1
|
Keskin B, Chen CS, Tsai PS, Du PX, Santos JHM, Syu GD. Reverse-Phase Protein Microarrays for Overexpressed Escherichia coli Lysates Reveal a Novel Tyrosine Kinase. Anal Chem 2024; 96:8721-8729. [PMID: 38683735 PMCID: PMC11140677 DOI: 10.1021/acs.analchem.4c00965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024]
Abstract
Tyrosine phosphorylation is one of the most important posttranslational modifications in bacteria, linked to regulating growth, migration, virulence, secondary metabolites, biofilm formation, and capsule production. Only two tyrosine kinases (yccC (etk) and wzc) have been identified in Escherichia coli. The investigation by similarity has not revealed any novel BY-kinases in silico so far, most probably due to their sequence and structural variability. Here we developed a reverse-phase protein array from 4126 overexpressed E. coli clones, lysed, and printed on coated glass slides. These high-density E. coli lysate arrays (ECLAs) were quality controlled by the reproducibility and immobilization of total lysate proteins and specific overexpressed proteins. ECLAs were used to interrogate the relationship between protein overexpression and tyrosine phosphorylation in the total lysate. We identified 6 protein candidates, including etk and wzc, with elevated phosphotyrosine signals in the total lysates. Among them, we identified a novel kinase nrdD with autophosphorylation and transphosphorylation activities in the lysates. Moreover, the overexpression of nrdD induced biofilm formation. Since nrdD is a novel kinase, we used E. coli proteome microarrays (purified 4,126 E. coli proteins) to perform an in vitro kinase assay and identified 33 potential substrates. Together, this study established a new ECLA platform for interrogating posttranslational modifications and identified a novel kinase that is important in biofilm formation, which will shed some light on bacteria biochemistry and new ways to impede drug resistance.
Collapse
Affiliation(s)
- Batuhan
Birol Keskin
- Department
of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Chien-Sheng Chen
- Department
of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Institute
of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Pei-Shan Tsai
- Department
of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Pin-Xian Du
- Department
of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - John Harvey M. Santos
- Department
of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan
- Centre
for Animal Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Guan-Da Syu
- Department
of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan
- International
Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan 701, Taiwan
- Medical Device
Innovation Center, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
2
|
Wu J, Huang M, Zhan Y, Liu M, Hu X, Wu Y, Qiao J, Wang Z, Li H, Wang J, Wang X. Regulating Cardiolipin Biosynthesis for Efficient Production of Colanic Acid in Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37235531 DOI: 10.1021/acs.jafc.3c01414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Colanic acid has broad application prospects in the food and healthcare market due to its excellent physical properties and biological activities. In this study, we discovered that colonic acid production in Escherichia coli could be enhanced by regulating cardiolipin biosynthesis. Single deletion of clsA, clsB, or clsC related to cardiolipin biosynthesis in E. coli MG1655 only slightly increased colonic acid production, but double or triple deletion of these three genes in E. coli MG1655 increased colonic acid production up to 2.48-fold. Previously, we have discovered that truncating lipopolysaccharide by deletion of the waaLUZYROBSPGQ gene cluster and enhancing RcsA by deletion of genes lon and hns can increase colonic acid production in E. coli. Therefore, these genes together with clsA, clsB, or/and clsC were deleted in E. coli, and all the resulting mutants showed increased colonic acid production. The best colonic acid production was observed in the mutant WWM16, which is 126-fold higher than in the control MG1655. To further improve colonic acid production, the genes rcsA and rcsD1-466 were overexpressed in WWM16, and the resulting recombinant E. coli WWM16/pWADT could produce 44.9 g/L colonic acid, which is the highest titer reported to date.
Collapse
Affiliation(s)
- Jiaxin Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Ming Huang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Yi Zhan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Minmin Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Xiaoqing Hu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Yuanming Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jun Qiao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Zhen Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Hedan Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jianli Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
3
|
Wang Q, Cai L, Zhang R, Wei S, Li F, Liu Y, Xu Y. A Unique Set of Auxiliary Metabolic Genes Found in an Isolated Cyanophage Sheds New Light on Marine Phage-Host Interactions. Microbiol Spectr 2022; 10:e0236722. [PMID: 36190421 PMCID: PMC9602691 DOI: 10.1128/spectrum.02367-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/10/2022] [Indexed: 01/04/2023] Open
Abstract
Cyanophages, viruses that infect cyanobacteria, are abundant and widely distributed in aquatic ecosystems, playing important roles in regulating the abundance, activity, diversity, and evolution of cyanobacteria. A T4-like cyanophage, S-SCSM1, infecting Synechococcus and Prochlorococcus strains of different ecotypes, was isolated from the South China Sea in this study. For the first time, a mannose-6-phosphate isomerase (MPI) gene was identified in the cultured cyanophage. At least 11 phylogenetic clusters of cyanophage MPIs were retrieved and identified from the marine metagenomic data sets, indicating that cyanophage MPIs in the marine environment are extremely diverse. The existence of 24 genes encoding 2-oxoglutarate (2OG)-Fe(II) oxygenase superfamily proteins in the S-SCSM1 genome emphasizes their potential importance and diverse functions in reprogramming host metabolism during phage infection. Novel cell wall synthesis and modification genes found in the S-SCSM1 genome indicate that diverse phenotypic modifications imposed by phages on cyanobacterial hosts remain to be discovered. Two noncoding RNAs of cis-regulatory elements in the S-SCSM1 genome were predicted to be associated with host exopolysaccharide metabolism and photosynthesis. The isolation and genomic characterization of cyanophage S-SCSM1 provide more information on the genetic diversity of cyanophages and phage-host interactions in the marine environment. IMPORTANCE Cyanophages play important ecological roles in aquatic ecosystems. Genomic and proteomic characterizations of the T4-like cyanophage S-SCSM1 indicate that novel and diverse viral genes and phage-host interactions in the marine environment remain unexplored. The first identified mannose-6-phosphate isomerase (MPI) gene from a cultured cyanophage was found in the S-SCSM1 genome, although MPIs were previously found in viral metagenomes at high frequencies similar to those of the cyanophage photosynthetic gene psbA. The presence of 24 genes encoding 2-oxoglutarate (2OG)-Fe(II) oxygenase superfamily proteins, novel cell wall synthesis and modification genes, a nonbleaching protein A gene, and 2 noncoding RNAs of cis-regulatory elements in the S-SCSM1 genome as well as the presence of a virion-associated regulatory protein indicate the diverse functions that cyanophages have in reprogramming the metabolism and modifying the phenotypes of hosts during infection.
Collapse
Affiliation(s)
- Qiong Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao, People’s Republic of China
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, People’s Republic of China
| | - Lanlan Cai
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, People’s Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, People’s Republic of China
| | - Rui Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, People’s Republic of China
| | - Shuzhen Wei
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, People’s Republic of China
| | - Fang Li
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, People’s Republic of China
| | - Yuanfang Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao, People’s Republic of China
| | - Yongle Xu
- Institute of Marine Science and Technology, Shandong University, Qingdao, People’s Republic of China
| |
Collapse
|
4
|
Liu Y, Zhu Y, Wang H, Wan L, Zhang W, Mu W. Strategies for Enhancing Microbial Production of 2'-Fucosyllactose, the Most Abundant Human Milk Oligosaccharide. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11481-11499. [PMID: 36094047 DOI: 10.1021/acs.jafc.2c04539] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Human milk oligosaccharides (HMOs), a group of structurally diverse unconjugated glycans in breast milk, act as important prebiotics and have plenty of unique health effects for growing infants. 2'-Fucosyllactose (2'-FL) is the most abundant HMO, accounting for approximately 30%, among approximately 200 identified HMOs with different structures. 2'-FL can be enzymatically produced by α1,2-fucosyltransferase, using GDP-l-fucose as donor and lactose as acceptor. Metabolic engineering strategies have been widely used for enhancement of GDP-l-fucose supply and microbial production of 2'-FL with high productivity. GDP-l-fucose supply can be enhanced by two main pathways, including de novo and salvage pathways. 2'-FL-producing α1,2-fucosyltransferases have widely been identified from various microorganisms. Metabolic pathways for 2'-FL synthesis can be basically constructed by enhancing GDP-l-fucose supply and introducing α1,2-fucosyltransferase. Various strategies have been attempted to enhance 2'-FL production, such as acceptor enhancement, donor enhancement, and improvement of the functional expression of α1,2-fucosyltransferase. In this review, current progress in GDP-l-fucose synthesis and bacterial α1,2-fucosyltransferases is described in detail, various metabolic engineering strategies for enhancing 2'-FL production are comprehensively reviewed, and future research focuses in biotechnological production of 2'-FL are suggested.
Collapse
Affiliation(s)
- Yuanlin Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Hao Wang
- Bloomage Biotechnology Corp., Ltd., Jinan, Shandong 250010, People's Republic of China
| | - Li Wan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
5
|
Zhan Y, Qiao J, Chen S, Dong X, Wu Y, Wang Z, Wang X. Metabolic Engineering for Overproduction of Colanic Acid in Escherichia coli Mutant with Short Lipopolysaccharide. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8351-8364. [PMID: 35773212 DOI: 10.1021/acs.jafc.2c03053] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Colanic acid is a major exopolysaccharide existing in most Enterobacteriaceae when exposed to an extreme environment. Colanic acid possesses excellent physical properties and biological activities, which makes it a candidate in the food and healthcare market. Previous strategies for colanic acid overproduction in E. coli mainly focus on removing the negative regulator on colanic acid biosynthesis or overexpressing the rcsA gene to up-regulate the cps operon. In this study, modifications in metabolic pathways were implemented in E. coli mutant strains with shortened lipopolysaccharides to improve colanic acid production. First, ackA was deleted to remove the byproduct acetate and the effect of accumulated acetyl-phosphate on colanic acid production was investigated. Second, 11 genes responsible for O-antigen synthesis were deleted to reduce its competition for glucose-1-phosphate and UDP-galactose with colanic acid production. Third, uppS was overexpressed to supply lipid carriers for synthesizing a colanic acid repeat unit. Colanic acid production in the final engineered strain WZM008/pTrcS reached 11.68 g/L in a 2.0 L bioreactor, 3.54 times the colanic acid production by the WQM001 strain. The results provide insights for further engineering E. coli to maximize CA production.
Collapse
Affiliation(s)
- Yi Zhan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jun Qiao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Shanshan Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaofei Dong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yuanming Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhen Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
6
|
Resistance of Dickeya solani strain IPO 2222 to lytic bacteriophage ΦD5 results in fitness tradeoffs for the bacterium during infection. Sci Rep 2022; 12:10725. [PMID: 35750797 PMCID: PMC9232599 DOI: 10.1038/s41598-022-14956-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/15/2022] [Indexed: 11/24/2022] Open
Abstract
Resistance to bacteriophage infections protects bacteria in phage-replete environments, enabling them to survive and multiply in the presence of their viral predators. However, such resistance may confer costs for strains, reducing their ecological fitness as expressed as competitiveness for resources or virulence or both. There is limited knowledge about such costs paid by phage-resistant plant pathogenic bacteria in their natural habitats. This study analyzed the costs of phage resistance paid by the phytopathogenic pectinolytic bacterium Dickeya solani both in vitro and in potato (Solanum tuberosum L.) plants. Thirteen Tn5 mutants of D. solani IPO 2222 were identified that exhibited resistance to infection by lytic bacteriophage vB_Dsol_D5 (ΦD5). The genes disrupted in these mutants encoded proteins involved in the synthesis of bacterial envelope components (viz. LPS, EPS and capsule). Although phage resistance did not affect most of the phenotypes of ΦD5-resistant D. solani such as growth rate, production of effectors, swimming and swarming motility, use of various carbon and nitrogen sources and biofilm formation evaluated in vitro, all phage resistant mutants were significantly compromised in their ability to survive on leaf surfaces as well as to grow within and cause disease symptoms in potato plants.
Collapse
|
7
|
Li S, Xu X, Lv X, Liu Y, Li J, Du G, Liu L. Combinatorial Metabolic Engineering and Enzymatic Catalysis Enable Efficient Production of Colanic Acid. Microorganisms 2022; 10:877. [PMID: 35630322 PMCID: PMC9143390 DOI: 10.3390/microorganisms10050877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 02/04/2023] Open
Abstract
Colanic acid can promote the lifespan of humans by regulating mitochondrial homeostasis, and it has widespread applications in the field of health. However, colanic acid is produced at a low temperature (20 °C) with low titer. Using Escherichia coli K-12 MG1655, we constructed the SRP-4 strain with high colanic acid production at 30 °C by enhancing the precursor supply and relieving the regulation of transcription for colanic acid synthesis genes by the RCS system. After media optimization, the colanic acid titer increased by 579.9-fold and reached 12.2 g/L. Subsequently, we successfully purified the colanic acid hydrolase and reduced the molecular weight of colanic acid (106.854 kDa), thereby eliminating the inhibition of high-molecular-weight colanic acid on strain growth. Finally, after adding the colanic acid hydrolase (4000 U/L), the colanic acid with low molecular weight reached 24.99 g/L in 3-L bioreactor, the highest titer reported so far. This high-producing strain of colanic acid will promote the application of low-molecular-weight colanic acid in the field of health.
Collapse
Affiliation(s)
- Suwei Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; (S.L.); (X.X.); (X.L.); (Y.L.); (J.L.); (G.D.)
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Xianhao Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; (S.L.); (X.X.); (X.L.); (Y.L.); (J.L.); (G.D.)
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; (S.L.); (X.X.); (X.L.); (Y.L.); (J.L.); (G.D.)
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; (S.L.); (X.X.); (X.L.); (Y.L.); (J.L.); (G.D.)
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; (S.L.); (X.X.); (X.L.); (Y.L.); (J.L.); (G.D.)
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; (S.L.); (X.X.); (X.L.); (Y.L.); (J.L.); (G.D.)
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; (S.L.); (X.X.); (X.L.); (Y.L.); (J.L.); (G.D.)
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
8
|
Lee JW, Kwak S, Liu JJ, Yun EJ, Jin YS. 2'-Fucosyllactose production in engineered Escherichia coli with deletion of waaF and wcaJ and overexpression of FucT2. J Biotechnol 2021; 340:30-38. [PMID: 34450187 DOI: 10.1016/j.jbiotec.2021.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 10/20/2022]
Abstract
2'-Fucosyllactose (2'-FL), a major oligosaccharide of human breast milk, and is currently supplemented into infant formula. For the overproduction of 2'-FL via fucosylation of lactose, conventional approaches have focused on the episomal overexpression of de novo or salvage GDP-L-fucose biosynthetic pathway and α-1,2-fucosyltransferase (FucT2) through T7 RNA polymerase expression system in engineered E. coli. However, these approaches have drawbacks of metabolic burden, plasmid instability, and inclusion body formation. In this study, a deletion mutant of waaF coding for ADP-heptose:LPS heptosyltransferase II was employed for 2'-FL production. As the waaF deletion induces accumulation of colanic acid, additional deletion of wcaJ coding for UDP-glucose-1-phosphate transferase in the waaF deletion mutant resulted in enhanced accumulation of GDP-L-fucose. Besides, 2'-FL yields and titers were drastically improved when T7 promoter was replaced with Trc promoter for α-1,2 fucosyltransferase expressions in the waaF and wcaJ deleted strain. As a result, when FucT2 was expressed under Trc promoter in the E. coli JM109(DE3) ΔwaaFΔwcaJ, 14.7 g/L of 2'-FL was produced with a productivity of 0.31 g/L/h in a fed-batch fermentation. We envision that the deletion-based metabolic design and decreased promoter strength for fucosyltransferase expression can resolve the drawbacks of T7 RNA polymerase-based expression design for 2'-FL production in E. coli.
Collapse
Affiliation(s)
- Jae Won Lee
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Suryang Kwak
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jing-Jing Liu
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Eun Ju Yun
- Department of Biotechnology, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Yong-Su Jin
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
9
|
Ranjan M, Khokhani D, Nayaka S, Srivastava S, Keyser ZP, Ranjan A. Genomic diversity and organization of complex polysaccharide biosynthesis clusters in the genus Dickeya. PLoS One 2021; 16:e0245727. [PMID: 33571209 PMCID: PMC7877592 DOI: 10.1371/journal.pone.0245727] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 01/07/2021] [Indexed: 11/18/2022] Open
Abstract
The pectinolytic genus Dickeya (formerly Erwinia chrysanthemi) comprises numerous pathogenic species which cause diseases in various crops and ornamental plants across the globe. Their pathogenicity is governed by complex multi-factorial processes of adaptive virulence gene regulation. Extracellular polysaccharides and lipopolysaccharides present on bacterial envelope surface play a significant role in the virulence of phytopathogenic bacteria. However, very little is known about the genomic location, diversity, and organization of the polysaccharide and lipopolysaccharide biosynthetic gene clusters in Dickeya. In the present study, we report the diversity and structural organization of the group 4 capsule (G4C)/O-antigen capsule, putative O-antigen lipopolysaccharide, enterobacterial common antigen, and core lipopolysaccharide biosynthesis clusters from 54 Dickeya strains. The presence of these clusters suggests that Dickeya has both capsule and lipopolysaccharide carrying O-antigen to their external surface. These gene clusters are key regulatory components in the composition and structure of the outer surface of Dickeya. The O-antigen capsule/group 4 capsule (G4C) coding region shows a variation in gene content and organization. Based on nucleotide sequence homology in these Dickeya strains, two distinct groups, G4C group I and G4C group II, exist. However, comparatively less variation is observed in the putative O-antigen lipopolysaccharide cluster in Dickeya spp. except for in Dickeya zeae. Also, enterobacterial common antigen and core lipopolysaccharide biosynthesis clusters are present mostly as conserved genomic regions. The variation in the O-antigen capsule and putative O-antigen lipopolysaccharide coding region in relation to their phylogeny suggests a role of multiple horizontal gene transfer (HGT) events. These multiple HGT processes might have been manifested into the current heterogeneity of O-antigen capsules and O-antigen lipopolysaccharides in Dickeya strains during its evolution.
Collapse
Affiliation(s)
- Manish Ranjan
- CSIR-National Botanical Research Institute (CSIR-NBRI), Lucknow, Uttar Pradesh, India
| | - Devanshi Khokhani
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Plant Pathology, University of Minnesota—Twin Cities, St. Paul, Minnesota, United States of America
| | - Sanjeeva Nayaka
- CSIR-National Botanical Research Institute (CSIR-NBRI), Lucknow, Uttar Pradesh, India
| | - Suchi Srivastava
- CSIR-National Botanical Research Institute (CSIR-NBRI), Lucknow, Uttar Pradesh, India
| | - Zachary P. Keyser
- Department of Agronomy, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ashish Ranjan
- Department of Plant Pathology, University of Minnesota—Twin Cities, St. Paul, Minnesota, United States of America
- Department of Plant Sciences (SLS), University of Hyderabad, Hyderabad, India
| |
Collapse
|
10
|
Colanic acid biosynthesis in Escherichia coli is dependent on lipopolysaccharide structure and glucose availability. Microbiol Res 2020; 239:126527. [PMID: 32590169 DOI: 10.1016/j.micres.2020.126527] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/06/2020] [Accepted: 06/06/2020] [Indexed: 01/31/2023]
Abstract
Lipopolysaccharide and colanic acid are important forms of exopolysaccharides located on the cell surface of Escherichia coli, but their interrelation with the cell stress response is not well understood. In this study, nine mutant strains with different structures of lipopolysaccharide were constructed from E. coli MG1655 by deletion of a single gene or multiple genes. All mutant strains did not produce colanic acid when grown in LB medium, but six of them could produce colanic acid when grown either in M9 medium in which glucose is the sole carbon source or in LB medium supplemented with glucose. The results indicate that colanic acid production in E. coli is dependent on both lipopolysaccharide structure and glucose availability. However, transcriptional analysis showed that 20 genes related to the colanic acid biosynthesis and the key gene rcsA in the Rcs system were all transcriptionally up-regulated in all of the nine mutant strains no matter they were grown in M9 or LB medium. This suggests that the availability of some nucleotide-sugar precursors shared by the biosynthesis of lipopolysaccharide and colanic acid might play a major role in colanic acid production in E. coli. Lipopolysaccharide pathway might have a huge priority to colanic acid pathway to use the common precursors; therefore, the colanic acid is not produced in MG1655 and the nine mutants when grown in LB medium. In the six mutant strains that can produce colanic acid in the glucose rich media, the common precursors might be abundant because they were not needed for synthesizing the mutant lipopolysaccharide.
Collapse
|
11
|
Islam R, Brown S, Taheri A, Dumenyo CK. The Gene Encoding NAD-Dependent Epimerase/Dehydratase, wcaG, Affects Cell Surface Properties, Virulence, and Extracellular Enzyme Production in the Soft Rot Phytopathogen, Pectobacterium carotovorum. Microorganisms 2019; 7:microorganisms7060172. [PMID: 31200539 PMCID: PMC6616942 DOI: 10.3390/microorganisms7060172] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/03/2019] [Accepted: 06/06/2019] [Indexed: 01/03/2023] Open
Abstract
Pectobacterium carotovorum is a gram-negative bacterium that, together with other soft rot Enterobacteriaceae causes soft rot disease in vegetables, fruits, and ornamental plants through the action of exoproteins including plant cell wall-degrading enzymes (PCWDEs). Although pathogenicity in these bacteria is complex, virulence levels are proportional to the levels of plant cell wall-degrading exoenzymes (PCWDEs) secreted. Two low enzyme-producing transposon Tn5 mutants were isolated, and compared to their parent KD100, the mutants were less virulent on celery petioles and carrot disks. The inactivated gene responsible for the reduced virulence phenotype in both mutants was identified as wcaG. The gene, wcaG (previously denoted fcl) encodes NAD-dependent epimerase/dehydratase, a homologue of GDP-fucose synthetase of Escherichia coli. In Escherichia coli, GDP-fucose synthetase is involved in the biosynthesis of the exopolysaccharide, colanic acid (CA). The wcaG mutants of P. carotovorum formed an enhanced level of biofilm in comparison to their parent. In the hydrophobicity test the mutants showed more hydrophobicity than the parent in hexane and hexadecane as solvents. Complementation of the mutants with extrachromosomal copies of the wild type gene restored these functions to parental levels. These data indicate that NAD-dependent epimerase/dehydratase plays a vital rule in cell surface properties, exoenzyme production, and virulence in P. carotovorum.
Collapse
Affiliation(s)
- Rabiul Islam
- Department of Agricultural and Environmental Sciences, Tennessee State University, 3500 John A. Merritt Blvd; Box 9543, Nashville, TN 37209, USA.
| | - Shyretha Brown
- Department of Agricultural and Environmental Sciences, Tennessee State University, 3500 John A. Merritt Blvd; Box 9543, Nashville, TN 37209, USA.
| | - Ali Taheri
- Department of Agricultural and Environmental Sciences, Tennessee State University, 3500 John A. Merritt Blvd; Box 9543, Nashville, TN 37209, USA.
| | - C Korsi Dumenyo
- Department of Agricultural and Environmental Sciences, Tennessee State University, 3500 John A. Merritt Blvd; Box 9543, Nashville, TN 37209, USA.
| |
Collapse
|
12
|
Seydametova E, Yu J, Shin J, Park Y, Kim C, Kim H, Yu SH, Park Y, Kweon DH. Search for bacterial α1,2-fucosyltransferases for whole-cell biosynthesis of 2′-fucosyllactose in recombinant Escherichia coli. Microbiol Res 2019; 222:35-42. [DOI: 10.1016/j.micres.2019.02.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/27/2018] [Accepted: 02/23/2019] [Indexed: 12/18/2022]
|
13
|
Wu H, Chen S, Ji M, Chen Q, Shi J, Sun J. Activation of colanic acid biosynthesis linked to heterologous expression of the polyhydroxybutyrate pathway in Escherichia coli. Int J Biol Macromol 2019; 128:752-760. [DOI: 10.1016/j.ijbiomac.2019.02.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/01/2019] [Accepted: 02/02/2019] [Indexed: 01/31/2023]
|
14
|
Kim H, Kim M, Bai J, Lim JA, Heu S, Ryu S. Colanic Acid Is a Novel Phage Receptor of Pectobacterium carotovorum subsp. carotovorum Phage POP72. Front Microbiol 2019; 10:143. [PMID: 30837957 PMCID: PMC6390001 DOI: 10.3389/fmicb.2019.00143] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/21/2019] [Indexed: 12/17/2022] Open
Abstract
The emergence and widespread nature of pathogen resistance to antibiotics and chemicals has led to the re-consideration of bacteriophages as an alternative biocontrol agent in several fields, including agriculture. In this study, we isolated and characterized a novel bacteriophage, POP72, that specifically infects Pectobacterium carotovorum subsp. carotovorum (Pcc), which frequently macerates agricultural crops. POP72 contains a 44,760 bp double-stranded DNA genome and belongs to the family Podoviridae. To determine the phage receptor for POP72, a random mutant library of Pcc was constructed using a Tn5 transposon and screened for resistance against POP72 infection. Most of the resistant clones had a Tn5 insertion in various genes associated with colanic acid (CA) biosynthesis. The phage adsorption rate and CA production decreased dramatically in the resistant clones. Complementation of the clones with the pUHE21-2 lacI q vector harboring genes associated with CA biosynthesis restored their sensitivity to POP72, as well as their ability to produce CA. These results suggest that CA functions as a novel phage receptor for POP72. The application of POP72 protected Chinese cabbage from Pcc infection, suggesting that phage POP72 would be an effective alternative antimicrobial agent to protect agricultural products from Pcc.
Collapse
Affiliation(s)
- Hyeongsoon Kim
- Department of Agricultural Biotechnology, Department of Food and Animal Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Minsik Kim
- Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul, South Korea
| | - Jaewoo Bai
- Department of Agricultural Biotechnology, Department of Food and Animal Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Jeong-A Lim
- Research Group of Food Safety, Korea Food Research Institute, Seongnam, South Korea
| | - Sunggi Heu
- Crop Cultivation and Environmental Research Division, National Institute of Crop Science, Suwon, South Korea
| | - Sangryeol Ryu
- Department of Agricultural Biotechnology, Department of Food and Animal Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
| |
Collapse
|
15
|
Concórdio-Reis P, Pereira JR, Torres CA, Sevrin C, Grandfils C, Freitas F. Effect of mono- and dipotassium phosphate concentration on extracellular polysaccharide production by the bacterium Enterobacter A47. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Development of a molecular serotyping scheme and a multiplexed luminex-based array for Providencia. J Microbiol Methods 2018; 153:14-23. [DOI: 10.1016/j.mimet.2018.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/11/2018] [Accepted: 08/15/2018] [Indexed: 11/20/2022]
|
17
|
Bhatt V, Mohapatra A, Anand S, Kuntal BK, Mande SS. FLIM-MAP: Gene Context Based Identification of Functional Modules in Bacterial Metabolic Pathways. Front Microbiol 2018; 9:2183. [PMID: 30283416 PMCID: PMC6157337 DOI: 10.3389/fmicb.2018.02183] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/24/2018] [Indexed: 01/18/2023] Open
Abstract
Prediction of functional potential of bacteria can only be ascertained by the accurate annotation of its metabolic pathways. Homology based methods decipher metabolic gene content but ignore the fact that homologs of same protein can function in different pathways. Therefore, mere presence of all constituent genes in an organism is not sufficient to indicate a pathway. Contextual occurrence of genes belonging to a pathway on the bacterial genome can hence be exploited for an accurate estimation of functional potential of a bacterium. In this communication, we present a novel annotation resource to accurately identify pathway presence by using gene context. Our tool FLIM-MAP (Functionally Important Modules in bacterial Metabolic Pathways) predicts biologically relevant functional units called ‘GCMs’ (Gene Context based Modules) from a given metabolic reaction network. We benchmark the accuracy of our tool on amino acids and carbohydrate metabolism pathways.
Collapse
Affiliation(s)
- Vineet Bhatt
- Bio-Sciences R&D Division, TCS Research, Tata Consultancy Services Ltd., Pune, India
| | - Anwesha Mohapatra
- Bio-Sciences R&D Division, TCS Research, Tata Consultancy Services Ltd., Pune, India
| | - Swadha Anand
- Bio-Sciences R&D Division, TCS Research, Tata Consultancy Services Ltd., Pune, India
| | - Bhusan K Kuntal
- Bio-Sciences R&D Division, TCS Research, Tata Consultancy Services Ltd., Pune, India.,Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory (NCL), Pune, India,Academy of Scientific and Innovative Research (AcSIR), CSIR-National Chemical Laboratory, Pune, India
| | - Sharmila S Mande
- Bio-Sciences R&D Division, TCS Research, Tata Consultancy Services Ltd., Pune, India
| |
Collapse
|
18
|
Huang X, Chen C, Ren C, Li Y, Deng Y, Yang Y, Ding X. Identification and characterization of a locus putatively involved in colanic acid biosynthesis in Vibrio alginolyticus ZJ-51. BIOFOULING 2018; 34:1-14. [PMID: 29210309 DOI: 10.1080/08927014.2017.1400020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 10/30/2017] [Indexed: 06/07/2023]
Abstract
Colanic acid (CA) is a group I extracellular polysaccharide (EPS) that contributes to resistance against adverse environments in many members of the Enterobacteriaceae. In the present study, a genetic locus EPSC putatively involved in CA biosynthesis was identified in Vibrio alginolyticus ZJ-51, which undergoes colony morphology variation between translucent/smooth (ZJ-T) and opaque/rugose (ZJ-O). EPSC in ZJ-T carries 21 ORFs and resembles the CA cluster of Escherichia coli K-12. The deletion of EPSC led to decreased EPS and biofilm formation in both genetic backgrounds but no alternation of lipopolysaccharide. The loss of this locus also changed the colony morphology of ZJ-O on the 2216E plate and reduced the motility of ZJ-T. Compared with ZJ-T, ZJ-O lacks a 10-kb fragment (epsT) in EPSC containing homologs of wecA, wzx and wzy that are essential for O-antigen synthesis. However, the deletion or overexpression of epsT resulted in no change of colony morphology, biofilm formation or EPS production. This study reported at the first time a genetic locus EPSC that may be involved in colanic acid synthesis in V. alginolyticus ZJ-51, and found that it was related to EPS biosynthesis, biofilm formation, colony morphology and motility, which may shed light on the environmental adaptation of the vibrios.
Collapse
Affiliation(s)
- Xiaochun Huang
- a Key Laboratory of Tropical Marine Bio-resources and Ecology , South China Sea Institution of Oceanology, University of Chinese Academy of Sciences , Guangzhou , PR China
- b Guangdong Provincial Key Laboratory of Applied Marine Biology , South China Sea Institution of Oceanology, University of Chinese Academy of Sciences , Guangzhou , China
- d University of Chinese Academy of Sciences , Beijing , PR China
| | - Chang Chen
- a Key Laboratory of Tropical Marine Bio-resources and Ecology , South China Sea Institution of Oceanology, University of Chinese Academy of Sciences , Guangzhou , PR China
- b Guangdong Provincial Key Laboratory of Applied Marine Biology , South China Sea Institution of Oceanology, University of Chinese Academy of Sciences , Guangzhou , China
- c Xisha Deep Sea Marine Environment Observation and Research Station , South China Sea Institution of Oceanology, University of Chinese Academy of Sciences , Guangzhou , PR China
| | - Chunhua Ren
- a Key Laboratory of Tropical Marine Bio-resources and Ecology , South China Sea Institution of Oceanology, University of Chinese Academy of Sciences , Guangzhou , PR China
| | - Yingying Li
- e College of Life Science and Technology , Jinan University , Guangzhou , PR China
| | - Yiqin Deng
- a Key Laboratory of Tropical Marine Bio-resources and Ecology , South China Sea Institution of Oceanology, University of Chinese Academy of Sciences , Guangzhou , PR China
- b Guangdong Provincial Key Laboratory of Applied Marine Biology , South China Sea Institution of Oceanology, University of Chinese Academy of Sciences , Guangzhou , China
- d University of Chinese Academy of Sciences , Beijing , PR China
| | - Yiying Yang
- a Key Laboratory of Tropical Marine Bio-resources and Ecology , South China Sea Institution of Oceanology, University of Chinese Academy of Sciences , Guangzhou , PR China
- b Guangdong Provincial Key Laboratory of Applied Marine Biology , South China Sea Institution of Oceanology, University of Chinese Academy of Sciences , Guangzhou , China
- d University of Chinese Academy of Sciences , Beijing , PR China
| | - Xiongqi Ding
- a Key Laboratory of Tropical Marine Bio-resources and Ecology , South China Sea Institution of Oceanology, University of Chinese Academy of Sciences , Guangzhou , PR China
- b Guangdong Provincial Key Laboratory of Applied Marine Biology , South China Sea Institution of Oceanology, University of Chinese Academy of Sciences , Guangzhou , China
- d University of Chinese Academy of Sciences , Beijing , PR China
| |
Collapse
|
19
|
Mohapatra A, Bhatt V, Anand S, Bhusan KK, Mande SS. Functional Potential of Bacterial Communities using Gene Context Information. CANADIAN JOURNAL OF BIOTECHNOLOGY 2017. [DOI: 10.24870/cjb.2017-a205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
20
|
Evaluating a New High-throughput Twin-Arginine Translocase Assay in Bacteria for Therapeutic Applications. Curr Microbiol 2017; 74:1332-1336. [DOI: 10.1007/s00284-017-1321-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 07/25/2017] [Indexed: 10/19/2022]
|
21
|
Sprenger GA, Baumgärtner F, Albermann C. Production of human milk oligosaccharides by enzymatic and whole-cell microbial biotransformations. J Biotechnol 2017; 258:79-91. [PMID: 28764968 DOI: 10.1016/j.jbiotec.2017.07.030] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 12/14/2022]
Abstract
Human milk oligosaccharides (HMO) are almost unique constituents of breast milk and are not found in appreciable amounts in cow milk. Due to several positive aspects of HMO for the development, health, and wellbeing of infants, production of HMO would be desirable. As a result, scientists from different disciplines have developed methods for the preparation of single HMO compounds. Here, we review approaches to HMO preparation by (chemo-)enzymatic syntheses or by whole-cell biotransformation with recombinant bacterial cells. With lactose as acceptor (in vitro or in vivo), fucosyltransferases can be used for the production of 2'-fucosyllactose, 3-fucosyllactose, or more complex fucosylated core structures. Sialylated HMO can be produced by sialyltransferases and trans-sialidases. Core structures as lacto-N-tetraose can be obtained by glycosyltransferases from chemical donor compounds or by multi-enzyme cascades; recent publications also show production of lacto-N-tetraose by recombinant Escherichia coli bacteria and approaches to obtain fucosylated core structures. In view of an industrial production of HMOs, the whole cell biotransformation is at this stage the most promising option to provide human milk oligosaccharides as food additive.
Collapse
Affiliation(s)
- Georg A Sprenger
- Institute of Microbiology, University of Stuttgart, Allmandring 31, D-70569 Stuttgart, Germany.
| | - Florian Baumgärtner
- Institute of Microbiology, University of Stuttgart, Allmandring 31, D-70569 Stuttgart, Germany
| | - Christoph Albermann
- Institute of Microbiology, University of Stuttgart, Allmandring 31, D-70569 Stuttgart, Germany
| |
Collapse
|
22
|
Sizova OV, Kondakova AN, Shashkov AS, Knirel YA, Shaikhutdinova RZ, Ivanov SA, Platonov ME, Hurst MRH, Dentovskaya SV. Structure and gene cluster of a tyvelose-containing O-polysaccharide of an entomopathogenic bacterium Yersinia entomophaga MH96 T related to Yersinia pseudotuberculosis. Carbohydr Res 2017; 445:93-97. [PMID: 28460348 DOI: 10.1016/j.carres.2017.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/31/2017] [Accepted: 04/13/2017] [Indexed: 11/18/2022]
Abstract
An O-polysaccharide was isolated from the lipopolysaccharide of an entomopathogenic bacterium Yersinia entomophaga MH96T by mild acid hydrolysis and studied by 2D NMR spectroscopy. The following structure of the branched tetrasaccharide repeating unit of the polysaccharide was established: where Tyv indicates 3,6-dideoxy-d-arabino-hexose (tyvelose). The structure established is consistent with the gene content of the O-antigen gene cluster. The O-polysaccharide structure and gene cluster of Y. entomophaga are related to those of some Y. pseudotuberculosis serotypes.
Collapse
Affiliation(s)
- O V Sizova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991, Moscow, Russian Federation
| | - A N Kondakova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991, Moscow, Russian Federation
| | - A S Shashkov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991, Moscow, Russian Federation
| | - Y A Knirel
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991, Moscow, Russian Federation
| | - R Z Shaikhutdinova
- State Research Center for Applied Microbiology and Biotechnology, 142279, Obolensk, Moscow Region, Russian Federation
| | - S A Ivanov
- State Research Center for Applied Microbiology and Biotechnology, 142279, Obolensk, Moscow Region, Russian Federation
| | - M E Platonov
- State Research Center for Applied Microbiology and Biotechnology, 142279, Obolensk, Moscow Region, Russian Federation
| | - M R H Hurst
- Forage Science, AgResearch, Lincoln Research Centre, Christchurch, 8140, New Zealand; Bio-Protection Research Centre, Lincoln, Christchurch, 8140, New Zealand
| | - S V Dentovskaya
- State Research Center for Applied Microbiology and Biotechnology, 142279, Obolensk, Moscow Region, Russian Federation.
| |
Collapse
|
23
|
Characterization of the biosynthetic gene cluster (ata) for the A201A aminonucleoside antibiotic from Saccharothrix mutabilis subsp. capreolus. J Antibiot (Tokyo) 2016; 70:404-413. [PMID: 27731336 DOI: 10.1038/ja.2016.123] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/16/2016] [Accepted: 09/01/2016] [Indexed: 11/09/2022]
Abstract
Antibiotic A201A produced by Saccharothrix mutabilis subsp. capreolus NRRL3817 contains an aminonucleoside (N6, N6-dimethyl-3'-amino-3'-deoxyadenosyl), a polyketide (α-methyl-p-coumaric acid) and a disaccharide moiety. The heterologous expression in Streptomyces lividans and Streptomyces coelicolor of a S. mutabilis genomic region of ~34 kb results in the production of A201A, which was identified by microbiological, biochemical and physicochemical approaches, and indicating that this region may contain the entire A201A biosynthetic gene cluster (ata). The analysis of the nucleotide sequence of the fragment reveals the presence of 32 putative open reading frames (ORF), 28 of which according to boundary gene inactivation experiments are likely to be sufficient for A201A biosynthesis. Most of these ORFs could be assigned to the biosynthesis of the antibiotic three structural moieties. Indeed, five ORFs had been previously implicated in the biosynthesis of the aminonucleoside moiety, at least nine were related to the biosynthesis of the polyketide (ata-PKS1-ataPKS4, ata18, ata19, ata2, ata4 and ata7) and six were associated with the synthesis of the disaccharide (ata12, ata13, ata16, ata17, ata5 and ata10) moieties. In addition to AtaP5, three putative methyltransferase genes are also found in the ata cluster (Ata6, Ata8 and Ata11), and no regulatory genes were found.
Collapse
|
24
|
Schmid J, Sieber V, Rehm B. Bacterial exopolysaccharides: biosynthesis pathways and engineering strategies. Front Microbiol 2015; 6:496. [PMID: 26074894 PMCID: PMC4443731 DOI: 10.3389/fmicb.2015.00496] [Citation(s) in RCA: 325] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 05/06/2015] [Indexed: 12/13/2022] Open
Abstract
Bacteria produce a wide range of exopolysaccharides which are synthesized via different biosynthesis pathways. The genes responsible for synthesis are often clustered within the genome of the respective production organism. A better understanding of the fundamental processes involved in exopolysaccharide biosynthesis and the regulation of these processes is critical toward genetic, metabolic and protein-engineering approaches to produce tailor-made polymers. These designer polymers will exhibit superior material properties targeting medical and industrial applications. Exploiting the natural design space for production of a variety of biopolymer will open up a range of new applications. Here, we summarize the key aspects of microbial exopolysaccharide biosynthesis and highlight the latest engineering approaches toward the production of tailor-made variants with the potential to be used as valuable renewable and high-performance products for medical and industrial applications.
Collapse
Affiliation(s)
- Jochen Schmid
- Chair of Chemistry of Biogenic Resources, Technische Universität MünchenStraubing, Germany
| | - Volker Sieber
- Chair of Chemistry of Biogenic Resources, Technische Universität MünchenStraubing, Germany
| | - Bernd Rehm
- Institute of Fundamental Sciences, Massey UniversityPalmerston North, New Zealand
- The MacDiarmid Institute for Advanced Materials and NanotechnologyPalmerston North, New Zealand
| |
Collapse
|
25
|
Baumgärtner F, Seitz L, Sprenger GA, Albermann C. Construction of Escherichia coli strains with chromosomally integrated expression cassettes for the synthesis of 2'-fucosyllactose. Microb Cell Fact 2013; 12:40. [PMID: 23635327 PMCID: PMC3655002 DOI: 10.1186/1475-2859-12-40] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 04/22/2013] [Indexed: 12/23/2022] Open
Abstract
Background The trisaccharide 2′-fucosyllactose (2′-FL) is one of the most abundant oligosaccharides found in human milk. Due to its prebiotic and anti-infective properties, 2′-FL is discussed as nutritional additive for infant formula. Besides chemical synthesis and extraction from human milk, 2′-FL can be produced enzymatically in vitro and in vivo. The most promising approach for a large-scale formation of 2′-FL is the whole cell biosynthesis in Escherichia coli by intracellular synthesis of GDP-L-fucose and subsequent fucosylation of lactose with an appropriate α1,2-fucosyltransferase. Even though whole cell approaches have been demonstrated for the synthesis of 2′-FL, further improvements of the engineered E. coli host are required to increase product yields. Furthermore, an antibiotic-free method of whole cell synthesis of 2′-FL is desirable to simplify product purification and to avoid traces of antibiotics in a product with nutritional purpose. Results Here we report the construction of the first selection marker-free E. coli strain that produces 2′-FL from lactose and glycerol. To construct this strain, recombinant genes of the de novo synthesis pathway for GDP-L-fucose as well as the gene for the H. pylori fucosyltransferase futC were integrated into the chromosome of E. coli JM109 by using the λ-Red recombineering technique. Strains carrying additional copies of the futC gene and/or the gene fkp (from Bacteroides fragilis) for an additional salvage pathway for GDP-L-fucose production were used and shown to further improve production of 2′-FL in shake flask experiments. An increase of the intracellular GDP-L-fucose concentration by expression of fkp gene as well as an additional copy of the futC gene lead to an enhanced formation of 2′-FL. Using an improved production strain, feasibility of large scale 2′-FL production was demonstrated in an antibiotic-free fed-batch fermentation (13 l) with a final 2′-FL concentration of 20.28 ± 0.83 g l-1 and a space-time-yield of 0.57 g l-1 h-1. Conclusions By chromosomal integration of recombinant genes, altering the copy number of these genes and analysis of 2′-FL and intracellular GDP-L-fucose levels, we were able to construct and improve the first selection marker-free E. coli strain which is capable to produce 2′-FL without the use of expression plasmids. Analysis of intracellular GDP-L-fucose levels identified the de novo synthesis pathway of GDP-L-fucose as one bottleneck in 2′-FL production. In antibiotic-free fed-batch fermentation with an improved strain, scale-up of 2′-FL could be demonstrated.
Collapse
|
26
|
Merritt JH, Ollis AA, Fisher AC, DeLisa MP. Glycans-by-design: Engineering bacteria for the biosynthesis of complex glycans and glycoconjugates. Biotechnol Bioeng 2013; 110:1550-64. [DOI: 10.1002/bit.24885] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 02/05/2013] [Accepted: 02/22/2013] [Indexed: 02/04/2023]
|
27
|
Ovchinnikova OG, Liu B, Guo D, Kocharova NA, Shashkov AS, Chen M, Feng L, Rozalski A, Knirel YA, Wang L. Localization and molecular characterization of putative O antigen gene clusters of Providencia species. MICROBIOLOGY-SGM 2012; 158:1024-1036. [PMID: 22282517 DOI: 10.1099/mic.0.055210-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Enterobacteria of the genus Providencia are opportunistic human pathogens associated with urinary tract and wound infections, as well as enteric diseases. The lipopolysaccharide (LPS) O antigen confers major antigenic variability upon the cell surface and is used for serotyping of Gram-negative bacteria. Recently, Providencia O antigen structures have been extensively studied, but no data on the location and organization of the O antigen gene cluster have been reported. In this study, the four Providencia genome sequences available were analysed, and the putative O antigen gene cluster was identified in the polymorphic locus between the cpxA and yibK genes. This finding provided the necessary information for designing primers, and cloning and sequencing the O antigen gene clusters from five more Providencia alcalifaciens strains. The gene functions predicted in silico were in agreement with the known O antigen structures; furthermore, annotation of the genes involved in the three-step synthesis of GDP-colitose (gmd, colD and colC) was supported by cloning and biochemical characterization of the corresponding enzymes. In one strain (P. alcalifaciens O39), no polysaccharide product of the gene cluster in the cpxA-yibK locus was found, and hence genes for synthesis of the existing O antigen are located elsewhere in the genome. In addition to the putative O antigen synthesis genes, homologues of wza, wzb, wzc and (in three strains) wzi, required for the surface expression of capsular polysaccharides, were found upstream of yibK in all species except Providencia rustigianii, suggesting that the LPS of these species may be attributed to the so-called K LPS (K(LPS)). The data obtained open a way for development of a PCR-based typing method for identification of Providencia isolates.
Collapse
Affiliation(s)
- Olga G Ovchinnikova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, 119991 Moscow, Russia.,TEDA School of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, 300457 Tianjin, PR China
| | - Bin Liu
- TEDA School of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, 300457 Tianjin, PR China
| | - Dan Guo
- TEDA School of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, 300457 Tianjin, PR China
| | - Nina A Kocharova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, 119991 Moscow, Russia
| | - Alexander S Shashkov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, 119991 Moscow, Russia
| | - Miao Chen
- TEDA School of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, 300457 Tianjin, PR China
| | - Lu Feng
- Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, 23 Hongda Street, TEDA, 300457 Tianjin, PR China.,TEDA School of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, 300457 Tianjin, PR China
| | - Antoni Rozalski
- Department of Immunobiology of Bacteria, Institute of Microbiology, Biotechnology and Immunology, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Yuriy A Knirel
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, 119991 Moscow, Russia
| | - Lei Wang
- Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, 23 Hongda Street, TEDA, 300457 Tianjin, PR China.,TEDA School of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, 300457 Tianjin, PR China
| |
Collapse
|
28
|
The lipopolysaccharide of the mastitis isolate Escherichia coli strain 1303 comprises a novel O-antigen and the rare K-12 core type. Microbiology (Reading) 2011; 157:1750-1760. [DOI: 10.1099/mic.0.046912-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mastitis represents one of the most significant health problems of dairy herds. The two major causative agents of this disease are Escherichia coli and Staphylococcus aureus. Of the first, its lipopolysaccharide (LPS) is thought to play a prominent role during infection. Here, we report the O-antigen (OPS, O-specific polysaccharide) structure of the LPS from bovine mastitis isolate E. coli 1303. The structure was determined utilizing chemical analyses, mass spectrometry, and 1D and 2D NMR spectroscopy methods. The O-repeating unit was characterized as -[→4)-β-d-Quip3NAc-(1→3)-α-l-Fucp2OAc-(1→4)-β-d-Galp-(1→3)-α-d-GalpNAc-(1→]- in which the O-acetyl substitution was non-stoichiometric. The nucleotide sequence of the O-antigen gene cluster of E. coli 1303 was also determined. This cluster, located between the gnd and galF genes, contains 13 putative open reading frames, most of which represent unknown nucleotide sequences that have not been described before. The O-antigen of E. coli 1303 was shown to substitute O-7 of the terminal ld-heptose of the K-12 core oligosaccharide. Interestingly, the non-OPS-substituted core oligosaccharide represented a truncated version of the K-12 outer core – namely terminal ld-heptose and glucose were missing; however, it possessed a third Kdo residue in the inner core. On the basis of structural and genetic data we show that the mastitis isolate E. coli 1303 represents a new serotype and possesses the K-12 core type, which is rather uncommon among human and bovine isolates.
Collapse
|
29
|
von Horsten HH, Ogorek C, Blanchard V, Demmler C, Giese C, Winkler K, Kaup M, Berger M, Jordan I, Sandig V. Production of non-fucosylated antibodies by co-expression of heterologous GDP-6-deoxy-D-lyxo-4-hexulose reductase. Glycobiology 2010; 20:1607-18. [PMID: 20639190 DOI: 10.1093/glycob/cwq109] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
All IgG-type antibodies are N-glycosylated in their Fc part at Asn-297. Typically, a fucose residue is attached to the first N-acetylglucosamine of these complex-type N-glycans. Antibodies lacking core fucosylation show a significantly enhanced antibody-dependent cell-mediated cytotoxicity (ADCC) and an increased efficacy of anti-tumor activity. In cases where the clinical efficacy of an antibody is to some extent mediated by its ADCC effector function, afucosylated N-glycans could help to reduce dose requirement and save manufacturing costs. Using Chinese hamster ovary (CHO) cells as a model, we demonstrate here that heterologous expression of the prokaryotic enzyme GDP-6-deoxy-d-lyxo-4-hexulose reductase within the cytosol can efficiently deflect the fucose de novo pathway. Antibody-producing CHO cells that were modified in this way secrete antibodies lacking core fucose as demonstrated by MALDI-TOF mass spectrometry and HPAEC-PAD monosaccharide analysis. Engineering of the fucose de novo pathway has led to the construction of IgGs with a strongly enhanced ADCC effector function. The method described here should have broad practical applicability for the development of next-generation therapeutic antibodies.
Collapse
|
30
|
Shi H, Santander J, Brenneman KE, Wanda SY, Wang S, Senechal P, Sun W, Roland KL, Curtiss R. Live recombinant Salmonella Typhi vaccines constructed to investigate the role of rpoS in eliciting immunity to a heterologous antigen. PLoS One 2010; 5:e11142. [PMID: 20585446 PMCID: PMC2887840 DOI: 10.1371/journal.pone.0011142] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Accepted: 05/27/2010] [Indexed: 11/18/2022] Open
Abstract
We hypothesized that the immunogenicity of live Salmonella enterica serovar Typhi vaccines expressing heterologous antigens depends, at least in part, on its rpoS status. As part of our project to develop a recombinant attenuated S. Typhi vaccine (RASTyV) to prevent pneumococcal diseases in infants and children, we constructed three RASTyV strains synthesizing the Streptococcus pneumoniae surface protein PspA to test this hypothesis. Each vector strain carried ten engineered mutations designed to optimize safety and immunogenicity. Two S. Typhi vector strains (chi9639 and chi9640) were derived from the rpoS mutant strain Ty2 and one (chi9633) from the RpoS(+) strain ISP1820. In chi9640, the nonfunctional rpoS gene was replaced with the functional rpoS gene from ISP1820. Plasmid pYA4088, encoding a secreted form of PspA, was moved into the three vector strains. The resulting RASTyV strains were evaluated for safety in vitro and for immunogenicity in mice. All three RASTyV strains were similar to the live attenuated typhoid vaccine Ty21a in their ability to survive in human blood and human monocytes. They were more sensitive to complement and were less able to survive and persist in sewage and surface water than their wild-type counterparts. Adult mice intranasally immunized with any of the RASTyV strains developed immune responses against PspA and Salmonella antigens. The RpoS(+) vaccines induced a balanced Th1/Th2 immune response while the RpoS(-) strain chi9639(pYA4088) induced a strong Th2 immune response. Immunization with any RASTyV provided protection against S. pneumoniae challenge; the RpoS(+) strain chi9640(pYA4088) provided significantly greater protection than the ISP1820 derivative, chi9633(pYA4088). In the pre-clinical setting, these strains exhibited a desirable balance between safety and immunogenicity and are currently being evaluated in a Phase 1 clinical trial to determine which of the three RASTyVs has the optimal safety and immunogenicity profile in human hosts.
Collapse
Affiliation(s)
- Huoying Shi
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Javier Santander
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Karen E. Brenneman
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Soo-Young Wanda
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Shifeng Wang
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | | | - Wei Sun
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Kenneth L. Roland
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Roy Curtiss
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| |
Collapse
|
31
|
Construction of recombinant attenuated Salmonella enterica serovar typhimurium vaccine vector strains for safety in newborn and infant mice. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 17:354-62. [PMID: 20053874 DOI: 10.1128/cvi.00412-09] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Recombinant bacterial vaccines must be safe, efficacious, and well tolerated, especially when administered to newborns and infants to prevent diseases of early childhood. Many means of attenuation have been shown to render vaccine strains susceptible to host defenses or unable to colonize lymphoid tissue effectively, thus decreasing their immunogenicity. We have constructed recombinant attenuated Salmonella vaccine strains that display high levels of attenuation while retaining the ability to induce high levels of immunogenicity and are well tolerated in high doses when administered to infant mice as young as 24 h old. The strains contain three means of regulated delayed attenuation, as well as a constellation of additional mutations that aid in enhancing safety, regulate antigen expression, and reduce disease symptoms commonly associated with Salmonella infection. The vaccine strains are well tolerated when orally administered to infant mice 24 h old at doses as high as 3.5 x 10(8) CFU.
Collapse
|
32
|
Shu HY, Fung CP, Liu YM, Wu KM, Chen YT, Li LH, Liu TT, Kirby R, Tsai SF. Genetic diversity of capsular polysaccharide biosynthesis in Klebsiella pneumoniae clinical isolates. MICROBIOLOGY-SGM 2009; 155:4170-4183. [PMID: 19744990 DOI: 10.1099/mic.0.029017-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Klebsiella pneumoniae is an enteric pathogen causing community-acquired and hospital-acquired infections in humans. Epidemiological studies have revealed significant diversity in capsular polysaccharide (CPS) type and clinical manifestation of K. pneumoniae infection in different geographical areas of the world. We have sequenced the capsular polysaccharide synthesis (cps) region of seven clinical isolates and compared the sequences with the publicly available cps sequence data of five strains: NTUH-K2044 (K1 serotype), Chedid (K2 serotype), MGH78578 (K52 serotype), A1142 (K57 serotype) and A1517. Among all strains, six genes at the 5' end of the cps clusters that encode proteins for CPS transportation and processing at the bacterial surface are highly similar to each other. The central region of the cps gene clusters, which encodes proteins for polymerization and assembly of the CPS subunits, is highly divergent. Based on the collected sequence, we found that either the wbaP gene or the wcaJ gene exists in a given K. pneumoniae strain, suggesting that there is a major difference in the CPS biosynthesis pathway and that the K. pneumoniae strains can be classified into at least two distinct groups. All isolates contain gnd, encoding gluconate-6-phosphate dehydrogenase, at the 3' end of the cps gene clusters. The rmlBADC genes were found in CPS K9-positive, K14-positive and K52-positive strains, while manC and manB were found in K1, K2, K5, K14, K62 and two undefined strains. Our data indicate that, while overall genomic organization is similar between different pathogenic K. pneumoniae strains, the genetic variation of the sugar moiety and polysaccharide linkage generate the diversity in CPS molecules that could help evade host immune attack.
Collapse
Affiliation(s)
- Hung-Yu Shu
- Genome Research Center, National Yang-Ming University, Taipei, Taiwan, ROC.,Department of Bioscience Technology, Chang Jung Christian University, Tainan County, Taiwan, ROC
| | - Chang-Phone Fung
- Institute of Tropical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC.,Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yen-Ming Liu
- Division of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan, ROC
| | - Keh-Ming Wu
- Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan, ROC.,Division of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan, ROC
| | - Ying-Tsong Chen
- Division of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan, ROC
| | - Ling-Hui Li
- Division of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan, ROC
| | - Tze-Tze Liu
- Genome Research Center, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Ralph Kirby
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Shih-Feng Tsai
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan, ROC.,Division of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan, ROC.,Genome Research Center, National Yang-Ming University, Taipei, Taiwan, ROC.,Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan, ROC
| |
Collapse
|
33
|
Rentmeister A, Hoh C, Weidner S, Dräger G, Elling L, Liese A, Wandrey C. Kinetic Examination and Simulation of GDP-β-l-fucose Synthetase Reaction Using NADPH or NADH. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.1080/10242420410001666362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
34
|
Feng HT, Wong N, Wee S, Lee MM. Simultaneous determination of 19 intracellular nucleotides and nucleotide sugars in Chinese Hamster ovary cells by capillary electrophoresis. J Chromatogr B Analyt Technol Biomed Life Sci 2008; 870:131-4. [PMID: 18541463 DOI: 10.1016/j.jchromb.2008.05.038] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Revised: 05/15/2008] [Accepted: 05/21/2008] [Indexed: 11/18/2022]
Abstract
Twelve nucleotides and seven nucleotide sugars in Chinese Hamster ovary (CHO) cells were determined by capillary electrophoresis (CE). The CE operating conditions of buffer pH value, ion strength, capillary temperature, polymer additive and cell extraction method were investigated. Optimum separation was achieved with 40 mM sodium tetraborate buffer (pH 9.5) containing 1% (w/v) polyethylene glycol (PEG) at a capillary temperature of 22 degrees C. Acetonitrile and chloroform were used for intracellular extraction. This method can be used to monitor intracellular carbohydrate metabolism.
Collapse
Affiliation(s)
- Hua-Tao Feng
- Bioprocessing Technology Institute, A*STAR (Agency for Science, Technology and Research), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore.
| | | | | | | |
Collapse
|
35
|
Miyamoto Y, Mukai T, Maeda Y, Nakata N, Kai M, Naka T, Yano I, Makino M. Characterization of the fucosylation pathway in the biosynthesis of glycopeptidolipids from Mycobacterium avium complex. J Bacteriol 2007; 189:5515-22. [PMID: 17526707 PMCID: PMC1951812 DOI: 10.1128/jb.00344-07] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cell envelopes of several species of nontuberculous mycobacteria, including the Mycobacterium avium complex, contain glycopeptidolipids (GPLs) as major glycolipid components. GPLs are highly antigenic surface molecules, and their variant oligosaccharides define each serotype of the M. avium complex. In the oligosaccharide portion of GPLs, the fucose residue is one of the major sugar moieties, but its biosynthesis remains unclear. To elucidate it, we focused on the 5.0-kb chromosomal region of the M. avium complex that includes five genes, two of which showed high levels of similarity to the genes involved in fucose synthesis. For the characterization of this region by deletion and expression analyses, we constructed a recombinant Mycobacterium smegmatis strain that possesses the rtfA gene of the M. avium complex to produce serovar 1 GPL. The results revealed that the 5.0-kb chromosomal region is responsible for the addition of the fucose residue to serovar 1 GPL and that the three genes mdhtA, merA, and gtfD are indispensable for the fucosylation. Functional characterization revealed that the gtfD gene encodes a glycosyltransferase that transfers a fucose residue via 1-->3 linkage to a rhamnose residue of serovar 1 GPL. The other two genes, mdhtA and merA, contributed to the formation of the fucose residue and were predicted to encode the enzymes responsible for the synthesis of fucose from mannose based on their deduced amino acid sequences. These results indicate that the fucosylation pathway in GPL biosynthesis is controlled by a combination of the mdhtA, merA, and gtfD genes. Our findings may contribute to the clarification of the complex glycosylation pathways involved in forming the oligosaccharide portion of GPLs from the M. avium complex, which are structurally distinct.
Collapse
Affiliation(s)
- Yuji Miyamoto
- Department of Microbiology, Leprosy Research Center, National Institute of Infectious Diseases, 4-2-1 Aobacho, Higashimurayama, Tokyo 189-0002, Japan
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Rhomberg S, Fuchsluger C, Rendić D, Paschinger K, Jantsch V, Kosma P, Wilson IBH. Reconstitution in vitro of the GDP-fucose biosynthetic pathways of Caenorhabditis elegans and Drosophila melanogaster. FEBS J 2006; 273:2244-56. [PMID: 16650000 DOI: 10.1111/j.1742-4658.2006.05239.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The deoxyhexose sugar fucose has an important fine-tuning role in regulating the functions of glycoconjugates in disease and development in mammals. The two genetic model organisms Caenorhabditis elegans and Drosophila melanogaster also express a range of fucosylated glycans, and the nematode particularly has a number of novel forms. For the synthesis of such glycans, the formation of GDP-fucose, which is generated from GDP-mannose in three steps catalysed by two enzymes, is required. By homology we have identified and cloned cDNAs encoding these two proteins, GDP-mannose dehydratase (GMD; EC 4.2.1.47) and GDP-keto-6-deoxymannose 3,5-epimerase/4-reductase (GER or FX protein; EC 1.1.1.271), from both Caenorhabditis and Drosophila. Whereas the nematode has two genes encoding forms of GMD (gmd-1 and gmd-2) and one GER-encoding gene (ger-1), the insect has, like mammalian species, only one homologue of each (gmd and gmer). This compares to the presence of two forms of both enzymes in Arabidopsis thaliana. All corresponding cDNAs from Caenorhabditis and Drosophila, as well as the previously uncharacterized Arabidopsis GER2, were separately expressed, and the encoded proteins found to have the predicted activity. The biochemical characterization of these enzymes is complementary to strategies aimed at manipulating the expression of fucosylated glycans in these organisms.
Collapse
Affiliation(s)
- Simone Rhomberg
- Department für Chemie, Universität für Bodenkultur, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Cellular metabolism constantly generates by-products that are wasteful or even harmful. Such compounds are excreted from the cell or are removed through hydrolysis to normal cellular metabolites by various 'house-cleaning' enzymes. Some of the most important contaminants are non-canonical nucleoside triphosphates (NTPs) whose incorporation into the nascent DNA leads to increased mutagenesis and DNA damage. Enzymes intercepting abnormal NTPs from incorporation by DNA polymerases work in parallel with DNA repair enzymes that remove lesions produced by modified nucleotides. House-cleaning NTP pyrophosphatases targeting non-canonical NTPs belong to at least four structural superfamilies: MutT-related (Nudix) hydrolases, dUTPase, ITPase (Maf/HAM1) and all-alpha NTP pyrophosphatases (MazG). These enzymes have high affinity (Km's in the micromolar range) for their natural substrates (8-oxo-dGTP, dUTP, dITP, 2-oxo-dATP), which allows them to select these substrates from a mixture containing a approximately 1000-fold excess of canonical NTPs. To date, many house-cleaning NTPases have been identified only on the basis of their side activity towards canonical NTPs and NDP derivatives. Integration of growing structural and biochemical data on these superfamilies suggests that their new family members cleanse the nucleotide pool of the products of oxidative damage and inappropriate methylation. House-cleaning enzymes, such as 6-phosphogluconolactonase, are also part of normal intermediary metabolism. Genomic data suggest that house-cleaning systems are more abundant than previously thought and include numerous analogous enzymes with overlapping functions. We discuss the structural diversity of these enzymes, their phylogenetic distribution, substrate specificity and the problem of identifying their true substrates.
Collapse
Affiliation(s)
- Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | | | | | | |
Collapse
|
38
|
Raman B, Nandakumar MP, Muthuvijayan V, Marten MR. Proteome analysis to assess physiological changes in Escherichia coli grown under glucose-limited fed-batch conditions. Biotechnol Bioeng 2005; 92:384-92. [PMID: 16180237 DOI: 10.1002/bit.20570] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Proteome analysis was used to compare global protein expression changes in Escherichia coli fermentation between exponential and glucose-limited fed-batch phase. Two-dimensional gel electrophoresis and MALDI-TOF mass spectrometry were used to separate and identify 49 proteins showing >2-fold difference in expression. Proteins upregulated during exponential phase include ribonucleotide biosynthesis enzymes and ribosomal recycling factor. Proteins upregulated during fed-batch phase include those involved in high-affinity glucose uptake, transport and degradation of alternate carbon sources and TCA cycle, suggesting an enhanced role of the cycle under glucose- and energy-limited conditions. We report the upregulation of several putative proteins (ytfQ, ygiS, ynaF, yggX, yfeX), not identified in any previous study under carbon-limited conditions.
Collapse
Affiliation(s)
- Babu Raman
- Department of Chemical and Biochemical Engineering, University of Maryland, Baltimore County (UMBC), ECS 314, 1000 Hilltop Circle, Baltimore, Maryland 21250, USA
| | | | | | | |
Collapse
|
39
|
Yang YH, Kang YB, Lee KW, Lee TH, Park SS, Hwang BY, Kim BG. Characterization of GDP-mannose pyrophosphorylase from Escherichia coli O157:H7 EDL933 and its broad substrate specificity. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/j.molcatb.2005.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
40
|
Ochoa-Repáraz J, García B, Solano C, Lasa I, Irache JM, Gamazo C. Protective ability of subcellular extracts from Salmonella Enteritidis and from a rough isogenic mutant against salmonellosis in mice. Vaccine 2005; 23:1491-501. [PMID: 15670885 DOI: 10.1016/j.vaccine.2004.09.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2004] [Accepted: 09/07/2004] [Indexed: 11/19/2022]
Abstract
We evaluated the efficacy of surface components enriched hot saline extracts (HE) from parental and two isogenic rough mutant strains of Salmonella Enteritidis as subcellular vaccine candidates. By a randomized mutagenesis approach from a clinical isolate of S. Enteritidis there were selected two rough mutants defective in LPS synthesis (R1 and R2 mutants). The mutations mapped to the wcaI gene and gmd gene, respectively, of the O-antigen gene cluster involved in O-antigen synthesis. BALB/c mice received intraperitoneally one single dose of 30 microg of HE from parental and mutant strains, and the protection against a lethal infection with S. Enteritidis was determined. In contrast to the wild type extract, immunization with rough extracts did not induce any distress symptoms in the mice. HE extract from wild type and R1 strains induced the highest immunogenic response with respect IFN-gamma eliciting splenic cells, in contrast with HE-R2. These results correlated with the obtained levels of protection. Thus, at day 63 post-infection, HE from parental strain rendered an 80% level of protection; HE-R1 conferred a 60% level of protection, whereas HE-R2 did not protect the mice. Any of the antigenic extracts elicited systemic IgG1 and IgG2a responses, although these antibodies did not, however, correlate with protection. These results put forward the importance of cellular immune response mediated by IFN-gamma in protection against salmonellosis. The significantly different protective capacity between HE extracts from both rough mutants suggest that other factors independent of the O-chain, like outer membrane proteins and fimbrial antigens, may be involved in protection. In summary, the HE is a good candidate acellular extract for evaluation of its protective ability against salmonellosis following vaccination in poultry.
Collapse
|
41
|
Coyne MJ, Reinap B, Lee MM, Comstock LE. Human symbionts use a host-like pathway for surface fucosylation. Science 2005; 307:1778-81. [PMID: 15774760 DOI: 10.1126/science.1106469] [Citation(s) in RCA: 215] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The mammalian intestine harbors a beneficial microbiota numbering approximately 10(12) organisms per gram of colonic content. The host tolerates this tremendous bacterial load while maintaining the ability to efficiently respond to pathogenic organisms. In this study, we show that the Bacteroides use a mammalian-like pathway to decorate numerous surface capsular polysaccharides and glycoproteins with l-fucose, an abundant surface molecule of intestinal epithelial cells, resulting in the coordinated expression of this surface molecule by host and symbiont. A Bacteroides mutant deficient in the ability to cover its surface with L-fucose is defective in colonizing the mammalian intestine under competitive conditions.
Collapse
Affiliation(s)
- Michael J Coyne
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
42
|
Antigen Delivery Systems II: Development of Live Recombinant Attenuated Bacterial Antigen and DNA Vaccine Delivery Vector Vaccines. Mucosal Immunol 2005. [DOI: 10.1016/b978-012491543-5/50060-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
43
|
Ramm M, Wolfender JL, Queiroz EF, Hostettmann K, Hamburger M. Rapid analysis of nucleotide-activated sugars by high-performance liquid chromatography coupled with diode-array detection, electrospray ionization mass spectrometry and nuclear magnetic resonance. J Chromatogr A 2004; 1034:139-48. [PMID: 15116923 DOI: 10.1016/j.chroma.2004.02.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A generally applicable method for HPLC analysis of sugar nucleotides was established. Separation was achieved using ion-pair chromatography on a reversed-phase column. Ion-pair reagents were selected and various parameters optimized with respect to separation of 11 of the most important sugar nucleotides and compatibility with on-line detection by electrospray ionization MS and NMR. The method was applied to the on-line analysis of the GDP-D-mannose-4,6-dehydratase (Gmd) and GDP-4-keto-6-deoxy-D-mannose reductase (Rmd) catalyzed conversion of GDP-D-mannose to GDP-D-rhamnose. By LC-NMR, the intermediate product of the reaction was shown to be a mixture of GDP-4-keto-6-deoxy-D-mannose and GDP-3-keto-6-deoxy-D-mannose. Nucleotide co-factors of enzymatic reactions such as ATP and NADH did not interfere with the analysis of nucleotide-activated sugars.
Collapse
Affiliation(s)
- Michael Ramm
- Institute of Pharmacy, Friedrich-Schiller-University Jena, Semmelweisstrasse 10, D-07743 Jena, Germany
| | | | | | | | | |
Collapse
|
44
|
Samuel G, Reeves P. Biosynthesis of O-antigens: genes and pathways involved in nucleotide sugar precursor synthesis and O-antigen assembly. Carbohydr Res 2004; 338:2503-19. [PMID: 14670712 DOI: 10.1016/j.carres.2003.07.009] [Citation(s) in RCA: 387] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The O-antigen is an important component of the outer membrane of Gram-negative bacteria. It is a repeat unit polysaccharide and consists of a number of repeats of an oligosaccharide, the O-unit, which generally has between two and six sugar residues. O-Antigens are extremely variable, the variation lying in the nature, order and linkage of the different sugars within the polysaccharide. The genes involved in O-antigen biosynthesis are generally found on the chromosome as an O-antigen gene cluster, and the structural variation of O-antigens is mirrored by genetic variation seen in these clusters. The genes within the cluster fall into three major groups. The first group is involved in nucleotide sugar biosynthesis. These genes are often found together in the cluster and have a high level of identity. The genes coding for a significant number of nucleotide sugar biosynthesis pathways have been identified and these pathways seem to be conserved in different O-antigen clusters and across a wide range of species. The second group, the glycosyl transferases, is involved in sugar transfer. They are often dispersed throughout the cluster and have low levels of similarity. The third group is the O-antigen processing genes. This review is a summary of the current knowledge on these three groups of genes that comprise the O-antigen gene clusters, focusing on the most extensively studied E. coli and S. enterica gene clusters.
Collapse
Affiliation(s)
- Gabrielle Samuel
- School of Molecular and Microbial Biosciences, University of Sydney, Sydney, NSW 2006, Australia
| | | |
Collapse
|
45
|
Eckstein TM, Belisle JT, Inamine JM. Proposed pathway for the biosynthesis of serovar-specific glycopeptidolipids in Mycobacterium avium serovar 2. MICROBIOLOGY-SGM 2003; 149:2797-2807. [PMID: 14523113 DOI: 10.1099/mic.0.26528-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Members of the Mycobacterium avium complex are distinguished by the presence of highly antigenic surface molecules called glycopeptidolipids (GPLs) and the oligosaccharide portion of the serovar-specific GPL defines the 28 serovars. Previously, the genomic region (ser2) encoding the enzymes responsible for the glycosylation of the lipopeptide core to generate the serovar-2-specific GPLs has been described. In this work, the ser2 gene clusters of M. avium serovar 2 strains 2151 and TMC 724 were fully sequenced and compared to the homologous regions of M. avium serovar 1 strain 104, M. avium subsp. paratuberculosis and M. avium subsp. silvaticum. It was also determined that 104Rg, a mutant of strain 104 that produces truncated GPLs, lost several GPL biosynthesis genes by deletion. This comparison, together with analysis of protein similarities, supports a biosynthetic model in which serovar-2-specific GPLs are synthesized from a serovar-1-specific GPL intermediate that is derived from a non-specific GPL precursor. We also identified a gene encoding an enzyme that is necessary for the biosynthesis of serovar-3- and 9-specific GPLs, but not serovar-2-specific GPLs, suggesting that the different serovars may have evolved from the acquisition or loss of genetic information. In addition, a subcluster of genes for the biosynthesis and transfer of fucose, which are needed to make serovar-specific GPLs such as those of serovar 2, is found in the non-GPL-producing M. avium subspecies paratuberculosis and silvaticum.
Collapse
Affiliation(s)
- Torsten M Eckstein
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1682, USA
| | - John T Belisle
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1682, USA
| | - Julia M Inamine
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1682, USA
| |
Collapse
|
46
|
Sampaio MM, Santos H, Boos W. Synthesis of GDP-mannose and mannosylglycerate from labeled mannose by genetically engineered Escherichia coli without loss of specific isotopic enrichment. Appl Environ Microbiol 2003; 69:233-40. [PMID: 12514000 PMCID: PMC152461 DOI: 10.1128/aem.69.1.233-240.2003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report the construction of an Escherichia coli mutant that harbors two compatible plasmids and that is able to synthesize labeled 2-O-alpha-D-mannosyl-D-glycerate from externally added labeled mannose without the loss of specific isotopic enrichment. The strain carries a deletion in the manA gene, encoding phosphomannose isomerase. This deletion prevents the formation of fructose-6-phosphate from mannose-6-phosphate after the uptake of mannose from the medium by mannose-specific enzyme II of the phosphotransferase system (PtsM). The strain also has a deletion of the cps gene cluster that prevents the synthesis of colanic acid, a mannose-containing polymer. Plasmid-encoded phosphomannomutase (cpsG) and mannose-1-phosphate guanylyltransferase (cpsB) ensure the formation of GDP-mannose. A second plasmid harbors msg, a gene from Rhodothermus marinus that encodes mannosylglycerate synthase, which catalyzes the formation of 2-O-alpha-D-mannosyl-D-glycerate from GDP-mannose and endogenous glycerate. The rate-limiting step in 2-O-alpha-D-mannosyl-D-glycerate formation is the transfer of GDP-mannose to glycerate. 2-O-alpha-D-mannosyl-D-glycerate can be released from cells by treatment with cold-water shock. The final product is formed in a yield exceeding 50% the initial quantity of labeled mannose, including loss during preparation and paper chromatography.
Collapse
Affiliation(s)
- Maria-Manuel Sampaio
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, 2780-156 Oeiras, Portugal
| | | | | |
Collapse
|
47
|
Saugar I, Sanz E, Rubio MA, Espinosa JC, Jiménez A. Identification of a set of genes involved in the biosynthesis of the aminonucleoside moiety of antibiotic A201A from Streptomyces capreolus. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:5527-35. [PMID: 12423351 DOI: 10.1046/j.1432-1033.2002.03258.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A novel cosmid (pABC6.5) whose DNA insert from Streptomyces capreolus, the A201A antibiotic producer, overlaps the inserts of the previously reported pCAR11 and pCAR13 cosmids, has been isolated. These two latter cosmids were known to contain the aminonucleoside antibiotic A201A resistance determinants ard2 and ard1, respectively. Together, these three cosmids have permitted the identification of a DNA stretch of 19 kb between ard1 and ard2, which should comprise a large region of a putative A201A biosynthetic (ata) gene cluster. The sequence of the 7 kb upstream of ard1 towards ard2 reveals seven consecutive open reading frames: ataP3, ataP5, ataP4, ataP10, ataP7, ata12 and ataPKS1. Except for the last two, their deduced products present high similarities to an identical number of counterparts from the pur cluster of Streptomyces alboniger that were either known or proposed to be implicated in the biosynthesis of the N6,N6-dimethyl-3'-amino-3'-deoxyadenosine moiety of puromycin. Because A201A contains this chemical moiety, these ataP genes are most likely implicated in its biosynthesis. Accordingly, the ataP4, ataP5 and ataP10 genes complemented specific puromycin nonproducing Deltapur4, Deltapur5 and Deltapur10 mutants of S. alboniger, respectively. Amino acid sequence comparisons suggest that ata12 and ataPKS1 could be implicated in the biosynthesis of the d-rhamnose and alpha-p-coumaric acid moieties of A201A. Further sequencing of 2 kb of DNA downstream of ard1 has disclosed a region which might contain one end of the ata cluster.
Collapse
Affiliation(s)
- Irene Saugar
- Centro de Biología Molecular, Universidad Autónoma, 28049 Madrid, Spain
| | | | | | | | | |
Collapse
|
48
|
St Michael F, Szymanski CM, Li J, Chan KH, Khieu NH, Larocque S, Wakarchuk WW, Brisson JR, Monteiro MA. The structures of the lipooligosaccharide and capsule polysaccharide of Campylobacter jejuni genome sequenced strain NCTC 11168. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:5119-36. [PMID: 12392544 DOI: 10.1046/j.1432-1033.2002.03201.x] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Campylobacter jejuni infections are one of the leading causes of human gastroenteritis and are suspected of being a precursor to Guillain-Barré and Miller-Fisher syndromes. Recently, the complete genome sequence of C. jejuni NCTC 11168 was described. In this study, the molecular structure of the lipooligosaccharide and capsular polysaccharide of C. jejuni NCTC 11168 was investigated. The lipooligosaccharide was shown to exhibit carbohydrate structures analogous to the GM1a and GM2 carbohydrate epitopes of human gangliosides (shown below): The high Mr capsule polysaccharide was composed of beta-d-Ribp, beta-d-GalfNAc, alpha-d-GlcpA6(NGro), a uronic acid amidated with 2-amino-2-deoxyglycerol at C-6, and 6-O-methyl-d-glycero-alpha-l-gluco-heptopyranose as a side-branch (shown below): The structural information presented here will aid in the identification and characterization of specific enzymes that are involved in the biosynthesis of these structures and may lead to the discovery of potential therapeutic targets. In addition, the correlation of carbohydrate structure with gene complement will aid in the elucidation of the role of these surface carbohydrates in C. jejuni pathogenesis.
Collapse
Affiliation(s)
- Frank St Michael
- Institute for Biological Sciences, National Research Council of Canada, Ottawa, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Barua S, Yamashino T, Hasegawa T, Yokoyama K, Torii K, Ohta M. Involvement of surface polysaccharides in the organic acid resistance of Shiga Toxin-producing Escherichia coli O157:H7. Mol Microbiol 2002; 43:629-40. [PMID: 11929520 DOI: 10.1046/j.1365-2958.2002.02768.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In general, wild Escherichia coli strains can grow effectively under moderately acidic organic acid-rich conditions. We found that the Shiga Toxin-producing E. coli (STEC) O157:H7 NGY9 grows more quickly than a K-12 strain in Luria-Bertani (LB)-2-morpholinoethanesulphonic acid (MES) broth supplemented with acetic acid (pH 5.4). Hypothesizing that the resistance of STEC O157:H7 to acetic acid is as a result of a mechanism(s) other than those known, we screened for STEC mutants sensitive to acetic acid. NGY9 was subjected to mini-Tn5 mutagenesis and, from 50,000 colonies, five mutants that showed a clear acetic acid-sensitive phenotype were isolated. The insertion of mini-Tn5 in three mutants occurred at the fcl, wecA (rfe) and wecB (rffE) genes and caused loss of surface O-polysaccharide, loss of both O-polysaccharide and enterobacterial common antigen (ECA) and loss of ECA respectively. The other two mutants showed inactivation of the waaG (rfaG) gene but at different positions that caused a deep rough mutant with loss of the outer core oligosaccharide of lipopolysaccharide (LPS) as well as phenotypic loss of O-polysaccharide and ECA. With the introduction of plasmids carrying the fcl, wecA, wecB and waaG genes, respectively, all mutants were complemented in their production of O-polysaccharide and ECA, and normal growth was restored in organic acid-rich culture conditions. We also found that the growth of Salmonella LPS mutants Ra, Rb1, Rc, Rd1, Rd2 and Re was suppressed in the presence of acetic acid compared with that of the parents. These results suggest that the full expression of LPS (including O-polysaccharide) and ECA is indispensable to the resistance against acetic acid and other short chain fatty acids in STEC O157:H7 and Salmonella. To the best of our knowledge, this is a newly identified physiological role for O-polysaccharide and ECA as well as an acid resistance mechanism.
Collapse
Affiliation(s)
- Soumitra Barua
- Department of Molecular Bacteriology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya 466-8550, Japan
| | | | | | | | | | | |
Collapse
|
50
|
|