1
|
Olea-Ozuna RJ, Campbell MJ, Quintanilla SY, Nandy S, Brodbelt JS, Boll JM. Alternative lipid synthesis in response to phosphate limitation promotes antibiotic tolerance in Gram-negative ESKAPE pathogens. PLoS Pathog 2025; 21:e1012933. [PMID: 39919117 DOI: 10.1371/journal.ppat.1012933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/24/2025] [Indexed: 02/09/2025] Open
Abstract
The Gram-negative outer membrane protects bacterial cells from environmental toxins such as antibiotics. The outer membrane lipid bilayer is asymmetric; while glycerophospholipids compose the periplasmic facing leaflet, the surface layer is enriched with phosphate-containing lipopolysaccharides. The anionic phosphates that decorate the cell surface promote electrostatic interactions with cationic antimicrobial peptides such as colistin, allowing them to penetrate the bilayer, form pores, and lyse the cell. Colistin is prescribed as a last-line therapy to treat multidrug-resistant Gram-negative infections. Acinetobacter baumannii is an ESKAPE pathogen that rapidly develops resistance to antibiotics and persists for extended periods in the host or on abiotic surfaces. Survival in environmental stress such as phosphate scarcity, represents a clinically significant challenge for nosocomial pathogens. In the face of phosphate starvation, certain bacteria encode adaptive strategies, including the substitution of glycerophospholipids with phosphorus-free lipids. In bacteria, phosphatidylethanolamine, phosphatidylglycerol, and cardiolipin are conserved glycerophospholipids that can form lipid bilayers, particularly in the presence of other lipids. Here, we demonstrate that in response to phosphate limitation, conserved regulatory mechanisms induce alternative lipid production in A. baumannii. Specifically, phosphate limitation induces formation of three lipids, including amine-containing ornithine and lysine aminolipids. Mutations that inactivate aminolipid biosynthesis exhibit fitness defects relative to wild type in colistin growth and killing assays. Furthermore, we show that other Gram-negative ESKAPE pathogens accumulate aminolipids under phosphate limiting growth conditions, suggesting aminolipid biosynthesis may represent a broad strategy to overcome cationic antimicrobial peptide-mediated killing.
Collapse
Affiliation(s)
- Roberto Jhonatan Olea-Ozuna
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas, United States of America
| | - Melanie J Campbell
- Department of Chemistry, University of Texas at Austin, Austin, Texas, United States of America
| | - Samantha Y Quintanilla
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas, United States of America
| | - Sinjini Nandy
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas, United States of America
| | - Jennifer S Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas, United States of America
| | - Joseph M Boll
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas, United States of America
| |
Collapse
|
2
|
Olea-Ozuna RJ, Campbell MJ, Quintanilla SY, Nandy S, Brodbelt JS, Boll JM. Alternative lipid synthesis in response to phosphate limitation promotes antibiotic tolerance in Gram-negative ESKAPE pathogens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.11.612458. [PMID: 39314339 PMCID: PMC11419095 DOI: 10.1101/2024.09.11.612458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The Gram-negative outer membrane protects bacterial cells from environmental toxins such as antibiotics. The outer membrane lipid bilayer is asymmetric; while glycerophospholipids compose the periplasmic facing leaflet, the surface layer is enriched with phosphate-containing lipopolysaccharides. The anionic phosphates that decorate the cell surface promote electrostatic interactions with cationic antimicrobial peptides such as colistin, allowing them to penetrate the bilayer, form pores, and lyse the cell. Colistin is prescribed as a last-line therapy to treat multidrug-resistant Gram-negative infections. Acinetobacter baumannii is an ESKAPE pathogen that rapidly develops resistance to antibiotics and persists for extended periods in the host or on abiotic surfaces. Survival in environmental stress such as phosphate scarcity, represents a clinically significant challenge for nosocomial pathogens. In the face of phosphate starvation, certain bacteria encode adaptive strategies, including the substitution of glycerophospholipids with phosphorus-free lipids. In bacteria, phosphatidylethanolamine, phosphatidylglycerol, and cardiolipin are conserved glycerophospholipids that can form lipid bilayers, particularly in the presence of other lipids. Here, we demonstrate that in response to phosphate limitation, conserved regulatory mechanisms induce alternative lipid production in A. baumannii. Specifically, phosphate limitation induces formation of three lipids, including amine-containing ornithine and lysine aminolipids. Mutations that inactivate aminolipid biosynthesis exhibit fitness defects relative to wild type in colistin growth and killing assays. Furthermore, we show that other Gram-negative ESKAPE pathogens accumulate aminolipids under phosphate limiting growth conditions, suggesting aminolipid biosynthesis may represent a broad strategy to overcome cationic antimicrobial peptide-mediated killing.
Collapse
Affiliation(s)
| | | | | | - Sinjini Nandy
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, USA
| | | | - Joseph M. Boll
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
3
|
Costa Catta-Preta CM, Cézar de Azevedo-Martins A, de Souza W, Motta MCM. Effect of the endoplasmic reticulum stressor tunicamycin in Angomonas deanei heat-shock protein expression and on the association with the endosymbiotic bacterium. Exp Cell Res 2022; 417:113162. [PMID: 35460679 DOI: 10.1016/j.yexcr.2022.113162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/04/2022] [Accepted: 04/16/2022] [Indexed: 01/01/2023]
Abstract
The endoplasmic reticulum (ER) presents unique properties to establishing bacterium symbiosis in eukaryotic cells since it synthesizes and glycosylates essential molecules like proteins and lipids. Tunicamycin (TM) is an antibiotic that inhibits the first step in the N-linked glycosylation in eukaryotes and has been used as an ER stress inducer to activate the Unfolded Protein Response (UPR). Mutualistic symbiosis in trypanosomatids is characterized by structural adaptations and intense metabolic exchanges, thus we investigated the effects of TM in the association between Angomonas deanei and its symbiotic bacterium, through ultrastructural and proteomic approaches. Cells treated with the inhibitor showed a decrease in proliferation, enlargement of the ER and Golgi cisternae and an increased distance between the symbiont and the ER. TM proved to be an important tool to better understand ER stress in trypanosomatids, since changes in protein composition were observed in the host protozoan, especially the expression of the Hsp90 chaperone. Furthermore, data obtained indicates the importance of the ER for the adaptation and maintenance of symbiotic associations between prokaryotes and eukaryotes, considering that this organelle has recognized importance in the biogenesis and division of cell structures.
Collapse
Affiliation(s)
- Carolina Moura Costa Catta-Preta
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21491-590, Rio de Janeiro, RJ, Brazil
| | - Allan Cézar de Azevedo-Martins
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21491-590, Rio de Janeiro, RJ, Brazil
| | - Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21491-590, Rio de Janeiro, RJ, Brazil; Centro Nacional de Biologia Estrutural e Bioimagem, RJ, Brazil
| | - Maria Cristina M Motta
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21491-590, Rio de Janeiro, RJ, Brazil; Centro Nacional de Biologia Estrutural e Bioimagem, RJ, Brazil.
| |
Collapse
|
4
|
de Azevedo-Martins AC, Ocaña K, de Souza W, de Vasconcelos ATR, Teixeira MMG, Camargo EP, Alves JMP, Motta MCM. The Importance of Glycerophospholipid Production to the Mutualist Symbiosis of Trypanosomatids. Pathogens 2021; 11:pathogens11010041. [PMID: 35055989 PMCID: PMC8779180 DOI: 10.3390/pathogens11010041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 12/12/2022] Open
Abstract
The symbiosis in trypanosomatids is a mutualistic relationship characterized by extensive metabolic exchanges between the bacterium and the protozoan. The symbiotic bacterium can complete host essential metabolic pathways, such as those for heme, amino acid, and vitamin production. Experimental assays indicate that the symbiont acquires phospholipids from the host trypanosomatid, especially phosphatidylcholine, which is often present in bacteria that have a close association with eukaryotic cells. In this work, an in-silico study was performed to find genes involved in the glycerophospholipid (GPL) production of Symbiont Harboring Trypanosomatids (SHTs) and their respective bacteria, also extending the search for trypanosomatids that naturally do not have symbionts. Results showed that most genes for GPL synthesis are only present in the SHT. The bacterium has an exclusive sequence related to phosphatidylglycerol production and contains genes for phosphatidic acid production, which may enhance SHT phosphatidic acid production. Phylogenetic data did not indicate gene transfers from the bacterium to the SHT nucleus, proposing that enzymes participating in GPL route have eukaryotic characteristics. Taken together, our data indicate that, differently from other metabolic pathways described so far, the symbiont contributes little to the production of GPLs and acquires most of these molecules from the SHT.
Collapse
Affiliation(s)
- Allan C. de Azevedo-Martins
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 20000-000, RJ, Brazil; (A.C.d.A.-M.); (W.d.S.)
| | - Kary Ocaña
- Laboratório Nacional de Computação Científica, Petropolis 25600-000, RJ, Brazil; (K.O.); (A.T.R.d.V.)
| | - Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 20000-000, RJ, Brazil; (A.C.d.A.-M.); (W.d.S.)
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Rio de Janeiro 20000-000, RJ, Brazil
| | | | - Marta M. G. Teixeira
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Sao Paulo 05508-000, SP, Brazil; (M.M.G.T.); (E.P.C.)
| | - Erney P. Camargo
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Sao Paulo 05508-000, SP, Brazil; (M.M.G.T.); (E.P.C.)
| | - João M. P. Alves
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Sao Paulo 05508-000, SP, Brazil; (M.M.G.T.); (E.P.C.)
- Correspondence: (J.M.P.A.); (M.C.M.M.)
| | - Maria Cristina M. Motta
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 20000-000, RJ, Brazil; (A.C.d.A.-M.); (W.d.S.)
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Rio de Janeiro 20000-000, RJ, Brazil
- Correspondence: (J.M.P.A.); (M.C.M.M.)
| |
Collapse
|
5
|
Geiger O, Sohlenkamp C, Vera-Cruz D, Medeot DB, Martínez-Aguilar L, Sahonero-Canavesi DX, Weidner S, Pühler A, López-Lara IM. ExoS/ChvI Two-Component Signal-Transduction System Activated in the Absence of Bacterial Phosphatidylcholine. FRONTIERS IN PLANT SCIENCE 2021; 12:678976. [PMID: 34367203 PMCID: PMC8343143 DOI: 10.3389/fpls.2021.678976] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Sinorhizobium meliloti contains the negatively charged phosphatidylglycerol and cardiolipin as well as the zwitterionic phosphatidylethanolamine (PE) and phosphatidylcholine (PC) as major membrane phospholipids. In previous studies we had isolated S. meliloti mutants that lack PE or PC. Although mutants deficient in PE are able to form nitrogen-fixing nodules on alfalfa host plants, mutants lacking PC cannot sustain development of any nodules on host roots. Transcript profiles of mutants unable to form PE or PC are distinct; they differ from each other and they are different from the wild type profile. For example, a PC-deficient mutant of S. meliloti shows an increase of transcripts that encode enzymes required for succinoglycan biosynthesis and a decrease of transcripts required for flagellum formation. Indeed, a PC-deficient mutant is unable to swim and overproduces succinoglycan. Some suppressor mutants, that regain swimming and form normal levels of succinoglycan, are altered in the ExoS sensor. Our findings suggest that the lack of PC in the sinorhizobial membrane activates the ExoS/ChvI two-component regulatory system. ExoS/ChvI constitute a molecular switch in S. meliloti for changing from a free-living to a symbiotic life style. The periplasmic repressor protein ExoR controls ExoS/ChvI function and it is thought that proteolytic ExoR degradation would relieve repression of ExoS/ChvI thereby switching on this system. However, as ExoR levels are similar in wild type, PC-deficient mutant and suppressor mutants, we propose that lack of PC in the bacterial membrane provokes directly a conformational change of the ExoS sensor and thereby activation of the ExoS/ChvI two-component system.
Collapse
Affiliation(s)
- Otto Geiger
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Christian Sohlenkamp
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Diana Vera-Cruz
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Daniela B. Medeot
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | | | | | - Stefan Weidner
- Institut für Genomforschung und Systembiologie, Centrum für Biotechnologie (CeBiTec), Universität Bielefeld, Bielefeld, Germany
| | - Alfred Pühler
- Institut für Genomforschung und Systembiologie, Centrum für Biotechnologie (CeBiTec), Universität Bielefeld, Bielefeld, Germany
| | - Isabel M. López-Lara
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
6
|
Phospholipid N-methyltransferases produce various methylated phosphatidylethanolamine derivatives in thermophilic bacteria. Appl Environ Microbiol 2021; 87:e0110521. [PMID: 34288711 DOI: 10.1128/aem.01105-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
One of the most common pathways for the biosynthesis of the phospholipid phosphatidylcholine (PC) in bacteria is the successive three-fold N-methylation of phosphatidylethanolamine (PE) catalyzed by phospholipid N-methyltransferases (Pmts). Pmts with different activities have been described in a number of mesophilic bacteria. In the present study, we identified and characterized the substrate and product spectrum of four Pmts from thermophilic bacteria. Three of these enzymes were purified in an active form. The Pmts from Melghirimyces thermohalophilus, Thermochromogena staphylospora and Thermobifida fusca produce monomethyl-PE (MMPE) and dimethyl-PE (DMPE). T. fusca encodes two Pmt candidates, one is mutationally inactivated and the other is responsible for the accumulation of large amounts of MMPE. The Pmt enzyme from Rubellimicrobium thermophilum catalyzes all three methylation reactions to synthesize PC. Moreover, we show that PE, previously reported to be absent in R. thermophilum, is in fact produced and serves as precursor for the methylation pathway. In an alternative route, the strain is able to produce PC by the PC synthase pathway when choline is available. The activity of all purified thermophilic Pmt enzymes was stimulated by anionic lipids suggesting membrane recruitment of these cytoplasmic proteins via electrostatic interactions. Our study provides novel insights into the functional characteristics of phospholipid N-methyltransferases in a previously unexplored set of thermophilic environmental bacteria. Importance In recent years, the presence of phosphatidylcholine (PC) in bacterial membranes has gained increasing attention, partly due to its critical role in the interaction with eukaryotic hosts. PC biosynthesis via a three-step methylation of phosphatidylethanolamine, catalyzed by phospholipid N-methyltransferases (Pmts), has been described in a range of mesophilic bacteria. Here, we expand our knowledge on bacterial PC formation by the identification, purification and characterization of Pmts from phylogenetically diverse thermophilic bacteria, and thereby provide insights into the functional characteristics of Pmt enzymes in thermophilic actinomycetes and proteobacteria.
Collapse
|
7
|
Dokwal D, Romsdahl TB, Kunz DA, Alonso AP, Dickstein R. Phosphorus deprivation affects composition and spatial distribution of membrane lipids in legume nodules. PLANT PHYSIOLOGY 2021; 185:1847-1859. [PMID: 33793933 PMCID: PMC8133537 DOI: 10.1093/plphys/kiaa115] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 12/13/2020] [Indexed: 05/12/2023]
Abstract
In legumes, symbiotic nitrogen (N) fixation (SNF) occurs in specialized organs called nodules after successful interactions between legume hosts and rhizobia. In a nodule, N-fixing rhizobia are surrounded by symbiosome membranes, through which the exchange of nutrients and ammonium occurs between bacteria and the host legume. Phosphorus (P) is an essential macronutrient, and N2-fixing legumes have a higher requirement for P than legumes grown on mineral N. As in the previous studies, in P deficiency, barrel medic (Medicago truncatula) plants had impaired SNF activity, reduced growth, and accumulated less phosphate in leaves, roots, and nodules compared with the plants grown in P sufficient conditions. Membrane lipids in M. truncatula tissues were assessed using electrospray ionization-mass spectrometry. Galactolipids were found to increase in P deficiency, with declines in phospholipids (PL), especially in leaves. Lower PL losses were found in roots and nodules. Subsequently, matrix-assisted laser desorption/ionization-mass spectrometry imaging was used to spatially map the distribution of the positively charged phosphatidylcholine (PC) species in nodules in both P-replete and P-deficient conditions. Our results reveal heterogeneous distribution of several PC species in nodules, with homogeneous distribution of other PC classes. In P poor conditions, some PC species distributions were observed to change. The results suggest that specific PC species may be differentially important in diverse nodule zones and cell types, and that membrane lipid remodeling during P stress is not uniform across the nodule.
Collapse
Affiliation(s)
- Dhiraj Dokwal
- Department of Biological Sciences, University of North Texas, Denton, Texas 76203 USA
- BioDiscovery Institute, University of North Texas, Denton, Texas 76203 USA
| | - Trevor B Romsdahl
- Department of Biological Sciences, University of North Texas, Denton, Texas 76203 USA
- BioDiscovery Institute, University of North Texas, Denton, Texas 76203 USA
| | - Daniel A Kunz
- Department of Biological Sciences, University of North Texas, Denton, Texas 76203 USA
| | - Ana Paula Alonso
- Department of Biological Sciences, University of North Texas, Denton, Texas 76203 USA
- BioDiscovery Institute, University of North Texas, Denton, Texas 76203 USA
| | - Rebecca Dickstein
- Department of Biological Sciences, University of North Texas, Denton, Texas 76203 USA
- BioDiscovery Institute, University of North Texas, Denton, Texas 76203 USA
- Author for communication:
| |
Collapse
|
8
|
Sahonero-Canavesi DX, Zavaleta-Pastor M, Martínez-Aguilar L, López-Lara IM, Geiger O. Defining Substrate Specificities for Lipase and Phospholipase Candidates. J Vis Exp 2016. [PMID: 27911408 DOI: 10.3791/54613] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Microorganisms produce a wide spectrum of (phospho)lipases that are secreted in order to make external substrates available for the organism. Alternatively, other (phospho)lipases may be physically associated with the producing organism causing a turnover of intrinsic lipids and frequently giving rise to a remodeling of the cellular membranes. Although potential (phospho)lipases can be predicted with a number of algorithms when the gene/protein sequence is available, experimental proof of the enzyme activities, substrate specificities, and potential physiological functions has frequently not been obtained. This manuscript describes the optimization of assay conditions for prospective (phospho)lipases with unknown substrate specificities and how to employ these optimized conditions in the search for the natural substrate of a respective (phospho)lipase. Using artificial chromogenic substrates, such as p-nitrophenyl derivatives, may help to detect a minor enzymatic activity for a predicted (phospho)lipase under standard conditions. Having encountered such a minor enzymatic activity, the distinct parameters of an enzyme assay can be varied in order to obtain a more efficient hydrolysis of the artificial substrate. After having determined the conditions under which an enzyme works well, a variety of potential natural substrates should be assayed for their degradation, a process that can be followed employing distinct chromatographic methods. The definition of substrate specificities for new enzymes, often provides hypotheses for a potential physiological role of these enzymes, which then can be tested experimentally. Following these guidelines, we were able to identify a phospholipase C (SMc00171) that degrades phosphatidylcholine to phosphocholine and diacylglycerol, in a crucial step for the remodeling of membranes in the bacterium Sinorhizobium meliloti upon phosphorus-limiting conditions of growth. For two predicted patatin-like phospholipases (SMc00930 and SMc01003) of the same organism, we could redefine their substrate specificities and clarify that SMc01003 is a diacylglycerol lipase.
Collapse
Affiliation(s)
| | | | | | | | - Otto Geiger
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México;
| |
Collapse
|
9
|
López G, Heredia R, Boeris P, Lucchesi G. Content of cardiolipin of the membrane and sensitivity to cationic surfactants in Pseudomonas putida. J Appl Microbiol 2016; 121:1004-14. [DOI: 10.1111/jam.13238] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 06/27/2016] [Accepted: 07/13/2016] [Indexed: 02/04/2023]
Affiliation(s)
- G.A. López
- Departamento de Biología Molecular; Facultad de Ciencias Exactas; Físico-Químicas y Naturales; Universidad Nacional de Río Cuarto; Río Cuarto Córdoba Argentina
| | - R.M. Heredia
- Departamento de Biología Molecular; Facultad de Ciencias Exactas; Físico-Químicas y Naturales; Universidad Nacional de Río Cuarto; Río Cuarto Córdoba Argentina
| | - P.S. Boeris
- Departamento de Biología Molecular; Facultad de Ciencias Exactas; Físico-Químicas y Naturales; Universidad Nacional de Río Cuarto; Río Cuarto Córdoba Argentina
| | - G.I. Lucchesi
- Departamento de Biología Molecular; Facultad de Ciencias Exactas; Físico-Químicas y Naturales; Universidad Nacional de Río Cuarto; Río Cuarto Córdoba Argentina
| |
Collapse
|
10
|
Abstract
Phosphatidylethanolamine methyltransferases are biosynthetic enzymes that catalyze the transfer of one or more methyl group(s) from S-adenosyl-L-methionine onto phosphatidylethanolamine, monomethyl-phosphatidylethanolamine, or dimethyl-phosphatidylethanolamine to give either monomethyl-phosphatidylethanolamine, dimethyl-phosphatidylethanolamine or phosphatidylcholine. These enzymes are ubiquitous in animal cells, fungi, and are also found in approximately 10% of bacteria. They fulfill various important functions in cell physiology beyond their direct role in lipid metabolism such as in insulin resistance, diabetes, atherosclerosis, cell growth, or virulence. The present manuscript reports on a simple cell-free enzymatic assay that measures the transfer of tritiated methyl group(s) from S-[Methyl-(3)H]adenosyl-L-methionine onto phosphatidylethanolamine using whole cell extracts as an enzyme source. The resulting methylated forms of phosphatidylethanolamine are hydrophobic and thus, can be separated from water soluble S-[Methyl-(3)H]adenosyl-L-methionine by organic extraction. This assay can potentially be applied to any other cell types and used to test inhibitors/drugs specific to a phosphatidylethanolamine methyltransferase of interest without the need to purify the enzyme.
Collapse
|
11
|
Aguilar C, Flores N, Riveros-McKay F, Sahonero-Canavesi D, Carmona SB, Geiger O, Escalante A, Bolívar F. Deletion of the 2-acyl-glycerophosphoethanolamine cycle improve glucose metabolism in Escherichia coli strains employed for overproduction of aromatic compounds. Microb Cell Fact 2015; 14:194. [PMID: 26627477 PMCID: PMC4666226 DOI: 10.1186/s12934-015-0382-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/11/2015] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND As a metabolic engineering tool, an adaptive laboratory evolution (ALE) experiment was performed to increase the specific growth rate (µ) in an Escherichia coli strain lacking PTS, originally engineered to increase the availability of intracellular phosphoenolpyruvate and redirect to the aromatic biosynthesis pathway. As result, several evolved strains increased their growth fitness on glucose as the only carbon source. Two of these clones isolated at 120 and 200 h during the experiment, increased their μ by 338 and 373 %, respectively, compared to the predecessor PB11 strain. The genome sequence and analysis of the genetic changes of these two strains (PB12 and PB13) allowed for the identification of a novel strategy to enhance carbon utilization to overcome the absence of the major glucose transport system. RESULTS Genome sequencing data of evolved strains revealed the deletion of chromosomal region of 10,328 pb and two punctual non-synonymous mutations in the dhaM and glpT genes, which occurred prior to their divergence during the early stages of the evolutionary process. Deleted genes related to increased fitness in the evolved strains are rppH, aas, lplT and galR. Furthermore, the loss of mutH, which was also lost during the deletion event, caused a 200-fold increase in the mutation rate. CONCLUSIONS During the ALE experiment, both PB12 and PB13 strains lost the galR and rppH genes, allowing the utilization of an alternative glucose transport system and allowed enhanced mRNA half-life of many genes involved in the glycolytic pathway resulting in an increment in the μ of these derivatives. Finally, we demonstrated the deletion of the aas-lplT operon, which codes for the main components of the phosphatidylethanolamine turnover metabolism increased the further fitness and glucose uptake in these evolved strains by stimulating the phospholipid degradation pathway. This is an alternative mechanism to its regeneration from 2-acyl-glycerophosphoethanolamine, whose utilization improved carbon metabolism likely by the elimination of a futile cycle under certain metabolic conditions. The origin and widespread occurrence of a mutated population during the ALE indicates a strong stress condition present in strains lacking PTS and the plasticity of this bacterium that allows it to overcome hostile conditions.
Collapse
Affiliation(s)
- César Aguilar
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), 62210, Cuernavaca, Morelos, Mexico.
| | - Noemí Flores
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), 62210, Cuernavaca, Morelos, Mexico.
| | - Fernando Riveros-McKay
- Winter Genomics, Manizales 906, Colonia Lindavista, Delegación Gustavo A. Madero, 07300, México D.F., México.
| | | | - Susy Beatriz Carmona
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), 62210, Cuernavaca, Morelos, Mexico.
| | - Otto Geiger
- Centro de Ciencias Genómicas, UNAM, Apdo. Postal 565-A, 62210, Cuernavaca, Morelos, Mexico.
| | - Adelfo Escalante
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), 62210, Cuernavaca, Morelos, Mexico.
| | - Francisco Bolívar
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), 62210, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
12
|
Escobedo-Hinojosa WI, Vences-Guzmán MÁ, Schubotz F, Sandoval-Calderón M, Summons RE, López-Lara IM, Geiger O, Sohlenkamp C. OlsG (Sinac_1600) Is an Ornithine Lipid N-Methyltransferase from the Planctomycete Singulisphaera acidiphila. J Biol Chem 2015; 290:15102-11. [PMID: 25925947 DOI: 10.1074/jbc.m115.639575] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Indexed: 11/06/2022] Open
Abstract
Ornithine lipids (OLs) are phosphorus-free membrane lipids widespread in bacteria but absent from archaea and eukaryotes. In addition to the unmodified OLs, a variety of OL derivatives hydroxylated in different structural positions has been reported. Recently, methylated derivatives of OLs were described in several planctomycetes isolated from a peat bog in Northern Russia, although the gene/enzyme responsible for the N-methylation of OL remained obscure. Here we identify and characterize the OL N-methyltransferase OlsG (Sinac_1600) from the planctomycete Singulisphaera acidiphila. When OlsG is co-expressed with the OL synthase OlsF in Escherichia coli, methylated OL derivatives are formed. An in vitro characterization shows that OlsG is responsible for the 3-fold methylation of the terminal δ-nitrogen of OL. Methylation is dependent on the presence of the detergent Triton X-100 and the methyldonor S-adenosylmethionine.
Collapse
Affiliation(s)
- Wendy Itzel Escobedo-Hinojosa
- From the Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos CP62210, Mexico and
| | - Miguel Ángel Vences-Guzmán
- From the Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos CP62210, Mexico and
| | - Florence Schubotz
- the Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02144
| | - Mario Sandoval-Calderón
- From the Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos CP62210, Mexico and
| | - Roger E Summons
- the Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02144
| | - Isabel María López-Lara
- From the Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos CP62210, Mexico and
| | - Otto Geiger
- From the Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos CP62210, Mexico and
| | - Christian Sohlenkamp
- From the Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos CP62210, Mexico and
| |
Collapse
|
13
|
Characterization of betaine aldehyde dehydrogenase (BetB) as an essential virulence factor of Brucella abortus. Vet Microbiol 2013; 168:131-40. [PMID: 24210811 DOI: 10.1016/j.vetmic.2013.10.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 10/04/2013] [Accepted: 10/13/2013] [Indexed: 11/23/2022]
Abstract
The pathogenic mechanisms of Brucellosis used to adapt to the harsh intracellular environment of the host cell are not fully understood. The present study investigated the in vitro and in vivo characteristics of B. abortus betaine aldehyde dehydrogenase (BetB) (Gene Bank ID: 006932) using a betB deletion mutant constructed from virulent B. abortus 544. In test under stress conditions, including osmotic- and acid stress-resistance, the betB mutant had a lower osmotic-resistance than B. abortus wild-type. In addition, the betB mutant showed higher internalization rates compared to the wild-type strain; however, it also displayed replication failures in HeLa cells and RAW 264.7 macrophages. During internalization, compared to the wild-type strain, the betB mutant was more adherent to the host surface and showed enhanced phosphorylation of protein kinases, two processes that promote phagocytic activity, in host cells. During intracellular trafficking, colocalization of B. abortus-containing phagosomes with LAMP-1 was elevated in betB mutant-infected cells compared to the wild-type cells. In mice, the betB mutant was predominantly cleared from spleens compared to the wild-type strain after 2 weeks post-infection, and the vaccination test with the live betB mutant showed effective protection against challenge infection with the virulent wild-type strain. These findings suggested that the B. abortus betB gene substantially affects the phagocytic pathway in human phagocytes and in host cells in mice. Furthermore, this study highlights the potential use of the B. abortus betB mutant as a live vaccine for the control of brucellosis.
Collapse
|
14
|
Geiger O, López-Lara IM, Sohlenkamp C. Phosphatidylcholine biosynthesis and function in bacteria. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:503-13. [PMID: 22922101 DOI: 10.1016/j.bbalip.2012.08.009] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 08/10/2012] [Accepted: 08/13/2012] [Indexed: 02/03/2023]
Abstract
Phosphatidylcholine (PC) is the major membrane-forming phospholipid in eukaryotes and is estimated to be present in about 15% of the domain Bacteria. Usually, PC can be synthesized in bacteria by either of two pathways, the phospholipid N-methylation (Pmt) pathway or the phosphatidylcholine synthase (Pcs) pathway. The three subsequent enzymatic methylations of phosphatidylethanolamine are performed by a single phospholipid N-methyltransferase in some bacteria whereas other bacteria possess multiple phospholipid N-methyltransferases each one performing one or several distinct methylation steps. Phosphatidylcholine synthase condenses choline directly with CDP-diacylglycerol to form CMP and PC. Like in eukaryotes, bacterial PC also functions as a biosynthetic intermediate during the formation of other biomolecules such as choline, diacylglycerol, or diacylglycerol-based phosphorus-free membrane lipids. Bacterial PC may serve as a specific recognition molecule but it affects the physicochemical properties of bacterial membranes as well. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism.
Collapse
Affiliation(s)
- Otto Geiger
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Apdo. Postal 565-A, Cuernavaca, Morelos, CP62210, Mexico.
| | | | | |
Collapse
|
15
|
Boeris PS, Lucchesi GI. The phosphatidylcholine synthase of Pseudomonas putida A ATCC 12633 is responsible for the synthesis of phosphatidylcholine, which acts as a temporary reservoir for Al3+. Microbiology (Reading) 2012; 158:1249-1257. [DOI: 10.1099/mic.0.054072-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Paola S. Boeris
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - Gloria I. Lucchesi
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| |
Collapse
|
16
|
Solís-Oviedo RL, Martínez-Morales F, Geiger O, Sohlenkamp C. Functional and topological analysis of phosphatidylcholine synthase from Sinorhizobium meliloti. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:573-81. [DOI: 10.1016/j.bbalip.2012.01.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 01/17/2012] [Accepted: 01/30/2012] [Indexed: 10/14/2022]
|
17
|
FadD is required for utilization of endogenous fatty acids released from membrane lipids. J Bacteriol 2011; 193:6295-304. [PMID: 21926226 DOI: 10.1128/jb.05450-11] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
FadD is an acyl coenzyme A (CoA) synthetase responsible for the activation of exogenous long-chain fatty acids (LCFA) into acyl-CoAs. Mutation of fadD in the symbiotic nitrogen-fixing bacterium Sinorhizobium meliloti promotes swarming motility and leads to defects in nodulation of alfalfa plants. In this study, we found that S. meliloti fadD mutants accumulated a mixture of free fatty acids during the stationary phase of growth. The composition of the free fatty acid pool and the results obtained after specific labeling of esterified fatty acids with a Δ5-desaturase (Δ5-Des) were in agreement with membrane phospholipids being the origin of the released fatty acids. Escherichia coli fadD mutants also accumulated free fatty acids released from membrane lipids in the stationary phase. This phenomenon did not occur in a mutant of E. coli with a deficient FadL fatty acid transporter, suggesting that the accumulation of fatty acids in fadD mutants occurs inside the cell. Our results indicate that, besides the activation of exogenous LCFA, in bacteria FadD plays a major role in the activation of endogenous fatty acids released from membrane lipids. Furthermore, expression analysis performed with S. meliloti revealed that a functional FadD is required for the upregulation of genes involved in fatty acid degradation and suggested that in the wild-type strain, the fatty acids released from membrane lipids are degraded by β-oxidation in the stationary phase of growth.
Collapse
|
18
|
González-Silva N, López-Lara IM, Reyes-Lamothe R, Taylor AM, Sumpton D, Thomas-Oates J, Geiger O. The dioxygenase-encoding olsD gene from Burkholderia cenocepacia causes the hydroxylation of the amide-linked fatty acyl moiety of ornithine-containing membrane lipids. Biochemistry 2011; 50:6396-408. [PMID: 21707055 DOI: 10.1021/bi200706v] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Burkholderia cenocepacia is an important opportunistic pathogen, and one of the most striking features of the Burkholderia genus is the collection of polar lipids present in its membrane, including phosphatidylethanolamine (PE) and ornithine-containing lipids (OLs), as well as the 2-hydroxylated derivatives of PE and OLs (2-OH-PE and 2-OH-OLs, respectively), which differ from the standard versions by virtue of the presence of a hydroxyl group at C2 (2-OH) of an esterified fatty acyl residue. Similarly, a lipid A-esterified myristoyl group from Salmonella typhimurium can have a 2-hydroxy modification that is due to the LpxO enzyme. We thus postulated that 2-hydroxylation of 2-OH-OLs might be catalyzed by a novel dioxygenase homologue of LpxO. In B. cenocepacia, we have now identified two open reading frames (BCAM1214 and BCAM2401) homologous to LpxO from S. typhimurium. The introduction of bcam2401 (designated olsD) into Sinorhizobium meliloti leads to the formation of one new lipid and in B. cenocepacia of two new lipids. Surprisingly, the lipid modifications on OLs due to OlsD occur on the amide-linked fatty acyl chain. This is the first report of a hydroxyl modification of OLs on the amide-linked fatty acyl moiety. Formation of hydroxylated OLs occurs only when the biosynthesis pathway for nonmodified standard OLs is intact. The hydroxyl modification of OLs on the amide-linked fatty acyl moiety occurs only under acid stress conditions. An assay has been developed for the OlsD dioxygenase, and an initial characterization of the enzyme is presented.
Collapse
Affiliation(s)
- Napoleón González-Silva
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Apdo. Postal 565-A, Cuernavaca, Morelos CP62251, Mexico
| | | | | | | | | | | | | |
Collapse
|
19
|
Aktas M, Wessel M, Hacker S, Klüsener S, Gleichenhagen J, Narberhaus F. Phosphatidylcholine biosynthesis and its significance in bacteria interacting with eukaryotic cells. Eur J Cell Biol 2010; 89:888-94. [PMID: 20656373 DOI: 10.1016/j.ejcb.2010.06.013] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Phosphatidylcholine (PC), a typical eukaryotic membrane phospholipid, is present in only about 10% of all bacterial species, in particular in bacteria interacting with eukaryotes. A number of studies revealed that PC plays a fundamental role in symbiotic and pathogenic microbe-host interactions. Agrobacterium tumefaciens mutants lacking PC are unable to elicit plant tumors. The human pathogens Brucella abortus and Legionella pneumophila require PC for full virulence. The plant symbionts Bradyrhizobium japonicum and Sinorhizobium meliloti depend on wild-type levels of PC to establish an efficient root nodule symbiosis. Two pathways for PC biosynthesis are known in bacteria, the methylation pathway and the phosphatidylcholine synthase (Pcs) pathway. The methylation pathway involves a three-step methylation of phosphatidylethanolamine by at least one phospholipid N-methyltransferase to yield phosphatidylcholine. In the Pcs pathway, choline is condensed directly with CDP-diacylglycerol to form PC. This review focuses on the biosynthetic pathways and the significance of PC in bacteria with an emphasis on plant-microbe interactions.
Collapse
Affiliation(s)
- Meriyem Aktas
- Ruhr-Universität Bochum, Lehrstuhl für Biologie der Mikroorganismen, Universitätsstrasse 150, NDEF 06/783, 44780 Bochum, Germany
| | | | | | | | | | | |
Collapse
|
20
|
Proteomic and transcriptomic characterization of a virulence-deficient phosphatidylcholine-negative Agrobacterium tumefaciens mutant. Mol Genet Genomics 2010; 283:575-89. [DOI: 10.1007/s00438-010-0542-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Accepted: 04/21/2010] [Indexed: 10/19/2022]
|
21
|
Medeot DB, Sohlenkamp C, Dardanelli MS, Geiger O, García de Lema M, López-Lara IM. Phosphatidylcholine levels of peanut-nodulatingBradyrhizobiumsp. SEMIA 6144 affect cell size and motility. FEMS Microbiol Lett 2010; 303:123-31. [DOI: 10.1111/j.1574-6968.2009.01873.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
22
|
Sandoval-Calderón M, Geiger O, Guan Z, Barona-Gómez F, Sohlenkamp C. A eukaryote-like cardiolipin synthase is present in Streptomyces coelicolor and in most actinobacteria. J Biol Chem 2009; 284:17383-90. [PMID: 19439403 DOI: 10.1074/jbc.m109.006072] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cardiolipin (CL) is an anionic membrane lipid present in bacteria, plants, and animals, but absent from archaea. It is generally thought that bacteria use an enzyme belonging to the phospholipase D superfamily as cardiolipin synthase (Cls) catalyzing a reversible phosphatidyl group transfer from one phosphatidylglycerol (PG) molecule to another PG to form CL and glycerol. In contrast, in eukaryotes a Cls of the CDP-alcohol phosphatidyltransferase superfamily uses cytidine diphosphate-diacylglycerol (CDP-DAG) as the donor of the phosphatidyl group, which is transferred to a molecule of PG to form CL. Searching the genome of the actinomycete Streptomyces coelicolor A3(2) we identified a gene coding for a putative Cls of the CDP-alcohol phosphatidyltransferase superfamily (Sco1389). Here we show that expression of Sco1389 in a CL-deficient Rhizobium etli mutant restores CL formation. In an in vitro assay Sco1389 condenses CDP-DAG with PG to form CL and therefore catalyzes the same reaction as eukaryotic cardiolipin synthases. This is the first time that a CDP-alcohol phosphatidyltransferase from bacteria is shown to be responsible for CL formation. The broad occurrence of putative orthologues of Sco1389 among the actinobacteria suggests that CL synthesis involving a eukaryotic type Cls is common in actinobacteria.
Collapse
Affiliation(s)
- Mario Sandoval-Calderón
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Apdo. Postal 565-A, Cuernavaca, Morelos CP62210, Mexico
| | | | | | | | | |
Collapse
|
23
|
Membrane Lipid Biosynthesis in Purple Bacteria. ACTA ACUST UNITED AC 2009. [DOI: 10.1007/978-1-4020-8815-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
24
|
Sinorhizobium meliloti mutants deficient in phosphatidylserine decarboxylase accumulate phosphatidylserine and are strongly affected during symbiosis with alfalfa. J Bacteriol 2008; 190:6846-56. [PMID: 18708506 DOI: 10.1128/jb.00610-08] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sinorhizobium meliloti contains phosphatidylglycerol, cardiolipin, phosphatidylcholine, and phosphatidylethanolamine (PE) as major membrane lipids. PE is formed in two steps. In the first step, phosphatidylserine synthase (Pss) condenses serine with CDP-diglyceride to form phosphatidylserine (PS), and in the second step, PS is decarboxylated by phosphatidylserine decarboxylase (Psd) to form PE. In this study we identified the sinorhizobial psd gene coding for Psd. A sinorhizobial mutant deficient in psd is unable to form PE but accumulates the anionic phospholipid PS. Properties of PE-deficient mutants lacking either Pss or Psd were compared with those of the S. meliloti wild type. Whereas both PE-deficient mutants grew in a wild-type-like manner on many complex media, they were unable to grow on minimal medium containing high phosphate concentrations. Surprisingly, the psd-deficient mutant could grow on minimal medium containing low concentrations of inorganic phosphate, while the pss-deficient mutant could not. Addition of choline to the minimal medium rescued growth of the pss-deficient mutant, CS111, to some extent but inhibited growth of the psd-deficient mutant, MAV01. When the two distinct PE-deficient mutants were analyzed for their ability to form a nitrogen-fixing root nodule symbiosis with their alfalfa host plant, they behaved strikingly differently. The Pss-deficient mutant, CS111, initiated nodule formation at about the same time point as the wild type but did form about 30% fewer nodules than the wild type. In contrast, the PS-accumulating mutant, MAV01, initiated nodule formation much later than the wild type and formed 90% fewer nodules than the wild type. The few nodules formed by MAV01 seemed to be almost devoid of bacteria and were unable to fix nitrogen. Leaves of alfalfa plants inoculated with the mutant MAV01 were yellowish, indicating that the plants were starved for nitrogen. Therefore, changes in lipid composition, including the accumulation of bacterial PS, prevent the establishment of a nitrogen-fixing root nodule symbiosis.
Collapse
|
25
|
Hacker S, Gödeke J, Lindemann A, Mesa S, Pessi G, Narberhaus F. Global consequences of phosphatidylcholine reduction in Bradyrhizobium japonicum. Mol Genet Genomics 2008; 280:59-72. [PMID: 18446372 DOI: 10.1007/s00438-008-0345-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Accepted: 04/15/2008] [Indexed: 12/26/2022]
Abstract
Phosphatidylcholine (PC) is the major phospholipid in eukaryotic membranes. In contrast, it is found in only a limited number of bacteria including members of the Rhizobiales. Here, PC is required for pathogenic and symbiotic plant-microbe interactions, as shown for Agrobacterium tumefaciens and Bradyrhizobium japonicum, respectively. Two different phospholipid N-methyltransferases, PmtA and PmtX1, convert phosphatidylethanolamine (PE) to PC by three consecutive methylation reactions in B. japonicum. PmtA mainly catalyzes the first methylation reaction converting PE to monomethyl PE, which then serves as substrate for PmtX1 performing the last two methylation reactions. Disruption of the pmtA gene results in a significantly reduced PC content causing a defect in symbiosis with the soybean host. A genome-wide survey for differentially expressed genes in the pmtA mutant with a custom-made Affymetrix gene chip revealed that PC reduction affects transcription of a strictly confined set of genes. Among the 11 up regulated genes were pmtX3 and pmtX4, which code for isoenzymes of PmtA. The expression of two typical two-component systems, a MarR-like regulator and two proteins of a RND-type (resistance nodulation cell division) efflux system were differentially expressed in the pmtA mutant. Our data suggests that a decrease in the PC content of B. japonicum membranes induces a rather specific transcriptional response involving three different transcriptional regulators all involved in the regulatory fine-tuning of a RND-type transport system.
Collapse
Affiliation(s)
- Stephanie Hacker
- Lehrstuhl für Biologie der Mikroorganismen, Ruhr-Universität Bochum, NDEF 06/783, 44780 Bochum, Germany
| | | | | | | | | | | |
Collapse
|
26
|
Conover GM, Martinez-Morales F, Heidtman MI, Luo ZQ, Tang M, Chen C, Geiger O, Isberg RR. Phosphatidylcholine synthesis is required for optimal function of Legionella pneumophila virulence determinants. Cell Microbiol 2007; 10:514-28. [PMID: 17979985 DOI: 10.1111/j.1462-5822.2007.01066.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The function of phosphatidylcholine (PC) in the bacterial cell envelope remains cryptic. We show here that productive interaction of the respiratory pathogen Legionella pneumophila with host cells requires bacterial PC. Synthesis of the lipid in L. pneumophila was shown to occur via either phospholipid N-methyltransferase (PmtA) or phosphatidylcholine synthase (PcsA), but the latter pathway was demonstrated to be of predominant importance. Loss of PC from the cell envelope caused lowered yields of L. pneumophila within macrophages as well as loss of high multiplicity cytotoxicity, while mutants defective in PC synthesis could be complemented either by reintroduction of PcsA or by overproduction of PmtA. The lowered yields and reduced cytotoxicity in mutants with defective PC biosynthesis were due to three related defects. First, there was a poorly functioning Dot/Icm apparatus, which delivers substrates required for intracellular growth into the cytosol of infected cells. Second, there was reduced bacterial binding to macrophages, possibly due to loss of PC or a PC derivative on the bacterium that is recognized by the host cell. Finally, strains lacking PC had low steady-state levels of flagellin protein, a deficit that had been previously associated with the phenotypes of lowered cytotoxicity and poor cellular adhesion.
Collapse
Affiliation(s)
- Gloria M Conover
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 150 Harrison Avenue, Boston, MA 02111, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Sohlenkamp C, Galindo-Lagunas KA, Guan Z, Vinuesa P, Robinson S, Thomas-Oates J, Raetz CRH, Geiger O. The lipid lysyl-phosphatidylglycerol is present in membranes of Rhizobium tropici CIAT899 and confers increased resistance to polymyxin B under acidic growth conditions. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:1421-1430. [PMID: 17977153 DOI: 10.1094/mpmi-20-11-1421] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Lysyl-phosphatidylglycerol (LPG) is a well-known membrane lipid in several gram-positive bacteria but is almost unheard of in gram-negative bacteria. In Staphylococcus aureus, the gene product of mprF is responsible for LPG formation. Low pH-inducible genes, termed IpiA, have been identified in the gram-negative alpha-proteobacteria Rhizobium tropici and Sinorhizobium medicae in screens for acid-sensitive mutants and they encode homologs of MprF. An analysis of the sequenced bacterial genomes reveals that genes coding for homologs of MprF from S. aureus are present in several classes of organisms throughout the bacterial kingdom. In this study, we show that the expression of lpiA from R. tropici in the heterologous hosts Escherichia coli and Sinorhizobium meliloti causes formation of LPG. A wild-type strain of R. tropici forms LPG (about 1% of the total lipids) when the cells are grown in minimal medium at pH 4.5 but not when grown in minimal medium at neutral pH or in complex tryptone yeast (TY) medium at either pH. LPG biosynthesis does not occur when lpiA is deleted and is restored upon complementation of lpiA-deficient mutants with a functional copy of the lpiA gene. When grown in the low-pH medium, lpiA-deficient rhizobial mutants are over four times more susceptible to the cationic peptide polymyxin B than the wild type.
Collapse
Affiliation(s)
- Christian Sohlenkamp
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Apdo. Postal 565-A, Cuernavaca, Morelos, CP62210, Mexico.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Rhodobacter capsulatus OlsA is a bifunctional enzyme active in both ornithine lipid and phosphatidic acid biosynthesis. J Bacteriol 2007; 189:8564-74. [PMID: 17921310 DOI: 10.1128/jb.01121-07] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Rhodobacter capsulatus genome contains three genes (olsA [plsC138], plsC316, and plsC3498) that are annotated as lysophosphatidic acid (1-acyl-sn-glycerol-3-phosphate) acyltransferase (AGPAT). Of these genes, olsA was previously shown to be an O-acyltransferase in the second step of ornithine lipid biosynthesis, which is important for optimal steady-state levels of c-type cytochromes (S. Aygun-Sunar, S. Mandaci, H.-G. Koch, I. V. J. Murray, H. Goldfine, and F. Daldal. Mol. Microbiol. 61:418-435, 2006). The roles of the remaining plsC316 and plsC3498 genes remained unknown. In this work, these genes were cloned, and chromosomal insertion-deletion mutations inactivating them were obtained to define their function. Characterization of these mutants indicated that, unlike the Escherichia coli plsC, neither plsC316 nor plsC3498 was essential in R. capsulatus. In contrast, no plsC316 olsA double mutant could be isolated, indicating that an intact copy of either olsA or plsC316 was required for R. capsulatus growth under the conditions tested. Compared to OlsA null mutants, PlsC316 null mutants contained ornithine lipid and had no c-type cytochrome-related phenotype. However, they exhibited slight growth impairment and highly altered total fatty acid and phospholipid profiles. Heterologous expression in an E. coli plsC(Ts) mutant of either R. capsulatus plsC316 or olsA gene products supported growth at a nonpermissive temperature, exhibited AGPAT activity in vitro, and restored phosphatidic acid biosynthesis. The more vigorous AGPAT activity displayed by PlsC316 suggested that plsC316 encodes the main AGPAT required for glycerophospholipid synthesis in R. capsulatus, while olsA acts as an alternative AGPAT that is specific for ornithine lipid synthesis. This study therefore revealed for the first time that some OlsA enzymes, like the enzyme of R. capsulatus, are bifunctional and involved in both membrane ornithine lipid and glycerophospholipid biosynthesis.
Collapse
|
29
|
Aygun-Sunar S, Mandaci S, Koch HG, Murray IVJ, Goldfine H, Daldal F. Ornithine lipid is required for optimal steady-state amounts of c-type cytochromes in Rhodobacter capsulatus. Mol Microbiol 2006; 61:418-35. [PMID: 16856942 DOI: 10.1111/j.1365-2958.2006.05253.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The c-type cytochromes are haemoproteins that are subunits or physiological partners of electron transport chain components, like the cytochrome bc(1) complex or the cbb(3)-type cytochrome c oxidase. Their haem moieties are covalently attached to the corresponding apocytochromes via a complex post-translational maturation process. During our studies of cytochrome biogenesis, we uncovered a novel class of mutants that are unable to produce ornithine lipid and that lack several c-type cytochromes. Molecular analyses of these mutants led us to the ornithine lipid biosynthesis genes of Rhodobacter capsulatus. Herein, we have characterized these mutants, and established the chemical structure of this non-phosphorus membrane lipid from R. capsulatus. Ornithine lipids are known to induce potent host immune responses, including B-lymphocyte mitogenicity, adjuvanticity and macrophage activation. Yet, despite their widespread occurrence in Eubacteria, and the diverse biological effects they elicit in mammals, their physiological role in bacterial cells remained hitherto poorly defined. Our findings now indicate that under certain bacterial growth conditions ornithine lipids are crucial for optimal steady-state amounts of some extracytoplasmic proteins, including several c-type cytochromes, and attribute them a novel and important biological function.
Collapse
Affiliation(s)
- Semra Aygun-Sunar
- Department of Biology, Plant Science Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
30
|
Reeve WG, Bräu L, Castelli J, Garau G, Sohlenkamp C, Geiger O, Dilworth MJ, Glenn AR, Howieson JG, Tiwari RP. The Sinorhizobium medicae WSM419 lpiA gene is transcriptionally activated by FsrR and required to enhance survival in lethal acid conditions. Microbiology (Reading) 2006; 152:3049-3059. [PMID: 17005985 DOI: 10.1099/mic.0.28764-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sinorhizobium medicae WR101 was identified as a mutant of WSM419 that contained a minitransposon-induced transcriptional gusA fusion activated at least 20-fold at pH 5.7. The expression of this fusion in moderately acid conditions was dependent on the calcium concentration; increasing the calcium concentration to enhance cell growth and survival in acid conditions decreased the expression of the fusion. A gene region containing the gusA fusion was sequenced, revealing five S. medicae genes: tcsA, tcrA, fsrR, lpiA and acvB. The gusA reporter in WR101 was fused to lpiA, which encodes a putative transmembrane protein also found in other Alphaproteobacteria such as Sinorhizobium meliloti, Rhizobium tropici and Agrobacterium tumefaciens. As LpiA has partial sequence similarity to the lysyl-phosphatidylglycerol (LPG) synthetase FmtC/MprF from Staphylococcus aureus, membrane lipid compositions of S. medicae strains were analysed. Cells cultured under neutral or acidic growth conditions did not induce any detectable LPG and therefore this lipid cannot be a major constituent of S. medicae membranes. Expression studies in S. medicae localized the acid-activated lpiA promoter within a 372 bp region upstream of the start codon. The acid-activated transcription of lpiA required the fused sensor–regulator product of the fsrR gene, because expression of lpiA was severely reduced in an S. medicae fsrR mutant. S. meliloti strain 1021 does not contain fsrR and acid-activated expression of the lpiA-gusA fusion did not occur in this species. Although acid-activated lpiA transcription was not required for cell growth, its expression was crucial in enhancing the viability of cells subsequently exposed to lethal acid (pH 4.5) conditions.
Collapse
Affiliation(s)
- Wayne G Reeve
- Centre for Rhizobium Studies, School of Biological Sciences and Biotechnology, Murdoch University, Murdoch, 6150, Western Australia
| | - Lambert Bräu
- Centre for Rhizobium Studies, School of Biological Sciences and Biotechnology, Murdoch University, Murdoch, 6150, Western Australia
| | - Joanne Castelli
- Department of Biochemistry and Molecular Biology, School of Biomedical and Chemical Sciences, University of Western Australia, Crawley, 6009, Western Australia
| | - Giovanni Garau
- Dipartimento di Scienze Ambientali Agrarie e Biotecnologie Agro-Alimentari (Di.S.A.A.B.A.), University of Sassari, 07100 Sassari, Italy
| | - Christian Sohlenkamp
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, CP62210, Mexico
| | - Otto Geiger
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, CP62210, Mexico
| | - Michael J Dilworth
- Centre for Rhizobium Studies, School of Biological Sciences and Biotechnology, Murdoch University, Murdoch, 6150, Western Australia
| | - Andrew R Glenn
- Office of the Pro Vice Chancellor (Research), University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - John G Howieson
- Centre for Rhizobium Studies, School of Biological Sciences and Biotechnology, Murdoch University, Murdoch, 6150, Western Australia
| | - Ravi P Tiwari
- Centre for Rhizobium Studies, School of Biological Sciences and Biotechnology, Murdoch University, Murdoch, 6150, Western Australia
| |
Collapse
|
31
|
Wessel M, Klüsener S, Gödeke J, Fritz C, Hacker S, Narberhaus F. Virulence ofAgrobacterium tumefaciensrequires phosphatidylcholine in the bacterial membrane. Mol Microbiol 2006; 62:906-15. [PMID: 17010159 DOI: 10.1111/j.1365-2958.2006.05425.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Phosphatidylcholine (PC, lecithin) has long been considered a solely eukaryotic membrane lipid. Only a minority of all bacteria is able to synthesize PC. The plant-transforming bacterium Agrobacterium tumefaciens encodes two potential PC forming enzymes, a phospholipid N-methyltransferase (PmtA) and a PC synthase (Pcs). We show that PC biosynthesis and tumour formation on Kalanchoë plants was impaired in the double mutant. The virulence defect was due to a complete lack of the type IV secretion machinery in the Agrobacterium PC mutant. Our results strongly suggest that PC in bacterial membranes is an important determinant for the establishment of host-microbe interactions.
Collapse
Affiliation(s)
- Mirja Wessel
- Lehrstuhl für Biologie der Mikroorganismen, Ruhr-Universität Bochum, Bochum, Germany
| | | | | | | | | | | |
Collapse
|
32
|
Comerci DJ, Altabe S, de Mendoza D, Ugalde RA. Brucella abortus synthesizes phosphatidylcholine from choline provided by the host. J Bacteriol 2006; 188:1929-34. [PMID: 16484204 PMCID: PMC1426538 DOI: 10.1128/jb.188.5.1929-1934.2006] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Brucella cell envelope is characterized by the presence of phosphatidylcholine (PC), a common phospholipid in eukaryotes that is rare in prokaryotes. Studies on the composition of Brucella abortus 2308 phospholipids revealed that the synthesis of PC depends on the presence of choline in the culture medium, suggesting that the methylation biosynthetic pathway is not functional. Phospholipid composition of pmtA and pcs mutants indicated that in Brucella, PC synthesis occurs exclusively via the phosphatidylcholine synthase pathway. Transformation of Escherichia coli with an expression vector containing the B. abortus pcs homologue was sufficient for PC synthesis upon induction with IPTG (isopropyl-beta-d-thiogalactopyranoside), while no PC formation was detected when bacteria were transformed with a vector containing pmtA. These findings imply that Brucella depends on choline provided by the host cell to form PC. We could not detect any obvious associated phenotype in the PC-deficient strain under vegetative or intracellular growth conditions in macrophages. However, the pcs mutant strain displays a reproducible virulence defect in mice, which suggests that PC is necessary to sustain a chronic infection process.
Collapse
Affiliation(s)
- Diego J Comerci
- Instituto de Investigaciones Biotecnológicas, Universidad de Gral. San Martín (IIB-UNSAM), Av. Gral. Paz 5445, INTI, Ed. 24, 1650 San Martín, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
33
|
Rojas-Jiménez K, Sohlenkamp C, Geiger O, Martínez-Romero E, Werner D, Vinuesa P. A ClC chloride channel homolog and ornithine-containing membrane lipids of Rhizobium tropici CIAT899 are involved in symbiotic efficiency and acid tolerance. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2005; 18:1175-85. [PMID: 16353552 DOI: 10.1094/mpmi-18-1175] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Rhizobium tropici CIAT899 is highly tolerant to several environmental stresses and is a good competitor for nodule occupancy of common bean plants in acid soils. Random transposon mutagenesis was performed to identify novel genes of this strain involved in symbiosis and stress tolerance. Here, we present a genetic analysis of the locus disrupted by the Tn5 insertion in mutant 899-PV9, which lead to the discovery of sycA, a homolog of the ClC family of chloride channels and Cl-/H+ exchange transporters. A nonpolar deletion in this gene caused serious deficiencies in nodule development, nodulation competitiveness, and N2 fixation on Phaseolus vulgaris plants, probably due to its reduced ability to invade plant cells and to form stable symbiosomes, as judged by electron transmission microscopy. A second gene (olsC), found downstream of sycA, is homologous to aspartyl/asparaginyl beta-hydroxylases and modifies two species of ornithine-containing lipids in vivo, presumably by hydroxylation at a still-unknown position. A mutant carrying a nonpolar deletion in olsC is symbiotically defective, whereas overexpressed OlsC in the complemented strain provokes an acid-sensitive phenotype. This is the first report of a ClC homolog being essential for the establishment of a fully developed N2-fixing root nodule symbiosis and of a putative beta-hydroxylase that modifies ornithine-containing membrane lipids of R. tropici CIAT899, which, in turn, are contributing to symbiotic performance and acid tolerance.
Collapse
Affiliation(s)
- Keilor Rojas-Jiménez
- FB Biologie der Philipps-Universität, FG Zellbiologie und Angewandte Botanik, Marburg, Germany
| | | | | | | | | | | |
Collapse
|
34
|
López-Lara IM, Gao JL, Soto MJ, Solares-Pérez A, Weissenmayer B, Sohlenkamp C, Verroios GP, Thomas-Oates J, Geiger O. Phosphorus-free membrane lipids of Sinorhizobium meliloti are not required for the symbiosis with alfalfa but contribute to increased cell yields under phosphorus-limiting conditions of growth. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2005; 18:973-82. [PMID: 16167767 DOI: 10.1094/mpmi-18-0973] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The microsymbiont of alfalfa, Sinorhizobium meliloti, possesses phosphatidylglycerol, cardiolipin, phosphatidylethanolamine, and phosphatidylcholine as major membrane phospholipids, when grown in the presence of sufficient accessible phosphorus sources. Under phosphate-limiting conditions of growth, S. meliloti replaces its phospholipids by membrane lipids that do not contain any phosphorus in their molecular structure and, in S. meliloti, these phosphorus-free membrane lipids are sulphoquinovosyl diacylglycerols (SL), ornithine-containing lipids (OL), and diacylglyceryl-N,N,N-trimethylhomoserines (DGTS). In earlier work, we demonstrated that neither SL nor OL are required for establishing a nitrogen-fixing root nodule symbiosis with alfalfa. We now report the identification of the two structural genes btaA and btaB from S. meliloti required for DGTS biosynthesis. When the sinorhizobial btaA and btaB genes are expressed in Escherichia coli, they cause the formation of DGTS in this latter organism. A btaA-deficient mutant of S. meliloti is unable to form DGTS but can form nitrogen-fixing root nodules on alfalfa, demonstrating that sinorhizobial DGTS is not required for establishing a successful symbiosis with the host plant. Even a triple mutant of S. meliloti, unable to form any of the phosphorus-free membrane lipids SL, OL, or DGTS is equally competitive for nodule occupancy as the wild type. Only under growth-limiting concentrations of phosphate in culture media did mutants that could form neither OL nor DGTS grow to lesser cell densities.
Collapse
Affiliation(s)
- Isabel M López-Lara
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Apdo. Postal 565-A, Cuernavaca, Morelos, CP62210, Mexico
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Gao JL, Weissenmayer B, Taylor AM, Thomas-Oates J, López-Lara IM, Geiger O. Identification of a gene required for the formation of lyso-ornithine lipid, an intermediate in the biosynthesis of ornithine-containing lipids. Mol Microbiol 2004; 53:1757-70. [PMID: 15341653 DOI: 10.1111/j.1365-2958.2004.04240.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Under phosphate-limiting conditions, some bacteria replace their membrane phospholipids by lipids not containing any phosphorus. One of these phosphorus-free lipids is an ornithine-containing lipid (OL) that is widespread among eubacteria. In earlier work, we had identified a gene (olsA) required for OL biosynthesis that probably encodes an O-acyltransferase using acyl-acyl carrier protein (acyl-AcpP) as an acyl donor and that converts lyso-ornithine lipid into OL. We now report on a second gene (olsB) required for OL biosynthesis that is needed for the incorporation of radiolabelled ornithine into OL. Overexpression of OlsB in an olsA-deficient mutant of Sinorhizobium (Rhizobium) meliloti leads to the transient accumulation of lyso-ornithine lipid, the biosynthetic intermediate of OL biosynthesis. Overexpression of OlsB in Escherichia coli is sufficient to cause the in vivo formation of lyso-ornithine lipid in this organism and is the cause for a 3-hydroxyacyl-AcpP-dependent acyltransferase activity forming lyso-ornithine lipid from ornithine. These results demonstrate that OlsB is required for the first step of OL biosynthesis, in which ornithine is N-acylated with a 3-hydroxy-fatty acyl residue in order to obtain lyso-ornithine lipid. OL formation in a wild-type S. meliloti is increased upon growth under phosphate-limiting conditions. Expression of OlsB from a broad host range vector leads to the constitutive formation of relatively high amounts of OL (12-14% of total membrane lipids) independently of whether strains are grown in the presence of low or high concentrations of phosphate, suggesting that in S. meliloti the formation of OlsB is usually limiting for the amount of OL formed in this organism. Open reading frames homologous to OlsA and OlsB were identified in many eubacteria and although in S. meliloti the olsB and olsA gene are 14 kb apart, in numerous other bacteria they form an operon.
Collapse
Affiliation(s)
- Jun-Lian Gao
- Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Apdo. Postal 565-A, Cuernavaca, Morelos, CP62210, Mexico
| | | | | | | | | | | |
Collapse
|
36
|
Sohlenkamp C, de Rudder KEE, Geiger O. Phosphatidylethanolamine is not essential for growth of Sinorhizobium meliloti on complex culture media. J Bacteriol 2004; 186:1667-77. [PMID: 14996797 PMCID: PMC355974 DOI: 10.1128/jb.186.6.1667-1677.2004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In addition to phosphatidylglycerol (PG), cardiolipin (CL), and phosphatidylethanolamine (PE), Sinorhizobium meliloti also possesses phosphatidylcholine (PC) as a major membrane lipid. The biosynthesis of PC in S. meliloti can occur via two different routes, either via the phospholipid N-methylation pathway, in which PE is methylated three times in order to obtain PC, or via the phosphatidylcholine synthase (Pcs) pathway, in which choline is condensed with CDP-diacylglycerol to obtain PC directly. Therefore, for S. meliloti, PC biosynthesis can occur via PE as an intermediate or via a pathway that is independent of PE, offering the opportunity to uncouple PC biosynthesis from PE biosynthesis. In this study, we investigated the first step of PE biosynthesis in S. meliloti catalyzed by phosphatidylserine synthase (PssA). A sinorhizobial mutant lacking PE was complemented with an S. meliloti gene bank, and the complementing DNA was sequenced. The gene coding for the sinorhizobial phosphatidylserine synthase was identified, and it belongs to the type II phosphatidylserine synthases. Inactivation of the sinorhizobial pssA gene leads to the inability to form PE, and such a mutant shows a greater requirement for bivalent cations than the wild type. A sinorhizobial PssA-deficient mutant possesses only PG, CL, and PC as major membrane lipids after growth on complex medium, but it grows nearly as well as the wild type under such conditions. On minimal medium, however, the PE-deficient mutant shows a drastic growth phenotype that can only partly be rescued by choline supplementation. Therefore, although choline permits Pcs-dependent PC formation in the mutant, it does not restore wild-type-like growth in minimal medium, suggesting that it is not only the lack of PC that leads to this drastic growth phenotype.
Collapse
Affiliation(s)
- Christian Sohlenkamp
- Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | | | | |
Collapse
|
37
|
Minder AC, De Rudder KEE, Narberhaus F, Fischer HM, Hennecke H, Geiger O. Phosphatidylcholine levels in Bradyrhizobium japonicum membranes are critical for an efficient symbiosis with the soybean host plant. Mol Microbiol 2004. [DOI: 10.1111/j.1365-2958.2001.02325.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
38
|
Martínez-Morales F, Schobert M, López-Lara IM, Geiger O. Pathways for phosphatidylcholine biosynthesis in bacteria. MICROBIOLOGY-SGM 2004; 149:3461-3471. [PMID: 14663079 DOI: 10.1099/mic.0.26522-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Phosphatidylcholine (PC) is the major membrane-forming phospholipid in eukaryotes with important structural and signalling functions. Although many prokaryotes lack PC, it can be found in significant amounts in membranes of rather diverse bacteria. Two pathways for PC biosynthesis are known in bacteria, the methylation pathway and the phosphatidylcholine synthase (PCS) pathway. In the methylation pathway, phosphatidylethanolamine is methylated three times to yield PC, in reactions catalysed by one or several phospholipid N-methyltransferases (PMTs). In the PCS pathway, choline is condensed directly with CDP-diacylglyceride to form PC in a reaction catalysed by PCS. Using cell-free extracts, it was demonstrated that Sinorhizobium meliloti, Agrobacterium tumefaciens, Rhizobium leguminosarum, Bradyrhizobium japonicum, Mesorhizobium loti and Legionella pneumophila have both PMT and PCS activities. In addition, Rhodobacter sphaeroides has PMT activity and Brucella melitensis, Pseudomonas aeruginosa and Borrelia burgdorferi have PCS activities. Genes from M. loti and L. pneumophila encoding a Pmt or a Pcs activity and the genes from P. aeruginosa and Borrelia burgdorferi responsible for Pcs activity have been identified. Based on these functional assignments and on genomic data, one might predict that if bacteria contain PC as a membrane lipid, they usually possess both bacterial pathways for PC biosynthesis. However, important pathogens such as Brucella melitensis, P. aeruginosa and Borrelia burgdorferi seem to be exceptional as they possess only the PCS pathway for PC formation.
Collapse
Affiliation(s)
- Fernando Martínez-Morales
- Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Apdo Postal 565-A, Cuernavaca, Morelos, CP62210, Mexico
| | - Max Schobert
- Technische Universität Braunschweig, Institut für Mikrobiologie, Spielmannstrasse 7, 38106 Braunschweig, Germany
| | - Isabel M López-Lara
- Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Apdo Postal 565-A, Cuernavaca, Morelos, CP62210, Mexico
| | - Otto Geiger
- Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Apdo Postal 565-A, Cuernavaca, Morelos, CP62210, Mexico
| |
Collapse
|
39
|
Winzer K, Hardie KR, Williams P. LuxS and autoinducer-2: their contribution to quorum sensing and metabolism in bacteria. ADVANCES IN APPLIED MICROBIOLOGY 2004; 53:291-396. [PMID: 14696323 DOI: 10.1016/s0065-2164(03)53009-x] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Klaus Winzer
- Institute of Infection, Immunity and Inflammation, Queen's Medical Centre, C-Floor, West Block, Nottingham, NG7 2UH, U.K
| | | | | |
Collapse
|
40
|
Dardanelli M, Angelini J, Fabra A. A calcium-dependent bacterial surface protein is involved in the attachment of rhizobia to peanut roots. Can J Microbiol 2003; 49:399-405. [PMID: 14569294 DOI: 10.1139/w03-054] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
As part of a project to characterize molecules involved in the crack-entry infection process leading to nodule development, a microscopic assay was used to visualize the attachment of cells of Bradyrhizobium sp. strains SEMIA 6144 and TAL 1000 (labelled by introducing a plasmid expressing constitutively the green fluorescent protein GFP-S65T) to Arachis hypogaea L. (peanut). Qualitative and quantitative results revealed that attachment was strongly dependent on the growth phase of the bacteria. Optimal attachment occurred when bacteria were at the late log or early stationary phase. Cell surface proteins from the Bradyrhizobium sp. strains inhibited the attachment when supplied prior to the attachment assay. Root incubation with a 14-kDa protein (eluted from sodium dodecyl sulphate - gel electrophoresis of the cell surface fraction) prior to the attachment assay resulted in a strong decrease of attachment. The adhesin appeared to be a calcium-binding protein, since cells treated with EDTA were found to be able to bind to adhesin-treated peanut roots. Since this protein has properties identical to those reported for rhicadhesin, we propose that this adhesin is also involved in the attachment process of rhizobia to root legumes that are infected by the crack-entry process.
Collapse
Affiliation(s)
- Marta Dardanelli
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Río Cuarto (Córdoba), Argentina
| | | | | |
Collapse
|
41
|
López-Lara IM, Sohlenkamp C, Geiger O. Membrane lipids in plant-associated bacteria: their biosyntheses and possible functions. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2003; 16:567-579. [PMID: 12848422 DOI: 10.1094/mpmi.2003.16.7.567] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Membrane lipids in most bacteria generally consist of the glycerophospholipids phosphatidylglycerol, cardiolipin, and phosphatidylethanolamine (PE). A subset of bacteria also possesses the methylated derivatives of PE, monomethylphosphatidylethanolamine, dimethylphosphatidylethanolamine, and phosphatidylcholine (PC). In Sinorhizobium meliloti, which can form a nitrogen-fixing root nodule symbiosis with Medicago spp., PC can be formed by two entirely different biosynthetic pathways, either the PE methylation pathway or the recently discovered PC synthase pathway. In the latter pathway, one of the building blocks for PC formation, choline, is obtained from the eukaryotic host. Under phosphorus-limiting conditions of growth, S. meliloti replaces its membrane phospholipids by membrane-forming lipids that do not contain phosphorus; namely, the sulfolipid sulfoquinovosyl diacylglycerol, ornithine-derived lipids, and diacylglyceryl-N,N,N-trimethylhomoserine. Although none of these phosphorus-free lipids is essential for growth in culture media rich in phosphorus or for the symbiotic interaction with the legume host, they are expected to have major roles under free-living conditions in environments poor in accessible phosphorus. In contrast, sinorhizobial mutants deficient in PC show severe growth defects and are completely unable to form nodules on their host plants. Even bradyrhizobial mutants with reduced PC biosynthesis can form only root nodules displaying reduced rates of nitrogen fixation. Therefore, in the cases of these microsymbionts, the ability to form sufficient bacterial PC is crucial for a successful interplay with their host plants.
Collapse
Affiliation(s)
- Isabel M López-Lara
- Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de Mexico, Apdo. Postal 565-A, Cuernavaca, Morelos, CP62210, México
| | | | | |
Collapse
|
42
|
Choma A, Komaniecka I. The polar lipid composition of Mesorhizobium ciceri. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1631:188-96. [PMID: 12633685 DOI: 10.1016/s1388-1981(03)00005-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The extractable lipid composition of Mesorhizobium ciceri strain HAMBI 1750 grown in a phosphate sufficient medium (79CA) is reported. Cardiolipin (CL-27% of total lipids), phosphatidylglycerol (PG-18%), phosphatidylethanolamine (PE-1%), phosphatidylcholine (PC-30%) and two methylated derivatives of PE, i.e. phosphatidyl-N, N-dimethylethanolamine (DMPE-1%) and phosphatidyl-N-monomethylethanolamine (MMPE-1%), were found to make up the phospholipids of the analysed bacteria. Nonphosphorus, ornithine-containing lipid (OL-10%) was also detected. Polar groups of phospholipids were predominantly acylated with cis-11,12-methyleneoctadecanoyl (lactobacillic) residues, whereas the ornithine lipid contained mainly 3-hexadecanoyloxy-11,12-methyleneoctadecanoic acid bound to the alpha-amino group.
Collapse
Affiliation(s)
- Adam Choma
- Department of General Microbiology, Maria Curie-Sklodowska University, 19 Akademicka Street, 20-033 Lublin, Poland.
| | | |
Collapse
|
43
|
Abstract
Phosphatidylcholine (PC) is the major membrane-forming phospholipid in eukaryotes and can be synthesized by either of two pathways, the methylation pathway or the CDP-choline pathway. Many prokaryotes lack PC, but it can be found in significant amounts in membranes of rather diverse bacteria and based on genomic data, we estimate that more than 10% of all bacteria possess PC. Enzymatic methylation of phosphatidylethanolamine via the methylation pathway was thought to be the only biosynthetic pathway to yield PC in bacteria. However, a choline-dependent pathway for PC biosynthesis has been discovered in Sinorhizobium meliloti. In this pathway, PC synthase, condenses choline directly with CDP-diacylglyceride to form PC in one step. A number of symbiotic (Rhizobium leguminosarum, Mesorhizobium loti) and pathogenic (Agrobacterium tumefaciens, Brucella melitensis, Pseudomonas aeruginosa, Borrelia burgdorferi and Legionella pneumophila) bacteria seem to possess the PC synthase pathway and we suggest that the respective eukaryotic host functions as the provider of choline for this pathway. Pathogens entering their hosts through epithelia (Streptococcus pneumoniae, Haemophilus influenzae) require phosphocholine substitutions on their cell surface components that are biosynthetically also derived from choline supplied by the host. However, the incorporation of choline in these latter cases proceeds via choline phosphate and CDP-choline as intermediates. The occurrence of two intermediates in prokaryotes usually found as intermediates in the eukaryotic CDP-choline pathway for PC biosynthesis raises the question whether some bacteria might form PC via a CDP-choline pathway.
Collapse
Affiliation(s)
- Christian Sohlenkamp
- Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Apdo Postal 565-A, Cuernavaca, Morelos, Mexico
| | | | | |
Collapse
|
44
|
Choma A, Komaniecka I. Analysis of phospholipids and ornithine-containing lipids from Mesorhizobium spp. Syst Appl Microbiol 2002; 25:326-31. [PMID: 12421070 DOI: 10.1078/0723-2020-00132] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Polar lipid compositions of seven strains belonging to the four species of the Mesorhizobium genus were described. The lipid patterns of Mesorhizobium strains were very similar. Only quantitative differences were observed. Diphosphatidylglycerol (DPG), phosphatidylglycerol (PG), phosphatidylethanolamine (PE), and phosphatidylcholine (PC) were found to be the major phospholipids of the analysed bacteria. In addition, two methylated derivatives of PE were observed: phosphatidyl-N,N-dimethylethanolamine (DMPE) and phosphatidyl-N-monomethylethanolamine (MMPE). Polar head groups of those phospholipids were predominately acylated with lactobacillic (19:0 cyclopropane) acid. Ornithine-containing lipid (OL) was also identified. 3-hydroxy fatty acids found in the lipid preparations were derived exclusively from the ornithine lipid. 3-hydroxylactobacillic was the main acyl residue amide linked to the ornithine.
Collapse
Affiliation(s)
- Adam Choma
- Department of General Microbiology, Maria Curie-Skłodowska University, Poland.
| | | |
Collapse
|
45
|
Wilderman PJ, Vasil AI, Martin WE, Murphy RC, Vasil ML. Pseudomonas aeruginosa synthesizes phosphatidylcholine by use of the phosphatidylcholine synthase pathway. J Bacteriol 2002; 184:4792-9. [PMID: 12169604 PMCID: PMC135270 DOI: 10.1128/jb.184.17.4792-4799.2002] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phosphatidylcholine (PC) is a ubiquitous membrane lipid in eukaryotes but has been found in only a limited number of prokaryotes. Both eukaryotes and prokaryotes synthesize PC by methylating phosphatidylethanolamine (PE) by use of a phospholipid methyltransferase (Pmt). Eukaryotes can synthesize PC by the activation of choline to form choline phosphate and then CDP-choline. The CDP-choline then condenses with diacylglycerol (DAG) to form PC. In contrast, prokaryotes condense choline directly with CDP-DAG by use of the enzyme PC synthase (Pcs). PmtA was the first enzyme identified in prokaryotes that catalyzes the synthesis of PC, and Pcs in Sinorhizobium meliloti was characterized. The completed release of the Pseudomonas aeruginosa PAO1 genomic sequence contains on open reading frame predicted to encode a protein that is highly homologous (35% identity, 54% similarity) to PmtA from Rhodobacter sphaeroides. Moreover, the P. aeruginosa PAO1 genome encodes a protein with significant homology (39% amino acid identity) to Pcs of S. meliloti. Both the pcs and pmtA homologues were cloned from PAO1, and homologous sequences were found in almost all of the P. aeruginosa strains examined. Although the pathway for synthesizing PC by use of Pcs is functional in P. aeruginosa, it does not appear that this organism uses the PmtA pathway for PC synthesis. We demonstrate that the PC synthesized by P. aeruginosa PAO1 localized to both the inner and outer membranes, where it is readily accessible to its periplasmic, PC-specific phospholipase D.
Collapse
Affiliation(s)
- Paula J Wilderman
- Department of Microbiology, University of Colorado Health Sciences Center, 4200 East Ninth Avenue, Denver, CO 80262, USA
| | | | | | | | | |
Collapse
|
46
|
Karnezis T, Fisher HC, Neumann GM, Stone BA, Stanisich VA. Cloning and characterization of the phosphatidylserine synthase gene of Agrobacterium sp. strain ATCC 31749 and effect of its inactivation on production of high-molecular-mass (1-->3)-beta-D-glucan (curdlan). J Bacteriol 2002; 184:4114-23. [PMID: 12107128 PMCID: PMC135195 DOI: 10.1128/jb.184.15.4114-4123.2002] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genes involved in the production of the extracellular (1-->3)-beta-glucan, curdlan, by Agrobacterium sp. strain ATCC 31749 were described previously (Stasinopoulos et al., Glycobiology 9:31-41, 1999). To identify additional curdlan-related genes whose protein products occur in the cell envelope, the transposon TnphoA was used as a specific genetic probe. One mutant was unable to produce high-molecular-mass curdlan when a previously uncharacterized gene, pss(AG), encoding a 30-kDa, membrane-associated phosphatidylserine synthase was disrupted. The membranes of the mutant lacked phosphatidylethanolamine (PE), whereas the phosphatidylcholine (PC) content was unchanged and that of both phosphatidylglycerol and cardiolipin was increased. In the mutant, the continued appearance of PC revealed that its production by this Agrobacterium strain is not solely dependent on PE in a pathway controlled by the Pss(AG) protein at its first step. Moreover, PC can be produced in a medium lacking choline. When the pss(AG)::TnphoA mutation was complemented by the intact pss(AG) gene, both the curdlan deficiency and the phospholipid profile were restored to wild-type, demonstrating a functional relationship between these two characteristics. The effect of the changed phospholipid profile could occur through an alteration in the overall charge distribution on the membrane or a specific requirement for PE for the folding into or maintenance of an active conformation of any or all of the structural proteins involved in curdlan production or transport.
Collapse
Affiliation(s)
- Tara Karnezis
- Department of Biochemistry, La Trobe University, Melbourne, Victoria 3086, Australia
| | | | | | | | | |
Collapse
|
47
|
Weissenmayer B, Gao JL, López-Lara IM, Geiger O. Identification of a gene required for the biosynthesis of ornithine-derived lipids. Mol Microbiol 2002; 45:721-33. [PMID: 12139618 DOI: 10.1046/j.1365-2958.2002.03043.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Phospholipids are the membrane-forming constituents in all living organisms. In addition to phosphorus-containing lipids, the membranes of numerous bacteria contain significant amounts of phosphorus-free polar lipids, often derived from amino acids. Although lipids derived from the amino acid ornithine are widespread among bacteria, their biosynthesis is unknown. Here, we describe the isolation of mutants of Sinorhizobium meliloti deficient in the biosynthesis of ornithine-derived lipids (OL). Complementation of such mutants with a sinorhi-zobial cosmid gene bank, subcloning of the complementing fragment and sequencing of the subclone led to the identification of a gene (olsA) coding for a presumptive acyltransferase. Amplification of this gene and its expression in OL-deficient mutant backgrounds of S. meliloti demonstrates that it is required for OL biosynthesis. An OL-deficient mutant of S. meliloti disrupted in olsA shows wild type-like growth behaviour and is capable of inducing nitrogen-fixing nodules on legume hosts. A lyso-ornithine lipid-dependent acyltransferase activity forming OL requires acyl-AcpP as the acyl donor and expression of the olsA gene.
Collapse
Affiliation(s)
- Barbara Weissenmayer
- Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Cuernavaca, Morelos
| | | | | | | |
Collapse
|
48
|
de Rudder KE, López-Lara IM, Geiger O. Inactivation of the gene for phospholipid N-methyltransferase in Sinorhizobium meliloti: phosphatidylcholine is required for normal growth. Mol Microbiol 2000; 37:763-72. [PMID: 10972799 DOI: 10.1046/j.1365-2958.2000.02032.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In phosphatidylcholine (PC)-containing prokaryotes, only the methylation pathway of PC biosynthesis was thought to occur. However, a second choline-dependent pathway for PC formation, the PC synthase (Pcs) pathway, exists in Sinorhizobium (Rhizobium) meliloti in which choline is condensed with CDP-diacylglyceride. Here, we characterize the methylation pathway of PC biosynthesis in S. meliloti. A mutant deficient in phospholipid N-methyltransferase (Pmt) was complemented with a S. meliloti gene bank and the complementing DNA was sequenced. A gene coding for a S-adenosylmethionine-dependent N-methyltransferase was identified as the sinorhizobial Pmt, which showed little similarity to the corresponding enzyme from Rhodobacter sphaeroides. Upon expression of the sinorhizobial Pmt, besides phosphatidylcholine, the methylated intermediates of the methylation pathway, monomethylphosphatidylethanolamine and dimethylphosphatidylethanolamine, are also formed. When Pmt-deficient mutants of S. meliloti are grown on minimal medium, they cannot form PC, and they grow significantly more slowly than the wild type. Growth of the Pmt-deficient mutant in the presence of choline allows for PC formation via the Pcs pathway and restores wild-type-like growth. Double knock-out mutants, deficient in Pmt and in Pcs, are unable to form PC and show reduced growth even in the presence of choline. These results suggest that PC is required for normal growth of S. meliloti.
Collapse
Affiliation(s)
- K E de Rudder
- Institute of Biotechnology, Technical University Berlin, Germany
| | | | | |
Collapse
|
49
|
Sohlenkamp C, de Rudder KE, Rohrs V, Lopez-Lara IM, Geiger O. Cloning and characterization of the gene for phosphatidylcholine synthase. J Biol Chem 2000; 275:18919-25. [PMID: 10858449 DOI: 10.1074/jbc.m000844200] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphatidylcholine (PC) is the major membrane-forming phospholipid in eukaryotes and can be synthesized by either of two pathways, the CDP-choline pathway or the methylation pathway. In prokaryotes only the methylation pathway was thought to occur. Recently, however, we could demonstrate (de Rudder, K. E. E., Sohlenkamp, C., and Geiger, O. (1999) J. Biol. Chem. 274, 20011-20016) that a second pathway for phosphatidylcholine biosynthesis exists in Sinorhizobium (Rhizobium) meliloti involving a novel enzymatic activity, phosphatidylcholine synthase, that condenses choline and CDP-diacylglyceride in one step to form PC and CMP. Using a colony autoradiography method we have isolated mutants of S. meliloti deficient in phosphatidylcholine synthase and which are no longer able to incorporate radiolabeled choline into PC. Complementation of such mutants with a sinorhizobial cosmid gene bank, subcloning of the complementing fragment, and sequencing of the subclone led to the identification of a gene coding for a presumptive CDP-alcohol phosphatidyltransferase. Amplification of this gene and its expression in Escherichia coli demonstrates that it codes for phosphatidylcholine synthase. Genomes of some pathogens (Pseudomonas aeruginosa and Borrelia burgdorferi) contain genes similar to the sinorhizobial gene (pcs) for phosphatidylcholine synthase. Although pcs-deficient S. meliloti knock-out mutants show wild type-like growth and lipid composition, they are unable to perform rapid PC biosynthesis that normally is achieved via the phosphatidylcholine synthase pathway in S. meliloti wild type.
Collapse
Affiliation(s)
- C Sohlenkamp
- Institute of Biotechnology, Technical University of Berlin, Seestrasse 13, D-13353 Berlin, Germany
| | | | | | | | | |
Collapse
|
50
|
Weissenmayer B, Geiger O, Benning C. Disruption of a gene essential for sulfoquinovosyldiacylglycerol biosynthesis in Sinorhizobium meliloti has no detectable effect on root nodule symbiosis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2000; 13:666-672. [PMID: 10830266 DOI: 10.1094/mpmi.2000.13.6.666] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The sulfolipid sulfoquinovosyldiacylglycerol is commonly found in the thylakoid membranes of photosynthetic bacteria and plants. While there is a good correlation between the occurrence of sulfolipid and photosynthesis, a number of exceptions are known. Most recently, sulfoquinovosyldiacylglycerol was discovered in the non-photosynthetic, root nodule-forming bacterium Sinorhizobium meliloti. This discovery raised the questions of the phylogenetic origin of genes essential for the biosynthesis of this lipid in S. meliloti and of a function of sulfolipid in root nodule symbiosis. To begin to answer these questions, we isolated and inactivated the sqdB gene of S. meliloti. This gene and two other genes located directly 3' of sqdB are highly similar to the sqdB, sqdC, and sqdD genes known to be essential for sulfolipid biosynthesis in the photosynthetic, purple bacterium Rhodobacter sphaeroides. This observation confirms the close phylogenetic kinship between these two species. Furthermore, the reduced similarity of sqdB to the plant ortholog SQD1 of Arabidopsis thaliana does not support a previous sqd gene transfer from the plant as a consequence of close symbiosis. A sulfolipid-deficient mutant of S. meliloti disrupted in sqdB is capable of inducing functional nodules and does not show an obvious disadvantage under different laboratory culture conditions. Thus far, no specific function can be assigned to bacterial sulfolipid, in either nodule-associated or free-living cells. S. meliloti contains a rich set of polar membrane lipids some of which, including sulfolipid, may become critical only under growth conditions that still need to be discovered.
Collapse
Affiliation(s)
- B Weissenmayer
- Institute of Biotechnology, Technical University, Berlin, Germany
| | | | | |
Collapse
|