1
|
Yasukawa T, Iwama R, Yamasaki Y, Masuo N, Noda Y. Yeast Rim11 kinase responds to glutathione-induced stress by regulating the transcription of phospholipid biosynthetic genes. Mol Biol Cell 2024; 35:ar8. [PMID: 37938929 PMCID: PMC10881166 DOI: 10.1091/mbc.e23-03-0116] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023] Open
Abstract
Glutathione (GSH), a tripeptide composed of glycine, cysteine, and glutamic acid, is an abundant thiol found in a wide variety of cells, ranging from bacterial to mammalian cells. Adequate levels of GSH are essential for maintaining iron homeostasis. The ratio of oxidized/reduced GSH is strictly regulated in each organelle to maintain the cellular redox potential. Cellular redox imbalances cause defects in physiological activities, which can lead to various diseases. Although there are many reports regarding the cellular response to GSH depletion, studies on stress response to high levels of GSH are limited. Here, we performed genome-scale screening in the yeast Saccharomyces cerevisiae and identified RIM11, BMH1, and WHI2 as multicopy suppressors of the growth defect caused by GSH stress. The deletion strains of each gene were sensitive to GSH. We found that Rim11, a kinase important in the regulation of meiosis, was activated via autophosphorylation upon GSH stress in a glucose-rich medium. Furthermore, RNA-seq revealed that transcription of phospholipid biosynthetic genes was downregulated under GSH stress, and introduction of multiple copies of RIM11 counteracted this effect. These results demonstrate that S. cerevisiae copes with GSH stress via multiple stress-responsive pathways, including a part of the adaptive pathway to glucose limitation.
Collapse
Affiliation(s)
- Taishi Yasukawa
- Mitsubishi Corporation Life Sciences Limited, Tokyo Takarazuka Building 14F, 1-1-3 Yurakucho, Chiyoda-ku, Tokyo 100-0006, Japan
| | - Ryo Iwama
- Collaborative Research Institute for Innovative Microbiology, Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yuriko Yamasaki
- Mitsubishi Corporation Life Sciences Limited, Tokyo Takarazuka Building 14F, 1-1-3 Yurakucho, Chiyoda-ku, Tokyo 100-0006, Japan
| | - Naohisa Masuo
- Mitsubishi Corporation Life Sciences Limited, Tokyo Takarazuka Building 14F, 1-1-3 Yurakucho, Chiyoda-ku, Tokyo 100-0006, Japan
| | - Yoichi Noda
- Collaborative Research Institute for Innovative Microbiology, Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
2
|
Dawes IW, Perrone GG. Stress and ageing in yeast. FEMS Yeast Res 2021; 20:5670642. [PMID: 31816015 DOI: 10.1093/femsyr/foz085] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 12/05/2019] [Indexed: 02/06/2023] Open
Abstract
There has long been speculation about the role of various stresses in ageing. Some stresses have beneficial effects on ageing-dependent on duration and severity of the stress, others have negative effects and the question arises whether these negative effects are causative of ageing or the result of the ageing process. Cellular responses to many stresses are highly coordinated in a concerted way and hence there is a great deal of cross-talk between different stresses. Here the relevant aspects of the coordination of stress responses and the roles of different stresses on yeast cell ageing are discussed, together with the various functions that are involved. The cellular processes that are involved in alleviating the effects of stress on ageing are considered, together with the possible role of early stress events on subsequent ageing of cells.
Collapse
Affiliation(s)
- Ian W Dawes
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Gabriel G Perrone
- School of Science and Health, Western Sydney University, Campbelltown, NSW 2560, Australia
| |
Collapse
|
3
|
Antić TC, Janošević D, Maksimović VM, Živić M, Budimir S, Glamočlija J, Mitrović AL. Biochemical and histological characterization of succulent plant Tacitus bellus response to Fusarium verticillioides infection in vitro. JOURNAL OF PLANT PHYSIOLOGY 2020; 244:153086. [PMID: 31812905 DOI: 10.1016/j.jplph.2019.153086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 10/04/2019] [Accepted: 10/06/2019] [Indexed: 06/10/2023]
Abstract
We present changes in Tacitus bellus antioxidative system that specifically correspond to subsequent phases of hemibiotroph Fusarium verticillioides infection revealed by histological analysis. T. bellus response to spore germination 6 h post inoculation (hpi), manifested as first oxidative burst, was characterized by transient decrease in malondialdehyde (MDA) content, transient increase in catalase (CAT), low level of superoxide dismutase (SOD) and peroxidase (POD) activity, as well as with transient decrease in total antioxidant capacity (TAC), total phenol content (TPC) and phenylalanine ammonium lyase activity (PAL), and no changes in polyphenol oxidase (PPO) activity, or phenolic profile. During the biotrophic phase of F. verticillioides infection, characterized by hyphae spread intercellularly in epidermal and mesophyll tissue, the host antioxidative system was suppressed. The transition to necrotrophic phase of F. verticillioides infection (inter- and intracellular colonization and sporulation), occurred 3-4 days post inoculation (dpi). During the necrotrophic phase, 5-7 dpi, slowed progression of colonization of T. bellus mesophyll cells occurred and it coincided with sharp increase in MDA content and CAT, SOD and POD activities, but the drop in TAC, TPC content, and PPO activity, as well as the production of phytotoxin fusaric acid. Presented results add to the knowledge of events and mechanisms related to the transition from biotrophy to necrotrophy in F. verticillioides.
Collapse
Affiliation(s)
- Tijana Cvetić Antić
- University of Belgrade, Faculty of Biology, Studentski trg 16, Belgrade, Serbia
| | - Dušica Janošević
- University of Belgrade, Faculty of Biology, Studentski trg 16, Belgrade, Serbia
| | - Vuk M Maksimović
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, Belgrade, Serbia
| | - Miroslav Živić
- University of Belgrade, Faculty of Biology, Studentski trg 16, Belgrade, Serbia
| | - Snežana Budimir
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, Belgrade, Serbia
| | - Jasmina Glamočlija
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, Belgrade, Serbia
| | - Aleksandra Lj Mitrović
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, Belgrade, Serbia.
| |
Collapse
|
4
|
Phenylpyrrole fungicides act on triosephosphate isomerase to induce methylglyoxal stress and alter hybrid histidine kinase activity. Sci Rep 2019; 9:5047. [PMID: 30911085 PMCID: PMC6433957 DOI: 10.1038/s41598-019-41564-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 03/06/2019] [Indexed: 01/03/2023] Open
Abstract
Fludioxonil, a natural product of pyrrolnitrin, is a potent fungicide used on crops worldwide. Drug action requires the presence of a group III hybrid histidine kinase (HHK) and the high osmolarity glycerol (HOG) pathway. We have reported that the drug does not act directly on HHK, but triggers the conversion of the kinase to a phosphatase, which dephosphorylates Ypd1 to constitutively activate HOG signaling. Still, the direct drug target remains unknown and mode of action ill defined. Here, we heterologously expressed a group III HHK, dimorphism-regulating kinase 1 (Drk1) in Saccharomyces cerevisae to delineate fludioxonil’s target and action. We show that the drug interferes with triosephosphate isomerase (TPI) causing release of methylglyoxal (MG). MG activates the group III HHK and thus the HOG pathway. Drug action involved Drk1 cysteine 392, as a C392S substitution increased drug resistance in vivo. Drug sensitivity was reversed by dimedone treatment, indicating Drk1 responds in vivo to an aldehydic stress. Fludioxonil treatment triggered elevated cytosolic methylglyoxal. Likewise, methylglyoxal treatment of Drk1-expressing yeast phenocopied treatment with fludioxonil. Fludioxonil directly inhibited TPI and also caused it to release methylglyoxal in vitro. Thus, TPI is a drug target of the phenylpyrrole class of fungicides, inducing elevated MG which alters HHK activity, likely converting the kinase to a phosphatase that acts on Ypd1 to trigger HOG pathway activation and fungal cell death.
Collapse
|
5
|
Dankai W, Pongpom M, Vanittanakom N. An investigation into the possible regulation of the expression of genes by yapA in Talaromyces marneffei using the qRT- PCR method. Med Mycol 2017; 56:735-745. [DOI: 10.1093/mmy/myx105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 10/05/2017] [Indexed: 12/20/2022] Open
Affiliation(s)
- Wiyada Dankai
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Thailand
| | - Monsicha Pongpom
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Thailand
| | | |
Collapse
|
6
|
Wible RS, Sutter TR. Soft Cysteine Signaling Network: The Functional Significance of Cysteine in Protein Function and the Soft Acids/Bases Thiol Chemistry That Facilitates Cysteine Modification. Chem Res Toxicol 2017; 30:729-762. [DOI: 10.1021/acs.chemrestox.6b00428] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ryan S. Wible
- Department
of Chemistry, ‡Department of Biological Sciences, and §W. Harry Feinstone Center for Genomic
Research, University of Memphis, 3700 Walker Avenue, Memphis, Tennessee 38152-3370, United States
| | - Thomas R. Sutter
- Department
of Chemistry, ‡Department of Biological Sciences, and §W. Harry Feinstone Center for Genomic
Research, University of Memphis, 3700 Walker Avenue, Memphis, Tennessee 38152-3370, United States
| |
Collapse
|
7
|
Collin-Hansen C, Andersen RA, Steinnes E. Molecular defense systems are expressed in the king bolete (Boletus edulis) growing near metal smelters. Mycologia 2017. [DOI: 10.1080/15572536.2006.11832747] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Christian Collin-Hansen
- Department of Chemistry, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Rolf A. Andersen
- Department of Biology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Eiliv Steinnes
- Department of Chemistry, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| |
Collapse
|
8
|
Membrane damage by lipid peroxidation retains the cadmium constraint and is not the primary cause of K+ extrusion in yeast. ANN MICROBIOL 2015. [DOI: 10.1007/s13213-015-1181-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
9
|
Kowalec P, Grynberg M, Pająk B, Socha A, Winiarska K, Fronk J, Kurlandzka A. Newly identified protein Imi1 affects mitochondrial integrity and glutathione homeostasis in Saccharomyces cerevisiae. FEMS Yeast Res 2015; 15:fov048. [PMID: 26091838 DOI: 10.1093/femsyr/fov048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2015] [Indexed: 12/25/2022] Open
Abstract
Glutathione homeostasis is crucial for cell functioning. We describe a novel Imi1 protein of Saccharomyces cerevisiae affecting mitochondrial integrity and involved in controlling glutathione level. Imi1 is cytoplasmic and, except for its N-terminal Flo11 domain, has a distinct solenoid structure. A lack of Imi1 leads to mitochondrial lesions comprising aberrant morphology of cristae and multifarious mtDNA rearrangements and impaired respiration. The mitochondrial malfunctioning is coupled to significantly decrease the level of intracellular reduced glutathione without affecting oxidized glutathione, which decreases the reduced/oxidized glutathione ratio. These defects are accompanied by decreased cadmium sensitivity and increased phytochelatin-2 level.
Collapse
Affiliation(s)
- Piotr Kowalec
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Marcin Grynberg
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Beata Pająk
- Electron Microscopy Platform, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), 02-776 Warsaw, Poland
| | - Anna Socha
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Katarzyna Winiarska
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Jan Fronk
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Anna Kurlandzka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| |
Collapse
|
10
|
Sun Y, Lin Y, Cao X, Xiang L, Qi J. Sterols from Mytilidae show anti-aging and neuroprotective effects via anti-oxidative activity. Int J Mol Sci 2014; 15:21660-73. [PMID: 25429428 PMCID: PMC4284670 DOI: 10.3390/ijms151221660] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/23/2014] [Accepted: 11/03/2014] [Indexed: 01/09/2023] Open
Abstract
For screening anti-aging samples from marine natural products, K6001 yeast strain was employed as a bioassay system. The active mussel extract was separated to give an active sterol fraction (SF). SF was further purified, and four sterol compounds were obtained. Their structures were determined to be cholesterol (CHOL), brassicasterol, crinosterol, and 24-methylenecholesterol. All compounds showed similar anti-aging activity. To understand the action mechanism involved, anti-oxidative experiments, reactive oxygen species (ROS) assays, and malondialdehyde (MDA) tests were performed on the most abundant compound, CHOL. Results indicated that treatment with CHOL increases the survival rate of yeast under oxidative stress and decreases ROS and MDA levels. In addition, mutations of uth1, skn7, sod1, and sod2, which feature a K6001 background, were employed and the lifespans of the mutations were not affected by CHOL. These results demonstrate that CHOL exerts anti-aging effects via anti-oxidative stress. Based on the connection between neuroprotection and anti-aging, neuroprotective experiments were performed in PC12 cells. Paraquat was used to induce oxidative stress and the results showed that the CHOL and SF protect the PC12 cells from the injury induced by paraquat. In addition, these substance exhibited nerve growth factor (NGF) mimic activities again confirmed their neuroprotective function.
Collapse
Affiliation(s)
- Yujuan Sun
- College of Pharmaceutical Sciences, Zhejiang University, Yu Hang Tang Road 866, Hangzhou 310058, China.
| | - Yanfei Lin
- College of Pharmaceutical Sciences, Zhejiang University, Yu Hang Tang Road 866, Hangzhou 310058, China.
| | - Xueli Cao
- College of Pharmaceutical Sciences, Zhejiang University, Yu Hang Tang Road 866, Hangzhou 310058, China.
| | - Lan Xiang
- College of Pharmaceutical Sciences, Zhejiang University, Yu Hang Tang Road 866, Hangzhou 310058, China.
| | - Jianhua Qi
- College of Pharmaceutical Sciences, Zhejiang University, Yu Hang Tang Road 866, Hangzhou 310058, China.
| |
Collapse
|
11
|
Sen G, Eryilmaz IE, Ozakca D. The effect of aluminium-stress and exogenous spermidine on chlorophyll degradation, glutathione reductase activity and the photosystem II D1 protein gene (psbA) transcript level in lichen Xanthoria parietina. PHYTOCHEMISTRY 2014; 98:54-9. [PMID: 24359631 DOI: 10.1016/j.phytochem.2013.11.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 11/24/2013] [Accepted: 11/29/2013] [Indexed: 05/04/2023]
Abstract
In this study, the effects of short-term aluminium toxicity and the application of spermidine on the lichen Xanthoria parietina were investigated at the physiological and transcriptional levels. Our results suggest that aluminium stress leads to physiological processes in a dose-dependent manner through differences in lipid peroxidation rate, chlorophyll content and glutathione reductase (EC 1.6.4.2) activity in aluminium and spermidine treated samples. The expression of the photosystem II D1 protein (psbA) gene was quantified using semi-quantitative RT-PCR. Increased glutathione reductase activity and psbA mRNA transcript levels were observed in the X. parietina thalli that were treated with spermidine before aluminium-stress. The results showed that the application of spermidine could mitigate aluminium-induced lipid peroxidation and chlorophyll degradation on lichen X. parietina thalli through an increase in psbA transcript levels and activity of glutathione reductase (GR) enzymes.
Collapse
Affiliation(s)
- Gulseren Sen
- University of Bilecik Seyh Edebali, Faculty of Science and Art, Department of Molecular Biology and Genetics, Gulumbe-Bilecik, Turkey; University of Rize Recep Tayyip Erdogan, Faculty of Medicine, Rize, Turkey
| | - Isil Ezgi Eryilmaz
- University of Bilecik Seyh Edebali, Faculty of Science and Art, Department of Molecular Biology and Genetics, Gulumbe-Bilecik, Turkey
| | - Dilek Ozakca
- University of Bilecik Seyh Edebali, Faculty of Science and Art, Department of Molecular Biology and Genetics, Gulumbe-Bilecik, Turkey.
| |
Collapse
|
12
|
Shahid M, Pourrut B, Dumat C, Nadeem M, Aslam M, Pinelli E. Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2014; 232:1-44. [PMID: 24984833 DOI: 10.1007/978-3-319-06746-9_1] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
As a result of the industrial revolution, anthropogenic activities have enhanced there distribution of many toxic heavy metals from the earth's crust to different environmental compartments. Environmental pollution by toxic heavy metals is increasing worldwide, and poses a rising threat to both the environment and to human health.Plants are exposed to heavy metals from various sources: mining and refining of ores, fertilizer and pesticide applications, battery chemicals, disposal of solid wastes(including sewage sludge), irrigation with wastewater, vehicular exhaust emissions and adjacent industrial activity.Heavy metals induce various morphological, physiological, and biochemical dysfunctions in plants, either directly or indirectly, and cause various damaging effects. The most frequently documented and earliest consequence of heavy metal toxicity in plants cells is the overproduction of ROS. Unlike redox-active metals such as iron and copper, heavy metals (e.g, Pb, Cd, Ni, AI, Mn and Zn) cannot generate ROS directly by participating in biological redox reactions such as Haber Weiss/Fenton reactions. However, these metals induce ROS generation via different indirect mechanisms, such as stimulating the activity of NADPH oxidases, displacing essential cations from specific binding sites of enzymes and inhibiting enzymatic activities from their affinity for -SH groups on the enzyme.Under normal conditions, ROS play several essential roles in regulating the expression of different genes. Reactive oxygen species control numerous processes like the cell cycle, plant growth, abiotic stress responses, systemic signalling, programmed cell death, pathogen defence and development. Enhanced generation of these species from heavy metal toxicity deteriorates the intrinsic antioxidant defense system of cells, and causes oxidative stress. Cells with oxidative stress display various chemical,biological and physiological toxic symptoms as a result of the interaction between ROS and biomolecules. Heavy-metal-induced ROS cause lipid peroxidation, membrane dismantling and damage to DNA, protein and carbohydrates. Plants have very well-organized defense systems, consisting of enzymatic and non-enzymatic antioxidation processes. The primary defense mechanism for heavy metal detoxification is the reduced absorption of these metals into plants or their sequestration in root cells.Secondary heavy metal tolerance mechanisms include activation of antioxidant enzymes and the binding of heavy metals by phytochelatins, glutathione and amino acids. These defense systems work in combination to manage the cascades of oxidative stress and to defend plant cells from the toxic effects of ROS.In this review, we summarized the biochemiCal processes involved in the over production of ROS as an aftermath to heavy metal exposure. We also described the ROS scavenging process that is associated with the antioxidant defense machinery.Despite considerable progress in understanding the biochemistry of ROS overproduction and scavenging, we still lack in-depth studies on the parameters associated with heavy metal exclusion and tolerance capacity of plants. For example, data about the role of glutathione-glutaredoxin-thioredoxin system in ROS detoxification in plant cells are scarce. Moreover, how ROS mediate glutathionylation (redox signalling)is still not completely understood. Similarly, induction of glutathione and phytochelatins under oxidative stress is very well reported, but it is still unexplained that some studied compounds are not involved in the detoxification mechanisms. Moreover,although the role of metal transporters and gene expression is well established for a few metals and plants, much more research is needed. Eventually, when results for more metals and plants are available, the mechanism of the biochemical and genetic basis of heavy metal detoxification in plants will be better understood. Moreover, by using recently developed genetic and biotechnological tools it may be possible to produce plants that have traits desirable for imparting heavy metal tolerance.
Collapse
Affiliation(s)
- Muhammad Shahid
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari, 61100, Pakistan
| | | | | | | | | | | |
Collapse
|
13
|
Linares CEB, Giacomelli SR, Altenhofen D, Alves SH, Morsch VM, Schetinger MRC. Fluconazole and amphotericin-B resistance are associated with increased catalase and superoxide dismutase activity in Candida albicans and Candida dubliniensis. Rev Soc Bras Med Trop 2013; 46:752-8. [DOI: 10.1590/0037-8682-0190-2013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 11/26/2013] [Indexed: 11/21/2022] Open
|
14
|
Kawałek A, Lefevre SD, Veenhuis M, van der Klei IJ. Peroxisomal catalase deficiency modulates yeast lifespan depending on growth conditions. Aging (Albany NY) 2013; 5:67-83. [PMID: 23425686 PMCID: PMC3616232 DOI: 10.18632/aging.100519] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We studied the role of peroxisomal catalase in chronological aging of the yeastHansenula polymorpha in relation to various growth substrates. Catalase-deficient (cat) cells showed a similar chronological life span (CLS) relative to the wild-type control upon growth on carbon and nitrogen sources that are not oxidized by peroxisomal enzymes. However, when media contained methylamine, which is oxidized by peroxisomal amine oxidase, the CLS of cat cells was significantly reduced. Conversely, the CLS of cat cells was enhanced relative to the wild-type control, when cells were grown on methanol, which is oxidized by peroxisomal alcohol oxidase. At these conditions strongly enhanced ROS levels were observed during the exponential growth phase of cat cells. This was paralleled by activation of the transcription factor Yap1, as well as an increase in the levels of the antioxidant enzymes cytochrome c peroxidase and superoxide dismutase. Upon deletion of the genes encoding Yap1 or cytochrome c peroxidase, the CLS extension of cat cells on methanol was abolished. These findings reveal for the first time an important role of enhanced cytochrome c peroxidase levels in yeast CLS extension.
Collapse
Affiliation(s)
- Adam Kawałek
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, The Netherlands
| | | | | | | |
Collapse
|
15
|
Majumder S, Mishra D, Ram SS, Jana NK, Santra S, Sudarshan M, Chakraborty A. Physiological and chemical response of the lichen, Flavoparmelia caperata (L.) Hale, to the urban environment of Kolkata, India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:3077-3085. [PMID: 23054789 DOI: 10.1007/s11356-012-1224-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 09/23/2012] [Indexed: 06/01/2023]
Abstract
The present study was focused on the effect of increasing urbanization including industrial and traffic activity on the accumulation of heavy metals and possible damage of selected physiological parameters (composition of assimilation pigments, membrane lipid peroxidation, and membrane integrity) of an epiphytic foliose lichen, Flavoparmelia caperata (L.) Hale. The lichen samples were collected from three different localities in and around Kolkata, India, two sites being from the urban area and one from the relatively non-polluted sub-urban area. The results showed that thalli from the urban sites have significantly higher concentrations of Fe, Cr, Cu, Zn, and Pb compared to those collected from the sub-urban site. Physiological parameters of damage also exhibited stress symptoms in thalli from the urban sites--decreased chlorophyll a indicating less photosynthetic efficiency, and increase in lipid peroxidation and electrolyte conductivity indicating cell membrane injuries. Correlation studies among metals pinpointed vehicular traffic as the main source of pollution in this area.
Collapse
Affiliation(s)
- S Majumder
- Department of Zoology, Charuchandra College, 22, Lake Road, Kolkata 700029 West Bengal, India.
| | | | | | | | | | | | | |
Collapse
|
16
|
Kasemets K, Suppi S, Künnis-Beres K, Kahru A. Toxicity of CuO Nanoparticles to Yeast Saccharomyces cerevisiae BY4741 Wild-Type and Its Nine Isogenic Single-Gene Deletion Mutants. Chem Res Toxicol 2013; 26:356-67. [DOI: 10.1021/tx300467d] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Kaja Kasemets
- National Institute of Chemical
Physics and Biophysics, Laboratory of Environmental Toxicology, Akadeemia tee 23, Tallinn 12618, Estonia
| | - Sandra Suppi
- National Institute of Chemical
Physics and Biophysics, Laboratory of Environmental Toxicology, Akadeemia tee 23, Tallinn 12618, Estonia
- Department of Chemical and Materials
Technology, Tallinn University of Technology, Ehitajate tee 5, Tallinn 19086, Estonia
| | - Kai Künnis-Beres
- National Institute of Chemical
Physics and Biophysics, Laboratory of Environmental Toxicology, Akadeemia tee 23, Tallinn 12618, Estonia
| | - Anne Kahru
- National Institute of Chemical
Physics and Biophysics, Laboratory of Environmental Toxicology, Akadeemia tee 23, Tallinn 12618, Estonia
| |
Collapse
|
17
|
Jun H, Kieselbach T, Jönsson LJ. Comparative proteome analysis of Saccharomyces cerevisiae: a global overview of in vivo targets of the yeast activator protein 1. BMC Genomics 2012; 13:230. [PMID: 22681880 PMCID: PMC3476450 DOI: 10.1186/1471-2164-13-230] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 04/03/2012] [Indexed: 12/16/2022] Open
Abstract
Background The activity of the yeast activator protein 1 (Yap1p) increases under stress conditions, which leads to enhanced transcription of a number of genes encoding protective enzymes or other proteins. To obtain a global overview of changes in expression of Yap1p-targeted proteins, we compared a Yap1p-overexpressing transformant with a control transformant by triplicate analysis of the proteome using two-dimensional gel electrophoresis (2-DE). Proteins of interest were identified using MALDI-MS or LC-MS/MS. Results The relative quantities of 55 proteins were elevated significantly upon overexpression of Yap1p, and most of these proteins were found to have a Yap1p-binding site upstream of their coding sequences. Interestingly, the main metabolic enzymes in the glycolysis and pyruvate-ethanol pathways showed a significant increase in the Yap1p-overexpressing transformant. Moreover, a comparison of our proteome data with transcriptome data from the literature suggested which proteins were regulated at the level of the proteome, and which proteins were regulated at the level of the transcriptome. Eight proteins involved in stress response, including seven heat-shock and chaperone proteins, were significantly more abundant in the Yap1p-overexpressing transformant. Conclusions We have investigated the general protein composition in Yap1p-overexpressing S. cerevisiae using proteomic techniques, and quantified the changes in the expression of the potential Yap1p-targeted proteins. Identification of the potential Yap1p targets and analysis of their role in cellular processes not only give a global overview of the ubiquitous cellular changes elicited by Yap1p, but also provide the framework for understanding the mechanisms behind Yap1p-regulated stress response in yeast.
Collapse
Affiliation(s)
- He Jun
- Department of Chemistry, Umeå University, Sweden
| | | | | |
Collapse
|
18
|
|
19
|
Abstract
Oxidative damage to cellular constituents has frequently been associated with aging in a wide range of organisms. The power of yeast genetics and biochemistry has provided the opportunity to analyse in some detail how reactive oxygen and nitrogen species arise in cells, how cells respond to the damage that these reactive species cause, and to begin to dissect how these species may be involved in the ageing process. This chapter reviews the major sources of reactive oxygen species that occur in yeast cells, the damage they cause and how cells sense and respond to this damage.
Collapse
Affiliation(s)
- May T Aung-Htut
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia,
| | | | | | | |
Collapse
|
20
|
Abstract
A common need for microbial cells is the ability to respond to potentially toxic environmental insults. Here we review the progress in understanding the response of the yeast Saccharomyces cerevisiae to two important environmental stresses: heat shock and oxidative stress. Both of these stresses are fundamental challenges that microbes of all types will experience. The study of these environmental stress responses in S. cerevisiae has illuminated many of the features now viewed as central to our understanding of eukaryotic cell biology. Transcriptional activation plays an important role in driving the multifaceted reaction to elevated temperature and levels of reactive oxygen species. Advances provided by the development of whole genome analyses have led to an appreciation of the global reorganization of gene expression and its integration between different stress regimens. While the precise nature of the signal eliciting the heat shock response remains elusive, recent progress in the understanding of induction of the oxidative stress response is summarized here. Although these stress conditions represent ancient challenges to S. cerevisiae and other microbes, much remains to be learned about the mechanisms dedicated to dealing with these environmental parameters.
Collapse
|
21
|
Abstract
Cells must be able to maintain their intracellular homeostasis in the face of changing conditions. Typically, they respond by invoking complex regulatory mechanisms, including a global inhibition of translation. This reduction in protein synthesis may prevent continued gene expression during potentially error-prone conditions as well as allow for the turnover of existing mRNAs and proteins, whilst gene expression is directed toward the production of new molecules required to protect against or detoxify the stress. However, it is becoming increasingly recognized that not all translation is inhibited and translational control of specific mRNAs is required for survival under stress conditions. Control of protein levels via translational regulation offers a significant advantage to the cell due to the immediacy of the regulatory effect. This review describes how protein synthesis is regulated in response to oxidative stress conditions induced by exposure to hydrogen peroxide. Translational control can be mediated via direct oxidative regulation of translation factors as well via mRNA-specific regulatory mechanisms. Additionally, increasing evidence suggests that oxidative damage to the translational apparatus can itself alter the proteomic output. The resulting translational reprogramming is fundamental for adaptation to the oxidative stress.
Collapse
Affiliation(s)
- Chris M Grant
- Faculty of Life Sciences, The University of Manchester, United Kingdom.
| |
Collapse
|
22
|
Ouyang X, Tran QT, Goodwin S, Wible RS, Sutter CH, Sutter TR. Yap1 activation by H2O2 or thiol-reactive chemicals elicits distinct adaptive gene responses. Free Radic Biol Med 2011; 50:1-13. [PMID: 20971184 DOI: 10.1016/j.freeradbiomed.2010.10.697] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 10/06/2010] [Accepted: 10/15/2010] [Indexed: 10/18/2022]
Abstract
The yeast Saccharomyces cerevisiae transcription factor Yap1 mediates an adaptive response to oxidative stress by regulating protective genes. H(2)O(2) activates Yap1 through the Gpx3-mediated formation of a Yap1 Cys303-Cys598 intramolecular disulfide bond. Thiol-reactive electrophiles can activate Yap1 directly by adduction to cysteine residues in the C-terminal domain containing Cys598, Cys620, and Cys629. H(2)O(2) and N-ethylmaleimide (NEM) showed no cross-protection against each other, whereas another thiol-reactive chemical, acrolein, elicited Yap1-dependent cross-protection against NEM, but not H(2)O(2). Either Cys620 or Cys629 was sufficient for activation of Yap1 by NEM or acrolein; Cys598 was dispensable for this activation mechanism. To determine whether Yap1 activated by H(2)O(2) or thiol-reactive chemicals elicits distinct adaptive gene responses, microarray analysis was performed on the wild-type strain or its isogenic single-deletion strain Δyap1 treated with control buffer, H(2)O(2), NEM, or acrolein. Sixty-five unique H(2)O(2) and 327 NEM and acrolein Yap1-dependent responsive genes were identified. Functional analysis using single-gene-deletion yeast strains demonstrated that protection was conferred by CTA1 and CTT1 in the H(2)O(2)-responsive subset and YDR042C in the NEM- and acrolein-responsive subset. These findings demonstrate that the distinct mechanisms of Yap1 activation by H(2)O(2) or thiol-reactive chemicals result in selective expression of protective genes.
Collapse
Affiliation(s)
- Xiaoguang Ouyang
- Department of Biological Sciences and W. Harry Feinstone Center for Genomic Research, University of Memphis, Memphis, TN 38152-3560, USA
| | | | | | | | | | | |
Collapse
|
23
|
Beltrán-García MJ, Manzo-Sanchez G, Guzmán-González S, Arias-Castro C, Rodríguez-Mendiola M, Avila-Miranda M, Ogura T. Oxidative stress response of Mycosphaerella fijiensis, the causal agent of black leaf streak disease in banana plants, to hydrogen peroxide and paraquat. Can J Microbiol 2009; 55:887-94. [PMID: 19767862 DOI: 10.1139/w09-023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mycosphaerella fijiensis causes black leaf streak disease in banana and plantain. This fungus is usually attacked by reactive oxygen species secreted by the plant or during exposure to fungicide, however, little is known about the antioxidant response of the fungus. In this study, mycelia were observed to totally decompose 30 mmol/L of hydrogen peroxide (H2O2) within 120 min, liberating oxygen bubbles, and also to survive in concentrations as high as 100 mmol/L H2O2. The oxidative stress responses to H2O2, paraquat, and hydroquinone were characterized in terms of the activities of catalase and superoxide dismutase (SOD). Two active catalase bands were seen in native PAGE induced by H2O2. Band I had monofunctional activity and band II had bifunctional catalase-peroxidase activity. Two isozymes of SOD, distinguishable by their cyanide sensitivity, were found; CuZnSOD was the main one. The combination of H2O2 and 3-aminotriazole reduced the accumulation of biomass up to 40% compared with exposure to H2O2 alone, suggesting that catalase is important for the rapid decomposition of H2O2 and has a direct bearing on cell viability. The results also suggest that the superoxide anion formed through the redox of paraquat and hydroquinone has a greater effect than H2O2 on the cellular viability of M. fijiensis.
Collapse
Affiliation(s)
- Miguel J Beltrán-García
- Departamento de Química ICET, Universidad Autónoma de Guadalajara, Patria 1201, Lomas del Valle 44100, Guadalajara, Jalisco, México
| | | | | | | | | | | | | |
Collapse
|
24
|
Rosado T, Conim A, Alves-Pereira I, Ferreira R. Vanadium pentoxide effects on stress responses in wine Saccharomyces cerevisiae strain UE-ME3. ECOTOXICOLOGY (LONDON, ENGLAND) 2009; 18:1116-1122. [PMID: 19597706 DOI: 10.1007/s10646-009-0363-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Accepted: 06/24/2009] [Indexed: 05/28/2023]
Abstract
Vanadium pentoxide mainly used as catalyst in sulphuric acid, maleic anhydride and ceramics industry, is a pollutant watering redistributed around the environment. Research on biological influence of vanadium pentoxide has gained major importance because it exerts toxic effects on a wide variety of biological systems. In this work we intent to evaluate the effects of vanadium pentoxide ranging from 0 to 2 mM in culture media on a wine wild-type Saccharomyces cerevisiae from Alentejo region of Portugal. Our results show that 2.0 mM vanadium pentoxide in culture medium induced a significant increase of malonaldehyde level and Glutathione peroxidase activity, a slightly increase of Catalase A activity as well as a decrease of wet weight and mitochondrial NADH cit c reductase of S. cerevisiae UE-ME(3). Also our results show that cycloheximide prevent cell death when cells grows 30 min in presence of 1.5 mM of vanadium pentoxide.
Collapse
Affiliation(s)
- Tânia Rosado
- Departamento de Química, Universidade de Evora, R.Romão Ramalho, 59, 7002-671, Evora, Portugal
| | | | | | | |
Collapse
|
25
|
Qiao J, Kontoyiannis DP, Calderone R, Li D, Ma Y, Wan Z, Li R, Liu W. Afyap1, encoding a bZip transcriptional factor of Aspergillus fumigatus, contributes to oxidative stress response but is not essential to the virulence of this pathogen in mice immunosuppressed by cyclophosphamide and triamcinolone. Med Mycol 2009; 46:773-82. [PMID: 18608886 DOI: 10.1080/13693780802054215] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Aspergillus fumigatus, an important human fungal pathogen, encounters high levels of reactive oxygen species following its ingestion by phagocytes. Reactive oxygen species are important mediators of the fungicidal activities of phagocytes. In yeasts, YAP1 encodes for transcriptional factors that contribute to their oxidative stress response and given the importance of the stress response, we hypothesized that the YAP1 homologue in A. fumigatus plays a similar role in this fungus. In this study, we found that Afyap1, the Yap1 homologue of A. fumigatus, confers protection against oxidative stress. Replacement of Afyap1 with the marker gene pyrG (DeltaAfyap1) resulted in hypersensitivity of A. fumigatus to oxidants such as H(2)O(2) and menadione. In contrast, an A. fumigatus strain harboring multiple-copy Afyap1 was resistant to these two oxidants as well as the oxidant diamide. However, DeltaAfyap1 and strain harboring multiple-copy Afyap1 were comparable in their virulence to a wild-type A. fumigatus strain in a murine model of invasive pulmonary aspergillosis. Taken together, these results demonstrate that Afyap1 is involved in oxidative stress response but is not an essential virulence factor for A. fumigatus.
Collapse
Affiliation(s)
- Jianjun Qiao
- Department of Dermatology, Peking University First Hospital, and Research Center for Medical Mycology, Peking University, Beijing, the People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Kwolek-Mirek M, Bednarska S, Bartosz G, Biliński T. Acrolein toxicity involves oxidative stress caused by glutathione depletion in the yeast Saccharomyces cerevisiae. Cell Biol Toxicol 2008; 25:363-78. [DOI: 10.1007/s10565-008-9090-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2008] [Accepted: 05/20/2008] [Indexed: 11/28/2022]
|
27
|
Gibson B, Prescott K, Smart K. Petite mutation in aged and oxidatively stressed ale and lager brewing yeast. Lett Appl Microbiol 2008; 46:636-42. [DOI: 10.1111/j.1472-765x.2008.02360.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Fekete A, Emri T, Gyetvai A, Gazdag Z, Pesti M, Varga Z, Balla J, Cserháti C, Emody L, Gergely L, Pócsi I. Development of oxidative stress tolerance resulted in reduced ability to undergo morphologic transitions and decreased pathogenicity in a t-butylhydroperoxide-tolerant mutant of Candida albicans. FEMS Yeast Res 2007; 7:834-47. [PMID: 17498215 DOI: 10.1111/j.1567-1364.2007.00244.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
We tested the hypothesis that adaptation of Candida albicans to chronic oxidative stress inhibits the formation of hyphae and reduces pathogenicity. Candida albicans cells were exposed to increasing concentrations of t-butylhydroperoxide (tBOOH), a lipid peroxidation-accelerating agent, and mutants with heritable tBOOH tolerance were isolated. Hypha formation by the mutants was negligible on Spider agar, indicating that the development of oxidative stress tolerance prevented Candida cells from undergoing dimorphic switches. One of the mutants, C. albicans AF06, was five times less pathogenic in mice than its parental strain, due to its reduced germ tube-, pseudohypha- and hypha-forming capability, and decreased phospholipase secretion. An increased oxidative stress tolerance may therefore be disadvantageous when this pathogen leaves blood vessels and invades deep organs. The AF06 mutant was characterized by high intracellular concentrations of endogenous oxidants, reduced monounsaturated and polyunsaturated fatty acid contents, the continuous induction of the antioxidative defense system, decreased cytochrome c-dependent respiration, and increased alternative respiration. The mutation did not influence growth rate, cell size, cell surface, cellular ultrastructures, including mitochondria, or recognition by human polymorphonuclear leukocytes. The selection of oxidative stress-tolerant respiratory Candida mutants may also occur in vivo, when reduced respiration helps the fungus to cope with antimycotic agents.
Collapse
Affiliation(s)
- Andrea Fekete
- Department of Microbial Biotechnology and Cell Biology, Faculty of Science, University of Debrecen, Debrecen, Hungary
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Carreras HA, Pignata ML. Effects of the heavy metals Cu2+, Ni2+, Pb2+, and Zn2+ on some physiological parameters of the lichen Usnea amblyoclada. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2007; 67:59-66. [PMID: 16870253 DOI: 10.1016/j.ecoenv.2006.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2006] [Revised: 05/26/2006] [Accepted: 05/28/2006] [Indexed: 05/11/2023]
Abstract
The effect of Cu2+, Ni2+, Pb2+, and Zn2+ on some physiological parameters of the lichen Usnea amblyoclada and the selective uptake of Cu2+ and Pb2+ was assessed. Fresh thalli were soaked in single or mixed metallic solutions. The concentration of chlorophylls and malondialdehyde; the dry weight/fresh weight ratio as well as the water content and the concentration of Cu, Ni, Pb, and Zn were measured in the treated and control thalli. The exposure to Cu, Ni, and Pb solutions caused several changes on the parameters measured; no differences were found with Zn. A stronger ability for binding Pb2+ was also observed. The results suggest that Cu2+ was the most harmful cation followed by Pb and Ni. Consequently, the damage observed in U. amblyoclada thalli when it is used as a biomonitor in polluted areas is possibly due to the presence of these heavy metals, masking the effect of other gaseous pollutants.
Collapse
Affiliation(s)
- Hebe A Carreras
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET-UNC. Cátedra de Química General, Facultad de Ciencias Exactas, Universidad Nacional de Córdoba, Avda. Vélez Sársfield 1611, X5016 GCA, Córdoba, Argentina.
| | | |
Collapse
|
30
|
Mowla SB, Cuypers A, Driscoll SP, Kiddle G, Thomson J, Foyer CH, Theodoulou FL. Yeast complementation reveals a role for an Arabidopsis thaliana late embryogenesis abundant (LEA)-like protein in oxidative stress tolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 48:743-56. [PMID: 17092320 DOI: 10.1111/j.1365-313x.2006.02911.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
A functional cloning approach using the oxidant-sensitive yeast mutant, Deltayap1, was employed to identify plant genes involved in tolerance of oxidative stress. In this screen, we identified an Arabidopsis late embryogenesis-abundant (LEA)-like protein, AtLEA5, which increased the tolerance of Deltayap1 cells to the oxidants H(2)O(2), diamide, menadione and tert-butyl hydroperoxide. Unlike canonical LEAs, AtLEA5 is constitutively expressed in roots and reproductive organs but not in seeds. In leaves of short-day grown plants, AtLEA5 transcripts exhibited a diurnal pattern of regulation, where transcripts were repressed in the light and abundant in the dark. Expression of AtLEA5 in leaves was induced by oxidants, ABA and dehydration. Use of abi1-1 (ABA-insensitive) and aba1-1 (ABA-deficient) Arabidopsis mutants indicated that drought induction of AtLEA5 required ABA synthesis but was independent of the ABI1 gene product. Abscisic acid and H(2)O(2) induction of AtLEA5 was also independent of the OXI1 protein kinase. Constitutive overexpression of AtLEA5 resulted in increased root growth and shoot biomass, both in optimal conditions and under H(2)O(2) stress. However, in comparison with wild type, photosynthesis in overexpressing plants was more susceptible to drought. These features suggest that AtLEA5 has a unique function among LEA proteins in that it plays a specific role in protection against oxidative stress involving decreased photosynthesis. This protein functions as part of a complex network of defences that contribute to robustness of plants under stress by minimizing the negative effects of oxidation.
Collapse
Affiliation(s)
- Shaheen B Mowla
- Crop Performance and Improvement Division, Rothamsted Research, Harpenden, Herts AL5 2JQ, UK
| | | | | | | | | | | | | |
Collapse
|
31
|
Genome-wide expression analyses of adaptive response against medadione-induced oxidative stress in Saccharomyces cerevisiae KNU5377. Process Biochem 2006. [DOI: 10.1016/j.procbio.2006.06.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
32
|
Trotter EW, Collinson EJ, Dawes IW, Grant CM. Old yellow enzymes protect against acrolein toxicity in the yeast Saccharomyces cerevisiae. Appl Environ Microbiol 2006; 72:4885-92. [PMID: 16820484 PMCID: PMC1489299 DOI: 10.1128/aem.00526-06] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acrolein is a ubiquitous reactive aldehyde which is formed as a product of lipid peroxidation in biological systems. In this present study, we screened the complete set of viable deletion strains in Saccharomyces cerevisiae for sensitivity to acrolein to identify cell functions involved in resistance to reactive aldehydes. We identified 128 mutants whose gene products are localized throughout the cell. Acrolein-sensitive mutants were distributed among most major biological processes but particularly affected gene expression, metabolism, and cellular signaling. Surprisingly, the screen did not identify any antioxidants or similar stress-protective molecules, indicating that acrolein toxicity may not be mediated via reactive oxygen species. Most strikingly, a mutant lacking an old yellow enzyme (OYE2) was identified as being acrolein sensitive. Old yellow enzymes are known to reduce alpha,beta-unsaturated carbonyl compounds in vitro, but their physiological roles have remained uncertain. We show that mutants lacking OYE2, but not OYE3, are sensitive to acrolein, and overexpression of both isoenzymes increases acrolein tolerance. Our data indicate that OYE2 is required for basal levels of tolerance, whereas OYE3 expression is particularly induced following acrolein stress. Despite the range of alpha,beta-unsaturated carbonyl compounds that have been identified as substrates of old yellow enzymes in vitro, we show that old yellow enzymes specifically mediate resistance to small alpha,beta-unsaturated carbonyl compounds, such as acrolein, in vivo.
Collapse
Affiliation(s)
- Eleanor W Trotter
- The University of Manchester, Faculty of Life Sciences, The Michael Smith Building, Oxford Road, Manchester M13 9PT, United Kingdom
| | | | | | | |
Collapse
|
33
|
Temple MD, Perrone GG, Dawes IW. Complex cellular responses to reactive oxygen species. Trends Cell Biol 2005; 15:319-26. [PMID: 15953550 DOI: 10.1016/j.tcb.2005.04.003] [Citation(s) in RCA: 269] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2004] [Revised: 03/17/2005] [Accepted: 04/15/2005] [Indexed: 11/17/2022]
Abstract
Genome-wide analyses of yeast provide insight into cellular responses to reactive oxygen species (ROS). Many deletion mutants are sensitive to at least one ROS, but no one oxidant is representative of 'oxidative stress' despite the widespread use of a single compound such as H(2)O(2). This has major implications for studies of pathological situations. Cells have a range of mechanisms for maintaining resistance that involves either induction or repression of many genes and extensive remodeling of the transcriptome. Cells have constitutive defense systems that are largely unique to each oxidant, but overlapping, inducible repair systems. The pattern of the transcriptional response to a particular ROS depends on its concentration, and 'classical' antioxidant systems that are induced by high concentrations of ROS can be repressed when cells adapt to low concentrations of ROS.
Collapse
Affiliation(s)
- Mark D Temple
- Ramaciotti Centre for Gene Function Analysis and School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney 2052, Australia
| | | | | |
Collapse
|
34
|
Biliński T, Kwolek M, Sas E, Krynicka M, Koziol S, Owsiak-Teleon A, Krzepilko A, Bartosz G. A novel test for identifying genes involved in aldehyde detoxification in the yeast. Increased sensitivity of superoxide-deficient yeast to aldehydes and their metabolic precursors. Biofactors 2005; 24:59-65. [PMID: 16403964 DOI: 10.1002/biof.5520240107] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A novel test for the identification of genes involved in aldehyde metabolism is proposed, based on detection of altered sensitivity of the yeast to corresponding alcohols, metabolic precursors of the aldehydes. This attitude enabled to an unexpected detection increased sensitivity of mutants devoid of CuZn-superoxide dismutase (CuZnSOD) to allyl alcohol (precursor of acrolein) and nonenol. We interpret this finding as due to inactivation of some important element of aldehyde detoxification by increased flux of superoxide in DeltaCuZnSOD mutants.
Collapse
Affiliation(s)
- Tomasz Biliński
- Department of Biochemistry and Cell Biology, University of Rzeszów, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
|
36
|
Carreras HA, Wannaz ED, Perez CA, Pignata ML. The role of urban air pollutants on the performance of heavy metal accumulation in Usnea amblyoclada. ENVIRONMENTAL RESEARCH 2005; 97:50-57. [PMID: 15476733 DOI: 10.1016/j.envres.2004.05.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2003] [Revised: 04/30/2004] [Accepted: 05/17/2004] [Indexed: 05/24/2023]
Abstract
Lichens incorporate heavy metals according to a selectivity sequence; therefore, their uptake rate can be affected when elements with a high affinity for cell wall exchange sites or that provoke harmful alterations to the metabolism of lichen thalli are present in the environment. The aim of this study was to examine the effect of urban pollutants on the accumulation of some heavy metals in Usnea amblyoclada. Lichen samples were transplanted for 1 month to both a polluted and a nonpolluted area in Cordoba, Argentina. They were then collected and soaked in tridistilled water or in solutions containing different concentrations of Cu, Ni, Pb, and Zn salts. The uptake of Cu2+, Ni2+, Zn2+, and Pb2+, and other parameters indicative of lichen damage were measured in all the lichen samples. The thalli retrieved from the polluted area showed significant increases in both the malonaldehyde content and the electrical conductivity of the water in which they had been immersed. These results indicate that the atmospheric pollutants could be responsible for the significant damage to the lichen's cellular membranes, thus altering several mechanisms related to the uptake of heavy metals. Both the area of transplantation and the concentration of the metallic solutions had significant effects on the levels of Cu, Ni, and Pb measured in lichen thalli; however, no significant differences were observed in Zn concentrations. The highest uptakes corresponded to Pb and Cu, suggesting that they probably have a higher affinity with the lichen cell wall exchange sites. This study confirms the fact that, although lichens can be useful biological indicators, the physiological mechanisms involved in metal uptake should be carefully analyzed. Therefore, when estimating the heavy metal content of an environment, the competitive mechanism for cation uptake should be considered especially in areas where the presence of high levels of metals with a strong binding affinity is suspected. The presence of secondary products in the lichens could be responsible for the selective uptake of cations and for a possible tolerance to their presence.
Collapse
Affiliation(s)
- Hebe A Carreras
- Departamento de Química, Instituto Multidisciplinario de Biología Vegetal-IMBIV/CONICET-UNC, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, X5016 GCA Córdoba, Argentina.
| | | | | | | |
Collapse
|
37
|
Perrone GG, Grant CM, Dawes IW. Genetic and environmental factors influencing glutathione homeostasis in Saccharomyces cerevisiae. Mol Biol Cell 2004; 16:218-30. [PMID: 15509654 PMCID: PMC539166 DOI: 10.1091/mbc.e04-07-0560] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Glutathione is an essential metabolite protecting cells against oxidative stress and aging. Here, we show that endogenously synthesized glutathione undergoes intercellular cycling during growth to stationary phase. Genome-wide screening identified approximately 270 yeast deletion mutants that overexcrete glutathione, predominantly in the reduced form, and identified a surprising set of functions important for glutathione homeostasis. The highest excretors were affected in late endosome/vacuolar functions. Other functions identified included nitrogen/carbon source signaling, mitochondrial electron transport, ubiquitin/proteasomal processes, transcriptional regulation, ion transport and the cellular integrity pathway. For many mutants the availability of branched chain amino acids and extracellular pH influenced both glutathione homeostasis and cell viability. For all mutants tested, the onset of glutathione excretion occurred when intracellular concentration exceeded the maximal level found in the parental strain; however, in some mutants prolonged excretion led to substantial depletion of intracellular glutathione. These results significantly contribute to understanding mechanisms affecting glutathione homeostasis in eukaryotes and may provide insight into the underlying cause of glutathione depletion in degenerative processes such as Parkinson's disease. The important implications of these data for use of the yeast deletion collection for the study of other phenomena also are discussed.
Collapse
Affiliation(s)
- Gabriel G Perrone
- School of Biotechnology and Biomolecular Sciences and Ramaciotti Centre for Gene Function Analysis, University of New South Wales, Sydney, New South Wales, Australia 2052
| | | | | |
Collapse
|
38
|
Alic N, Felder T, Temple MD, Gloeckner C, Higgins VJ, Briza P, Dawes IW. Genome-wide transcriptional responses to a lipid hydroperoxide: adaptation occurs without induction of oxidant defenses. Free Radic Biol Med 2004; 37:23-35. [PMID: 15183192 DOI: 10.1016/j.freeradbiomed.2004.04.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2003] [Revised: 03/15/2004] [Accepted: 04/08/2004] [Indexed: 11/17/2022]
Abstract
Free radicals can initiate the oxidation of polyunsaturated fatty acids in cells through the process of lipid peroxidation. The genome-wide transcriptional changes in Saccharomyces cerevisiae after treatment with the toxic lipid peroxidation product linoleic acid hydroperoxide (LoaOOH) were identified. High-dose treatment led to a switch in transcription from biosynthetic to protective functions. This response encompassed a set of genes stimulated predominantly by LoaOOH, and not by other oxidants or heat shock, which contained components of the pleiotropic drug resistance system. The dose dependence of the transcriptional response revealed that large and widespread changes occur only in response to higher doses. Pretreatment of cells with sublethal doses of LoaOOH induces resistance to an otherwise lethal dose through the process of adaptation. Adaptive doses elicited a more subtle transcriptional response affecting metabolic functions, including an increase in the capacity for detoxification and downregulation of the rate of protein synthesis. Surprisingly, the cellular response to adaptive doses did not include induction of oxidative-stress defense enzymes nor of transcripts involved in general cellular defense systems.
Collapse
Affiliation(s)
- Nazif Alic
- Ramaciotti Centre for Gene Function Analysis and School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, 2052 NSW, Australia
| | | | | | | | | | | | | |
Collapse
|
39
|
Thorpe GW, Fong CS, Alic N, Higgins VJ, Dawes IW. Cells have distinct mechanisms to maintain protection against different reactive oxygen species: oxidative-stress-response genes. Proc Natl Acad Sci U S A 2004; 101:6564-9. [PMID: 15087496 PMCID: PMC404085 DOI: 10.1073/pnas.0305888101] [Citation(s) in RCA: 338] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The complete set of viable deletion strains in Saccharomyces cerevisiae was screened for sensitivity of mutants to five oxidants to identify cell functions involved in resistance to oxidative stress. This screen identified a unique set of mainly constitutive functions providing the first line of defense against a particular oxidant; these functions are very dependent on the nature of the oxidant. Most of these functions are distinct from those involved in repair and recovery from damage, which are generally induced in response to stress, because there was little correlation between mutant sensitivity and the reported transcriptional response to oxidants of the relevant gene. The screen identified 456 mutants sensitive to at least one of five different types of oxidant, and these were ranked in order of sensitivity. Many genes identified were not previously known to have a role in resistance to reactive oxygen species. These encode functions including protein sorting, ergosterol metabolism, autophagy, and vacuolar acidification. Only two mutants were sensitive to all oxidants examined, only 12 were sensitive to at least four, and different oxidants had very different spectra of deletants that were sensitive. These findings highlight the specificity of cellular responses to different oxidants: No single oxidant is representative of general oxidative stress. Mitochondrial respiratory functions were overrepresented in mutants sensitive to H(2)O(2), and vacuolar protein-sorting mutants were enriched in mutants sensitive to diamide. Core functions required for a broad range of oxidative-stress resistance include transcription, protein trafficking, and vacuolar function.
Collapse
Affiliation(s)
- Geoffrey W Thorpe
- Ramaciotti Centre for Gene Function Analysis, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney NSW 2052, Australia
| | | | | | | | | |
Collapse
|
40
|
Weber H, Chételat A, Reymond P, Farmer EE. Selective and powerful stress gene expression in Arabidopsis in response to malondialdehyde. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 37:877-88. [PMID: 14996219 DOI: 10.1111/j.1365-313x.2003.02013.x] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The provenance, half-life and biological activity of malondialdehyde (MDA) were investigated in Arabidopsis thaliana. We provide genetic confirmation of the hypothesis that MDA originates from fatty acids containing more than two methylene-linked double bonds, showing that tri-unsaturated fatty acids are the in vivo source of up to 75% of MDA. The abundance of the combined pool of free and reversibly bound MDA did not change dramatically in stress, although a significant increase in the free MDA pool under oxidative conditions was observed. The half-life of infiltrated MDA indicated rapid metabolic turnover/sequestration. Exposure of plants to low levels of MDA using a recently developed protocol powerfully upregulated many genes on a cDNA microarray with a bias towards those implicated in abiotic/environmental stress (e.g. ROF1 and XERO2). Remarkably, and in contrast to the activities of other reactive electrophile species (i.e. small vinyl ketones), none of the pathogenesis-related (PR) genes tested responded to MDA. The use of structural mimics of MDA isomers suggested that the propensity of the molecule to act as a cross-linking/modifying reagent might contribute to the activation of gene expression. Changes in the concentration/localisation of unbound MDA in vivo could strongly affect stress-related transcription.
Collapse
Affiliation(s)
- Hans Weber
- Gene Expression Laboratory, Plant Molecular Biology, University of Lausanne, Biology Building, 1015 Lausanne, Switzerland
| | | | | | | |
Collapse
|
41
|
Abstract
Glutathione (GSH; gamma-L-glutamyl-L-cysteinyl-glycine), a non-protein thiol with a very low redox potential (E'0 = 240 mV for thiol-disulfide exchange), is present in high concentration up to 10 mM in yeasts and filamentous fungi. GSH is concerned with basic cellular functions as well as the maintenance of mitochondrial structure, membrane integrity, and in cell differentiation and development. GSH plays key roles in the response to several stress situations in fungi. For example, GSH is an important antioxidant molecule, which reacts non-enzymatically with a series of reactive oxygen species. In addition, the response to oxidative stress also involves GSH biosynthesis enzymes, NADPH-dependent GSH-regenerating reductase, glutathione S-transferase along with peroxide-eliminating glutathione peroxidase and glutaredoxins. Some components of the GSH-dependent antioxidative defence system confer resistance against heat shock and osmotic stress. Formation of protein-SSG mixed disulfides results in protection against desiccation-induced oxidative injuries in lichens. Intracellular GSH and GSH-derived phytochelatins hinder the progression of heavy metal-initiated cell injuries by chelating and sequestering the metal ions themselves and/or by eliminating reactive oxygen species. In fungi, GSH is mobilized to ensure cellular maintenance under sulfur or nitrogen starvation. Moreover, adaptation to carbon deprivation stress results in an increased tolerance to oxidative stress, which involves the induction of GSH-dependent elements of the antioxidant defence system. GSH-dependent detoxification processes concern the elimination of toxic endogenous metabolites, such as excess formaldehyde produced during the growth of the methylotrophic yeasts, by formaldehyde dehydrogenase and methylglyoxal, a by-product of glycolysis, by the glyoxalase pathway. Detoxification of xenobiotics, such as halogenated aromatic and alkylating agents, relies on glutathione S-transferases. In yeast, these enzymes may participate in the elimination of toxic intermediates that accumulate in stationary phase and/or act in a similar fashion as heat shock proteins. GSH S-conjugates may also form in a glutathione S-transferases-independent way, e.g. through chemical reaction between GSH and the antifugal agent Thiram. GSH-dependent detoxification of penicillin side-chain precursors was shown in Penicillium sp. GSH controls aging and autolysis in several fungal species, and possesses an anti-apoptotic feature.
Collapse
Affiliation(s)
- István Pócsi
- Department of Microbiology and Biotechnology, Faculty of Sciences, University of Debrecen, P.O. Box 63, H-4010 Debrecen, Hungary
| | | | | |
Collapse
|
42
|
|
43
|
Panmanee W, Vattanaviboon P, Eiamphungporn W, Whangsuk W, Sallabhan R, Mongkolsuk S. OhrR, a transcription repressor that senses and responds to changes in organic peroxide levels in Xanthomonas campestris pv. phaseoli. Mol Microbiol 2002; 45:1647-54. [PMID: 12354231 DOI: 10.1046/j.1365-2958.2002.03116.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report the physiological role of OhrR as an organic peroxide sensor and transcription repressor in Xanthomonas campestris pv. phaseoli. In vivo exposure of X. campestris pv. phaseoli to either tert-butyl or cumene hydroperoxides efficiently neutralized OhrR repression of expression from the OhrR-regulated P1 promoter. H2O2 was a weak and non-physiological inducer of the system while other oxidants and metabolites of organic peroxide metabolism did not induce the expression from the P1. Northern blotting results indicated a correlation between concentrations of tert-butyl hydroperoxide used in the treatment and the induction of ohr (an OhrR-regulated gene) expression. In addition, the levels of ohr mRNA in cultures induced by various concentrations of tert-butyl hydroperoxide were reduced in cells with high levels of an organic peroxide metabolising enzyme (AhpC-AhpF) but not in cells with high catalase levels suggesting that organic peroxide interacts with OhrR. DNA band shift experiments using purified OhrR and the P1 promoter fragment showed that organic peroxide treatment prevented binding of the protein to the P1 promoter by oxidation of OhrR, as the inhibition of binding to the P1 promoter was reversed by addition of a reducing agent, DTT. The highly conserved cysteine residue C22 of OhrR is required for organic peroxide inducible gene expression. A mutant protein, OhrRC22S can repress the P1 promoter activity but is insensitive to organic peroxide treatment. Thus, OhrR is the first transcription repressor characterized that appeared to evolve to physiologically sense organic peroxides.
Collapse
Affiliation(s)
- Warunya Panmanee
- Department of Biotechnology, Faculty of Sciences, Mahidol University, Bangkok, Thailand
| | | | | | | | | | | |
Collapse
|
44
|
Avery AM, Avery SV. Saccharomyces cerevisiae expresses three phospholipid hydroperoxide glutathione peroxidases. J Biol Chem 2001; 276:33730-5. [PMID: 11445588 DOI: 10.1074/jbc.m105672200] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The GPX1, GPX2, and GPX3 genes of Saccharomyces cerevisiae have been reported previously to encode glutathione peroxidases (GPxs). We re-examined the sequence alignments of these proteins with GPxs from higher eukaryotes. Sequence identities, particularly with phospholipid hydroperoxide glutathione peroxidases (PHGPxs), were enhanced markedly by introduction to the yeast sequences of gaps that are characteristic of PHGPxs. PHGPx-like activity was detectable in extracts from wild-type S. cerevisiae and was diminished in extracts from gpx1 Delta, gpx2 Delta, and gpx3 Delta deletion mutants; PHGPx activity was almost absent in a gpx1 Delta/gpx2 Delta/gpx3 Delta triple mutant. Studies with cloned GPX1, GPX2, and GPX3 expressed heterologously in Escherichia coli confirmed that these genes encode proteins with PHGPx activity. An S. cerevisiae gpx1 Delta/gpx2 Delta/gpx3 Delta mutant was defective for growth in medium supplemented with the oxidation-sensitive polyunsaturated fatty acid linolenate (18:3). This sensitivity to 18:3 was more marked than sensitivity to H(2)O(2). Unlike H(2)O(2) toxicity, delayed toxicity of 18:3 toward gpx1 Delta/gpx2 Delta/gpx3 Delta cells was correlated with the gradual incorporation of 18:3 into S. cerevisiae membrane lipids and was suppressible with alpha-tocopherol, an inhibitor of lipid peroxidation. The results show that the GPX genes of S. cerevisiae, previously reported to encode GPxs, encode PHGPxs (PHGPx1, PHGPx2, and PHGPx3) and that these enzymes protect yeast against phospholipid hydroperoxides as well as nonphospholipid peroxides during oxidative stress. This is the first report of an organism that expresses PHGPx from more than one gene and produces PHGPx in the absence of a GPx.
Collapse
Affiliation(s)
- A M Avery
- School of Life and Environmental Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | | |
Collapse
|
45
|
Alic N, Higgins VJ, Dawes IW. Identification of a Saccharomyces cerevisiae gene that is required for G1 arrest in response to the lipid oxidation product linoleic acid hydroperoxide. Mol Biol Cell 2001; 12:1801-10. [PMID: 11408586 PMCID: PMC37342 DOI: 10.1091/mbc.12.6.1801] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Reactive oxygen species cause damage to all of the major cellular constituents, including peroxidation of lipids. Previous studies have revealed that oxidative stress, including exposure to oxidation products, affects the progression of cells through the cell division cycle. This study examined the effect of linoleic acid hydroperoxide, a lipid peroxidation product, on the yeast cell cycle. Treatment with this peroxide led to accumulation of unbudded cells in asynchronous populations, together with a budding and replication delay in synchronous ones. This observed modulation of G1 progression could be distinguished from the lethal effects of the treatment and may have been due to a checkpoint mechanism, analogous to that known to be involved in effecting cell cycle arrest in response to DNA damage. By examining several mutants sensitive to linoleic acid hydroperoxide, the YNL099c open reading frame was found to be required for the arrest. This gene (designated OCA1) encodes a putative protein tyrosine phosphatase of previously unknown function. Cells lacking OCA1 did not accumulate in G1 on treatment with linoleic acid hydroperoxide, nor did they show a budding, replication, or Start delay in synchronous cultures. Although not essential for adaptation or immediate cellular survival, OCA1 was required for growth in the presence of linoleic acid hydroperoxide, thus indicating that it may function in linking growth, stress responses, and the cell cycle. Identification of OCA1 establishes cell cycle arrest as an actively regulated response to oxidative stress and will enable further elucidation of oxidative stress-responsive signaling pathways in yeast.
Collapse
Affiliation(s)
- N Alic
- School of Biochemistry and Molecular Genetics, University of New South Wales, Sydney, New South Wales 2052, Australia
| | | | | |
Collapse
|
46
|
Lee JC, Straffon MJ, Jang TY, Higgins VJ, Grant CM, Dawes IW. The essential and ancillary role of glutathione in Saccharomyces cerevisiae analysed using a grande gsh1 disruptant strain. FEMS Yeast Res 2001; 1:57-65. [PMID: 12702463 DOI: 10.1111/j.1567-1364.2001.tb00013.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
A grande gsh1 disruptant mutant of Saccharomyces cerevisiae was generated by crossing a petite disruptant to a wild-type grande strain. This strain was relatively stable, but generated petites at an elevated frequency, illustrating the ancillary role of glutathione (GSH) in the maintenance of the genetic integrity of the mitochondrial genome. The availability of the grande gsh1 deletant enabled an evaluation of the role of GSH in the cellular response to hydrogen peroxide independent of the effects of a petite mutation. The mutant strain was more sensitive to hydrogen peroxide than the wild-type strain but was still capable of producing an adaptive stress response to this compound. GSH was found to be essential for growth and sporulation of the yeast, but the intracellular level needed to support growth was at least two orders of magnitude less than that normally present in wild-type cells. This surprising result indicates that there is an essential role for GSH but only very low amounts are needed for growth. This result was also found in anaerobic conditions, thus this essential function does not involve protection from oxidative stress. Suppressors of the gsh1 deletion mutation were isolated by ethylmethanesulfonate mutagenesis. These were the result of a single recessive mutation (sgr1, suppressor for glutathione requirement) that relieved the requirement for GSH for growth on minimal medium but did not affect the sensitivity to H(2)O(2) stress. Interestingly, the gsh1 sgr1 mutant generated petites at a lower rate than the gsh1 mutant. Thus, it is suggested that the essential role of GSH is involved in the maintenance of the mitochondrial genome.
Collapse
Affiliation(s)
- J C Lee
- School of Biochemistry and Molecular Genetics, The CRC for Food Industry Innovation, University of New South Wales, Sydney, NSW 2052, Australia
| | | | | | | | | | | |
Collapse
|
47
|
MacLean M, Harris N, Piper PW. Chronological lifespan of stationary phase yeast cells; a model for investigating the factors that might influence the ageing of postmitotic tissues in higher organisms. Yeast 2001; 18:499-509. [PMID: 11284006 DOI: 10.1002/yea.701] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Budding yeast can be considered to have two distinct lifespans: (a) a replicative (budding, non-chronological) lifespan, measured as the number of daughters produced by each actively dividing mother cell; and (ii) a chronological lifespan, measured as the ability of stationary cultures to maintain viability over time. In non-dividing cells, essential components that become damaged cannot be diluted out through cell division but must, of necessity, be turned over and renewed. By elevating stress resistances, many of the activities needed for such renewal should be elevated with commensurate reduction in the steady-state levels of damaged cell components. Therefore, chronological lifespan in particular might be expected to relate to stress resistance. For yeast to attain a full chronological lifespan requires the expression of the general stress response. It is more important, though, that the cells should be efficiently adapted to respiratory maintenance, since it is cultures grown to stationary phase on respiratory media that usually display the longest chronological lifespans. For this reason, respiration-adapted cells potentially provide a better model of chronological ageing than cultures pre-grown on glucose.
Collapse
Affiliation(s)
- M MacLean
- Department of Biochemistry and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK
| | | | | |
Collapse
|
48
|
Grant CM. Role of the glutathione/glutaredoxin and thioredoxin systems in yeast growth and response to stress conditions. Mol Microbiol 2001; 39:533-41. [PMID: 11169096 DOI: 10.1046/j.1365-2958.2001.02283.x] [Citation(s) in RCA: 298] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sulphydryl groups (-SH) play a remarkably broad range of roles in the cell, and the redox status of cysteine residues can affect both the structure and the function of numerous enzymes, receptors and transcription factors. The intracellular milieu is usually a reducing environment as a result of high concentrations of the low-molecular-weight thiol glutathione (GSH). However, reactive oxygen species (ROS), which are the products of normal aerobic metabolism, as well as naturally occurring free radical-generating compounds, can alter this redox balance. A number of cellular factors have been implicated in the regulation of redox homeostasis, including the glutathione/glutaredoxin and thioredoxin systems. Glutaredoxins and thioredoxins are ubiquitous small heat-stable oxidoreductases that have proposed functions in many cellular processes, including deoxyribonucleotide synthesis, repair of oxidatively damaged proteins, protein folding and sulphur metabolism. This review describes recent findings in the lower eukaryote Saccharomyces cerevisiae that are leading to a better understanding of their role in redox homeostasis in eukaryotic cell metabolism.
Collapse
Affiliation(s)
- C M Grant
- Department of Biomolecular Sciences, University of Manchester Institute of Science and Technology (UMIST), PO Box 88, Sackville Street, Manchester M60 1QD, UK.
| |
Collapse
|
49
|
Garty J. Chapter 9 Trace metals, other chemical elements and lichen physiology: research in the nineties. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s0927-5215(00)80012-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
50
|
Vilela C, Ramirez CV, Linz B, Rodrigues-Pousada C, McCarthy JE. Post-termination ribosome interactions with the 5'UTR modulate yeast mRNA stability. EMBO J 1999; 18:3139-52. [PMID: 10357825 PMCID: PMC1171395 DOI: 10.1093/emboj/18.11.3139] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A novel form of post-transcriptional control is described. The 5' untranslated region (5'UTR) of the Saccharomyces cerevisiae gene encoding the AP1-like transcription factor Yap2 contains two upstream open reading frames (uORF1 and uORF2). The YAP2-type of uORF functions as a cis-acting element that attenuates gene expression at the level of mRNA turnover via termination-dependent decay. Release of post-termination ribosomes from the YAP2 5'UTR causes accelerated decay which is largely independent of the termination modulator gene UPF1. Both of the YAP2 uORFs contribute to the destabilization effect. A G/C-rich stop codon context, which seems to promote ribosome release, allows an uORF to act as a transferable 5'UTR-destabilizing element. Moreover, termination-dependent destabilization is potentiated by stable secondary structure 3' of the uORF stop codon. The potentiation of uORF-mediated destabilization is eliminated if the secondary structure is located further downstream of the uORF, and is also influenced by a modulatory mechanism involving eIF2. Destabilization is therefore linked to the kinetics of acquisition of reinitiation-competence by post-termination ribosomes in the 5'UTR. Our data explain the destabilizing properties of YAP2-type uORFs and also support a more general model for the mode of action of other known uORFs, such as those in the GCN4 mRNA.
Collapse
MESH Headings
- 5' Untranslated Regions/chemistry
- 5' Untranslated Regions/genetics
- 5' Untranslated Regions/metabolism
- Base Sequence
- Codon, Initiator/genetics
- Codon, Terminator/genetics
- DNA-Binding Proteins/genetics
- Eukaryotic Initiation Factor-2/genetics
- Eukaryotic Initiation Factor-2/physiology
- Fungal Proteins/genetics
- Gene Expression Regulation, Fungal
- Genes, Fungal/genetics
- Genes, Fungal/physiology
- Half-Life
- Models, Genetic
- Mutation
- Nucleic Acid Conformation
- Open Reading Frames/genetics
- Protein Biosynthesis/genetics
- Protein Kinases/genetics
- RNA Helicases/genetics
- RNA Helicases/metabolism
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Ribosomes/metabolism
- Ribosomes/physiology
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins
- Transcription Factors/genetics
Collapse
Affiliation(s)
- C Vilela
- Post-transcriptional Control Group, Department of Biomolecular Sciences, University of Manchester Institute of Science and Technology (UMIST), PO Box 88, Manchester M60 1QD, UK
| | | | | | | | | |
Collapse
|