1
|
Abstract
Environments inhabited by Enterobacteriaceae are diverse and often stressful. This is particularly true for Escherichia coli and Salmonella during host association in the gastrointestinal systems of animals. There, E. coli and Salmonella must survive exposure to various antimicrobial compounds produced or ingested by their host. A myriad of changes to cellular physiology and metabolism are required to achieve this feat. A central regulatory network responsible for sensing and responding to intracellular chemical stressors like antibiotics are the Mar, Sox, and Rob systems found throughout the Enterobacteriaceae. Each of these distinct regulatory networks controls expression of an overlapping set of downstream genes whose collective effects result in increased resistance to a wide array of antimicrobial compounds. This collection of genes is known as the mar-sox-rob regulon. This review will provide an overview of the mar-sox-rob regulon and molecular architecture of the Mar, Sox, and Rob systems.
Collapse
Affiliation(s)
- Lon M. Chubiz
- Department of Biology, University of Missouri–St. Louis, St. Louis, Missouri, USA
- Biochemistry and Biotechnology Program, University of Missouri–St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
2
|
M S, N RP, Rajendrasozhan S. Bacterial redox response factors in the management of environmental oxidative stress. World J Microbiol Biotechnol 2022; 39:11. [PMID: 36369499 DOI: 10.1007/s11274-022-03456-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022]
Abstract
Bacteria evolved to survive in the available environmental chemosphere via several cellular mechanisms. A rich pool of antioxidants and stress regulators plays a significant role in the survival of bacteria in unfavorable environmental conditions. Most of the microbes exhibit resistant phenomena in toxic environment niches. Naturally, bacteria possess efficient thioredoxin reductase, glutaredoxin, and peroxiredoxin redox systems to handle environmental oxidative stress. Further, an array of transcriptional regulators senses the oxidative stress conditions. Transcription regulators, such as OxyR, SoxRS, PerR, UspA, SsrB, MarA, OhrR, SarZ, etc., sense and transduce bacterial oxidative stress responses. The redox-sensitive transcription regulators continuously recycle the utilized antioxidant enzymes during oxidative stress. These regulators promote the expression of antioxidant enzymes such as superoxide dismutase, catalase, and peroxides that overcome oxidative insults. Therefore, the transcriptional regulations maintain steady-state activities of antioxidant enzymes representing the resistance against host cell/environmental oxidative insults. Further, the redox system provides reducing equivalents to synthesize biomolecules, thereby contributing to cellular repair mechanisms. The inactive transcriptional regulators in the undisturbed cells are activated by oxidative stress. The oxidized transcriptional regulators modulate the expression of antioxidant and cellular repair enzymes to survive in extreme environmental conditions. Therefore, targeting these antioxidant systems and response regulators could alter cellular redox homeostasis. This review presents the mechanisms of different redox systems that favor bacterial survival in extreme environmental oxidative stress conditions.
Collapse
Affiliation(s)
- Sudharsan M
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Chidambaram, Tamil Nadu, 608 002, India
| | - Rajendra Prasad N
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Chidambaram, Tamil Nadu, 608 002, India.
| | | |
Collapse
|
3
|
Mokrzan EM, Ahearn CP, Buzzo JR, Novotny LA, Zhang Y, Goodman SD, Bakaletz LO. Nontypeable Haemophilus influenzae newly released (NRel) from biofilms by antibody-mediated dispersal versus antibody-mediated disruption are phenotypically distinct. Biofilm 2020; 2:100039. [PMID: 33447823 PMCID: PMC7798465 DOI: 10.1016/j.bioflm.2020.100039] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/02/2020] [Accepted: 11/12/2020] [Indexed: 02/08/2023] Open
Abstract
Biofilms contribute significantly to the chronicity and recurrence of bacterial diseases due to the fact that biofilm-resident bacteria are highly recalcitrant to killing by host immune effectors and antibiotics. Thus, antibody-mediated release of bacteria from biofilm residence into the surrounding milieu supports a powerful strategy to resolve otherwise difficult-to-treat biofilm-associated diseases. In our prior work, we revealed that antibodies directed against two unique determinants of nontypeable Haemophilus influenzae (NTHI) [e.g. the Type IV pilus (T4P) or a bacterial DNABII DNA-binding protein, a species-independent target that provides structural integrity to bacterial biofilms] release biofilm-resident bacteria via discrete mechanisms. Herein, we now show that the phenotype of the resultant newly released (or NRel) NTHI is dependent upon the specific mechanism of release. We used flow cytometry, proteomic profiles, and targeted transcriptomics to demonstrate that the two NRel populations were significantly different not only from planktonically grown NTHI, but importantly, from each other despite genetic identity. Moreover, each NRel population had a distinct, significantly increased susceptibility to killing by either a sulfonamide or β-lactam antibiotic compared to planktonic NTHI, an observation consistent with their individual proteomes and further supported by relative differences in targeted gene expression. The distinct phenotypes of NTHI released from biofilms by antibodies directed against specific epitopes of T4P or DNABII binding proteins provide new opportunities to develop targeted therapeutic strategies for biofilm eradication and disease resolution.
Collapse
Affiliation(s)
- Elaine M Mokrzan
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Christian P Ahearn
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - John R Buzzo
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Laura A Novotny
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Yan Zhang
- Department of Biomedical Informatics, The Ohio State University College of Medicine, Columbus, OH, USA.,The Ohio State University Comprehensive Cancer Center (OSUCCC - James), Columbus, OH, USA
| | - Steven D Goodman
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Lauren O Bakaletz
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| |
Collapse
|
4
|
Ferrand A, Vergalli J, Pagès JM, Davin-Regli A. An Intertwined Network of Regulation Controls Membrane Permeability Including Drug Influx and Efflux in Enterobacteriaceae. Microorganisms 2020; 8:E833. [PMID: 32492979 PMCID: PMC7355843 DOI: 10.3390/microorganisms8060833] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 05/29/2020] [Accepted: 05/31/2020] [Indexed: 12/19/2022] Open
Abstract
The transport of small molecules across membranes is a pivotal step for controlling the drug concentration into the bacterial cell and it efficiently contributes to the antibiotic susceptibility in Enterobacteriaceae. Two types of membrane transports, passive and active, usually represented by porins and efflux pumps, are involved in this process. Importantly, the expression of these transporters and channels are modulated by an armamentarium of tangled regulatory systems. Among them, Helix-turn-Helix (HTH) family regulators (including the AraC/XylS family) and the two-component systems (TCS) play a key role in bacterial adaptation to environmental stresses and can manage a decrease of porin expression associated with an increase of efflux transporters expression. In the present review, we highlight some recent genetic and functional studies that have substantially contributed to our better understanding of the sophisticated mechanisms controlling the transport of small solutes (antibiotics) across the membrane of Enterobacteriaceae. This information is discussed, taking into account the worrying context of clinical antibiotic resistance and fitness of bacterial pathogens. The localization and relevance of mutations identified in the respective regulation cascades in clinical resistant strains are discussed. The possible way to bypass the membrane/transport barriers is described in the perspective of developing new therapeutic targets to combat bacterial resistance.
Collapse
Affiliation(s)
| | | | | | - Anne Davin-Regli
- UMR_MD1, U-1261, Aix-Marseille University, INSERM, SSA, IRBA, MCT, Faculté de Pharmacie, 27 Bd Jean Moulin, 13385 Marseille CEDEX 05, France; (A.F.); (J.V.); (J.-M.P.)
| |
Collapse
|
5
|
Abstract
The transport of small molecules across membranes is essential for the import of nutrients and other energy sources into the cell and, for the export of waste and other potentially harmful byproducts out of the cell. While hydrophobic molecules are permeable to membranes, ions and other small polar molecules require transport via specialized membrane transport proteins . The two major classes of membrane transport proteins are transporters and channels. With our focus here on porins-major class of non-specific diffusion channel proteins , we will highlight some recent structural biology reports and functional assays that have substantially contributed to our understanding of the mechanism that mediates uptake of small molecules, including antibiotics, across the outer membrane of Enterobacteriaceae . We will also review advances in the regulation of porin expression and porin biogenesis and discuss these pathways as new therapeutic targets.
Collapse
Affiliation(s)
- Muriel Masi
- UMR_MD1, Inserm U1261, IRBA, Membranes et Cibles Thérapeutiques, Facultés de Médecine et de Pharmacie, Aix-Marseille Université, Marseille, France
| | | | - Jean-Marie Pagès
- UMR_MD1, Inserm U1261, IRBA, Membranes et Cibles Thérapeutiques, Facultés de Médecine et de Pharmacie, Aix-Marseille Université, Marseille, France.
| |
Collapse
|
6
|
Systematic approach for dissecting the molecular mechanisms of transcriptional regulation in bacteria. Proc Natl Acad Sci U S A 2018; 115:E4796-E4805. [PMID: 29728462 PMCID: PMC6003448 DOI: 10.1073/pnas.1722055115] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Organisms must constantly make regulatory decisions in response to a change in cellular state or environment. However, while the catalog of genomes expands rapidly, we remain ignorant about how the genes in these genomes are regulated. Here, we show how a massively parallel reporter assay, Sort-Seq, and information-theoretic modeling can be used to identify regulatory sequences. We then use chromatography and mass spectrometry to identify the regulatory proteins that bind these sequences. The approach results in quantitative base pair-resolution models of promoter mechanism and was shown in both well-characterized and unannotated promoters in Escherichia coli. Given the generality of the approach, it opens up the possibility of quantitatively dissecting the mechanisms of promoter function in a wide range of bacteria. Gene regulation is one of the most ubiquitous processes in biology. However, while the catalog of bacterial genomes continues to expand rapidly, we remain ignorant about how almost all of the genes in these genomes are regulated. At present, characterizing the molecular mechanisms by which individual regulatory sequences operate requires focused efforts using low-throughput methods. Here, we take a first step toward multipromoter dissection and show how a combination of massively parallel reporter assays, mass spectrometry, and information-theoretic modeling can be used to dissect multiple bacterial promoters in a systematic way. We show this approach on both well-studied and previously uncharacterized promoters in the enteric bacterium Escherichia coli. In all cases, we recover nucleotide-resolution models of promoter mechanism. For some promoters, including previously unannotated ones, the approach allowed us to further extract quantitative biophysical models describing input–output relationships. Given the generality of the approach presented here, it opens up the possibility of quantitatively dissecting the mechanisms of promoter function in E. coli and a wide range of other bacteria.
Collapse
|
7
|
Weston N, Sharma P, Ricci V, Piddock LJV. Regulation of the AcrAB-TolC efflux pump in Enterobacteriaceae. Res Microbiol 2017; 169:425-431. [PMID: 29128373 DOI: 10.1016/j.resmic.2017.10.005] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/16/2017] [Accepted: 10/31/2017] [Indexed: 11/18/2022]
Abstract
Bacterial multidrug efflux systems are a major mechanism of antimicrobial resistance and are fundamental to the physiology of Gram-negative bacteria. The resistance-nodulation-division (RND) family of efflux pumps is the most clinically significant, as it is associated with multidrug resistance. Expression of efflux systems is subject to multiple levels of regulation, involving local and global transcriptional regulation as well as post-transcriptional and post-translational regulation. The best-characterised RND system is AcrAB-TolC, which is present in Enterobacteriaceae. This review describes the current knowledge and new data about the regulation of the acrAB and tolC genes in Escherichia coli and Salmonella enterica.
Collapse
Affiliation(s)
- Natasha Weston
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Prateek Sharma
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Vito Ricci
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Laura J V Piddock
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, United Kingdom.
| |
Collapse
|
8
|
Jain K, Saini S. MarRA, SoxSR, and Rob encode a signal dependent regulatory network in Escherichia coli. MOLECULAR BIOSYSTEMS 2017; 12:1901-12. [PMID: 27098660 DOI: 10.1039/c6mb00263c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
When exposed to low concentrations of toxic chemicals, bacteria modulate the expression of a number of cellular processes. Typically, these processes include those related to porin production, dismutases, and metabolic fluxes. In Escherichia coli (E. coli), the expression of these systems is largely controlled by three homologous transcriptional regulators: MarA, SoxS, and Rob. Each of the three regulators responds to distinct chemical signals (salicylate for MarA; paraquat for SoxS; and bipyridyl for Rob) and controls the expression of an overlapping set of downstream targets. In addition, the three systems autoregulate their own expression, and cross-regulate each other's expression. Specifically, MarA is known to activate SoxS expression, and Rob is known to activate MarA expression. In addition, a number of conflicting regulatory interactions are known to exist between the three loci. Thus, the three systems encode a complex regulatory topology with multiple feedback loops, the precise nature of whose interactions or their significance in cellular physiology is not well understood currently. In this work, we focus on understanding the details of this crosstalk between the Mar-Sox-Rob systems in E. coli, and the resulting control and dynamics of the expression of cellular processes by studying gene expression at the population level and at single-cell resolution in wild type and mutants. Our results indicate that the regulatory architecture between MarA, SoxS, and Rob is dependent on the signal (inducer) present in the environment. The regulators, in response to an inducer, form a Feed Forward Loop (FFL), which leads to faster and stronger induction of target genes in the cell, consequently resulting in better cellular growth. Through the FFL, the cell is able to integrate qualitatively different signals in the network, and consequently, control cellular physiology. In addition, we present two intriguing dynamic features of the Mar-Sox-Rob regulon. First, in the presence of salicylate, the activation of target genes via MarA and Rob, at single-cell resolution, is qualitatively different. Second, we report the synergistic activation of target and Mar/Sox systems in the presence of both salicylate and paraquat. These results strongly indicate that there exists a complex control of gene regulation in the Mar-Sox-Rob regulon. Mechanistic details of this control are likely quite complex, and may involve additional regulators.
Collapse
Affiliation(s)
- Kirti Jain
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai - 400 076, India.
| | - Supreet Saini
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai - 400 076, India.
| |
Collapse
|
9
|
Liu D, Albergante L, Newman TJ. Universal attenuators and their interactions with feedback loops in gene regulatory networks. Nucleic Acids Res 2017; 45:7078-7093. [PMID: 28575450 PMCID: PMC5499555 DOI: 10.1093/nar/gkx485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/29/2017] [Indexed: 12/18/2022] Open
Abstract
Using a combination of mathematical modelling, statistical simulation and large-scale data analysis we study the properties of linear regulatory chains (LRCs) within gene regulatory networks (GRNs). Our modelling indicates that downstream genes embedded within LRCs are highly insulated from the variation in expression of upstream genes, and thus LRCs act as attenuators. This observation implies a progressively weaker functionality of LRCs as their length increases. When analyzing the preponderance of LRCs in the GRNs of Escherichia coli K12 and several other organisms, we find that very long LRCs are essentially absent. In both E. coli and M. tuberculosis we find that four-gene LRCs are intimately linked to identical feedback loops that are involved in potentially chaotic stress response, indicating that the dynamics of these potentially destabilising motifs are strongly restrained under homeostatic conditions. The same relationship is observed in a human cancer cell line (K562), and we postulate that four-gene LRCs act as ‘universal attenuators’. These findings suggest a role for long LRCs in dampening variation in gene expression, thereby protecting cell identity, and in controlling dramatic shifts in cell-wide gene expression through inhibiting chaos-generating motifs.
Collapse
Affiliation(s)
- Dianbo Liu
- School of Life sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK.,The Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA.,Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, MA 02139, USA
| | - Luca Albergante
- School of Life sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK.,Institut Curie, PSL Research University, Mines Paris Tech, Inserm, U900, F-75005 Paris, France
| | - Timothy J Newman
- School of Life sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| |
Collapse
|
10
|
Rodrigo G, Bajic D, Elola I, Poyatos JF. Antagonistic autoregulation speeds up a homogeneous response in Escherichia coli. Sci Rep 2016; 6:36196. [PMID: 27796341 PMCID: PMC5086920 DOI: 10.1038/srep36196] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 10/10/2016] [Indexed: 01/15/2023] Open
Abstract
By integrating positive and negative feedback loops, biological systems establish intricate gene expression patterns linked to multistability, pulsing, and oscillations. This depends on the specific characteristics of each interlinked feedback, and thus one would expect additional expression programs to be found. Here, we investigate one such program associated with an antagonistic positive and negative transcriptional autoregulatory motif derived from the multiple antibiotic resistance (mar) system of Escherichia coli. We studied the dynamics of the system by combining a predictive mathematical model with high-resolution experimental measures of the response both at the population and single-cell level. We show that in this motif the weak positive autoregulation does not slow down but rather enhances response speedup in combination with a strong negative feedback loop. This balance of feedback strengths anticipates a homogeneous population phenotype, which we corroborate experimentally. Theoretical analysis also emphasized the specific molecular properties that determine the dynamics of the mar phenotype. More broadly, response acceleration could provide a rationale for the presence of weak positive feedbacks in other biological scenarios exhibiting these interlinked regulatory architectures.
Collapse
Affiliation(s)
- Guillermo Rodrigo
- Instituto de Biología Molecular y Cellular de Plantas, CSIC–UPV, 46022 Valencia, Spain
| | - Djordje Bajic
- Logic of Genomic Systems Laboratory, CNB–CSIC, 28049 Madrid, Spain
| | - Ignacio Elola
- Logic of Genomic Systems Laboratory, CNB–CSIC, 28049 Madrid, Spain
| | - Juan F. Poyatos
- Logic of Genomic Systems Laboratory, CNB–CSIC, 28049 Madrid, Spain
| |
Collapse
|
11
|
Zhao X, Liu Q, Zhang J, Luo Y, Luo Y, Liu Q, Li P, Kong Q. Identification of a gene in Riemerella anatipestifer CH-1 (B739-2187) that contributes to resistance to polymyxin B and evaluation of its mutant as a live attenuated vaccine. Microb Pathog 2016; 91:99-106. [DOI: 10.1016/j.micpath.2015.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 12/06/2015] [Accepted: 12/07/2015] [Indexed: 01/17/2023]
|
12
|
When the Scaffold Cannot Be Ignored: The Role of the Hydrophobic Core in Ligand Binding and Specificity. J Mol Biol 2015; 427:3316-3326. [PMID: 26301601 DOI: 10.1016/j.jmb.2015.08.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/14/2015] [Accepted: 08/14/2015] [Indexed: 11/21/2022]
Abstract
The traditional view of protein-ligand binding treats a protein as comprising distinct binding epitopes on the surface of a degenerate structural scaffold, largely ignoring the impact of a protein's energy landscape. To determine the robustness of this simplification, we compared two small helix-turn-helix transcription factors with different energy landscapes. λ-Repressor is stable and well folded, while MarA appears to be marginally stable with multiple native conformations (molten). While λ-repressor is known to tolerate any hydrophobic mutation in the core, we find MarA drastically less tolerant to core mutation. Moreover, core mutations in MarA (distant from the DNA-binding interface) change the relative affinities of its binding partners, altering ligand specificity. These results can be explained by taking into account the effects of mutations on the entire energy landscape and not just the native state. Thus, for proteins with multiple conformations that are close in energy, such as many intrinsically disordered proteins, residues distant from the active site can alter both binding affinity and specificity.
Collapse
|
13
|
Carpenter BM, West AL, Gancz H, Servetas SL, Pich OQ, Gilbreath JJ, Hallinger DR, Forsyth MH, Merrell DS, Michel SLJ. Crosstalk between the HpArsRS two-component system and HpNikR is necessary for maximal activation of urease transcription. Front Microbiol 2015; 6:558. [PMID: 26124751 PMCID: PMC4464171 DOI: 10.3389/fmicb.2015.00558] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 05/20/2015] [Indexed: 12/14/2022] Open
Abstract
Helicobacter pylori NikR (HpNikR) is a nickel dependent transcription factor that directly regulates a number of genes in this important gastric pathogen. One key gene that is regulated by HpNikR is ureA, which encodes for the urease enzyme. In vitro DNA binding studies of HpNikR with the ureA promoter (PureA) previously identified a recognition site that is required for high affinity protein/DNA binding. As a means to determine the in vivo significance of this recognition site and to identify the key DNA sequence determinants required for ureA transcription, herein, we have translated these in vitro results to analysis directly within H. pylori. Using a series of GFP reporter constructs in which the PureA DNA target was altered, in combination with mutant H. pylori strains deficient in key regulatory proteins, we confirmed the importance of the previously identified HpNikR recognition sequence for HpNikR-dependent ureA transcription. Moreover, we identified a second factor, the HpArsRS two-component system that was required for maximum transcription of ureA. While HpArsRS is known to regulate ureA in response to acid shock, it was previously thought to function independently of HpNikR and to have no role at neutral pH. However, our qPCR analysis of ureA expression in wildtype, ΔnikR and ΔarsS single mutants as well as a ΔarsS/nikR double mutant strain background showed reduced basal level expression of ureA when arsS was absent. Additionally, we determined that both HpNikR and HpArsRS were necessary for maximal expression of ureA under nickel, low pH and combined nickel and low pH stresses. In vitro studies of HpArsR-P with the PureA DNA target using florescence anisotropy confirmed a direct protein/DNA binding interaction. Together, these data support a model in which HpArsRS and HpNikR cooperatively interact to regulate ureA transcription under various environmental conditions. This is the first time that direct “cross-talk” between HpArsRS and HpNikR at neutral pH has been demonstrated.
Collapse
Affiliation(s)
- Beth M Carpenter
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences Bethesda, MD, USA
| | - Abby L West
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Baltimore, Maryland, USA
| | - Hanan Gancz
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences Bethesda, MD, USA
| | - Stephanie L Servetas
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences Bethesda, MD, USA
| | - Oscar Q Pich
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences Bethesda, MD, USA
| | - Jeremy J Gilbreath
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences Bethesda, MD, USA
| | - Daniel R Hallinger
- Department of Biology, The College of William and Mary Williamsburg, VA, USA
| | - Mark H Forsyth
- Department of Biology, The College of William and Mary Williamsburg, VA, USA
| | - D Scott Merrell
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences Bethesda, MD, USA
| | - Sarah L J Michel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Baltimore, Maryland, USA
| |
Collapse
|
14
|
Keating DH, Zhang Y, Ong IM, McIlwain S, Morales EH, Grass JA, Tremaine M, Bothfeld W, Higbee A, Ulbrich A, Balloon AJ, Westphall MS, Aldrich J, Lipton MS, Kim J, Moskvin OV, Bukhman YV, Coon JJ, Kiley PJ, Bates DM, Landick R. Aromatic inhibitors derived from ammonia-pretreated lignocellulose hinder bacterial ethanologenesis by activating regulatory circuits controlling inhibitor efflux and detoxification. Front Microbiol 2014; 5:402. [PMID: 25177315 PMCID: PMC4132294 DOI: 10.3389/fmicb.2014.00402] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 07/17/2014] [Indexed: 11/13/2022] Open
Abstract
Efficient microbial conversion of lignocellulosic hydrolysates to biofuels is a key barrier to the economically viable deployment of lignocellulosic biofuels. A chief contributor to this barrier is the impact on microbial processes and energy metabolism of lignocellulose-derived inhibitors, including phenolic carboxylates, phenolic amides (for ammonia-pretreated biomass), phenolic aldehydes, and furfurals. To understand the bacterial pathways induced by inhibitors present in ammonia-pretreated biomass hydrolysates, which are less well studied than acid-pretreated biomass hydrolysates, we developed and exploited synthetic mimics of ammonia-pretreated corn stover hydrolysate (ACSH). To determine regulatory responses to the inhibitors normally present in ACSH, we measured transcript and protein levels in an Escherichia coli ethanologen using RNA-seq and quantitative proteomics during fermentation to ethanol of synthetic hydrolysates containing or lacking the inhibitors. Our study identified four major regulators mediating these responses, the MarA/SoxS/Rob network, AaeR, FrmR, and YqhC. Induction of these regulons was correlated with a reduced rate of ethanol production, buildup of pyruvate, depletion of ATP and NAD(P)H, and an inhibition of xylose conversion. The aromatic aldehyde inhibitor 5-hydroxymethylfurfural appeared to be reduced to its alcohol form by the ethanologen during fermentation, whereas phenolic acid and amide inhibitors were not metabolized. Together, our findings establish that the major regulatory responses to lignocellulose-derived inhibitors are mediated by transcriptional rather than translational regulators, suggest that energy consumed for inhibitor efflux and detoxification may limit biofuel production, and identify a network of regulators for future synthetic biology efforts.
Collapse
Affiliation(s)
- David H Keating
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison Madison, WI, USA
| | - Yaoping Zhang
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison Madison, WI, USA
| | - Irene M Ong
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison Madison, WI, USA
| | - Sean McIlwain
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison Madison, WI, USA
| | - Eduardo H Morales
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison Madison, WI, USA ; Department of Biomolecular Chemistry, University of Wisconsin-Madison Madison, WI, USA
| | - Jeffrey A Grass
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison Madison, WI, USA ; Department of Biochemistry, University of Wisconsin-Madison Madison, WI, USA
| | - Mary Tremaine
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison Madison, WI, USA
| | - William Bothfeld
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison Madison, WI, USA
| | - Alan Higbee
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison Madison, WI, USA
| | - Arne Ulbrich
- Department of Chemistry, University of Wisconsin-Madison Madison, WI, USA
| | - Allison J Balloon
- Department of Chemistry, University of Wisconsin-Madison Madison, WI, USA
| | - Michael S Westphall
- Department of Biomolecular Chemistry, University of Wisconsin-Madison Madison, WI, USA ; Department of Chemistry, University of Wisconsin-Madison Madison, WI, USA
| | - Josh Aldrich
- Pacific Northwest National Laboratory Richland, WA, USA
| | - Mary S Lipton
- Pacific Northwest National Laboratory Richland, WA, USA
| | - Joonhoon Kim
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison Madison, WI, USA ; Department of Chemical and Biological Engineering, University of Wisconsin-Madison Madison, WI, USA
| | - Oleg V Moskvin
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison Madison, WI, USA
| | - Yury V Bukhman
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison Madison, WI, USA
| | - Joshua J Coon
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison Madison, WI, USA ; Department of Biomolecular Chemistry, University of Wisconsin-Madison Madison, WI, USA ; Department of Chemistry, University of Wisconsin-Madison Madison, WI, USA
| | - Patricia J Kiley
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison Madison, WI, USA ; Department of Biomolecular Chemistry, University of Wisconsin-Madison Madison, WI, USA
| | - Donna M Bates
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison Madison, WI, USA
| | - Robert Landick
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison Madison, WI, USA ; Department of Biochemistry, University of Wisconsin-Madison Madison, WI, USA ; Department of Bacteriology, University of Wisconsin-Madison Madison, WI, USA
| |
Collapse
|
15
|
McMurry LM, Levy SB. Amino acid residues involved in inactivation of the Escherichia coli multidrug resistance repressor MarR by salicylate, 2,4-dinitrophenol, and plumbagin. FEMS Microbiol Lett 2013; 349:16-24. [PMID: 24111786 DOI: 10.1111/1574-6968.12291] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/27/2013] [Accepted: 09/12/2013] [Indexed: 11/28/2022] Open
Abstract
MarR is the dedicated autorepressor of the marRAB operon found in seven genera of the Enterobacteraceae. The MarA transcriptional regulator directly activates numerous genes involved in multidrug resistance and other environmental responses. MarR is inactivated by certain phenolic ligands, such as salicylate, by an unknown mechanism. Our recent work has shown that several amino acid residues of Escherichia coli MarR affecting ligand binding are located between the dimerization and DNA-binding domains. To further characterize the ligand-binding region of MarR, we have now examined 7 point mutants generated by random mutagenesis and 11 site-directed alanine replacement mutants for inactivation by three ligands: salicylate, 2,4-dinitrophenol, and plumbagin. Inactivation of MarR was quantitated in intact cells by loss of MarR-mediated repression of a chromosomal mar-lacZ transcriptional fusion. The results showed that most of the residues important for ligand effectiveness lay in the α1 and α2 helices of MarR, between the putative DNA-binding domain and the dimerization domain of MarR, reinforcing our earlier findings. Moreover, the three ligands had different, but overlapping, sets of residues impacting their effects on MarR.
Collapse
Affiliation(s)
- Laura M McMurry
- Department of Molecular Biology and Microbiology, Center for Adaptation Genetics and Drug Resistance, Tufts University School of Medicine, Boston, MA, USA
| | | |
Collapse
|
16
|
Garcia-Bernardo J, Dunlop MJ. Tunable stochastic pulsing in the Escherichia coli multiple antibiotic resistance network from interlinked positive and negative feedback loops. PLoS Comput Biol 2013; 9:e1003229. [PMID: 24086119 PMCID: PMC3784492 DOI: 10.1371/journal.pcbi.1003229] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 08/03/2013] [Indexed: 11/19/2022] Open
Abstract
Cells live in uncertain, dynamic environments and have many mechanisms for sensing and responding to changes in their surroundings. However, sudden fluctuations in the environment can be catastrophic to a population if it relies solely on sensory responses, which have a delay associated with them. Cells can reconcile these effects by using a tunable stochastic response, where in the absence of a stressor they create phenotypic diversity within an isogenic population, but use a deterministic response when stressors are sensed. Here, we develop a stochastic model of the multiple antibiotic resistance network of Escherichia coli and show that it can produce tunable stochastic pulses in the activator MarA. In particular, we show that a combination of interlinked positive and negative feedback loops plays an important role in setting the dynamics of the stochastic pulses. Negative feedback produces a pulsatile response that is tunable, while positive feedback serves to amplify the effect. Our simulations show that the uninduced native network is in a parameter regime that is of low cost to the cell (taxing resistance mechanisms are expressed infrequently) and also elevated noise strength (phenotypic variability is high). The stochastic pulsing can be tuned by MarA induction such that variability is decreased once stresses are sensed, avoiding the detrimental effects of noise when an optimal MarA concentration is needed. We further show that variability in the expression of MarA can act as a bet hedging mechanism, allowing for survival in time-varying stress environments, however this effect is tunable to allow for a fully induced, deterministic response in the presence of a stressor.
Collapse
Affiliation(s)
- Javier Garcia-Bernardo
- School of Engineering, University of Vermont, Burlington, Vermont, United States of America
| | - Mary J. Dunlop
- School of Engineering, University of Vermont, Burlington, Vermont, United States of America
- * E-mail:
| |
Collapse
|
17
|
Vinué L, McMurry LM, Levy SB. The 216-bp marB gene of the marRAB operon in Escherichia coli encodes a periplasmic protein which reduces the transcription rate of marA. FEMS Microbiol Lett 2013; 345:49-55. [PMID: 23710538 DOI: 10.1111/1574-6968.12182] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 05/21/2013] [Accepted: 05/21/2013] [Indexed: 01/14/2023] Open
Abstract
The marRAB operon is conserved in seven genera of enteric bacteria (Escherichia, Shigella, Klebsiella, Enterobacter, Salmonella, Cronobacter, and Citrobacter). MarA is a transcriptional regulator affecting many genes involved in resistance to stresses, and MarR is an autorepressor of the operon, but a role for the marB gene has been unclear. A recent work reported that deletion of marB causes resistance to certain stresses and increases the amount of marA transcript. We show here that the small (216 bp) marB gene encodes a protein, not an sRNA, because two different stop codons within the predicted open reading frame of marB prevented plasmid-borne marB from complementing ΔmarB::Kan. The ΔmarB::Kan mutation did not increase the stability of the marA transcript, suggesting that MarB does not destabilize the marA transcript but rather reduces its rate of transcription. Placing the putative signal sequence of MarB upstream of signal-sequence-less alkaline phosphatase guided the phosphatase to its normal periplasmic location. We conclude that MarB is a small periplasmic protein that represses the marRAB promoter by an indirect mechanism, possibly involving a signal to one of the cytoplasmic regulators of that promoter.
Collapse
Affiliation(s)
- Laura Vinué
- Center for Adaptation Genetics and Drug Resistance, Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | |
Collapse
|
18
|
Duval V, Lister IM. MarA, SoxS and Rob of Escherichia coli - Global regulators of multidrug resistance, virulence and stress response. ACTA ACUST UNITED AC 2013; 2:101-124. [PMID: 24860636 DOI: 10.6000/1927-3037.2013.02.03.2] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Bacteria have a great capacity for adjusting their metabolism in response to environmental changes by linking extracellular stimuli to the regulation of genes by transcription factors. By working in a co-operative manner, transcription factors provide a rapid response to external threats, allowing the bacteria to survive. This review will focus on transcription factors MarA, SoxS and Rob in Escherichia coli, three members of the AraC family of proteins. These homologous proteins exemplify the ability to respond to multiple threats such as oxidative stress, drugs and toxic compounds, acidic pH, and host antimicrobial peptides. MarA, SoxS and Rob recognize similar DNA sequences in the promoter region of more than 40 regulatory target genes. As their regulons overlap, a finely tuned adaptive response allows E. coli to survive in the presence of different assaults in a co-ordinated manner. These regulators are well conserved amongst Enterobacteriaceae and due to their broad involvement in bacterial adaptation in the host, have recently been explored as targets to develop new anti-virulence agents. The regulators are also being examined for their roles in novel technologies such as biofuel production.
Collapse
Affiliation(s)
- Valérie Duval
- Center for Adaptation Genetics and Drug Resistance, Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111
| | - Ida M Lister
- Arietis Corporation, 650 Albany Street, Room 130, Boston, MA 02118
| |
Collapse
|
19
|
Reduction of cellular stress by TolC-dependent efflux pumps in Escherichia coli indicated by BaeSR and CpxARP activation of spy in efflux mutants. J Bacteriol 2012; 195:1042-50. [PMID: 23264577 DOI: 10.1128/jb.01996-12] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli has nine inner membrane efflux pumps which complex with the outer membrane protein TolC and cognate membrane fusion proteins to form tripartite transperiplasmic pumps with diverse functions, including the expulsion of antibiotics. We recently observed that tolC mutants have elevated activities for three stress response regulators, MarA, SoxS, and Rob, and we suggested that TolC-dependent efflux is required to prevent the accumulation of stressful cellular metabolites. Here, we used spy::lacZ fusions to show that two systems for sensing/repairing extracytoplasmic stress, BaeRS and CpxARP, are activated in the absence of TolC-dependent efflux. In either tolC mutants or bacteria with mutations in the genes for four TolC-dependent efflux pumps, spy expression was increased 6- to 8-fold. spy encodes a periplasmic chaperone regulated by the BaeRS and CpxARP stress response systems. The overexpression of spy in tolC or multiple efflux pump mutants also depended on these systems. spy overexpression was not due to acetate, ethanol, or indole accumulation, since external acetate had only a minor effect on wild-type cells, ethanol had a large effect that was not CpxA dependent, and a tolC tnaA mutant which cannot accumulate internal indole overexpressed spy. We propose that, unless TolC-dependent pumps excrete certain metabolites, the metabolites accumulate and activate at least five different stress response systems.
Collapse
|
20
|
Transcriptional cross talk within the mar-sox-rob regulon in Escherichia coli is limited to the rob and marRAB operons. J Bacteriol 2012; 194:4867-75. [PMID: 22753060 DOI: 10.1128/jb.00680-12] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Bacteria possess multiple mechanisms to survive exposure to various chemical stresses and antimicrobial compounds. In the enteric bacterium Escherichia coli, three homologous transcription factors-MarA, SoxS, and Rob-play a central role in coordinating this response. Three separate systems are known to regulate the expression and activities of MarA, SoxS, and Rob. However, a number of studies have shown that the three do not function in isolation but rather are coregulated through transcriptional cross talk. In this work, we systematically investigated the extent of transcriptional cross talk in the mar-sox-rob regulon. While the three transcription factors were found to have the potential to regulate each other's expression when ectopically expressed, the only significant interactions observed under physiological conditions were between mar and rob systems. MarA, SoxS, and Rob all activate the marRAB promoter, more so when they are induced by their respective inducers: salicylate, paraquat, and decanoate. None of the three proteins affects the soxS promoter, though unexpectedly, it was mildly repressed by decanoate by an unknown mechanism. SoxS is the only one of the three proteins to repress the rob promoter. Surprisingly, salicylate somewhat activates transcription of rob, while decanoate represses it a bit. Rob, in turn, activates not only its downstream promoters in response to salicylate but also the marRAB promoter. These results demonstrate that the mar and rob systems function together in response to salicylate.
Collapse
|
21
|
Taliaferro LP, Keen EF, Sanchez-Alberola N, Wolf RE. Transcription activation by Escherichia coli Rob at class II promoters: protein-protein interactions between Rob's N-terminal domain and the σ(70) subunit of RNA polymerase. J Mol Biol 2012; 419:139-57. [PMID: 22465792 DOI: 10.1016/j.jmb.2012.03.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 03/18/2012] [Accepted: 03/20/2012] [Indexed: 11/16/2022]
Abstract
Bacterial transcription activators regulate transcription by making essential protein-protein interactions with RNA polymerase, for example, with region 4 of the σ(70) subunit (σ(70) R4). Rob, SoxS, and MarA comprise a closely related subset of members of the AraC/XylS family of transcription factors that activate transcription of both class I and class II promoters. Recently, we showed that interactions between SoxS and σ(70) R4 occlude the binding of σ(70) R4 to the -35 promoter element of class II promoters. Although Rob shares many similarities with SoxS, it contains a C-terminal domain (CTD) that the other paralogs do not. Thus, a goal of this study was to determine whether Rob makes protein-protein interactions with σ(70) R4 at class II promoters and, if so, whether the interactions occlude the binding of σ(70) R4 to the -35 hexamer despite the presence of the CTD. We found that although Rob makes fewer interactions with σ(70) R4 than SoxS, the two proteins make the same, unusual, position-dependent interactions. Importantly, we found that Rob occludes σ(70) R4 from binding the -35 hexamer, just as does SoxS. Thus, the CTD does not substantially alter the way Rob interacts with σ(70) R4 at class II promoters. Moreover, in contrast to inferences drawn from the co-crystal structure of Rob bound to robbox DNA, which showed that only one of Rob's dual helix-turn-helix (HTH) DNA binding motifs binds a recognition element of the promoter's robbox, we determined that the two HTH motifs each bind a recognition element in vivo.
Collapse
Affiliation(s)
- Lanyn P Taliaferro
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | | | | | | |
Collapse
|
22
|
Crozat E, Hindré T, Kühn L, Garin J, Lenski RE, Schneider D. Altered regulation of the OmpF porin by Fis in Escherichia coli during an evolution experiment and between B and K-12 strains. J Bacteriol 2011; 193:429-40. [PMID: 21097626 PMCID: PMC3019833 DOI: 10.1128/jb.01341-10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2010] [Accepted: 11/08/2010] [Indexed: 12/19/2022] Open
Abstract
The phenotypic plasticity of global regulatory networks provides bacteria with rapid acclimation to a wide range of environmental conditions, while genetic changes in those networks provide additional flexibility as bacteria evolve across long time scales. We previously identified mutations in the global regulator-encoding gene fis that enhanced organismal fitness during a long-term evolution experiment with Escherichia coli. To gain insight into the effects of these mutations, we produced two-dimensional protein gels with strains carrying different fis alleles, including a beneficial evolved allele and one with an in-frame deletion. We found that Fis controls the expression of the major porin-encoding gene ompF in the E. coli B-derived ancestral strain used in the evolution experiment, a relationship that has not been described before. We further showed that this regulatory connection evolved over two different time scales, perhaps explaining why it was not observed before. On the longer time scale, we showed that this regulation of ompF by Fis is absent from the more widely studied K-12 strain and thus is specific to the B strain. On a shorter time scale, this regulatory linkage was lost during 20,000 generations of experimental evolution of the B strain. Finally, we mapped the Fis binding sites in the ompF regulatory region, and we present a hypothetical model of ompF expression that includes its other known regulators.
Collapse
Affiliation(s)
- Estelle Crozat
- Laboratoire Adaptation et Pathogénie des Micro-organismes, CNRS UMR 5163, Université Joseph Fourier, Grenoble 1, BP 170, F-38042 Grenoble Cedex 9, France, CEA, DSV, iRTSV, Laboratoire d'Etude de la Dynamique des Protéomes, INSERM, U880, F-38042 Grenoble Cedex 9, France, Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824
| | - Thomas Hindré
- Laboratoire Adaptation et Pathogénie des Micro-organismes, CNRS UMR 5163, Université Joseph Fourier, Grenoble 1, BP 170, F-38042 Grenoble Cedex 9, France, CEA, DSV, iRTSV, Laboratoire d'Etude de la Dynamique des Protéomes, INSERM, U880, F-38042 Grenoble Cedex 9, France, Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824
| | - Lauriane Kühn
- Laboratoire Adaptation et Pathogénie des Micro-organismes, CNRS UMR 5163, Université Joseph Fourier, Grenoble 1, BP 170, F-38042 Grenoble Cedex 9, France, CEA, DSV, iRTSV, Laboratoire d'Etude de la Dynamique des Protéomes, INSERM, U880, F-38042 Grenoble Cedex 9, France, Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824
| | - Jérome Garin
- Laboratoire Adaptation et Pathogénie des Micro-organismes, CNRS UMR 5163, Université Joseph Fourier, Grenoble 1, BP 170, F-38042 Grenoble Cedex 9, France, CEA, DSV, iRTSV, Laboratoire d'Etude de la Dynamique des Protéomes, INSERM, U880, F-38042 Grenoble Cedex 9, France, Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824
| | - Richard E. Lenski
- Laboratoire Adaptation et Pathogénie des Micro-organismes, CNRS UMR 5163, Université Joseph Fourier, Grenoble 1, BP 170, F-38042 Grenoble Cedex 9, France, CEA, DSV, iRTSV, Laboratoire d'Etude de la Dynamique des Protéomes, INSERM, U880, F-38042 Grenoble Cedex 9, France, Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824
| | - Dominique Schneider
- Laboratoire Adaptation et Pathogénie des Micro-organismes, CNRS UMR 5163, Université Joseph Fourier, Grenoble 1, BP 170, F-38042 Grenoble Cedex 9, France, CEA, DSV, iRTSV, Laboratoire d'Etude de la Dynamique des Protéomes, INSERM, U880, F-38042 Grenoble Cedex 9, France, Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
23
|
Promoter discrimination at class I MarA regulon promoters mediated by glutamic acid 89 of the MarA transcriptional activator of Escherichia coli. J Bacteriol 2010; 193:506-15. [PMID: 21097628 DOI: 10.1128/jb.00360-10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Three paralogous transcriptional activators MarA, SoxS, and Rob, activate > 40 Escherichia coli promoters. To understand why MarA does not activate certain promoters as strongly as SoxS, we compared MarA, MarA mutants, and SoxS for their abilities to activate 16 promoters and to bind their cognate marbox binding sites. Replacement of the MarA glutamic acid residue 89 with alanine greatly increased the marbox binding and activation of many class I promoters. Like cells constitutive for SoxS, cells expressing the MarA with the E89A mutation were more resistant to superoxides than those harboring WT MarA. The activities of several other E89 substitutions ranked as follows: E89A > E89G > E89V > WT > E89D. Increased binding and activation occurred only at class I promoters when the 12th base of the promoter's marbox (a position at which there is no known interaction between the marbox and MarA) was not a T residue. Furthermore, WT MarA binding to a synthetic marbox in vitro was enhanced when the phosphate group between positions 12 and 13 was eliminated on one strand. The results demonstrate that relatively minor changes in a single amino acid side chain (e.g., alanine to valine or glutamic acid to aspartic acid) can strongly influence activity despite any evidence that the side chain is involved in positive interactions with either DNA or RNA polymerase. We present a model which attributes the differences in binding and activation to the interference between the β- and γ-carbons of the amino acid at position 89 and the phosphate group between positions 12 and 13.
Collapse
|
24
|
Evidence that regulatory protein MarA of Escherichia coli represses rob by steric hindrance. J Bacteriol 2010; 192:3977-82. [PMID: 20453091 DOI: 10.1128/jb.00103-10] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The MarA protein of Escherichia coli can both activate and repress the initiation of transcription, depending on the position and orientation of its degenerate 20-bp binding site ("marbox") at the promoter. For all three known repressed genes, the marbox overlaps the promoter. It has been reported that MarA represses the rob promoter via an RNA polymerase (RNAP)-DNA-MarA ternary complex. Under similar conditions, we found a ternary complex for the repressed purA promoter also. These findings, together with the backwards orientation of repressed marboxes, suggested a unique interaction of MarA with RNAP in repression. However, no repression-specific residues of MarA could be found among 38 single-alanine replacement mutations previously shown to retain activation function or among mutants from random mutagenesis. Mutations Thr12Ala, Arg36Ala, Thr95Ile, and Pro106Ala were more damaging for activation than for repression, some up to 10-fold, so these residues may play a specific role in activation. We found that nonspecific binding of RNAP to promoterless regions of DNA was presumably responsible for the ternary complexes seen previously. When RNAP binding was promoter specific, MarA reduced RNAP access to the rob promoter; there was little or no ternary complex. These findings strongly implicate steric hindrance as the mechanism of repression of rob by MarA.
Collapse
|
25
|
Many chromosomal genes modulate MarA-mediated multidrug resistance in Escherichia coli. Antimicrob Agents Chemother 2010; 54:2125-34. [PMID: 20211899 DOI: 10.1128/aac.01420-09] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Multidrug resistance (MDR) in clinical isolates of Escherichia coli can be associated with overexpression of marA, a transcription factor that upregulates multidrug efflux and downregulates membrane permeability. Using random transposome mutagenesis, we found that many chromosomal genes and environmental stimuli affected MarA-mediated antibiotic resistance. Seven genes affected resistance mediated by MarA in an antibiotic-specific way; these were mostly genes encoding unrelated enzymes, transporters, and unknown proteins. Other genes affected MarA-mediated resistance to all antibiotics tested. These genes were acrA, acrB, and tolC (which encode the major MarA-regulated multidrug efflux pump AcrAB-TolC), crp, cyaA, hns, and pcnB (four genes involved in global regulation of gene expression), and the unknown gene damX. The last five genes affected MarA-mediated MDR by altering marA expression or MarA function specifically on acrA. These findings demonstrate that MarA-mediated MDR is regulated at multiple levels by different genes and stimuli, which makes it both complex and fine-tuned and interconnects it with global cell regulation and metabolism. Such a regulation could contribute to the adaptation and spread of MDR strains and may be targeted to treat antibiotic-resistant E. coli and related pathogens.
Collapse
|
26
|
Bailey AM, Constantinidou C, Ivens A, Garvey MI, Webber MA, Coldham N, Hobman JL, Wain J, Woodward MJ, Piddock LJV. Exposure of Escherichia coli and Salmonella enterica serovar Typhimurium to triclosan induces a species-specific response, including drug detoxification. J Antimicrob Chemother 2009; 64:973-85. [PMID: 19759044 DOI: 10.1093/jac/dkp320] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES The use of triclosan within various environments has been linked to the development of multiple drug resistance (MDR) through the increased expression of efflux pumps such as AcrAB-TolC. In this work, we investigate the effect of triclosan exposure in order to ascertain the response of two species to the presence of this widely used biocide. METHODS The transcriptomes of Salmonella enterica serovar Typhimurium SL1344 and Escherichia coli K-12 MG1655 after exposure to the MIC of triclosan (0.12 mg/L) were determined in microarray experiments. Phenotypic validation of the transcriptomic data included RT-PCR, ability to form a biofilm and motility assays. RESULTS Despite important differences in the triclosan-dependent transcriptomes of the two species, increased expression of efflux pump component genes was seen in both. Increased expression of soxS was observed in Salmonella Typhimurium, however, within E. coli, decreased expression was seen. Expression of fabBAGI in Salmonella Typhimurium was decreased, whereas in E. coli expression of fabABFH was increased. Increased expression of ompR and genes within this regulon (e.g. ompC, csgD and ssrA) was seen in the transcriptome of Salmonella Typhimurium. An unexpected response of E. coli was the differential expression of genes within operons involved in iron homeostasis; these included fhu, fep and ent. CONCLUSIONS These data indicate that whilst a core response to triclosan exposure exists, the differential transcriptome of each species was different. This suggests that E. coli K-12 should not be considered the paradigm for the Enterobacteriaceae when exploring the effects of antimicrobial agents.
Collapse
Affiliation(s)
- Andrew M Bailey
- Antimicrobial Agents Research Group, School of Immunity and Infection, The Medical School, The University of Birmingham, Birmingham, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
An excretory function for the Escherichia coli outer membrane pore TolC: upregulation of marA and soxS transcription and Rob activity due to metabolites accumulated in tolC mutants. J Bacteriol 2009; 191:5283-92. [PMID: 19502391 DOI: 10.1128/jb.00507-09] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Efflux pumps function to rid bacteria of xenobiotics, including antibiotics, bile salts, and organic solvents. TolC, which forms an outer membrane channel, is an essential component of several efflux pumps in Escherichia coli. We asked whether TolC has a role during growth in the absence of xenobiotics. Because tolC transcription is activated by three paralogous activators, MarA, SoxS, and Rob, we examined the regulation of these activators in tolC mutants. Using transcriptional fusions, we detected significant upregulation of marRAB and soxS transcription and Rob protein activity in tolC mutants. Three mechanisms could be distinguished: (i) activation of marRAB transcription was independent of marRAB, soxR, and rob functions; (ii) activation of soxS transcription required SoxR, a sensor of oxidants; and (iii) Rob protein was activated posttranscriptionally. This mechanism is similar to the mechanisms of upregulation of marRAB, soxS, and Rob by treatment with certain phenolics, superoxides, and bile salts, respectively. The transcription of other marA/soxS/rob regulon promoters, including tolC itself, was also elevated in tolC mutants. We propose that TolC is involved in the efflux of certain cellular metabolites, not only xenobiotics. As these metabolites accumulate during growth, they trigger the upregulation of MarA, SoxS, and Rob, which in turn upregulate tolC and help rid the bacteria of these metabolites, thereby restoring homeostasis.
Collapse
|
28
|
Maddocks SE, Oyston PCF. Structure and function of the LysR-type transcriptional regulator (LTTR) family proteins. MICROBIOLOGY-SGM 2009; 154:3609-3623. [PMID: 19047729 DOI: 10.1099/mic.0.2008/022772-0] [Citation(s) in RCA: 634] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The LysR family of transcriptional regulators represents the most abundant type of transcriptional regulator in the prokaryotic kingdom. Members of this family have a conserved structure with an N-terminal DNA-binding helix-turn-helix motif and a C-terminal co-inducer-binding domain. Despite considerable conservation both structurally and functionally, LysR-type transcriptional regulators (LTTRs) regulate a diverse set of genes, including those involved in virulence, metabolism, quorum sensing and motility. Numerous structural and transcriptional studies of members of the LTTR family are helping to unravel a compelling paradigm that has evolved from the original observations and conclusions that were made about this family of transcriptional regulators.
Collapse
Affiliation(s)
- Sarah E Maddocks
- Department of Oral and Dental Science, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| | | |
Collapse
|
29
|
Hartog E, Ben-Shalom L, Shachar D, Matthews KR, Yaron S. Regulation ofmarA, soxS, rob, acrABandmicFinSalmonella entericaserovar Typhimurium. Microbiol Immunol 2008; 52:565-74. [DOI: 10.1111/j.1348-0421.2008.00075.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Domain F, Bina XR, Levy SB. Retracted: Transketolase A, an enzyme in central metabolism, derepresses themarRABmultiple antibiotic resistance operon ofEscherichia coliby interaction with MarR. Mol Microbiol 2007; 66:383-94. [PMID: 17850260 DOI: 10.1111/j.1365-2958.2007.05928.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Escherichia coli marRAB operon specifies two regulatory proteins, MarR (which represses) and MarA (which activates expression of the operon). The latter controls expression of multiple other chromosomal genes implicated in cell physiology, multiple drug resistance and virulence. Using randomly cloned E. coli DNA fragments in the bacterial adenylate cyclase two-hybrid system, we found that transketolase A (TktA) interacts with MarR. Purified (6H)-TktA immobilized on NiNTA resin-bound MarR. Overexpression or deletion of tktA showed that TktA interfered with MarR repression of the marRAB operon. Deletion of tktA increased antibiotic and oxidative stress susceptibilities, while its overexpression decreased them. Hydrogen peroxide induced tktA at 1 h treatment, while an increase in marRAB expression occurred only after 3 h exposure. This increase was dependent on the presence of tktA. Two MarR mutations which eliminated MarR binding to the marRAB operator and one which decreased dimerization of MarR had no effect on MarR interaction with TktA in the two-hybrid system. However, the interaction was disrupted by one of the three tested superrepressor mutant MarR proteins known to increase MarR binding to DNA. TktA inhibition of repression by MarR demonstrates a previously unrecognized level of control of the expression of marRAB operon.
Collapse
Affiliation(s)
- Francis Domain
- Center for Adaptation Genetics and Drug Resistance, Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | |
Collapse
|
31
|
Gutierrez-Ríos RM, Freyre-Gonzalez JA, Resendis O, Collado-Vides J, Saier M, Gosset G. Identification of regulatory network topological units coordinating the genome-wide transcriptional response to glucose in Escherichia coli. BMC Microbiol 2007; 7:53. [PMID: 17559662 PMCID: PMC1905917 DOI: 10.1186/1471-2180-7-53] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Accepted: 06/08/2007] [Indexed: 11/24/2022] Open
Abstract
Background Glucose is the preferred carbon and energy source for Escherichia coli. A complex regulatory network coordinates gene expression, transport and enzyme activities in response to the presence of this sugar. To determine the extent of the cellular response to glucose, we applied an approach combining global transcriptome and regulatory network analyses. Results Transcriptome data from isogenic wild type and crp- strains grown in Luria-Bertani medium (LB) or LB + 4 g/L glucose (LB+G) were analyzed to identify differentially transcribed genes. We detected 180 and 200 genes displaying increased and reduced relative transcript levels in the presence of glucose, respectively. The observed expression pattern in LB was consistent with a gluconeogenic metabolic state including active transport and interconversion of small molecules and macromolecules, induction of protease-encoding genes and a partial heat shock response. In LB+G, catabolic repression was detected for transport and metabolic interconversion activities. We also detected an increased capacity for de novo synthesis of nucleotides, amino acids and proteins. Cluster analysis of a subset of genes revealed that CRP mediates catabolite repression for most of the genes displaying reduced transcript levels in LB+G, whereas Fis participates in the upregulation of genes under this condition. An analysis of the regulatory network, in terms of topological functional units, revealed 8 interconnected modules which again exposed the importance of Fis and CRP as directly responsible for the coordinated response of the cell. This effect was also seen with other not extensively connected transcription factors such as FruR and PdhR, which showed a consistent response considering media composition. Conclusion This work allowed the identification of eight interconnected regulatory network modules that includes CRP, Fis and other transcriptional factors that respond directly or indirectly to the presence of glucose. In most cases, each of these modules includes genes encoding physiologically related functions, thus indicating a connection between regulatory network topology and related cellular functions involved in nutrient sensing and metabolism.
Collapse
Affiliation(s)
- Rosa María Gutierrez-Ríos
- Departamentos de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca, Morelos 62250, México
| | - Julio A Freyre-Gonzalez
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México
| | - Osbaldo Resendis
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México
| | - Julio Collado-Vides
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México
| | - Milton Saier
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA, 92093-0116, USA
| | - Guillermo Gosset
- Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca, Morelos 62250, México
| |
Collapse
|
32
|
Mallik P, Paul BJ, Rutherford ST, Gourse RL, Osuna R. DksA is required for growth phase-dependent regulation, growth rate-dependent control, and stringent control of fis expression in Escherichia coli. J Bacteriol 2006; 188:5775-82. [PMID: 16885445 PMCID: PMC1540068 DOI: 10.1128/jb.00276-06] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
DksA is a critical transcription factor in Escherichia coli that binds to RNA polymerase and potentiates control of rRNA promoters and certain amino acid promoters. Given the kinetic similarities between rRNA promoters and the fis promoter (Pfis), we investigated the possibility that DksA might also control transcription from Pfis. We show that the absence of dksA extends transcription from Pfis well into the late logarithmic and stationary growth phases, demonstrating the importance of DksA for growth phase-dependent regulation of fis. We also show that transcription from Pfis increases with steady-state growth rate and that dksA is absolutely required for this regulation. In addition, both DksA and ppGpp are required for inhibition of Pfis promoter activity following amino acid starvation, and these factors act directly and synergistically to negatively control Pfis transcription in vitro. DksA decreases the half-life of the intrinsically short-lived fis promoter-RNA polymerase complex and increases its sensitivity to the concentration of CTP, the predominant initiating nucleotide triphosphate for this promoter. This work extends our understanding of the multiple factors controlling fis expression and demonstrates the generality of the DksA requirement for regulation of kinetically similar promoters.
Collapse
Affiliation(s)
- Prabhat Mallik
- Department of Biological Sciences, University at Albany, 1400 Washington Avenue, Albany, NY 12222, USA
| | | | | | | | | |
Collapse
|
33
|
Feldman-Cohen LS, Shao Y, Meinhold D, Miller C, Colón W, Osuna R. Common and variable contributions of Fis residues to high-affinity binding at different DNA sequences. J Bacteriol 2006; 188:2081-95. [PMID: 16513738 PMCID: PMC1428148 DOI: 10.1128/jb.188.6.2081-2095.2006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fis is a nucleoid-associated protein that interacts with poorly related DNA sequences with a high degree of specificity. A difference of more than 3 orders of magnitude in apparent Kd values was observed between specific (Kd, approximately 1 to 4 nM) and nonspecific (Kd, approximately 4 microM) DNA binding. To examine the contributions of Fis residues to the high-affinity binding at different DNA sequences, 13 alanine substitutions were generated in or near the Fis helix-turn-helix DNA binding motif, and the resulting proteins were purified. In vitro binding assays at three different Fis sites (fis P II, hin distal, and lambda attR) revealed that R85, T87, R89, K90, and K91 played major roles in high-affinity DNA binding and that R85, T87, and K90 were consistently vital for binding to all three sites. Other residues made variable contributions to binding, depending on the binding site. N84 was required only for binding to the lambda attR Fis site, and the role of R89 was dramatically altered by the lambda attR DNA flanking sequence. The effects of Fis mutations on fis P II or hin distal site binding in vitro generally correlated with their abilities to mediate fis P repression or DNA inversion in vivo, demonstrating that the in vitro DNA-binding effects are relevant in vivo. The results suggest that while Fis is able to recognize a minimal common set of DNA sequence determinants at different binding sites, it is also equipped with a number of residues that contribute to the binding strength, some of which play variable roles.
Collapse
Affiliation(s)
- Leah S Feldman-Cohen
- Department of Chemistry, College of Staten Island and Macromolecular Assemblies Institute of the City, University of New York, Staten Island 10314, USA
| | | | | | | | | | | |
Collapse
|
34
|
Hopkins KL, Davies RH, Threlfall EJ. Mechanisms of quinolone resistance in Escherichia coli and Salmonella: Recent developments. Int J Antimicrob Agents 2005; 25:358-73. [PMID: 15848289 DOI: 10.1016/j.ijantimicag.2005.02.006] [Citation(s) in RCA: 374] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Fluoroquinolones are broad-spectrum antimicrobials highly effective for treatment of a variety of clinical and veterinary infections. Their antibacterial activity is due to inhibition of DNA replication. Usually resistance arises spontaneously due to point mutations that result in amino acid substitutions within the topoisomerase subunits GyrA, GyrB, ParC or ParE, decreased expression of outer membrane porins, or overexpression of multidrug efflux pumps. In addition, the recent discovery of plasmid-mediated quinolone resistance could result in horizontal transfer of fluoroquinolone resistance between strains. Acquisition of high-level resistance appears to be a multifactorial process. Care needs to taken to avoid overuse of this important class of antimicrobial in both human and veterinary medicine to prevent an increase in the occurrence of resistant zoonotic and non-zoonotic bacterial pathogens that could subsequently cause human or animal infections.
Collapse
Affiliation(s)
- Katie L Hopkins
- Antimicrobial Resistance and Molecular Epidemiology Unit, Laboratory of Enteric Pathogens, Health Protection Agency Centre for Infections, 61 Colindale Avenue, London NW9 5HT, UK.
| | | | | |
Collapse
|
35
|
Walker KA, Mallik P, Pratt TS, Osuna R. The Escherichia coli Fis promoter is regulated by changes in the levels of its transcription initiation nucleotide CTP. J Biol Chem 2004; 279:50818-28. [PMID: 15385561 DOI: 10.1074/jbc.m406285200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expression of the Escherichia coli nucleoid-associated protein Fis (factor for inversion stimulation) is controlled at the transcriptional level in accordance with the nutritional availability. It is highly expressed during early logarithmic growth phase in cells growing in rich medium but poorly expressed in late logarithmic and stationary phase. However, fis mRNA expression is prolonged at high levels throughout the logarithmic and early stationary phase when the preferred transcription initiation site (+1C) is replaced with A or G, indicating that initiation with CTP is a required component of the regulation pattern. We show that RNA polymerase-fis promoter complexes are short lived and that transcription is stimulated over 20-fold from linear or supercoiled DNA if CTP is present during formation of initiation complexes, which serves to stabilize these complexes. Use of fis promoter fusions to lacZ indicated that fis promoter transcription is sensitive to the intracellular pool of the predominant initiating NTP. Growth conditions resulting in increases in CTP pools also result in corresponding increases in fis mRNA levels. Measurements of NTP pools performed throughout the growth of the bacterial culture in rich medium revealed a dramatic increase in all four NTP levels during the transition from stationary to logarithmic growth phase, followed by reproducible oscillations in their levels during logarithmic growth, which later decrease during the transition from logarithmic to stationary phase. In particular, CTP pools fluctuate in a manner consistent with a role in regulating fis expression. These observations support a model whereby fis expression is subject to regulation by the availability of its initiating NTP.
Collapse
MESH Headings
- Base Sequence
- Blotting, Northern
- Chromatography, Thin Layer
- Cytidine/chemistry
- Cytidine Triphosphate/chemistry
- DNA Primers/chemistry
- DNA, Superhelical/chemistry
- DNA, Superhelical/genetics
- DNA-Directed RNA Polymerases/chemistry
- DNA-Directed RNA Polymerases/metabolism
- Dose-Response Relationship, Drug
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Factor For Inversion Stimulation Protein/genetics
- Gene Expression Regulation, Enzymologic
- Kinetics
- Lac Operon
- Models, Biological
- Models, Genetic
- Molecular Sequence Data
- Oscillometry
- Plasmids/metabolism
- Promoter Regions, Genetic
- RNA, Messenger/metabolism
- Salts/pharmacology
- Time Factors
- Transcription, Genetic
- beta-Galactosidase/metabolism
Collapse
Affiliation(s)
- Kimberly A Walker
- Department of Biological Sciences, University at Albany, Albany, New York 12222, USA
| | | | | | | |
Collapse
|
36
|
Kim BH, Kim HG, Bae GI, Bang IS, Bang SH, Choi JH, Park YK. Expression of cspH upon nutrient up-shift in Salmonella enterica serovar Typhimurium. Arch Microbiol 2004; 182:37-43. [PMID: 15235764 DOI: 10.1007/s00203-004-0692-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2004] [Revised: 06/03/2004] [Accepted: 06/03/2004] [Indexed: 10/26/2022]
Abstract
The gene cspH, which encodes one of the cold-shock proteins in Salmonella enterica serovar Typhimurium, has previously been reported to be induced during early exponential phase at 37 degrees C. In the present study, the expression of cspH upon nutrient up-shift at 37 degrees C was investigated and found to be affected by DNA gyrase and DNA-binding protein Fis. When cells at stationary phase were subcultured into a rich medium, the mRNA level of cspH increased dramatically prior to the first cell division. However, when the cells were treated with DNA gyrase inhibitors, cspH mRNA was not induced upon nutrient up-shift. The low level of DNA superhelical density at the cspH promoter in part affected the expression of cspH mRNA in vitro. In addition, a fis-deficient strain had a lower level of cspH mRNA than the wild-type upon nutrient up-shift. Finally, a cspH-lacZ construct, in which the putative binding region for Fis was deleted in the cspH promoter, expressed a low level of LacZ, in contrast to the native cspH-lacZ construct.
Collapse
Affiliation(s)
- Bae Hoon Kim
- School of Life Sciences and Biotechnology, Korea University, 136-701, Seoul, South Korea
| | | | | | | | | | | | | |
Collapse
|
37
|
Martin RG, Rosner JL. Transcriptional and translational regulation of the marRAB multiple antibiotic resistance operon in Escherichia coli. Mol Microbiol 2004; 53:183-91. [PMID: 15225313 DOI: 10.1111/j.1365-2958.2004.04080.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The marRAB multiple antibiotic resistance operon of Escherichia coli is autorepressed by MarR. MarR binds to two palindromic sequences in vitro: site I lies between and overlaps the -35 and -10 hexamers for RNA polymerase binding; site II lies between the transcription start site and the GTG initiation codon of marR. To assess the importance of these sites in vivo, the effects of mutant sites on transcription were analysed using fusions to lacZ in the presence and absence of wild-type MarR. When both sites were wild type, transcription in the derepressed marR-deleted strain was 19-fold that of the wild-type strain; when only site I or site II was wild type, this ratio was reduced to 4.3- and 2.6-fold, respectively, showing that full repression requires both sites, but some repression can occur at one site independently of the other. Translational fusions of the wild-type promoter to lacZ demonstrated that marR translation proceeds at only 4.5% of the transcription rate. Analysis of translational fusions with mutant leader sequences demonstrated that the principal reason for inefficient translation is a weak Shine-Dalgarno (SD) sequence, AGG(G). Although the SD sequence is located within the potential stem-loop structure of site II, no evidence for occlusion of the SD sequence was found in the wild-type strain. However, a single basepair mutation that strengthens the stem-loop structure drastically reduced the translational efficiency. Substitution of ATG for GTG as the initiation codon increased translational efficiency by 50%. Increasing the 5 bp spacing between the SD sequence and the GTG codon by one to four bases reduced the translational efficiency by 50-75%. Inefficient translation of marR may help to sensitize the cell to environmental signals.
Collapse
Affiliation(s)
- Robert G Martin
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bldg. 5, Rm 333, National Institutes of Health, Bethesda, MD 20892-0560, USA.
| | | |
Collapse
|
38
|
Prouty AM, Brodsky IE, Falkow S, Gunn JS. Bile-salt-mediated induction of antimicrobial and bile resistance in Salmonella typhimurium. Microbiology (Reading) 2004; 150:775-783. [PMID: 15073288 DOI: 10.1099/mic.0.26769-0] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
By DNA microarray, the Salmonella typhimurium marRAB operon was identified as being bile-activated. Transcriptional assays confirm that marRAB is activated in the presence of bile and that this response is concentration-dependent. The bile salt deoxycholate is alone able to activate transcription, while there was no response in the presence of other bile salts tested or a non-ionic detergent. Deoxycholate is able to interact with MarR and interfere with its ability to bind to the mar operator. In addition, incubation of salmonellae in the presence of sublethal concentrations of bile is able to enhance resistance to chloramphenicol and bile, by means of both mar-dependent and mar-independent pathways. To further characterize putative marRAB-regulated genes that may be important for the resistance phenotype, acrAB, which encodes an efflux pump, was analysed. In S. typhimurium, acrAB is required for bile resistance, but while transcription of acrAB is activated by bile, this activation is independent of marRAB, as well as Rob, RpoS or PhoP–PhoQ. These data suggest that bile interacts with salmonellae to increase resistance to bile and other antimicrobials and that this can occur by marRAB- and acrAB-dependent pathways that function independently with respect to bile activation.
Collapse
Affiliation(s)
- A M Prouty
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA
| | - I E Brodsky
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5124, USA
| | - S Falkow
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5124, USA
| | - J S Gunn
- Department of Molecular Virology, Immunology and Medical Genetics, Department of Medicine, Division of Infectious Diseases and The Center for Microbial Interface Biology, The Ohio State University, Columbus, OH 43210, USA
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA
| |
Collapse
|
39
|
Najmanová L, Janata J, Kopecký J, Spízek J. Spore-specific modification of DNA-dependent RNA polymerase alpha subunit in streptomycetes--a new model of transcription regulation. Folia Microbiol (Praha) 2004; 48:573-9. [PMID: 14976711 DOI: 10.1007/bf02993461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
At the very beginning of spore germination in streptomycetes the full-length alpha subunit of DNA-dependent RNA polymerase is shortened from its C-terminus. The C-terminal domain of the protein is required for binding of DNA and transcription regulators but its regulatory role in streptomycetes was not extensively studied. Comparison of the sequences of E. coli and S. coelicolor RNA polymerase alpha subunit (RNAP alpha) C-terminal domains reveals that the majority of amino acid residues responsible for the interaction with transcription regulators is conserved in both microorganisms. The spore specific modification of streptomycete RNAP alpha could thus have its regulatory role. The nature of the proteolytic enzyme, responsible for the RNAP alpha cleavage is discussed.
Collapse
Affiliation(s)
- L Najmanová
- Institute of Microbiology, Academy of Sciences of the Czech Republic, 142 20 Prague, Czechia
| | | | | | | |
Collapse
|
40
|
Mallik P, Pratt TS, Beach MB, Bradley MD, Undamatla J, Osuna R. Growth phase-dependent regulation and stringent control of fis are conserved processes in enteric bacteria and involve a single promoter (fis P) in Escherichia coli. J Bacteriol 2004; 186:122-35. [PMID: 14679232 PMCID: PMC303451 DOI: 10.1128/jb.186.1.122-135.2004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The intracellular concentration of the Escherichia coli factor for inversion stimulation (Fis), a global regulator of transcription and a facilitator of certain site-specific DNA recombination events, varies substantially in response to changes in the nutritional environment and growth phase. Under conditions of nutritional upshift, fis is transiently expressed at very high levels, whereas under induced starvation conditions, fis is repressed by stringent control. We show that both of these regulatory processes operate on the chromosomal fis genes of the enterobacteria Klebsiella pneumoniae, Serratia marcescens, Erwinia carotovora, and Proteus vulgaris, strongly suggesting that the physiological role of Fis is closely tied to its transcriptional regulation in response to the nutritional environment. These transcriptional regulatory processes were previously shown to involve a single promoter (fis P) preceding the fis operon in E. coli. Recent work challenged this notion by presenting evidence from primer extension assays which appeared to indicate that there are multiple promoters upstream of fis P that contribute significantly to the expression and regulation of fis in E. coli. Thus, a rigorous analysis of the fis promoter region was conducted to assess the contribution of such additional promoters. However, our data from primer extension analysis, S1 nuclease mapping, beta-galactosidase assays, and in vitro transcription analysis all indicate that fis P is the sole E. coli fis promoter in vivo and in vitro. We further show how certain conditions used in the primer extension reactions can generate artifacts resulting from secondary annealing events that are the likely source of incorrect assignment of additional fis promoters.
Collapse
Affiliation(s)
- Prabhat Mallik
- Department of Biological Sciences, University at Albany, SUNY, Albany, New York 12222, USA
| | | | | | | | | | | |
Collapse
|
41
|
Rosenberg EY, Bertenthal D, Nilles ML, Bertrand KP, Nikaido H. Bile salts and fatty acids induce the expression of Escherichia coli AcrAB multidrug efflux pump through their interaction with Rob regulatory protein. Mol Microbiol 2003; 48:1609-19. [PMID: 12791142 DOI: 10.1046/j.1365-2958.2003.03531.x] [Citation(s) in RCA: 229] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AcrAB of Escherichia coli, an archetype among bacterial multidrug efflux pumps, exports an extremely wide range of substrates including solvents, dyes, detergents and antimicrobial agents. Its expression is regulated by three XylS/AraC family regulators, MarA, SoxS and Rob. Although MarA and SoxS regulation works by the alteration of their own expression levels, it was not known how Rob, which is constitutively expressed, exerts its regulatory action. We show here that the induction of the AcrAB efflux pump by decanoate and the more lipophilic unconjugated bile salts is mediated by Rob, and that the low-molecular-weight inducers specifically bind to the C-terminal, non-DNA-binding domain of Rob. Induction of Rob is not needed for induction of AcrAB, and we suggest that the inducers act by producing conformational alterations in pre-existing Rob, as was suggested recently (Rosner, Dangi, Gronenborn and Martin, J Bacteriol 184: 1407-1416, 2002). Decanoate and unconjugated bile salts, which are present in the normal habitat of E. coli, were further shown to make the bacteria more resistant to lipophilic antibiotics, at least in part because of the induction of the AcrAB efflux pump. Thus, it is likely that E. coli is protecting itself by the Rob-mediated upregulation of AcrAB against the harmful effects of bile salts and fatty acids in the intestinal tract.
Collapse
Affiliation(s)
- Emiko Y Rosenberg
- Department of Molecular and Cell Biology, Barker Hall, University of California, Berkeley 94720-3202, USA
| | | | | | | | | |
Collapse
|
42
|
Grkovic S, Brown MH, Skurray RA. Regulation of bacterial drug export systems. Microbiol Mol Biol Rev 2002; 66:671-701, table of contents. [PMID: 12456787 PMCID: PMC134658 DOI: 10.1128/mmbr.66.4.671-701.2002] [Citation(s) in RCA: 281] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The active transport of toxic compounds by membrane-bound efflux proteins is becoming an increasingly frequent mechanism by which cells exhibit resistance to therapeutic drugs. This review examines the regulation of bacterial drug efflux systems, which occurs primarily at the level of transcription. Investigations into these regulatory networks have yielded a substantial volume of information that has either not been forthcoming from or complements that obtained by analysis of the transport proteins themselves. Several local regulatory proteins, including the activator BmrR from Bacillus subtilis and the repressors QacR from Staphylococcus aureus and TetR and EmrR from Escherichia coli, have been shown to mediate increases in the expression of drug efflux genes by directly sensing the presence of the toxic substrates exported by their cognate pump. This ability to bind transporter substrates has permitted detailed structural information to be gathered on protein-antimicrobial agent-ligand interactions. In addition, bacterial multidrug efflux determinants are frequently controlled at a global level and may belong to stress response regulons such as E. coli mar, expression of which is controlled by the MarA and MarR proteins. However, many regulatory systems are ill-adapted for detecting the presence of toxic pump substrates and instead are likely to respond to alternative signals related to unidentified physiological roles of the transporter. Hence, in a number of important pathogens, regulatory mutations that result in drug transporter overexpression and concomitant elevated antimicrobial resistance are often observed.
Collapse
Affiliation(s)
- Steve Grkovic
- School of Biological Sciences, University of Sydney, New South Wales 2006, Australia
| | | | | |
Collapse
|
43
|
Martin RG, Rosner JL. Genomics of the marA/soxS/rob regulon of Escherichia coli: identification of directly activated promoters by application of molecular genetics and informatics to microarray data. Mol Microbiol 2002; 44:1611-24. [PMID: 12067348 DOI: 10.1046/j.1365-2958.2002.02985.x] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Microarray analyses are providing a plethora of data concerning transcriptional responses to specific gene regulators and their inducers but do not distinguish between direct and indirect responses. Here, we identify directly activated promoters of the overlapping marA, soxS and rob regulon(s) of Escherichia coli by applying informatics, genomics and molecular genetics to microarray data obtained by others. Those studies found that overexpression of marA, or the treatment of cells with salicylate to derepress marA, or treatment with paraquat to induce soxS, resulted in elevated transcription of 153 genes. However, only 27 out of the promoters showed increased transcription under at least two of the aforementioned conditions and eight of those were previously known to be directly activated. A computer algorithm was used to identify potential activator binding sites located upstream of the remaining 19 promoters of this subset, and conventional genetic and biochemical approaches were applied to test whether these sites are critical for activation by the homologous MarA, SoxS and Rob transcriptional activators. Only seven out of the 19 promoters were found to be activated when fused to lacZ and tested as single lysogens. All seven contained an essential activator binding site. The remaining promoters were insensitive to stimulation by the inducers suggesting that the great majority of elevated microarray transcripts either were misidentified or resulted from indirect effects requiring sequences outside of the promoter region. We estimate that the total number of directly activated promoters in the regulon is less than 40.
Collapse
Affiliation(s)
- Robert G Martin
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases/NIH, Bethesda, MD 20892-0560, USA.
| | | |
Collapse
|
44
|
Linde HJ, Notka F, Irtenkauf C, Decker J, Wild J, Niller HH, Heisig P, Lehn N. Increase in MICs of ciprofloxacin in vivo in two closely related clinical isolates of Enterobacter cloacae. J Antimicrob Chemother 2002; 49:625-30. [PMID: 11909836 DOI: 10.1093/jac/49.4.625] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The mechanisms of fluoroquinolone resistance in two isolates of Enterobacter cloacae, Ecl#1 and Ecl#2, from the same patient and with identical pulsed-field gel electrophoresis patterns, have been analysed. MICs of ciprofloxacin were 0.25 and 1 mg/L for Ecl#1 and Ecl#2, respectively. Ecl#2 was also more resistant to chloramphenicol and organic solvents. The quinolone resistance determining regions of gyrA/B and parC/E, and the marORA and acrB genes, were sequenced. Expression of marR, acrB, soxS, robA, ramA and fis was analysed by northern blotting. The activity of a 90 bp E. cloacae mar promoter fragment was examined with the reporter plasmid pIGJ-1mar. Sequencing the gyrAB and parCE genes revealed a single amino acid substitution in GyrA (corresponding to position 83 in GyrA of Escherichia coli) in Ecl#1 and Ecl#2 (Phe83) compared with reference strain E. cloacae DSMZ 3264 (Thr83). Ecl#2 accumulated significantly less norfloxacin and displayed higher levels of expression of marR and acrB than Exl#1, indicative of greater fluoroquinolone efflux activity. Sequencing gyrB, parC/E and marORA, and northern blotting of robA, ramA and fis, did not reveal any further differences between the two strains. No homologue of soxRS was detected in E. cloacae. Expression of GFP from pIGJ1-mar in Ecl#2 was higher than in Ecl#1. In these two closely related clinical isolates of E. cloacae, a target mutation in GyrA (Ecl#1 and Ecl#2) and increased fluoroquinolone efflux by AcrAB (Ecl#2) contribute to the resistance phenotypes, corroborating findings in vitro and in vivo about the sequential development of fluoroquinolone resistance.
Collapse
Affiliation(s)
- Hans-Jörg Linde
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
McLeod SM, Aiyar SE, Gourse RL, Johnson RC. The C-terminal domains of the RNA polymerase alpha subunits: contact site with Fis and localization during co-activation with CRP at the Escherichia coli proP P2 promoter. J Mol Biol 2002; 316:517-29. [PMID: 11866515 DOI: 10.1006/jmbi.2001.5391] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fis is a versatile transactivator that functions at many different promoters. Fis activates transcription at the RpoS-dependent proP P2 promoter when bound to a site that overlaps the minus sign35 hexamer by a mechanism that requires the C-terminal domain of the alpha subunit of RNA polymerase (alphaCTD). The region on Fis responsible for activating transcription through the alphaCTD has been localized to a short beta-turn near the DNA-binding determinant on one subunit of the Fis homodimer. We report here that Fis-dependent activation of proP P2 transcription requires two discrete regions on the alphaCTD. One region, consisting of residues 264-265 and 296-297, mediates DNA binding. A second patch, comprising amino acid residues 271-273, forms a ridge on the surface of the alphaCTD that we propose interacts with Fis. The accompanying paper shows that these same regions on alphaCTD are utilized for transcriptional activation at the rrnB and rrnE P1 promoters by Fis bound to a site upstream of the core promoter (centered at minus sign71/minus sign72). In addition to stimulation of proP P2 transcription by Fis, CRP co-activates this promoter when bound to a remote site upstream from the promoter (centered at -121.5). RNA polymerase preparations lacking one alphaCTD of the alpha dimer were employed to demonstrate that the beta'-associated alpha(II)CTD was utilized preferentially by Fis at proP P2 in the presence and absence of CRP. These experiments define the overall architecture of the proP P2 initiation complex where Fis and CRP each function through a different alphaCTD.
Collapse
Affiliation(s)
- Sarah M McLeod
- Department of Biological Chemistry, UCLA School of Medicine, Los Angeles, CA 90095-1737, USA
| | | | | | | |
Collapse
|
46
|
Martin RG, Gillette WK, Martin NI, Rosner JL. Complex formation between activator and RNA polymerase as the basis for transcriptional activation by MarA and SoxS in Escherichia coli. Mol Microbiol 2002; 43:355-70. [PMID: 11985714 DOI: 10.1046/j.1365-2958.2002.02748.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Transcriptional activation in Escherichia coli is generally considered to proceed via the formation of an activator-DNA-RNA polymerase (RNP) ternary complex. Although the order of assembly of the three elements is thermodynamically irrelevant, a prevalent idea is that the activator-DNA complex is formed first, and recruitment of RNP to the binary complex occurs subsequently. We show here that the closely related activators, MarA, SoxS and Rob, which activate the same family of genes, are capable of forming complexes with RNP core or holoenzyme in the absence of DNA. In addition, we find that the ternary MarA-DNA-RNP and SoxS-DNA-RNP complexes are more stable than the corresponding Rob-DNA-RNP complex, although the binary Rob-DNA complex is often more stable than the corresponding MarA- or SoxS-DNA complexes. These results may help to explain certain puzzling aspects of the MarA/SoxS/Rob system. We suggest that activator-RNP complexes scan the chromosome and bind promoters of the regulon more efficiently than either RNP or the activators alone.
Collapse
Affiliation(s)
- Robert G Martin
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0560, USA.
| | | | | | | |
Collapse
|
47
|
Balagué C, Véscovi EG. Activation of multiple antibiotic resistance in uropathogenic Escherichia coli strains by aryloxoalcanoic acid compounds. Antimicrob Agents Chemother 2001; 45:1815-22. [PMID: 11353631 PMCID: PMC90551 DOI: 10.1128/aac.45.6.1815-1822.2001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clofibric and ethacrynic acids are prototypical pharmacological agents administered in the treatment of hypertrigliceridemia and as a diuretic agent, respectively. They share with 2,4-dichlorophenoxyacetic acid (the widely used herbicide known as 2,4-D) a chlorinated phenoxy structural moiety. These aryloxoalcanoic agents (AOAs) are mainly excreted by the renal route as unaltered or conjugated active compounds. The relatedness of these agents at the structural level and their potential effect on therapeutically treated or occupationally exposed individuals who are simultaneously undergoing a bacterial urinary tract infection led us to analyze their action on uropathogenic, clinically isolated Escherichia coli strains. We found that exposure to these compounds increases the bacterial resistance to an ample variety of antibiotics in clinical isolates of both uropathogenic and nonpathogenic E. coli strains. We demonstrate that the AOAs induce an alteration of the bacterial outer membrane permeability properties by the repression of the major porin OmpF in a micF-dependent process. Furthermore, we establish that the antibiotic resistance phenotype is primarily due to the induction of the MarRAB regulatory system by the AOAs, while other regulatory pathways that also converge into micF modulation (OmpR/EnvZ, SoxRS, and Lrp) remained unaltered. The fact that AOAs give rise to uropathogenic strains with a diminished susceptibility to antimicrobials highlights the impact of frequently underestimated or ignored collateral effects of chemical agents.
Collapse
Affiliation(s)
- C Balagué
- Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Argentina
| | | |
Collapse
|
48
|
Grkovic S, Brown MH, Skurray RA. Transcriptional regulation of multidrug efflux pumps in bacteria. Semin Cell Dev Biol 2001; 12:225-37. [PMID: 11428915 DOI: 10.1006/scdb.2000.0248] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
As integral membrane proteins demonstrating an extraordinarily wide substrate range, some degree of regulatory control over the expression of bacterial multidrug-resistance (MDR) transporters is to be expected. Excessive expression could be deleterious, due to direct, physical disruption of membrane integrity, or the unwanted export of essential metabolites, a potential side-effect of their broad substrate specificity. There are limited clues as to the physiological functions of most MDR transporters, but their expression is likely to be up-regulated in response to the presence of natural substrates of these pumps. Thus, it is no surprise that MDR genes are subject to regulation at the local level, consisting of examples of both transcriptional repression and activation by proteins encoded adjacent to that for the transporter. Furthermore, an increasing number of MDR genes have also been found to be controlled by global transcriptional activator proteins.
Collapse
Affiliation(s)
- S Grkovic
- School of Biological Sciences, Macleay Building A12, University of Sydney, Sydney, New South Wales 2006, Australia
| | | | | |
Collapse
|
49
|
Egan SM, Pease AJ, Lang J, Li X, Rao V, Gillette WK, Ruiz R, Ramos JL, Wolf RE. Transcription activation by a variety of AraC/XylS family activators does not depend on the class II-specific activation determinant in the N-terminal domain of the RNA polymerase alpha subunit. J Bacteriol 2000; 182:7075-7. [PMID: 11092872 PMCID: PMC94837 DOI: 10.1128/jb.182.24.7075-7077.2000] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The N-terminal domain of the RNA polymerase alpha subunit (alpha-NTD) was tested for a role in transcription activation by a variety of AraC/XylS family members. Based on substitutions at residues 162 to 165 and an extensive genetic screen we conclude that alpha-NTD is not an activation target for these activators.
Collapse
Affiliation(s)
- S M Egan
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
McLeod SM, Xu J, Johnson RC. Coactivation of the RpoS-dependent proP P2 promoter by fis and cyclic AMP receptor protein. J Bacteriol 2000; 182:4180-7. [PMID: 10894725 PMCID: PMC101903 DOI: 10.1128/jb.182.15.4180-4187.2000] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Escherichia coli proP P2 promoter, which directs the expression of an integral membrane transporter of proline, glycine betaine, and other osmoprotecting compounds, is induced upon entry into stationary phase to protect cells from osmotic shock. Transcription from the P2 promoter is completely dependent on RpoS (sigma(38)) and Fis. Fis activates transcription by binding to a site centered at -41, which overlaps the promoter, where it makes a specific contact with the C-terminal domain of the alpha subunit of RNA polymerase (alpha-CTD). We show here that Fis and cyclic AMP (cAMP) receptor protein (CRP)-cAMP collaborate to activate transcription synergistically in vitro. Coactivation both in vivo and in vitro is dependent on CRP binding to a site centered at -121.5, but CRP without Fis provides little activation. The contribution by CRP requires the correct helical phasing of the CRP site and a functional activation region 1 on CRP. We provide evidence that coactivation is achieved by Fis and CRP independently contacting each of the two alpha-CTDs. Efficient transcription in vitro requires that both activators must be preincubated with the DNA prior to addition of RNA polymerase.
Collapse
Affiliation(s)
- S M McLeod
- Department of Biological Chemistry, UCLA School of Medicine, Los Angeles, California 90095-1737, USA
| | | | | |
Collapse
|