 CNRS-URA1925, and INAPG, Thiverval-Grignon, F-78850, France.
| | | | | | | | | | | | | |
Collapse
|
14
|
Görke B, Rak B. Efficient transcriptional antitermination from the Escherichia coli cytoplasmic membrane. J Mol Biol 2001; 308:131-45. [PMID: 11327758 DOI: 10.1006/jmbi.2001.4590] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The BglG protein is a transcriptional antiterminator acting within the beta-glucoside operon of Escherichia coli by binding to a specific sequence motif in the growing mRNA. Binding of BglG prevents formation of the terminator stem-loop structure, thereby causing the RNA polymerase to continue transcription. Activity of BglG is modulated in a complex way by antagonistically acting phosphorylations in response to the availability of beta-glucosidic substrates and to the catabolic state of the cell. The enzymes responsible for these phosphorylations are members of the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) that represents a central carbohydrate uptake and signal transduction system. As these enzymes are believed to all form higher-order complexes associated with the cytoplasmic membrane, we tested whether or not BglG would remain active when artificially anchored to its presumptive site of regulation, the inner membrane. We show that the membrane-anchored protein indeed efficiently catalyzes transcriptional antitermination. Moreover, the membrane-attached BglG remains regulated by the PTS. Thus, a membrane-bound regulatory RNA binding protein can potentially interact fast enough with its target within the nascent transcript and cause the transcriptional machinery to proceed, before transcriptional termination would occur. Consequently, there is no principal necessity for an RNA-binding transcriptional regulator like BglG to leave the inner membrane, a potential regulatory site, and migrate to the site of transcription, the nucleoid.
Collapse
Affiliation(s)
- B Görke
- Institut für Biologie III, Universität, Schänzlestr. 1, D-79104 Freiburg, Germany
| | | |
Collapse
|
15
|
Nam TW, Cho SH, Shin D, Kim JH, Jeong JY, Lee JH, Roe JH, Peterkofsky A, Kang SO, Ryu S, Seok YJ. The Escherichia coli glucose transporter enzyme IICB(Glc) recruits the global repressor Mlc. EMBO J 2001; 20:491-8. [PMID: 11157755 PMCID: PMC133465 DOI: 10.1093/emboj/20.3.491] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In addition to effecting the catalysis of sugar uptake, the bacterial phosphoenolpyruvate:sugar phosphotransferase system regulates a variety of physiological processes. Exposure of cells to glucose can result in repression or induction of gene expression. While the mechanism for carbon catabolite repression by glucose was well documented, that for glucose induction was not clearly understood in Escherichia coli. Recently, glucose induction of several E.coli genes has been shown to be mediated by the global repressor Mlc. Here, we elucidate a general mechanism for glucose induction of gene expression in E.coli, revealing a novel type of regulatory circuit for gene expression mediated by the phosphorylation state-dependent interaction of a membrane-bound protein with a repressor. The dephospho-form of enzyme IICB(Glc), but not its phospho-form, interacts directly with Mlc and induces transcription of Mlc-regulated genes by displacing Mlc from its target sequences. Therefore, the glucose induction of Mlc-regulated genes is caused by dephosphorylation of the membrane-bound transporter enzyme IICB(Glc), which directly recruits Mlc to derepress its regulon.
Collapse
Affiliation(s)
| | | | - Dongwoo Shin
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul 151-742,
School of Agricultural Biotechnology, Seoul National University, Suwon 441-744, Korea and Laboratory of Biochemical Genetics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA Corresponding author e-mail: T.-W.Nam, S.-H.Cho and D.Shin contributed equally to this work
| | | | | | | | | | - Alan Peterkofsky
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul 151-742,
School of Agricultural Biotechnology, Seoul National University, Suwon 441-744, Korea and Laboratory of Biochemical Genetics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA Corresponding author e-mail: T.-W.Nam, S.-H.Cho and D.Shin contributed equally to this work
| | | | - Sangryeol Ryu
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul 151-742,
School of Agricultural Biotechnology, Seoul National University, Suwon 441-744, Korea and Laboratory of Biochemical Genetics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA Corresponding author e-mail: T.-W.Nam, S.-H.Cho and D.Shin contributed equally to this work
| | - Yeong-Jae Seok
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul 151-742,
School of Agricultural Biotechnology, Seoul National University, Suwon 441-744, Korea and Laboratory of Biochemical Genetics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA Corresponding author e-mail: T.-W.Nam, S.-H.Cho and D.Shin contributed equally to this work
| |
Collapse
|
16
|
Muimo R, Hornickova Z, Riemen CE, Gerke V, Matthews H, Mehta A. Histidine phosphorylation of annexin I in airway epithelia. J Biol Chem 2000; 275:36632-6. [PMID: 10956639 DOI: 10.1074/jbc.m000829200] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although [Cl(-)](i) regulates many cellular functions including cell secretion, the mechanisms governing these actions are not known. We have previously shown that the apical membrane of airway epithelium contains a 37-kDa phosphoprotein (p37) whose phosphorylation is regulated by chloride concentration. Using metal affinity (chelating Fe(3+)-Sepharose) and anion exchange (POROS HQ 20) chromatography, we have purified p37 from ovine tracheal epithelia to electrophoretic homogeneity. Sequence analysis and immunoprecipitation using monoclonal and specific polyclonal antibodies identified p37 as annexin I, a member of a family of Ca(2+)-dependent phospholipid-binding proteins. Phosphate on [(32)P]annexin I, phosphorylated using both [gamma-(32)P]ATP and [gamma-(32)P]GTP, was labile under acidic but not alkaline conditions. Phosphoamino acid analysis showed the presence of phosphohistidine. The site of phosphorylation was localized to a carboxyl-terminal fragment of annexin I. Our data suggest that cAMP and AMP (but not cGMP) may regulate annexin I histidine phosphorylation. We propose a role for annexin I in an intracellular signaling system involving histidine phosphorylation.
Collapse
Affiliation(s)
- R Muimo
- Tayside Institute of Child Health, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, United Kingdom.
| | | | | | | | | | | |
Collapse
|
17
|
Knezevic I, Bachem S, Sickmann A, Meyer HE, Stülke J, Hengstenberg W. Regulation of the glucose-specific phosphotransferase system (PTS) of Staphylococcus carnosus by the antiterminator protein GlcT. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 9):2333-2342. [PMID: 10974121 DOI: 10.1099/00221287-146-9-2333] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The ptsG operon of Staphylococcus carnosus consists of two adjacent genes, glcA and glcB, encoding glucose- and glucoside-specific enzymes II, respectively, the sugar permeases of the phosphoenolpyruvate-dependent phosphotransferase system (PTS). The expression of the ptsG operon is glucose-inducible. Putative RAT (ribonucleic antiterminator) and terminator sequences localized in the promoter region of glcA suggest regulation via antitermination. The glcT gene was cloned and the putative antiterminator protein GlcT was purified. Activity of this protein was demonstrated in vivo in Escherichia coli and Bacillus subtilis. In vitro studies led to the assumption that phosphoenolpyruvate-dependent phosphorylation of residue His105 via the general PTS components enzyme I and HPr facilitates dimerization of GlcT and consequently activation. Because of the high similarity of the two ptsG-RAT sequences of B. subtilis and S. carnosus, in vivo studies were performed in B. subtilis. These indicated that GlcT of S. carnosus is able to recognize ptsG-RAT sequences of B. subtilis and to cause antitermination. The specific interaction between B. subtilis ptsG-RAT and S. carnosus GlcT demonstrated by surface plasmon resonance suggests that only the dimer of GlcT binds to the RAT sequence. HPr-dependent phosphorylation of GlcT facilitates dimer formation and may be a control device for the proper function of the general PTS components enzyme I and HPr necessary for glucose uptake and phosphorylation by the corresponding enzyme II.
Collapse
Affiliation(s)
- Igor Knezevic
- AG Physiologie der Mikroorganismen, Ruhr-Universität Bochum, ND 06/744, Universitätsstr. 150, D-44780 Bochum, Germany1
| | - Steffi Bachem
- Lehrstuhl für Mikrobiologie, Institut für Mikrobiologie, Biochemie und Genetik der Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, D-91058 Erlangen, Germany2
| | - Albert Sickmann
- Institut für Immunologie, Abteilung Proteinstrukturlabor, MA 2/143, Ruhr-Universität Bochum, Universitätsstr. 150, D-44780 Bochum, Germany3
| | - Helmut E Meyer
- Institut für Immunologie, Abteilung Proteinstrukturlabor, MA 2/143, Ruhr-Universität Bochum, Universitätsstr. 150, D-44780 Bochum, Germany3
| | - Jörg Stülke
- Lehrstuhl für Mikrobiologie, Institut für Mikrobiologie, Biochemie und Genetik der Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, D-91058 Erlangen, Germany2
| | - Wolfgang Hengstenberg
- AG Physiologie der Mikroorganismen, Ruhr-Universität Bochum, ND 06/744, Universitätsstr. 150, D-44780 Bochum, Germany1
| |
Collapse
|
18
|
Chen Q, Postma PW, Amster-Choder O. Dephosphorylation of the Escherichia coli transcriptional antiterminator BglG by the sugar sensor BglF is the reversal of its phosphorylation. J Bacteriol 2000; 182:2033-6. [PMID: 10715013 PMCID: PMC101925 DOI: 10.1128/jb.182.7.2033-2036.2000] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Escherichia coli BglF protein catalyzes transport and phosphorylation of beta-glucosides. In addition, BglF is a membrane sensor which reversibly phosphorylates the transcriptional regulator BglG, depending on beta-glucoside availability. Therefore, BglF has three enzymatic activities: beta-glucoside phosphotransferase, BglG phosphorylase, and phospho-BglG (BglG-P) dephosphorylase. Cys-24 of BglF is the active site which delivers the phosphoryl group either to the sugar or to BglG. To characterize the dephosphorylase activity, we asked whether BglG-P can give the phosphoryl group back to Cys-24 of BglF. Here we provide evidence which is consistent with the interpretation that Cys-24-P is an intermediate in the BglG-P dephosphorylation reaction. Hence, the dephosphorylation reaction catalyzed by BglF proceeds via reversal of the phosphorylation reaction.
Collapse
Affiliation(s)
- Q Chen
- Department of Molecular Biology, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | | | | |
Collapse
|
19
|
Affiliation(s)
- C Yanofsky
- Department of Biological Sciences, Stanford University, Stanford, California 94305, USA.
| |
Collapse
|
20
|
Declerck N, Vincent F, Hoh F, Aymerich S, van Tilbeurgh H. RNA recognition by transcriptional antiterminators of the BglG/SacY family: functional and structural comparison of the CAT domain from SacY and LicT. J Mol Biol 1999; 294:389-402. [PMID: 10610766 DOI: 10.1006/jmbi.1999.3256] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transcriptional antiterminators of the BglG/SacY family are regulatory proteins that mediate the induction of sugar metabolizing operons in Gram-positive and Gram-negative bacteria. Upon activation, these proteins bind to specific targets in nascent mRNAs, thereby preventing abortive dissociation of the RNA polymerase from the DNA template. We have previously characterized the RNA-binding domain of SacY from Bacillus subtilis and determined its three-dimensional structure by both NMR and crystallography. In the present study, we have characterized the paralogous domain from LicT and we present the first structural comparison between two BglG/SacY family members. Similar to SacY, the RNA-binding activity of LicT is contained within the 56 N-terminal amino acid residue fragment corresponding to the so-called co-antiterminator (CAT) domain. Surface plasmon resonance affinity measurements show that, compared to SacY-CAT, LicT-CAT binds more tightly and more specifically to its cognate RNA target, with a KD value of about 10(-8) M. The crystal structure of LicT-CAT has been determined at 1.8 A resolution and compared to that of SacY-CAT. Both molecules fold as symmetrical dimers, each monomer comprising a four-stranded antiparallel beta-sheet that stacks against the beta-sheet of the other monomer in a very conserved manner. Comparison of the proposed RNA-binding surfaces shows that many of the conserved atoms concentrate in a central region across one face of the CAT dimer, whereas variable elements are mostly found at the edges. Interestingly, the electrostatic potential maps calculated for the two molecules are quite different, except for the core of the RNA-binding site, which appears essentially neutral in both structures.
Collapse
Affiliation(s)
- N Declerck
- Architecture et Fonction des Macromolécules Biologiques, CNRS-UPR9039, 31 Chemin Joseph Aiguier, Marseille Cedex 20, F-13402, France.
| | | | | | | | | |
Collapse
|
21
|
Nussbaum-Shochat A, Amster-Choder O. BglG, the transcriptional antiterminator of the bgl system, interacts with the beta' subunit of the Escherichia coli RNA polymerase. Proc Natl Acad Sci U S A 1999; 96:4336-41. [PMID: 10200263 PMCID: PMC16333 DOI: 10.1073/pnas.96.8.4336] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Escherichia coli BglG protein antiterminates transcription at two terminator sites within the bgl operon in response to the presence of beta-glucosides in the growth medium. BglG was previously shown to be an RNA-binding protein that recognizes a specific sequence located just upstream of each of the terminators and partially overlapping with them. We show here that BglG also binds to the E. coli RNA polymerase, both in vivo and in vitro. By using several techniques, we identified the beta' subunit of RNA polymerase as the target for BglG binding. The region that contains the binding site for BglG was mapped to the N-terminal region of beta'. The beta' subunit, produced in excess, prevented BglG activity as a transcriptional antiterminator. Possible roles of the interaction between BglG and the polymerase beta' subunit are discussed.
Collapse
Affiliation(s)
- A Nussbaum-Shochat
- Department of Molecular Biology, Hebrew University-Hadassah Medical School, P.O.Box 12272, Jerusalem 91120, Israel
| | | |
Collapse
|
22
|
Boss A, Nussbaum-Shochat A, Amster-Choder O. Characterization of the dimerization domain in BglG, an RNA-binding transcriptional antiterminator from Escherichia coli. J Bacteriol 1999; 181:1755-66. [PMID: 10074067 PMCID: PMC93573 DOI: 10.1128/jb.181.6.1755-1766.1999] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Escherichia coli transcriptional antiterminator protein BglG inhibits transcription termination of the bgl operon in response to the presence of beta-glucosides in the growth medium. BglG is an RNA-binding protein that recognizes a specific sequence partially overlapping the two terminators within the bgl transcript. The activity of BglG is determined by its dimeric state which is modulated by reversible phosphorylation. Thus, only the nonphosphorylated dimer binds to the RNA target site and allows readthrough of transcription. Genetic systems which test dimerization and antitermination in vivo were used to map and delimit the region which mediates BglG dimerization. We show that the last 104 residues of BglG are required for dimerization. Any attempt to shorten this region from the ends or to introduce internal deletions abolished the dimerization capacity of this region. A putative leucine zipper motif is located at the N terminus of this region. The role of the canonical leucines in dimerization was demonstrated by their substitution. Our results also suggest that the carboxy-terminal 70 residues, which follow the leucine zipper, contain another dimerization domain which does not resemble any known dimerization motif. Each of these two regions is necessary but not sufficient for dimerization. The BglG phosphorylation site, His208, resides at the junction of the two putative dimerization domains. Possible mechanisms by which the phosphorylation of BglG controls its dimerization and thus its activity are discussed.
Collapse
Affiliation(s)
- A Boss
- Department of Molecular Biology, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | | | | |
Collapse
|
23
|
Chen Q, Amster-Choder O. BglF, the Escherichia coli beta-glucoside permease and sensor of the bgl system: domain requirements of the different catalytic activities. J Bacteriol 1999; 181:462-8. [PMID: 9882659 PMCID: PMC93399 DOI: 10.1128/jb.181.2.462-468.1999] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Escherichia coli BglF protein, an enzyme II of the phosphoenolpyruvate-dependent carbohydrate phosphotransferase system, has several enzymatic activities. In the absence of beta-glucosides, it phosphorylates BglG, a positive regulator of bgl operon transcription, thus inactivating BglG. In the presence of beta-glucosides, it activates BglG by dephosphorylating it and, at the same time, transports beta-glucosides into the cell and phosphorylates them. BglF is composed of two hydrophilic domains, IIAbgl and IIBbgl, and a membrane-bound domain, IICbgl, which are covalently linked in the order IIBCAbgl. Cys-24 in the IIBbgl domain is essential for all the phosphorylation and dephosphorylation activities of BglF. We have investigated the domain requirement of the different functions carried out by BglF. To this end, we cloned the individual BglF domains, as well as the domain pairs IIBCbgl and IICAbgl, and tested which domains and which combinations are required for the catalysis of the different functions, both in vitro and in vivo. We show here that the IIB and IIC domains, linked to each other (IIBCbgl), are required for the sugar-driven reactions, i. e., sugar phosphotransfer and BglG activation by dephosphorylation. In contrast, phosphorylated IIBbgl alone can catalyze BglG inactivation by phosphorylation. Thus, the sugar-induced and noninduced functions have different structural requirements. Our results suggest that catalysis of the sugar-induced functions depends on specific interactions between IIBbgl and IICbgl which occur upon the interaction of BglF with the sugar.
Collapse
Affiliation(s)
- Q Chen
- Department of Molecular Biology, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | | |
Collapse
|
24
|
Bachem S, Stülke J. Regulation of the Bacillus subtilis GlcT antiterminator protein by components of the phosphotransferase system. J Bacteriol 1998; 180:5319-26. [PMID: 9765562 PMCID: PMC107579 DOI: 10.1128/jb.180.20.5319-5326.1998] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus subtilis utilizes glucose as the preferred source of carbon and energy. The sugar is transported into the cell by a specific permease of the phosphoenolpyruvate:sugar phosphotransferase system (PTS) encoded by the ptsGHI operon. Expression of this operon is induced by glucose and requires the action of a positive transcription factor, the GlcT antiterminator protein. Glucose availability is sensed by glucose-specific enzyme II (EIIGlc), the product of ptsG. In the absence of inducer, the glucose permease negatively controls the activity of the antiterminator. The GlcT antiterminator has a modular structure. The isolated N-terminal part contains the RNA-binding protein and acts as a constitutively acting antiterminator. GlcT contains two PTS regulation domains (PRDs) at the C terminus. One (PRD-I) is the target of negative control exerted by EIIGlc. A conserved His residue (His-104 in GlcT) is involved in inactivation of GlcT in the absence of glucose. It was previously proposed that PRD-containing transcriptional antiterminators are phosphorylated and concomitantly inactivated in the absence of the substrate by their corresponding PTS permeases. The results obtained with B. subtilis glucose permease with site-specific mutations suggest, however, that the permease might modulate the phosphorylation reaction without being the phosphate donor.
Collapse
Affiliation(s)
- S Bachem
- Lehrstuhl für Mikrobiologie, Institut für Mikrobiologie, Biochemie und Genetik der Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany
| | | |
Collapse
|
25
|
Stülke J, Arnaud M, Rapoport G, Martin-Verstraete I. PRD--a protein domain involved in PTS-dependent induction and carbon catabolite repression of catabolic operons in bacteria. Mol Microbiol 1998; 28:865-74. [PMID: 9663674 DOI: 10.1046/j.1365-2958.1998.00839.x] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Several operon-specific transcriptional regulators, including antiterminators and activators, contain a duplicated conserved domain, the PTS regulation domain (PRD). These duplicated domains modify the activity of the transcriptional regulators both positively and negatively. PRD-containing regulators are very common in Gram-positive bacteria. In contrast, antiterminators controlling beta-glucoside utilization are the only functionally characterized members of this family from gram-negative bacteria. PRD-containing regulators are controlled by PTS-dependent phosphorylation with different consequences: (i) In the absence of inducer, the phosphorylated EIIB component of the sugar permease donates its phosphate to a PRD, thereby inactivating the regulator. In the presence of the substrate, the regulator is dephosphorylated, and the phosphate is transferred to the sugar, resulting in induction of the operon. (ii) In gram-positive bacteria, a novel mechanism of carbon catabolite repression mediated by PRD-containing regulators has been demonstrated. In the absence of PTS substrates, the HPr protein is phosphorylated by enzyme I at His-15. This form of HPr can, in turn, phosphorylate PRD-containing regulators and stimulate their activity. In the presence of rapidly metabolizable carbon sources, ATP-dependent phosphorylation of HPr at Ser-46 by HPr kinase inhibits phosphorylation by enzyme I, and PRD-containing regulators cannot, therefore, be stimulated and are inactive. All regulators of this family contain two copies of PRD, which are functionally specialized in either induction or catabolite repression.
Collapse
Affiliation(s)
- J Stülke
- Lehrstuhl für Mikrobiologie, Institut für Mikrobiologie, Biochimie und Genetik der Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | | | | | | |
Collapse
|
26
|
Idelson M, Amster-Choder O. SacY, a transcriptional antiterminator from Bacillus subtilis, is regulated by phosphorylation in vivo. J Bacteriol 1998; 180:660-6. [PMID: 9457872 PMCID: PMC106936 DOI: 10.1128/jb.180.3.660-666.1998] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
SacY antiterminates transcription of the sacB gene in Bacillus subtilis in response to the presence of sucrose in the growth medium. We have found that it can substitute for BglG, a homologous protein, in antiterminating transcription of the bgl operon in Escherichia coli. We therefore sought to determine whether, similarly to BglG, SacY is regulated by reversible phosphorylation in response to the availability of the inducing sugar. We show here that two forms of SacY, phosphorylated and nonphosphorylated, exist in B. subtilis cells and that the ratio between them depends on the external level of sucrose. Addition of sucrose to the growth medium after SacY phosphorylation in the cell resulted in its rapid dephosphorylation. The extent of SacY phosphorylation was found to be proportional to the cellular levels of SacX, a putative sucrose permease which was previously shown to have a negative effect on SacY activity. Thus, the mechanism by which the sac sensory system modulates sacB expression in response to sucrose involves reversible phosphorylation of the regulator SacY, and this process appears to depend on the SacX sucrose sensor. The sac system is therefore a member of the novel family of sensory systems represented by bgl.
Collapse
Affiliation(s)
- M Idelson
- Department of Molecular Biology, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | |
Collapse
|