1
|
Yamada M. Molecular basis and functional development of membrane-based microbial metabolism. Biosci Biotechnol Biochem 2024; 88:461-474. [PMID: 38366612 DOI: 10.1093/bbb/zbae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/07/2024] [Indexed: 02/18/2024]
Abstract
My research interest has so far been focused on metabolisms related to the "membrane" of microorganisms, such as the respiratory chain, membrane proteins, sugar uptake, membrane stress and cell lysis, and fermentation. These basic metabolisms are important for the growth and survival of cell, and their knowledge can be used for efficient production of useful materials. Notable achievements in research on metabolisms are elucidation of the structure and function of membrane-bound glucose dehydrogenase as a primary enzyme in the respiratory chain, elucidation of ingenious expression regulation of several operons or by divergent promoters, elucidation of stress-induced programed-cell lysis and its requirement for survival during a long-term stationary phase, elucidation of molecular mechanism of survival at a critical high temperature, elucidation of thermal adaptation and its limit, isolation of thermotolerant fermenting yeast strains, and development of high-temperature fermentation and green energy production technologies. These achievements are described together in this review.
Collapse
Affiliation(s)
- Mamoru Yamada
- Graduate School of Sciences and Technology for Innovation, and Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
2
|
Teixeira AP, Fussenegger M. Synthetic Gene Circuits for Regulation of Next-Generation Cell-Based Therapeutics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309088. [PMID: 38126677 PMCID: PMC10885662 DOI: 10.1002/advs.202309088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Indexed: 12/23/2023]
Abstract
Arming human cells with synthetic gene circuits enables to expand their capacity to execute superior sensing and response actions, offering tremendous potential for innovative cellular therapeutics. This can be achieved by assembling components from an ever-expanding molecular toolkit, incorporating switches based on transcriptional, translational, or post-translational control mechanisms. This review provides examples from the three classes of switches, and discusses their advantages and limitations to regulate the activity of therapeutic cells in vivo. Genetic switches designed to recognize internal disease-associated signals often encode intricate actuation programs that orchestrate a reduction in the sensed signal, establishing a closed-loop architecture. Conversely, switches engineered to detect external molecular or physical cues operate in an open-loop fashion, switching on or off upon signal exposure. The integration of such synthetic gene circuits into the next generation of chimeric antigen receptor T-cells is already enabling precise calibration of immune responses in terms of magnitude and timing, thereby improving the potency and safety of therapeutic cells. Furthermore, pre-clinical engineered cells targeting other chronic diseases are gathering increasing attention, and this review discusses the path forward for achieving clinical success. With synthetic biology at the forefront, cellular therapeutics holds great promise for groundbreaking treatments.
Collapse
Affiliation(s)
- Ana P. Teixeira
- Department of Biosystems Science and EngineeringETH ZurichKlingelbergstrasse 48BaselCH‐4056Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and EngineeringETH ZurichKlingelbergstrasse 48BaselCH‐4056Switzerland
- Faculty of ScienceUniversity of BaselKlingelbergstrasse 48BaselCH‐4056Switzerland
| |
Collapse
|
3
|
Campbell RP, Whittington AC, Zorio DAR, Miller BG. Recruitment of a Middling Promiscuous Enzyme Drives Adaptive Metabolic Evolution in Escherichia coli. Mol Biol Evol 2023; 40:msad202. [PMID: 37708398 PMCID: PMC10519446 DOI: 10.1093/molbev/msad202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/29/2023] [Accepted: 09/05/2023] [Indexed: 09/16/2023] Open
Abstract
A key step in metabolic pathway evolution is the recruitment of promiscuous enzymes to perform new functions. Despite the recognition that promiscuity is widespread in biology, factors dictating the preferential recruitment of one promiscuous enzyme over other candidates are unknown. Escherichia coli contains four sugar kinases that are candidates for recruitment when the native glucokinase machinery is deleted-allokinase (AlsK), manno(fructo)kinase (Mak), N-acetylmannosamine kinase (NanK), and N-acetylglucosamine kinase (NagK). The catalytic efficiencies of these enzymes are 103- to 105-fold lower than native glucokinases, ranging from 2,400 M-1 s-1 for the most active candidate, NagK, to 15 M-1 s-1 for the least active candidate, AlsK. To investigate the relationship between catalytic activities of promiscuous enzymes and their recruitment, we performed adaptive evolution of a glucokinase-deficient E. coli strain to restore glycolytic metabolism. We observed preferential recruitment of NanK via a trajectory involving early mutations that facilitate glucose uptake and amplify nanK transcription, followed by nonsynonymous substitutions in NanK that enhance the enzyme's promiscuous glucokinase activity. These substitutions reduced the native activity of NanK and reduced organismal fitness during growth on an N-acetylated carbon source, indicating that enzyme recruitment comes at a cost for growth on other substrates. Notably, the two most active candidates, NagK and Mak, were not recruited, suggesting that catalytic activity alone does not dictate evolutionary outcomes. The results highlight our lack of knowledge regarding biological drivers of enzyme recruitment and emphasize the need for a systems-wide approach to identify factors facilitating or constraining this important adaptive process.
Collapse
Affiliation(s)
- Ryan P Campbell
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, USA
| | - A Carl Whittington
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, USA
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Diego A R Zorio
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Brian G Miller
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
4
|
Teixeira AP, Xue S, Huang J, Fussenegger M. Evolution of molecular switches for regulation of transgene expression by clinically licensed gluconate. Nucleic Acids Res 2023; 51:e85. [PMID: 37497781 PMCID: PMC10450161 DOI: 10.1093/nar/gkad600] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/22/2023] [Accepted: 07/16/2023] [Indexed: 07/28/2023] Open
Abstract
Synthetic biology holds great promise to improve the safety and efficacy of future gene and engineered cell therapies by providing new means of endogenous or exogenous control of the embedded therapeutic programs. Here, we focused on gluconate as a clinically licensed small-molecule inducer and engineered gluconate-sensitive molecular switches to regulate transgene expression in human cell cultures and in mice. Several switch designs were assembled based on the gluconate-responsive transcriptional repressor GntR from Escherichia coli. Initially we assembled OFF- and ON-type switches by rewiring the native gluconate-dependent binding of GntR to target DNA sequences in mammalian cells. Then, we utilized the ability of GntR to dimerize in the presence of gluconate to activate gene expression from a split transcriptional activator. By means of random mutagenesis of GntR combined with phenotypic screening, we identified variants that significantly enhanced the functionality of the genetic devices, enabling the construction of robust two-input logic gates. We also demonstrated the potential utility of the synthetic switch in two in vivo settings, one employing implantation of alginate-encapsulated engineered cells and the other involving modification of host cells by DNA delivery. Then, as proof-of-concept, the gluconate-actuated genetic switch was connected to insulin secretion, and the components encoding gluconate-induced insulin production were introduced into type-1 diabetic mice as naked DNA via hydrodynamic tail vein injection. Normoglycemia was restored, thereby showcasing the suitability of oral gluconate to regulate in situ production of a therapeutic protein.
Collapse
Affiliation(s)
- Ana Palma Teixeira
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058Basel, Switzerland
| | - Shuai Xue
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058Basel, Switzerland
| | - Jinbo Huang
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058Basel, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058Basel, Switzerland
- Faculty of Science, University of Basel, Mattenstrasse 26, CH-4058Basel, Switzerland
| |
Collapse
|
5
|
Schuller A, Cserjan-Puschmann M, Köppl C, Grabherr R, Wagenknecht M, Schiavinato M, Dohm JC, Himmelbauer H, Striedner G. Adaptive Evolution in Producing Microtiter Cultivations Generates Genetically Stable Escherichia coli Production Hosts for Continuous Bioprocessing. Biotechnol J 2020; 16:e2000376. [PMID: 33084246 DOI: 10.1002/biot.202000376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/06/2020] [Indexed: 01/01/2023]
Abstract
The production of recombinant proteins usually reduces cell fitness and the growth rate of producing cells. The growth disadvantage favors faster-growing non-producer mutants. Therefore, continuous bioprocessing is hardly feasible in Escherichia coli due to the high escape rate. The stability of E. coli expression systems under long-term production conditions and how metabolic load triggered by recombinant gene expression influences the characteristics of mutations are investigated. Iterated fed-batch-like microbioreactor cultivations are conducted under production conditions. The easy-to-produce green fluorescent protein (GFP) and a challenging antigen-binding fragment (Fab) are used as model proteins, and BL21(DE3) and BL21Q strains as expression hosts. In comparative whole-genome sequencing analyses, mutations that allowed cells to grow unhindered despite recombinant protein production are identified. A T7 RNA polymerase expression system is only conditionally suitable for long-term cultivation under production conditions. Mutations leading to non-producers occur in either the T7 RNA polymerase gene or the T7 promoter. The host RNA polymerase-based BL21Q expression system remains stable in the production of GFP in long-term cultivations. For the production of Fab, mutations in lacI of the BL21Q derivatives have positive effects on long-term stability. The results indicate that adaptive evolution carried out with genome-integrated E. coli expression systems in microtiter cultivations under industrial-relevant production conditions is an efficient strain development tool for production hosts.
Collapse
Affiliation(s)
- Artur Schuller
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. coli, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna, A-1190, Austria
| | - Monika Cserjan-Puschmann
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. coli, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna, A-1190, Austria
| | - Christoph Köppl
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. coli, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna, A-1190, Austria
| | - Reingard Grabherr
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. coli, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna, A-1190, Austria
| | - Martin Wagenknecht
- Boehringer Ingelheim RCV GmbH & Co KG, Dr.-Boehringer-Gasse 5-11, Vienna, A-1120, Austria
| | - Matteo Schiavinato
- Department of Biotechnology, Institute of Computational Biology, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna, A-1190, Austria
| | - Juliane C Dohm
- Department of Biotechnology, Institute of Computational Biology, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna, A-1190, Austria
| | - Heinz Himmelbauer
- Department of Biotechnology, Institute of Computational Biology, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna, A-1190, Austria
| | - Gerald Striedner
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. coli, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna, A-1190, Austria
| |
Collapse
|
6
|
Ruan H, Yu H, Xu J. The glucose uptake systems in Corynebacterium glutamicum: a review. World J Microbiol Biotechnol 2020; 36:126. [PMID: 32712859 DOI: 10.1007/s11274-020-02898-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/12/2020] [Indexed: 11/29/2022]
Abstract
The phosphoenolpyruvate-dependent glucose phosphotransferase system (PTSGlc) is the major uptake system responsible for transporting glucose, and is involved in glucose translocation and phosphorylation in Corynebacterium glutamicum. For the longest time, the PTSGlc was considered as the only uptake system for glucose. However, some PTS-independent glucose uptake systems (non-PTSGlc) were discovered in recent years, such as the coupling system of inositol permeases and glucokinases (IPGS) and the coupling system of β-glucoside-PTS permease and glucokinases (GPGS). The products (e.g. lysine, phenylalanine and leucine) will be increased because of the increasing intracellular level of phosphoenolpyruvate (PEP), while some by-products (e.g. lactic acid, alanine and acetic acid) will be reduced when this system become the main uptake pathway for glucose. In this review, we survey the uptake systems for glucose in C. glutamicum and their composition. Furthermore, we summarize the latest research of the regulatory mechanisms among these glucose uptake systems. Detailed strategies to manipulate glucose uptake system are addressed based on this knowledge.
Collapse
Affiliation(s)
- Haozhe Ruan
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, Wuxi, 214122, People's Republic of China
| | - Haibo Yu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, Wuxi, 214122, People's Republic of China
| | - Jianzhong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, Wuxi, 214122, People's Republic of China.
| |
Collapse
|
7
|
Bator I, Wittgens A, Rosenau F, Tiso T, Blank LM. Comparison of Three Xylose Pathways in Pseudomonas putida KT2440 for the Synthesis of Valuable Products. Front Bioeng Biotechnol 2020; 7:480. [PMID: 32010683 PMCID: PMC6978631 DOI: 10.3389/fbioe.2019.00480] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/23/2019] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas putida KT2440 is a well-established chassis in industrial biotechnology. To increase the substrate spectrum, we implemented three alternative xylose utilization pathways, namely the Isomerase, Weimberg, and Dahms pathways. The synthetic operons contain genes from Escherichia coli and Pseudomonas taiwanensis. For isolating the Dahms pathway in P. putida KT2440 two genes (PP_2836 and PP_4283), encoding an endogenous enzyme of the Weimberg pathway and a regulator for glycolaldehyde degradation, were deleted. Before and after adaptive laboratory evolution, these strains were characterized in terms of growth and synthesis of mono-rhamnolipids and pyocyanin. The engineered strain using the Weimberg pathway reached the highest maximal growth rate of 0.30 h-1. After adaptive laboratory evolution the lag phase was reduced significantly. The highest titers of 720 mg L-1 mono-rhamnolipids and 30 mg L-1 pyocyanin were reached by the evolved strain using the Weimberg or an engineered strain using the Isomerase pathway, respectively. The different stoichiometries of the three xylose utilization pathways may allow engineering of tailored chassis for valuable bioproduct synthesis.
Collapse
Affiliation(s)
- Isabel Bator
- iAMB - Institute of Applied Microbiology, ABBt – Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Andreas Wittgens
- Institute for Pharmaceutical Biotechnology, Ulm-University, Ulm, Germany
- Ulm Center for Peptide Pharmaceuticals, Ulm, Germany
- Max-Planck-Institute for Polymer Research Mainz, Synthesis of Macromolecules, Mainz, Germany
| | - Frank Rosenau
- Institute for Pharmaceutical Biotechnology, Ulm-University, Ulm, Germany
- Ulm Center for Peptide Pharmaceuticals, Ulm, Germany
- Max-Planck-Institute for Polymer Research Mainz, Synthesis of Macromolecules, Mainz, Germany
| | - Till Tiso
- iAMB - Institute of Applied Microbiology, ABBt – Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Lars M. Blank
- iAMB - Institute of Applied Microbiology, ABBt – Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
8
|
Valk LC, Luttik MAH, de Ram C, Pabst M, van den Broek M, van Loosdrecht MCM, Pronk JT. A Novel D-Galacturonate Fermentation Pathway in Lactobacillus suebicus Links Initial Reactions of the Galacturonate-Isomerase Route With the Phosphoketolase Pathway. Front Microbiol 2020; 10:3027. [PMID: 32010092 PMCID: PMC6978723 DOI: 10.3389/fmicb.2019.03027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 12/17/2019] [Indexed: 11/13/2022] Open
Abstract
D-galacturonate, a key constituent of pectin, is a ubiquitous monomer in plant biomass. Anaerobic, fermentative conversion of D-galacturonate is therefore relevant in natural environments as well as in microbial processes for microbial conversion of pectin-containing agricultural residues. In currently known microorganisms that anaerobically ferment D-galacturonate, its catabolism occurs via the galacturonate-isomerase pathway. Redox-cofactor balancing in this pathway strongly constrains the possible range of products generated from anaerobic D-galacturonate fermentation, resulting in acetate as the predominant organic fermentation product. To explore metabolic diversity of microbial D-galacturonate fermentation, anaerobic enrichment cultures were performed at pH 4. Anaerobic batch and chemostat cultures of a dominant Lactobacillus suebicus strain isolated from these enrichment cultures produced near-equimolar amounts of lactate and acetate from D-galacturonate. A combination of whole-genome sequence analysis, quantitative proteomics, enzyme activity assays in cell extracts, and in vitro product identification demonstrated that D-galacturonate metabolism in L. suebicus occurs via a novel pathway. In this pathway, mannonate generated by the initial reactions of the canonical isomerase pathway is converted to 6-phosphogluconate by two novel biochemical reactions, catalyzed by a mannonate kinase and a 6-phosphomannonate 2-epimerase. Further catabolism of 6-phosphogluconate then proceeds via known reactions of the phosphoketolase pathway. In contrast to the classical isomerase pathway for D-galacturonate catabolism, the novel pathway enables redox-cofactor-neutral conversion of D-galacturonate to ribulose-5-phosphate. While further research is required to identify the structural genes encoding the key enzymes for the novel pathway, its redox-cofactor coupling is highly interesting for metabolic engineering of microbial cell factories for conversion of pectin-containing feedstocks into added-value fermentation products such as ethanol or lactate. This study illustrates the potential of microbial enrichment cultivation to identify novel pathways for the conversion of environmentally and industrially relevant compounds.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jack T. Pronk
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
9
|
Crook N, Ferreiro A, Gasparrini AJ, Pesesky MW, Gibson MK, Wang B, Sun X, Condiotte Z, Dobrowolski S, Peterson D, Dantas G. Adaptive Strategies of the Candidate Probiotic E. coli Nissle in the Mammalian Gut. Cell Host Microbe 2019; 25:499-512.e8. [PMID: 30926240 PMCID: PMC6487504 DOI: 10.1016/j.chom.2019.02.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/06/2019] [Accepted: 02/19/2019] [Indexed: 12/14/2022]
Abstract
Probiotics are living microorganisms that are increasingly used as gastrointestinal therapeutics by virtue of their innate or engineered genetic function. Unlike abiotic therapeutics, probiotics can replicate in their intended site, subjecting their genomes and therapeutic properties to natural selection. We exposed the candidate probiotic E. coli Nissle (EcN) to the mouse gastrointestinal tract over several weeks, systematically altering the diet and background microbiota complexity. In-transit EcN accumulates genetic mutations that modulate carbohydrate utilization, stress response, and adhesion to gain competitive fitness, while previous exposure to antibiotics reveals an acquisition of resistance. We then leveraged these insights to generate an EcN strain that shows therapeutic efficacy in a mouse model of phenylketonuria and found that it was genetically stable over 1 week, thereby validating EcN's utility as a chassis for engineering. Collectively, we demonstrate a generalizable pipeline that can be applied to other probiotics to better understand their safety and engineering potential.
Collapse
Affiliation(s)
- Nathan Crook
- Equal Contribution
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Present address: Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27606, USA
| | - Aura Ferreiro
- Equal Contribution
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Andrew J. Gasparrini
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Present address: VL55, 55 Cambridge Pwky, Cambridge, MA 02142, USA
| | - Mitchell W. Pesesky
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Present address: Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Molly K. Gibson
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Present address: Flagship Pioneering, 55 Cambridge Pkwy, Cambridge, MA 02142, USA
| | - Bin Wang
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Xiaoqing Sun
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Zevin Condiotte
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Present address: Graduate School of Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Stephen Dobrowolski
- Department of Pathology, Children’s Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Daniel Peterson
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Present address: Eli Lilly & Company, 307 East McCarty Street, Indianapolis, IN 46225, USA
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Lead Contact: Gautam Dantas, Ph.D. ()
| |
Collapse
|
10
|
Liu W, Wang Y, Jing C. Transcriptome analysis of silver, palladium, and selenium stresses in Pantoea sp. IMH. CHEMOSPHERE 2018; 208:50-58. [PMID: 29860144 DOI: 10.1016/j.chemosphere.2018.05.169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/18/2018] [Accepted: 05/27/2018] [Indexed: 06/08/2023]
Abstract
Heavy metal contamination is a significant environmental issue. Using bacteria for removal and reduction of heavy metals is an attractive alternative owing to its low-cost and eco-friendly properties. However, the mechanisms of resistance to and reduction of Ag(I), Pd(II), and Se(IV), especially in the same strain, remain unclear. Here, Pantoea sp. IMH was examed for its reduction of Ag(I), Pd(II), and Se(IV) to nanoparticles (NPs), and the molecular mechanism was investigated by transcriptome analysis. The results revealed that genes encoding binding, transport, catalytic activity, and metabolism were differentially expressed in cells exposed to Ag(I), Pd(II), and Se(IV). The same resistance mechanisms for all metals included multiple stress resistance protein BhsA and glutathione detoxification metabolism. However, zinc transport protein and sulfate metabolism played an important role in the resistance to cationic metals (Ag+ and Pd2+), while the oxalate transporter and arsenic resistance mechanisms were specifically involved in the resistance to and reduction of anion (SeO32-). In addition, Ag(I) was speculated to be reduced to AgNPs by glucose and cytochrome CpxP was involved in Pd(II) reduction. Our results provided new clues on the mechanisms of resistance to and reduction of Ag(I), Pd(II), and Se(IV).
Collapse
Affiliation(s)
- Wenjing Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanan Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Chuanyong Jing
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
11
|
Fan D, Liu C, Liu L, Zhu L, Peng F, Zhou Q. Large-scale gene expression profiling reveals physiological response to deletion of chaperone dnaKJ in Escherichia coli. Microbiol Res 2016; 186-187:27-36. [PMID: 27242140 DOI: 10.1016/j.micres.2016.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/28/2016] [Accepted: 03/03/2016] [Indexed: 11/18/2022]
Abstract
Chaperone DnaK and its co-chaperone DnaJ plays various essential roles such as in assisting in the folding of nascent peptides, preventing protein aggregation and maintaining cellular protein homeostasis. Global transcriptional changes in vivo associated with deletion of dnaKJ were monitored using DNA microarray to elucidate the role of DnaKJ at the transcriptional level. Microarray profiling and bioinformatics analysis revealed that a few chaperone and protease genes, stress-related genes and genes involved in the tricarboxylic acid cycle and oxidative phosphorylation were up-regulated, whereas various transporter genes, pentose phosphate pathway and transcriptional regulation related genes were down-regulated. This study is the first to systematically analyze the alterations at the transcriptional level in vivo in deletion of dnaKJ. Fatty acid methyl esters analysis indicated that the amount of unsaturated fatty acid sharply increased and subcellular location prediction analysis showed a marked decrease in transcription of inner-membrane protein genes, which might have triggered the development of aberrant cell shape and susceptibility for some antibiotics in the ΔdnaKJ strain.
Collapse
Affiliation(s)
- Dongjie Fan
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Chuanpeng Liu
- School of Life Science and Technology, Harbin Institute of Technology, 2 Yikuang Street, Harbin 150080, China.
| | - Lushan Liu
- Department of Emergency, Beijing Bo'ai Hospital, 10 Jiaomen North Road, Fengtai District, Beijing, 100068, China; China Rehabilitation Research Center, Capital Medical University, Beijing 100068, China
| | - Lingxiang Zhu
- National Research Institute for Family Planning (NRIFP), Beijing 100081, China
| | - Fang Peng
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan430072, China; Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Wuhan 430072, China
| | - Qiming Zhou
- School of Life Science and Technology, Harbin Institute of Technology, 2 Yikuang Street, Harbin 150080, China.
| |
Collapse
|
12
|
Toyoda K, Inui M. Regulons of global transcription factors in Corynebacterium glutamicum. Appl Microbiol Biotechnol 2015; 100:45-60. [DOI: 10.1007/s00253-015-7074-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 10/03/2015] [Accepted: 10/07/2015] [Indexed: 10/22/2022]
|
13
|
Abstract
Following elucidation of the regulation of the lactose operon in Escherichia coli, studies on the metabolism of many sugars were initiated in the early 1960s. The catabolic pathways of D-gluconate and of the two hexuronates, D-glucuronate and D-galacturonate, were investigated. The post genomic era has renewed interest in the study of these sugar acids and allowed the complete characterization of the D-gluconate pathway and the discovery of the catabolic pathways for L-idonate, D-glucarate, galactarate, and ketogluconates. Among the various sugar acids that are utilized as sole carbon and energy sources to support growth of E. coli, galacturonate, glucuronate, and gluconate were shown to play an important role in the colonization of the mammalian large intestine. In the case of sugar acid degradation, the regulators often mediate negative control and are inactivated by interaction with a specific inducer, which is either the substrate or an intermediate of the catabolism. These regulators coordinate the synthesis of all the proteins involved in the same pathway and, in some cases, exert crosspathway control between related catabolic pathways. This is particularly well illustrated in the case of hexuronide and hexuronate catabolism. The structural genes encoding the different steps of hexuronate catabolism were identified by analysis of numerous mutants affected for growth with galacturonate or glucuronate. E. coli is able to use the diacid sugars D-glucarate and galactarate (an achiral compound) as sole carbon source for growth. Pyruvate and 2-phosphoglycerate are the final products of the D-glucarate/galactarate catabolism.
Collapse
|
14
|
Ma F, Rehman A, Sims M, Zeng X. Antimicrobial Susceptibility Assays Based on the Quantification of Bacterial Lipopolysaccharides via a Label Free Lectin Biosensor. Anal Chem 2015; 87:4385-93. [DOI: 10.1021/acs.analchem.5b00165] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Fen Ma
- Department
of Chemistry, Oakland University, Rochester, Michigan 48309, United States
| | - Abdul Rehman
- Department
of Chemistry, Oakland University, Rochester, Michigan 48309, United States
| | - Matthew Sims
- William Beaumont Hospital, Royal Oak, Michigan 48073, United States
- William
Beaumont School of Medicine, Oakland University, Rochester, Michigan 48309, United States
| | - Xiangqun Zeng
- Department
of Chemistry, Oakland University, Rochester, Michigan 48309, United States
| |
Collapse
|
15
|
Ma F, Rehman A, Liu H, Zhang J, Zhu S, Zeng X. Glycosylation of Quinone-Fused Polythiophene for Reagentless and Label-Free Detection of E. coli. Anal Chem 2015; 87:1560-8. [DOI: 10.1021/ac502712q] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Fen Ma
- Department
of Chemistry, Oakland University, Rochester, Michigan 48309, United States
| | - Abdul Rehman
- Department
of Chemistry, Oakland University, Rochester, Michigan 48309, United States
| | - Haiying Liu
- Department
of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Jingtuo Zhang
- Department
of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Shilei Zhu
- Department
of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Xiangqun Zeng
- Department
of Chemistry, Oakland University, Rochester, Michigan 48309, United States
| |
Collapse
|
16
|
Ishak N, Tikhomirova A, Bent SJ, Ehrlich GD, Hu FZ, Kidd SP. There is a specific response to pH by isolates of Haemophilus influenzae and this has a direct influence on biofilm formation. BMC Microbiol 2014; 14:47. [PMID: 24555828 PMCID: PMC3938079 DOI: 10.1186/1471-2180-14-47] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 02/19/2014] [Indexed: 12/22/2022] Open
Abstract
Background Haemophilus influenzae colonizes the nasopharynx as a commensal. Strain-specific factors allow some strains to migrate to particular anatomical niches, such as the middle ear, bronchi or blood, and induce disease by surviving within the conditions present at these sites in the body. It is established that H. influenzae colonization and in some cases survival is highly dependent on their ability to form a biofilm. Biofilm formation is a key trait in the development of chronic infection by certain isolates. This is exemplified by the contrast between the biofilm-forming strains found in middle ear infections and those isolates that survive within the blood and are rarely associated with biofilm development. Results Screening a group of H. influenzae strains revealed only slight variations in their growth across a range of pH conditions. However, some isolates responded to a pH of 8.0 by the formation of a biofilm. While the type b capsular blood isolate Eagan did not form a biofilm and grew at the same rate regardless of pH 6.8-8.0, transcriptomic analyses demonstrated that at pH 8.0 it uniquely induced a gluconate-uptake and metabolism pathway, which concurrently imports H+. A non-typeable H. influenzae, isolated from the middle ear, induced biofilm formation at pH 8.0, and at this pH it induced a series of iron acquisition genes, consistent with previous studies linking iron homeostasis to biofilm lifestyle. Conclusions Different strains of H. influenzae cope with changes in environmental factors using strain-specific mechanisms. These pathways define the scope and mode of niche-survival for an isolate. The pH is a property that is different from the middle ear (at least pH 8.0) compared to other sites that H. influenzae can colonize and infect. The transcriptional response to increasing pH by H. influenzae varies between strains, and pH is linked to pathways that allow strains to either continue free-living growth or induction of a biofilm. We showed that a biofilm-forming isolate induced iron metabolism pathways, whereas a strain that does not form biofilm at increasing pH induced mechanisms for growth and pH homeostasis based on sugar acid transport.
Collapse
Affiliation(s)
| | | | | | | | | | - Stephen P Kidd
- Research Centre for Infectious Diseases, The University of Adelaide, North Terrace Campus, Adelaide, South Australia 5005, Australia.
| |
Collapse
|
17
|
Abstract
Transcriptional regulation is at the heart of biological functions such as adaptation to a changing environment or to new carbon sources. One of the mechanisms which has been found to modulate transcription, either positively (activation) or negatively (repression), involves the formation of DNA loops. A DNA loop occurs when a protein or a complex of proteins simultaneously binds to two different sites on DNA with looping out of the intervening DNA. This simple mechanism is central to the regulation of several operons in the genome of the bacterium Escherichia coli, like the lac operon, one of the paradigms of genetic regulation. The aim of this review is to gather and discuss concepts and ideas from experimental biology and theoretical physics concerning DNA looping in genetic regulation. We first describe experimental techniques designed to show the formation of a DNA loop. We then present the benefits that can or could be derived from a mechanism involving DNA looping. Some of these are already experimentally proven, but others are theoretical predictions and merit experimental investigation. Then, we try to identify other genetic systems that could be regulated by a DNA looping mechanism in the genome of Escherichia coli. We found many operons that, according to our set of criteria, have a good chance to be regulated with a DNA loop. Finally, we discuss the proposition recently made by both biologists and physicists that this mechanism could also act at the genomic scale and play a crucial role in the spatial organization of genomes.
Collapse
|
18
|
Fan Z, Wu W, Hildebrand A, Kasuga T, Zhang R, Xiong X. A novel biochemical route for fuels and chemicals production from cellulosic biomass. PLoS One 2012; 7:e31693. [PMID: 22384058 PMCID: PMC3285643 DOI: 10.1371/journal.pone.0031693] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 01/12/2012] [Indexed: 11/19/2022] Open
Abstract
The conventional biochemical platform featuring enzymatic hydrolysis involves five key steps: pretreatment, cellulase production, enzymatic hydrolysis, fermentation, and product recovery. Sugars are produced as reactive intermediates for subsequent fermentation to fuels and chemicals. Herein, an alternative biochemical route is proposed. Pretreatment, enzymatic hydrolysis and cellulase production is consolidated into one single step, referred to as consolidated aerobic processing, and sugar aldonates are produced as the reactive intermediates for biofuels production by fermentation. In this study, we demonstrate the viability of consolidation of the enzymatic hydrolysis and cellulase production steps in the new route using Neurospora crassa as the model microorganism and the conversion of cellulose to ethanol as the model system. We intended to prove the two hypotheses: 1) cellulose can be directed to produce cellobionate by reducing β-glucosidase production and by enhancing cellobiose dehydrogenase production; and 2) both of the two hydrolysis products of cellobionate—glucose and gluconate—can be used as carbon sources for ethanol and other chemical production. Our results showed that knocking out multiple copies of β-glucosidase genes led to cellobionate production from cellulose, without jeopardizing the cellulose hydrolysis rate. Simulating cellobiose dehydrogenase over-expression by addition of exogenous cellobiose dehydrogenase led to more cellobionate production. Both of the two hydrolysis products of cellobionate: glucose and gluconate can be used by Escherichia coli KO 11 for efficient ethanol production. They were utilized simultaneously in glucose and gluconate co-fermentation. Gluconate was used even faster than glucose. The results support the viability of the two hypotheses that lay the foundation for the proposed new route.
Collapse
Affiliation(s)
- Zhiliang Fan
- Biological and Agricultural Engineering Department, University of California Davis, Davis, California, United States of America.
| | | | | | | | | | | |
Collapse
|
19
|
Carbon metabolism of enterobacterial human pathogens growing in epithelial colorectal adenocarcinoma (Caco-2) cells. PLoS One 2010; 5:e10586. [PMID: 20485672 PMCID: PMC2868055 DOI: 10.1371/journal.pone.0010586] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Accepted: 04/02/2010] [Indexed: 11/19/2022] Open
Abstract
Analysis of the genome sequences of the major human bacterial pathogens has provided a large amount of information concerning their metabolic potential. However, our knowledge of the actual metabolic pathways and metabolite fluxes occurring in these pathogens under infection conditions is still limited. In this study, we analysed the intracellular carbon metabolism of enteroinvasive Escherichia coli (EIEC HN280 and EIEC 4608-58) and Salmonella enterica Serovar Typhimurium (Stm 14028) replicating in epithelial colorectal adenocarcinoma cells (Caco-2). To this aim, we supplied [U-13C6]glucose to Caco-2 cells infected with the bacterial strains or mutants thereof impaired in the uptake of glucose, mannose and/or glucose 6-phosphate. The 13C-isotopologue patterns of protein-derived amino acids from the bacteria and the host cells were then determined by mass spectrometry. The data showed that EIEC HN280 growing in the cytosol of the host cells, as well as Stm 14028 replicating in the Salmonella-containing vacuole (SCV) utilised glucose, but not glucose 6-phosphate, other phosphorylated carbohydrates, gluconate or fatty acids as major carbon substrates. EIEC 4608-58 used C3-compound(s) in addition to glucose as carbon source. The labelling patterns reflected strain-dependent carbon flux via glycolysis and/or the Entner-Doudoroff pathway, the pentose phosphate pathway, the TCA cycle and anapleurotic reactions between PEP and oxaloacetate. Mutants of all three strains impaired in the uptake of glucose switched to C3-substrate(s) accompanied by an increased uptake of amino acids (and possibly also other anabolic monomers) from the host cell. Surprisingly, the metabolism of the host cells, as judged by the efficiency of 13C-incorporation into host cell amino acids, was not significantly affected by the infection with either of these intracellular pathogens.
Collapse
|
20
|
Frunzke J, Engels V, Hasenbein S, Gätgens C, Bott M. Co-ordinated regulation of gluconate catabolism and glucose uptake in Corynebacterium glutamicum by two functionally equivalent transcriptional regulators, GntR1 and GntR2. Mol Microbiol 2008; 67:305-22. [PMID: 18047570 PMCID: PMC2230225 DOI: 10.1111/j.1365-2958.2007.06020.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2007] [Indexed: 11/28/2022]
Abstract
Corynebacterium glutamicum is a Gram-positive soil bacterium that prefers the simultaneous catabolism of different carbon sources rather than their sequential utilization. This type of metabolism requires an adaptation of the utilization rates to the overall metabolic capacity. Here we show how two functionally redundant GntR-type transcriptional regulators, designated GntR1 and GntR2, co-ordinately regulate gluconate catabolism and glucose uptake. GntR1 and GntR2 strongly repress the genes encoding gluconate permease (gntP), gluconate kinase (gntK), and 6-phosphogluconate dehydrogenase (gnd) and weakly the pentose phosphate pathway genes organized in the tkt-tal-zwf-opcA-devB cluster. In contrast, ptsG encoding the EII(Glc) permease of the glucose phosphotransferase system (PTS) is activated by GntR1 and GntR2. Gluconate and glucono-delta-lactone interfere with binding of GntR1 and GntR2 to their target promoters, leading to a derepression of the genes involved in gluconate catabolism and reduced ptsG expression. To our knowledge, this is the first example for gluconate-dependent transcriptional control of PTS genes. A mutant lacking both gntR1 and gntR2 shows a 60% lower glucose uptake rate and growth rate than the wild type when cultivated on glucose as sole carbon source. This growth defect can be complemented by plasmid-encoded GntR1 or GntR2.
Collapse
Affiliation(s)
- Julia Frunzke
- Institut für Biotechnologie 1, Forschungszentrum JülichD-52425 Jülich, Germany.
| | - Verena Engels
- Institut für Biotechnologie 1, Forschungszentrum JülichD-52425 Jülich, Germany.
| | | | - Cornelia Gätgens
- Institut für Biotechnologie 1, Forschungszentrum JülichD-52425 Jülich, Germany.
| | - Michael Bott
- Institut für Biotechnologie 1, Forschungszentrum JülichD-52425 Jülich, Germany.
| |
Collapse
|
21
|
Subudhi S, Kurdrid P, Hongsthong A, Sirijuntarut M, Cheevadhanarak S, Tanticharoen M. Isolation and functional characterization of Spirulina D6D gene promoter: Role of a putative GntR transcription factor in transcriptional regulation of D6D gene expression. Biochem Biophys Res Commun 2008; 365:643-9. [DOI: 10.1016/j.bbrc.2007.11.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Accepted: 11/02/2007] [Indexed: 11/30/2022]
|
22
|
Wang IN, Dykhuizen DE. VARIATION OF ENZYME ACTIVITIES AT A BRANCHED PATHWAY INVOLVED IN THE UTILIZATION OF GLUCONATE IN ESCHERICHIA COLI. Evolution 2007. [DOI: 10.1111/j.0014-3820.2001.tb00607.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Shen Z, Huang M, Xiao C, Zhang Y, Zeng X, Wang PG. Nonlabeled quartz crystal microbalance biosensor for bacterial detection using carbohydrate and lectin recognitions. Anal Chem 2007; 79:2312-9. [PMID: 17295446 PMCID: PMC2519234 DOI: 10.1021/ac061986j] [Citation(s) in RCA: 226] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
High percentages of harmful microbes or their secreting toxins bind to specific carbohydrate sequences on human cells at the recognition and attachment sites. A number of studies also show that lectins react with specific structures of bacteria and fungi. In this report, we take advantage of the fact that a high percentage of microorganisms have both carbohydrate and lectin binding pockets at their surface. We demonstrate here for the first time that a carbohydrate nonlabeled mass sensor in combination with lectin-bacterial O-antigen recognition can be used for detection of high molecular weight bacterial targets with remarkably high sensitivity and enhanced specificity. A functional mannose self-assembled monolayer in combination with lectin concanavalin A (Con A) was used as molecular recognition elements for the detection of Escherichia coli W1485 using a quartz crytsal microbalance (QCM) as a transducer. The multivalent binding of Con A to the E. coli surface O-antigen favors the strong adhesion of E. coli to the mannose-modified QCM surface by forming bridges between these two. As a result, the contact area between cell and QCM surface that increases leads to rigid and strong attachment. Therefore, it enhances the binding between E. coli and the mannose. Our results show a significant improvement of the sensitivity and specificity of the carbohydrate QCM biosensor with a experimental detection limit of a few hundred bacterial cells. The linear range is from 7.5 x 10(2) to 7.5 x 10(7) cells/mL, which is four decades wider than the mannose-alone QCM sensor. The change of damping resistances for E. coli adhesion experiments was no more than 1.4%, suggesting that the bacterial attachment was rigid, rather than a viscoelastic behavior. Little nonspecific binding was observed for Staphylococcus aureus and other proteins (fetal bovine serum, Erythrina cristagalli lectin). Our approach not only overcomes the challenges of applying QCM technology for bacterial detection but also increases the binding of bacteria to their carbohydrate receptor through bacterial surface binding lectins that significantly enhanced specificity and sensitivity of QCM biosensors. Combining carbohydrate and lectin recognition events with an appropriate QCM transducer can yield sensor devices highly suitable for the fast, reversible, and straightforward on-line screening and detection of bacteria in food, water, and clinical and biodefense areas.
Collapse
Affiliation(s)
- Zhihong Shen
- Department of Chemistry, Oakland University, Rochester, Michigan 48309, USA
| | | | | | | | | | | |
Collapse
|
24
|
Ponce E, García M, Muñoz ME. Participation of the Entner-Doudoroff pathway in Escherichia coli strains with an inactive phosphotransferase system (PTS- Glc+) in gluconate and glucose batch cultures. Can J Microbiol 2006; 51:975-82. [PMID: 16333337 DOI: 10.1139/w05-101] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The activity of the enzymes of the central metabolic pathways has been the subject of intensive analysis; however, the Entner-Doudoroff (ED) pathway has only recently begun to attract attention. The metabolic response to edd gene knockout in Escherichia coli JM101 and PTS- Glc+ was investigated in gluconate and glucose batch cultures and compared with other pyruvate kinase and PTS mutants previously constructed. Even though the specific growth rates between the strain carrying the edd gene knockout and its parent JM101 and PTS- Glc+ edd and its parent PTS- Glc+ were very similar, reproducible changes in the specific consumption rates and biomass yields were obtained when grown on glucose. These results support the participation of the ED pathway not only on gluconate metabolism but on other metabolic and biochemical processes in E. coli. Despite that gluconate is a non-PTS carbohydrate, the PTS- Glc+ and derived strains showed important reductions in the specific growth and gluconate consumption rates. Moreover, the overall activity of the ED pathway on gluconate resulted in important increments in PTS- Glc+ and PTS- Glc+ pykF mutants. Additional results obtained with the pykA pykF mutant indicate the important contribution of the pyruvate kinase enzymes to pyruvate synthesis and energy production in both carbon sources.
Collapse
Affiliation(s)
- Elizabeth Ponce
- Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Dept. Of Marine Biotechnology, Km 107 Carretera Tijuana-Ensenada, C.P. 22860 Ensenada, B.C., Mexico.
| | | | | |
Collapse
|
25
|
Letek M, Valbuena N, Ramos A, Ordóñez E, Gil JA, Mateos LM. Characterization and use of catabolite-repressed promoters from gluconate genes in Corynebacterium glutamicum. J Bacteriol 2006; 188:409-23. [PMID: 16385030 PMCID: PMC1347311 DOI: 10.1128/jb.188.2.409-423.2006] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genes involved in gluconate catabolism (gntP and gntK) in Corynebacterium glutamicum are scattered in the chromosome, and no regulatory genes are apparently associated with them, in contrast with the organization of the gnt operon in Escherichia coli and Bacillus subtilis. In C. glutamicum, gntP and gntK are essential genes when gluconate is the only carbon and energy source. Both genes contain upstream regulatory regions consisting of a typical promoter and a hypothetical cyclic AMP (cAMP) receptor protein (CRP) binding region but lack the expected consensus operator region for binding of the GntR repressor protein. Expression analysis by Northern blotting showed monocistronic transcripts for both genes. The expression of gntP and gntK is not induced by gluconate, and the gnt genes are subject to catabolite repression by sugars, such as glucose, fructose, and sucrose, as was detected by quantitative reverse transcription-PCR (qRT-PCR). Specific analysis of the DNA promoter sequences (PgntK and PgntP) was performed using bifunctional promoter probe vectors containing mel (involved in melanin production) or egfp2 (encoding a green fluorescent protein derivative) as the reporter gene. Using this approach, we obtained results parallel to those from qRT-PCR. An applied example of in vivo gene expression modulation of the divIVA gene in C. glutamicum is shown, corroborating the possible use of the gnt promoters to control gene expression. glxR (which encodes GlxR, the hypothetical CRP protein) was subcloned from the C. glutamicum chromosomal DNA and overexpressed in corynebacteria; we found that the level of gnt expression was slightly decreased compared to that of the control strains. The purified GlxR protein was used in gel shift mobility assays, and a specific interaction of GlxR with sequences present on PgntP and PgntK fragments was detected only in the presence of cAMP.
Collapse
Affiliation(s)
- Michal Letek
- Area de Microbiología, Dpto. Ecología, Genética y Microbiología, Universidad de León, 24071 León, Spain
| | | | | | | | | | | |
Collapse
|
26
|
Fineran PC, Everson L, Slater H, Salmond GPC. A GntR family transcriptional regulator (PigT) controls gluconate-mediated repression and defines a new, independent pathway for regulation of the tripyrrole antibiotic, prodigiosin, in Serratia. Microbiology (Reading) 2005; 151:3833-3845. [PMID: 16339930 DOI: 10.1099/mic.0.28251-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Biosynthesis of the red, tripyrrole antibiotic prodigiosin (Pig) bySerratiasp. ATCC 39006 (39006) is controlled by a complex regulatory network involving anN-acyl homoserine lactone (N-AHL) quorum-sensing system, at least two separate two-component signal transduction systems and a multitude of other regulators. In this study, a new transcriptional activator, PigT, and a physiological cue (gluconate), which are involved in an independent pathway controlling Pig biosynthesis, have been characterized. PigT, a GntR homologue, activates transcription of thepigA–Obiosynthetic operon in the absence of gluconate. However, addition of gluconate to the growth medium of 39006 repressed transcription ofpigA–O, via a PigT-dependent mechanism, resulting in a decrease in Pig production. Finally, expression of thepigTtranscript was shown to be maximal in exponential phase, preceding the onset of Pig production. This work expands our understanding of both the physiological and genetic factors that impinge on the biosynthesis of the secondary metabolite Pig in 39006.
Collapse
Affiliation(s)
- Peter C Fineran
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Lee Everson
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Holly Slater
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - George P C Salmond
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| |
Collapse
|
27
|
Abstract
Central metabolism of carbohydrates uses the Embden-Meyerhof-Parnas (EMP), pentose phosphate (PP), and Entner-Doudoroff (ED) pathways. This review reviews the biological roles of the enzymes and genes of these three pathways of E. coli. Glucose, pentoses, and gluconate are primarily discussed as the initial substrates of the three pathways, respectively. The genetic and allosteric regulatory mechanisms of glycolysis and the factors that affect metabolic flux through the pathways are considered here. Despite the fact that a lot of information on each of the reaction steps has been accumulated over the years for E. coli, surprisingly little quantitative information has been integrated to analyze glycolysis as a system. Therefore, the review presents a detailed description of each of the catalytic steps by a systemic approach. It considers both structural and kinetic aspects. Models that include kinetic information of the reaction steps will always contain the reaction stoichiometry and therefore follow the structural constraints, but in addition to these also kinetic rate laws must be fulfilled. The kinetic information obtained on isolated enzymes can be integrated using computer models to simulate behavior of the reaction network formed by these enzymes. Successful examples of such approaches are the modeling of glycolysis in S. cerevisiae, the parasite Trypanosoma brucei, and the red blood cell. With the rapid developments in the field of Systems Biology many new methods have been and will be developed, for experimental and theoretical approaches, and the authors expect that these will be applied to E. coli glycolysis in the near future.
Collapse
Affiliation(s)
- Tony Romeo
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Jacky L Snoep
- Department of Biochemistry, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa, and Department of Molecular Cell Physiology, Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
28
|
Murray EL, Conway T. Multiple regulators control expression of the Entner-Doudoroff aldolase (Eda) of Escherichia coli. J Bacteriol 2005; 187:991-1000. [PMID: 15659677 PMCID: PMC545716 DOI: 10.1128/jb.187.3.991-1000.2005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Escherichia coli eda gene, which encodes the Entner-Doudoroff aldolase, is central to the catabolism of several sugar acids. Here, we show that Eda synthesis is induced by growth on gluconate, glucuronate, or methyl-beta-D-glucuronide; phosphate limitation; and carbon starvation. Transcription of eda initiates from three promoters, designated P1, P2, and P4, each of which is responsible for induction under different growth conditions. P1 controls eda induction on gluconate and is regulated by GntR. P2 controls eda induction on glucuronate and galacturonate and is regulated by KdgR. P4 is active under conditions of phosphate starvation and is directly controlled by PhoB. In addition, CsrA activates Eda synthesis, apparently by an indirect mechanism that may be involved in the modest changes in expression level that are associated with carbon starvation. The complex regulation of eda is discussed with respect to its several physiological roles, which apparently accommodate not only sugar acid catabolism but also detoxification of metabolites that could accumulate during starvation-induced stress.
Collapse
Affiliation(s)
- Elizabeth L Murray
- Comprehensive Cancer Center and Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | | |
Collapse
|
29
|
Sawabe T, Hayashi K, Moriwaki J, Fukui Y, Thompson FL, Swings J, Christen R. Vibrio neonatus sp. nov. and Vibrio ezurae sp. nov. Isolated from the Gut of Japanese Abalones. Syst Appl Microbiol 2004; 27:527-34. [PMID: 15490553 DOI: 10.1078/0723202041748154] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Five alginolytic, facultative anaerobic, non-motile bacteria were isolated from the gut of Japanese abalones (Haliotis discus discus, H. diversicolor diversicolor and H. diversicolor aquatilis). Phylogenetic analyses based on 16S rRNA gene and gap gene sequences indicated that these strains are closely related to V. halioticoli. DNA-DNA hybridizations, FAFLP fingerprintings, and phylogenies of gap and 16S rRNA gene sequences showed that the five strains represent two species different from all currently described vibrios. The names Vibrio neonatus sp. nov. (IAM 15060T = LMG 19973T = HDD3-1T; mol% G+C of DNA is 42.1-43.9), and Vibrio ezurae sp. nov. (IAM 15061T = LMG 19970T = HDS1-1T; mol% G+C of DNA is 43.6-44.8) are proposed to encompass these new taxa. The two new species can be differentiated from V. halioticoli on the basis of several features, including beta-galactosidase activity, assimilation of glycerol, D-mannose and D-gluconate.
Collapse
Affiliation(s)
- Tomoo Sawabe
- Laboratory of Microbiology, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Japan.
| | | | | | | | | | | | | |
Collapse
|
30
|
Bausch C, Ramsey M, Conway T. Transcriptional organization and regulation of the L-idonic acid pathway (GntII system) in Escherichia coli. J Bacteriol 2004; 186:1388-97. [PMID: 14973046 PMCID: PMC344402 DOI: 10.1128/jb.186.5.1388-1397.2004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genetic organization of the idn genes that encode the pathway for L-idonate catabolism was characterized. The monocistronic idnK gene is transcribed divergently from the idnDOTR genes, which were shown to form an operon. The 215-bp regulatory region between the idnK and idnD genes contains promoters in opposite orientation with transcription start sites that mapped to positions -26 and -29 with respect to the start codons. The regulatory region also contains a single putative IdnR/GntR binding site centered between the two promoters, a CRP binding site upstream of idnD, and an UP element upstream of idnK. The genes of the L-idonate pathway were shown to be under catabolite repression control. Analysis of idnD- and idnK-lacZ fusions in a nonpolar idnD mutant that is unable to interconvert L-idonate and 5-ketogluconate indicated that either compound could induce the pathway. The L-idonate pathway was first characterized as a subsidiary pathway for D-gluconate catabolism (GntII), which is induced by D-gluconate in a GntI (primary gluconate system) mutant. Here we showed that the idnK and idnD operons are induced by D-gluconate in a GntI system mutant, presumably by endogenous formation of 5-ketogluconate from D-gluconate. Thus, the regulation of the GntII system is appropriate for this pathway, which is primarily involved in L-idonate catabolism; the GntII system can be induced by D-gluconate under conditions that block the GntI system.
Collapse
Affiliation(s)
- Christoph Bausch
- Department of Botany and Microbiology, University of Oklahoma, Norman, Oklahoma 73019
| | | | | |
Collapse
|
31
|
Tsunedomi R, Izu H, Kawai T, Matsushita K, Ferenci T, Yamada M. The activator of GntII genes for gluconate metabolism, GntH, exerts negative control of GntR-regulated GntI genes in Escherichia coli. J Bacteriol 2003; 185:1783-95. [PMID: 12618441 PMCID: PMC150117 DOI: 10.1128/jb.185.6.1783-1795.2003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gluconate is one of the preferred carbon sources of Escherichia coli, and two sets of gnt genes (encoding the GntI and GntII systems) are involved in its transport and metabolism. GntR represses the GntI genes gntKU and gntT, whereas GntH was previously suggested to be an activator for the GntII genes gntV and idnDO-gntWH. The helix-turn-helix residues of the two regulators GntR and GntH exhibit extensive homologies. The similarity between the two regulators prompted analysis of the cross-regulation of the GntI genes by GntH. Repression of gntKU and gntT by GntH, as well as GntR, was indeed observed using transcriptional fusions and RNA analysis. High GntH expression, from cloned gntH or induced through 5-ketogluconate, was required to observe repression of GntI genes. Two GntR-binding elements were identified in the promoter-operator region of gntKU and were also shown to be the target sites of GntH by mutational analysis. However, the GntI genes were not induced by gluconate in the presence of enhanced amounts of GntH, whereas repression by GntR was relieved by gluconate. The repression of GntI genes by GntH is thus unusual in that it is not relieved by the availability of substrate. These results led us to propose that GntH activates GntII and represses the GntI genes in the presence of metabolites derived from gluconate, allowing the organism to switch from the GntI to the GntII system. This cross-regulation may explain the progressive changes in gnt gene expression along with phases of cell growth in the presence of gluconate.
Collapse
Affiliation(s)
- Ryouichi Tsunedomi
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi 753-8515, Japan
| | | | | | | | | | | |
Collapse
|
32
|
Meyer M, Dimroth P, Bott M. Catabolite repression of the citrate fermentation genes in Klebsiella pneumoniae: evidence for involvement of the cyclic AMP receptor protein. J Bacteriol 2001; 183:5248-56. [PMID: 11514506 PMCID: PMC95405 DOI: 10.1128/jb.183.18.5248-5256.2001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Klebsiella pneumoniae is able to grow anaerobically with citrate as a sole carbon and energy source by a fermentative pathway involving the Na(+)-dependent citrate carrier CitS, citrate lyase, and oxaloacetate decarboxylase. The corresponding genes are organized in the divergent citC and citS operons, whose expression is strictly dependent on the citrate-sensing CitA-CitB two-component system. Evidence is provided here that the citrate fermentation genes are subject to catabolite repression, since anaerobic cultivation with a mixture of citrate and glucose or citrate and gluconate resulted in diauxic growth. Glucose, gluconate, and also glycerol decreased the expression of a chromosomal citS-lacZ fusion by 60 to 75%, whereas a direct inhibition of the citrate fermentation enzymes was not observed. The purified cyclic AMP (cAMP) receptor protein (CRP) of K. pneumoniae bound to two sites in the citC-citS intergenic region, which were centered at position -41.5 upstream of the citC and citS transcriptional start sites. Binding was apparently stimulated by the response regulator CitB. These data indicate that catabolite repression of the citrate fermentation genes is exerted by CRP and that in the absence of repressing carbon sources the cAMP-CRP complex serves to enhance the basal, CitB-dependent transcription level.
Collapse
Affiliation(s)
- M Meyer
- Institut für Mikrobiologie, Eidgenössische Technische Hochschule Zürich, 8092 Zürich, Switzerland
| | | | | |
Collapse
|
33
|
Wang IN, Dykhuizen DE. Variation of enzyme activities at a branched pathway involved in the utilization of gluconate in Escherichia coli. Evolution 2001; 55:897-908. [PMID: 11430650 DOI: 10.1554/0014-3820(2001)055[0897:voeaaa]2.0.co;2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Twenty-four strains of Escherichia coli from the ECOR collection were characterized for growth rate in gluconate minimal salts medium and for Vmax and Km of the three enzymes (gluconokinase, 6-phosphogluconate dehydrogenase, and 6-phosphogluconate dehydratase) that form a branch point for the utilization of gluconate. A total of 11 characters--growth rate, three Vmax values, four Km values, and three Vmax/Km values--were determined for these 24 ECOR strains. Most of the characters were normally distributed. Statistical tests showed that growth rate is significantly less variable than enzyme activities. Also, analyses of variance showed significant differences among strains and among the extant five genetic groups of E. coli for the characters measured. A Mantel test showed that, for some characters, closely related strains shared similar character values. Two hypotheses regarding the relationships between growth rate and enzyme activity and between various enzyme activities were tested. None of the expected correlations between growth rate and enzyme activity or between enzyme activities was detected. The results were discussed in terms of metabolic control analysis and neutral theory.
Collapse
Affiliation(s)
- I N Wang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station 77843, USA.
| | | |
Collapse
|
34
|
Koo JH, Cho IH, Kim YS. The malonate decarboxylase operon of Acinetobacter calcoaceticus KCCM 40902 is regulated by malonate and the transcriptional repressor MdcY. J Bacteriol 2000; 182:6382-90. [PMID: 11053382 PMCID: PMC94784 DOI: 10.1128/jb.182.22.6382-6390.2000] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A regulatory gene-like open reading frame oriented oppositely to mdcL, coined mdcY, was found upstream from the structural genes of the mdcLMACDEGBH operon in Acinetobacter calcoaceticus KCCM 40902. To elucidate the function of this gene, mdcY was expressed in Escherichia coli, and the MdcY protein was purified to homogeneity. Its DNA binding activity and binding site were examined by gel retardation and footprinting assays in vitro and by site-directed mutagenesis of the binding sites in vivo. The regulator bound target DNA regardless of the presence of malonate, and the binding site was found centered at -65 relative to the mdcL transcriptional start site and contains a 12-bp palindromic structure (5'-ATTGTA/TACAAT-3'). Using a promoter fusion to the reporter gene luc, we found that the promoter P(mdcY) is negatively regulated by MdcY independent of malonate. However, the promoter P(mdcL) recovered its activity in the presence of malonate. When mdcY was introduced into A. calcoaceticus KCCM 40902 in which the gene is inactivated by an IS3 family element, malonate decarboxylase was significantly repressed in cultures growing in acetate, succinate, or Luria-Bertani medium. However, in cells growing in malonate, malonate decarboxylase was induced, indicating that MdcY is a transcriptional repressor and that malonate or a product resulting from malonate metabolism should be the intracellular inducer of the mdc operon.
Collapse
Affiliation(s)
- J H Koo
- Department of Biochemistry, College of Science, Protein Network Research Center, Institute of Bioscience and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | | | | |
Collapse
|
35
|
Bausch C, Peekhaus N, Utz C, Blais T, Murray E, Lowary T, Conway T. Sequence analysis of the GntII (subsidiary) system for gluconate metabolism reveals a novel pathway for L-idonic acid catabolism in Escherichia coli. J Bacteriol 1998; 180:3704-10. [PMID: 9658018 PMCID: PMC107343 DOI: 10.1128/jb.180.14.3704-3710.1998] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The presence of two systems in Escherichia coli for gluconate transport and phosphorylation is puzzling. The main system, GntI, is well characterized, while the subsidiary system, GntII, is poorly understood. Genomic sequence analysis of the region known to contain genes of the GntII system led to a hypothesis which was tested biochemically and confirmed: the GntII system encodes a pathway for catabolism of L-idonic acid in which D-gluconate is an intermediate. The genes have been named accordingly: the idnK gene, encoding a thermosensitive gluconate kinase, is monocistronic and transcribed divergently from the idnD-idnO-idnT-idnR operon, which encodes L-idonate 5-dehydrogenase, 5-keto-D-gluconate 5-reductase, an L-idonate transporter, and an L-idonate regulatory protein, respectively. The metabolic sequence is as follows: IdnT allows uptake of L-idonate; IdnD catalyzes a reversible oxidation of L-idonate to form 5-ketogluconate; IdnO catalyzes a reversible reduction of 5-ketogluconate to form D-gluconate; IdnK catalyzes an ATP-dependent phosphorylation of D-gluconate to form 6-phosphogluconate, which is metabolized further via the Entner-Doudoroff pathway; and IdnR appears to act as a positive regulator of the IdnR regulon, with L-idonate or 5-ketogluconate serving as the true inducer of the pathway. The L-idonate 5-dehydrogenase and 5-keto-D-gluconate 5-reductase reactions were characterized both chemically and biochemically by using crude cell extracts, and it was firmly established that these two enzymes allow for the redox-coupled interconversion of L-idonate and D-gluconate via the intermediate 5-ketogluconate. E. coli K-12 strains are able to utilize L-idonate as the sole carbon and energy source, and as predicted, the ability of idnD, idnK, idnR, and edd mutants to grow on L-idonate is altered.
Collapse
Affiliation(s)
- C Bausch
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Affiliation(s)
- N Peekhaus
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210-1292, USA
| | | |
Collapse
|
37
|
Peekhaus N, Conway T. Positive and negative transcriptional regulation of the Escherichia coli gluconate regulon gene gntT by GntR and the cyclic AMP (cAMP)-cAMP receptor protein complex. J Bacteriol 1998; 180:1777-85. [PMID: 9537375 PMCID: PMC107090 DOI: 10.1128/jb.180.7.1777-1785.1998] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The gntT gene of Escherichia coli is specifically induced by gluconate and repressed via catabolite repression. Thus, gluconate is both an inducer and a repressor of gntT expression since gluconate is a catabolite-repressing sugar. In a gntR deletion mutant, the expression of a chromosomal gntT::lacZ fusion is both high and constitutive, confirming that GntR is the negative regulator of gntT. Indeed, GntR binds to two consensus gnt operator sites; one overlaps the -10 region of the gntT promoter, and the other is centered at +120 with respect to the transcriptional start site. The binding of GntR to these sites was proven in vitro by gel redardation assays and in vivo by site-directed mutagenesis of the binding sites. Binding of GntR to the operators is eliminated by gluconate and also by 6-phosphogluconate at a 10-fold-higher concentration. Interestingly, when gntR deletion strains are grown in the presence of gluconate, there is a twofold decrease in gntT expression which is independent of catabolite repression and binding of GntR to the operator sites. This novel response of gntR mutants to the inducer is termed ultrarepression. Transcription of gntT is activated by binding of the cyclic AMP (cAMP)-cAMP receptor protein (CRP) complex to a CRP binding site positioned at -71 upstream of the gntT transcription start site.
Collapse
Affiliation(s)
- N Peekhaus
- Department of Microbiology, The Ohio State University, Columbus 43210-1292, USA.
| | | |
Collapse
|