1
|
Santoshi M, Tare P, Nagaraja V. Nucleoid-associated proteins of mycobacteria come with a distinctive flavor. Mol Microbiol 2024. [PMID: 38922783 DOI: 10.1111/mmi.15287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024]
Abstract
In every bacterium, nucleoid-associated proteins (NAPs) play crucial roles in chromosome organization, replication, repair, gene expression, and other DNA transactions. Their central role in controlling the chromatin dynamics and transcription has been well-appreciated in several well-studied organisms. Here, we review the diversity, distribution, structure, and function of NAPs from the genus Mycobacterium. We highlight the progress made in our understanding of the effects of these proteins on various processes and in responding to environmental stimuli and stress of mycobacteria in their free-living as well as during distinctive intracellular lifestyles. We project them as potential drug targets and discuss future studies to bridge the information gap with NAPs from well-studied systems.
Collapse
Affiliation(s)
- Meghna Santoshi
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Priyanka Tare
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Valakunja Nagaraja
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| |
Collapse
|
2
|
Keshavam CC, Naz S, Gupta A, Sanyal P, Kochar M, Gangwal A, Sangwan N, Kumar N, Tyagi E, Goel S, Singh NK, Sowpati DT, Khare G, Ganguli M, Raze D, Locht C, Basu-Modak S, Gupta M, Nandicoori VK, Singh Y. The heparin-binding hemagglutinin protein of Mycobacterium tuberculosis is a nucleoid-associated protein. J Biol Chem 2023; 299:105364. [PMID: 37865319 PMCID: PMC10665949 DOI: 10.1016/j.jbc.2023.105364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 10/23/2023] Open
Abstract
Nucleoid-associated proteins (NAPs) regulate multiple cellular processes such as gene expression, virulence, and dormancy throughout bacterial species. NAPs help in the survival and adaptation of Mycobacterium tuberculosis (Mtb) within the host. Fourteen NAPs have been identified in Escherichia coli; however, only seven NAPs are documented in Mtb. Given its complex lifestyle, it is reasonable to assume that Mtb would encode for more NAPs. Using bioinformatics tools and biochemical experiments, we have identified the heparin-binding hemagglutinin (HbhA) protein of Mtb as a novel sequence-independent DNA-binding protein which has previously been characterized as an adhesion molecule required for extrapulmonary dissemination. Deleting the carboxy-terminal domain of HbhA resulted in a complete loss of its DNA-binding activity. Atomic force microscopy showed HbhA-mediated architectural modulations in the DNA, which may play a regulatory role in transcription and genome organization. Our results showed that HbhA colocalizes with the nucleoid region of Mtb. Transcriptomics analyses of a hbhA KO strain revealed that it regulates the expression of ∼36% of total and ∼29% of essential genes. Deletion of hbhA resulted in the upregulation of ∼73% of all differentially expressed genes, belonging to multiple pathways suggesting it to be a global repressor. The results show that HbhA is a nonessential NAP regulating gene expression globally and acting as a plausible transcriptional repressor.
Collapse
Affiliation(s)
| | - Saba Naz
- Department of Zoology, University of Delhi, Delhi, India; CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Aanchal Gupta
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Priyadarshini Sanyal
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India; Academy of Scientific and Innovative Research (AcSIR), CSIR- Centre for Cellular and Molecular Biology (CSIR-CCMB) Campus, Hyderabad, India
| | - Manisha Kochar
- Department of Zoology, University of Delhi, Delhi, India; CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | | | - Nitika Sangwan
- Department of Zoology, University of Delhi, Delhi, India
| | - Nishant Kumar
- Department of Zoology, University of Delhi, Delhi, India
| | - Ekta Tyagi
- Department of Zoology, University of Delhi, Delhi, India
| | - Simran Goel
- Department of Zoology, University of Delhi, Delhi, India
| | | | | | - Garima Khare
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Munia Ganguli
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Dominique Raze
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR9017 - CIIL - Centre for Infection and Immunity of Lille, Lille, France
| | - Camille Locht
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR9017 - CIIL - Centre for Infection and Immunity of Lille, Lille, France
| | | | - Meetu Gupta
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.
| | - Vinay Kumar Nandicoori
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India; Academy of Scientific and Innovative Research (AcSIR), CSIR- Centre for Cellular and Molecular Biology (CSIR-CCMB) Campus, Hyderabad, India; National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India.
| | - Yogendra Singh
- Department of Zoology, University of Delhi, Delhi, India; Delhi School of Public Health, Institution of Eminence, University of Delhi, Delhi, India.
| |
Collapse
|
3
|
Wang J, Xie T, Ullah I, Mi Y, Li X, Gong Y, He P, Liu Y, Li F, Li J, Lu Z, Zhu B. A VLP-Based Vaccine Displaying HBHA and MTP Antigens of Mycobacterium tuberculosis Induces Protective Immune Responses in M. tuberculosis H37Ra Infected Mice. Vaccines (Basel) 2023; 11:941. [PMID: 37243045 PMCID: PMC10224509 DOI: 10.3390/vaccines11050941] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
Heparin-binding hemagglutinin (HBHA) and M. tuberculosis pili (MTP) are important antigens on the surface of Mycobacterium tuberculosis. To display these antigens effectively, the fusion protein HBHA-MTP with a molecular weight of 20 kD (L20) was inserted into the receptor-binding hemagglutinin (HA) fragment of influenza virus and was expressed along with matrix protein M1 in Sf9 insect cells to generate influenza virus-like particles (LV20 in short). The results showed that the insertion of L20 into the envelope of the influenza virus did not affect the self-assembly and morphology of LV20 VLPs. The expression of L20 was successfully verified by transmission electron microscopy. Importantly, it did not interfere with the immunogenicity reactivity of LV20 VLPs. We demonstrated that LV20 combined with the adjuvant composed of DDA and Poly I: C (DP) elicited significantly higher antigen-specific antibodies and CD4+/CD8+ T cell responses than PBS and BCG vaccination in mice. It suggests that the insect cell expression system is an excellent protein production system, and LV20 VLPs could be a novel tuberculosis vaccine candidate for further evaluation.
Collapse
Affiliation(s)
- Juan Wang
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (J.W.); (T.X.); (Y.M.); (Y.G.); (F.L.)
| | - Tao Xie
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (J.W.); (T.X.); (Y.M.); (Y.G.); (F.L.)
| | - Inayat Ullah
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (J.W.); (T.X.); (Y.M.); (Y.G.); (F.L.)
| | - Youjun Mi
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (J.W.); (T.X.); (Y.M.); (Y.G.); (F.L.)
- Institute of Pathogenic Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiaoping Li
- Respiratory Department of Lanzhou Pulmonary Hospital, Lanzhou 730000, China
| | - Yang Gong
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (J.W.); (T.X.); (Y.M.); (Y.G.); (F.L.)
| | - Pu He
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (J.W.); (T.X.); (Y.M.); (Y.G.); (F.L.)
| | - Yuqi Liu
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (J.W.); (T.X.); (Y.M.); (Y.G.); (F.L.)
| | - Fei Li
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (J.W.); (T.X.); (Y.M.); (Y.G.); (F.L.)
| | - Jixi Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China;
| | - Zengjun Lu
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou 730000, China
| | - Bingdong Zhu
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (J.W.); (T.X.); (Y.M.); (Y.G.); (F.L.)
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
4
|
Mycobacterial Adhesion: From Hydrophobic to Receptor-Ligand Interactions. Microorganisms 2022; 10:microorganisms10020454. [PMID: 35208908 PMCID: PMC8875947 DOI: 10.3390/microorganisms10020454] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/07/2022] [Accepted: 02/12/2022] [Indexed: 11/24/2022] Open
Abstract
Adhesion is crucial for the infective lifestyles of bacterial pathogens. Adhesion to non-living surfaces, other microbial cells, and components of the biofilm extracellular matrix are crucial for biofilm formation and integrity, plus adherence to host factors constitutes a first step leading to an infection. Adhesion is, therefore, at the core of pathogens’ ability to contaminate, transmit, establish residency within a host, and cause an infection. Several mycobacterial species cause diseases in humans and animals with diverse clinical manifestations. Mycobacterium tuberculosis, which enters through the respiratory tract, first adheres to alveolar macrophages and epithelial cells leading up to transmigration across the alveolar epithelium and containment within granulomas. Later, when dissemination occurs, the bacilli need to adhere to extracellular matrix components to infect extrapulmonary sites. Mycobacteria causing zoonotic infections and emerging nontuberculous mycobacterial pathogens follow divergent routes of infection that probably require adapted adhesion mechanisms. New evidence also points to the occurrence of mycobacterial biofilms during infection, emphasizing a need to better understand the adhesive factors required for their formation. Herein, we review the literature on tuberculous and nontuberculous mycobacterial adhesion to living and non-living surfaces, to themselves, to host cells, and to components of the extracellular matrix.
Collapse
|
5
|
De Maio F, Salustri A, Battah B, Palucci I, Marchionni F, Bellesi S, Palmieri V, Papi M, Kramarska E, Sanguinetti M, Sali M, Berisio R, Delogu G. PE_PGRS3 ensures provision of the vital phospholipids cardiolipin and phosphatidylinositols by promoting the interaction between M. tuberculosis and host cells. Virulence 2021; 12:868-884. [PMID: 33757409 PMCID: PMC8007152 DOI: 10.1080/21505594.2021.1897247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/23/2021] [Accepted: 02/21/2021] [Indexed: 12/12/2022] Open
Abstract
PE_PGRS proteins of Mycobacterium tuberculosis (Mtb) constitute a large family of complex modular proteins whose role is still unclear. Among those, we have previously shown, using the heterologous expression in Mycobacterium smegmatis, that PE_PGRS3 containing a unique arginine-rich C-terminal domain, promotes adhesion to host cells. In this study, we investigate the role of PE_PGRS3 and its C-terminal domain directly in Mtb using functional deletion mutants. The results obtained here show that PE_PGRS3 is localized on the mycobacterial cell wall and its arginine-rich C-terminal region protrudes from the mycobacterial membrane and mediates Mtb entry into epithelial cells. Most importantly, this positively charged helical domain specifically binds phosphorylated phosphatidylinositols and cardiolipin, whereas it is unable to bind other phospholipids. Interestingly, administration of cardiolipin and phosphatidylinositol but no other phospholipids was able to turn-off expression of pe_pgrs3 activated by phosphate starvation conditions. These findings suggest that PE_PGRS3 has the key role to serve as a bridge between mycobacteria and host cells by interacting with specific host phospholipids and extracting them from host cells, for their direct integration or as a source of phosphate, during phases of TB pathogenesis when Mtb is short of phosphate supply.
Collapse
Affiliation(s)
- Flavio De Maio
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario “A. Gemelli”, Rome, Italy
- Dipartimento di Scienze biotecnologiche di base, cliniche intensivologiche e perioperatorie – Sezione di Microbiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alessandro Salustri
- Dipartimento di Scienze biotecnologiche di base, cliniche intensivologiche e perioperatorie – Sezione di Microbiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Basem Battah
- Dipartimento di Scienze biotecnologiche di base, cliniche intensivologiche e perioperatorie – Sezione di Microbiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Ivana Palucci
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario “A. Gemelli”, Rome, Italy
- Dipartimento di Scienze biotecnologiche di base, cliniche intensivologiche e perioperatorie – Sezione di Microbiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Federica Marchionni
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, Rome, Italy
| | - Silvia Bellesi
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, Rome, Italy
| | - Valentina Palmieri
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Massimiliano Papi
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Roma, Italy
- Fondazione Policlinico Universitario “A. Gemelli”, Rome, Italy
| | - Eliza Kramarska
- Institute of Biostructures and Bioimaging - CNR-IBB, Naples, Italy
| | - Maurizio Sanguinetti
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario “A. Gemelli”, Rome, Italy
- Dipartimento di Scienze biotecnologiche di base, cliniche intensivologiche e perioperatorie – Sezione di Microbiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Michela Sali
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario “A. Gemelli”, Rome, Italy
- Dipartimento di Scienze biotecnologiche di base, cliniche intensivologiche e perioperatorie – Sezione di Microbiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Rita Berisio
- Institute of Biostructures and Bioimaging - CNR-IBB, Naples, Italy
| | - Giovanni Delogu
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario “A. Gemelli”, Rome, Italy
- Mater Olbia Hospital, Olbia, Italy
| |
Collapse
|
6
|
Surface-Shaving Proteomics of Mycobacterium marinum Identifies Biofilm Subtype-Specific Changes Affecting Virulence, Tolerance, and Persistence. mSystems 2021; 6:e0050021. [PMID: 34156290 PMCID: PMC8269238 DOI: 10.1128/msystems.00500-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The complex cell wall and biofilm matrix (ECM) act as key barriers to antibiotics in mycobacteria. Here, the ECM and envelope proteins of Mycobacterium marinum ATCC 927, a nontuberculous mycobacterial model, were monitored over 3 months by label-free proteomics and compared with cell surface proteins on planktonic cells to uncover pathways leading to virulence, tolerance, and persistence. We show that ATCC 927 forms pellicle-type and submerged-type biofilms (PBFs and SBFs, respectively) after 2 weeks and 2 days of growth, respectively, and that the increased CelA1 synthesis in this strain prevents biofilm formation and leads to reduced rifampicin tolerance. The proteomic data suggest that specific changes in mycolic acid synthesis (cord factor), Esx1 secretion, and cell wall adhesins explain the appearance of PBFs as ribbon-like cords and SBFs as lichen-like structures. A subpopulation of cells resisting 64× MIC rifampicin (persisters) was detected in both biofilm subtypes and already in 1-week-old SBFs. The key forces boosting their development could include subtype-dependent changes in asymmetric cell division, cell wall biogenesis, tricarboxylic acid/glyoxylate cycle activities, and energy/redox/iron metabolisms. The effect of various ambient oxygen tensions on each cell type and nonclassical protein secretion are likely factors explaining the majority of the subtype-specific changes. The proteomic findings also imply that Esx1-type protein secretion is more efficient in planktonic (PL) and PBF cells, while SBF may prefer both the Esx5 and nonclassical pathways to control virulence and prolonged viability/persistence. In conclusion, this study reports the first proteomic insight into aging mycobacterial biofilm ECMs and indicates biofilm subtype-dependent mechanisms conferring increased adaptive potential and virulence of nontuberculous mycobacteria. IMPORTANCE Mycobacteria are naturally resilient, and mycobacterial infections are notoriously difficult to treat with antibiotics, with biofilm formation being the main factor complicating the successful treatment of tuberculosis (TB). The present study shows that nontuberculous Mycobacterium marinum ATCC 927 forms submerged- and pellicle-type biofilms with lichen- and ribbon-like structures, respectively, as well as persister cells under the same conditions. We show that both biofilm subtypes differ in terms of virulence-, tolerance-, and persistence-conferring activities, highlighting the fact that both subtypes should be targeted to maximize the power of antimycobacterial treatment therapies.
Collapse
|
7
|
Mycobacterium tuberculosis Binds Human Serum Amyloid A, and the Interaction Modulates the Colonization of Human Macrophages and the Transcriptional Response of the Pathogen. Cells 2021; 10:cells10051264. [PMID: 34065319 PMCID: PMC8160739 DOI: 10.3390/cells10051264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 01/10/2023] Open
Abstract
As a very successful pathogen with outstanding adaptive properties, Mycobacterium tuberculosis (Mtb) has developed a plethora of sophisticated mechanisms to subvert host defenses and effectively enter and replicate in the harmful environment inside professional phagocytes, namely, macrophages. Here, we demonstrated the binding interaction of Mtb with a major human acute phase protein, namely, serum amyloid A (SAA1), and identified AtpA (Rv1308), ABC (Rv2477c), EspB (Rv3881c), TB 18.6 (Rv2140c), and ThiC (Rv0423c) membrane proteins as mycobacterial effectors responsible for the pathogen-host protein interplay. SAA1-opsonization of Mtb prior to the infection of human macrophages favored bacterial entry into target phagocytes accompanied by a substantial increase in the load of intracellularly multiplying and surviving bacteria. Furthermore, binding of human SAA1 by Mtb resulted in the up- or downregulation of the transcriptional response of tubercle bacilli. The most substantial changes were related to the increased expression level of the genes of two operons encoding mycobacterial transporter systems, namely, mmpL5/mmpS5 (rv0676c), and rv1217c, rv1218c. Therefore, we postulate that during infection, Mtb-SAA1 binding promotes the infection of host macrophages by tubercle bacilli and modulates the functional response of the pathogen.
Collapse
|
8
|
Veyron-Churlet R, Saliou JM, Locht C. Interconnection of the mycobacterial heparin-binding hemagglutinin with cholesterol degradation and heme/iron pathways identified by proximity-dependent biotin identification in Mycobacterium smegmatis. Environ Microbiol 2021; 23:3212-3224. [PMID: 33913567 DOI: 10.1111/1462-2920.15547] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/15/2021] [Accepted: 04/26/2021] [Indexed: 11/28/2022]
Abstract
Deciphering protein-protein interactions is a critical step in the identification and the understanding of biological mechanisms deployed by pathogenic bacteria. The development of in vivo technologies to characterize these interactions is still in its infancy, especially for bacteria whose subcellular organization is particularly complex, such as mycobacteria. In this work, we used the proximity-dependent biotin identification (BioID) to define the mycobacterial heparin-binding hemagglutinin (HbhA) interactome in the saprophytic bacterium Mycobacterium smegmatis. M. smegmatis is a commonly used model to study and characterize the physiology of pathogenic mycobacteria, such as Mycobacterium tuberculosis. Here, we adapted the BioID technology to in vivo protein-protein interactions studies in M. smegmatis, which presents several advantages, such as maintaining the complex organization of the mycomembrane, offering the possibility to study membrane or cell wall-associated proteins, including HbhA, in the presence of cofactors and post-translational modifications, such as the complex methylation pattern of HbhA. Using this technology, we found that HbhA is interconnected with cholesterol degradation and heme/iron pathways. These results are in line with previous studies showing the dual localization of HbhA, associated with the cell wall and intracytoplasmic lipid inclusions, and its induction under high iron growth conditions.
Collapse
Affiliation(s)
- Romain Veyron-Churlet
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, F-59000, France
| | - Jean-Michel Saliou
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UMS 2014 - PLBS, Lille, F-59000, France
| | - Camille Locht
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, F-59000, France
| |
Collapse
|
9
|
Abstract
Mycobacteria have unique cell envelopes, surface properties, and growth dynamics, which all play a part in the ability of these important pathogens to infect, evade host immunity, disseminate, and resist antibiotic challenges. Recent atomic force microscopy (AFM) studies have brought new insights into the nanometer-scale ultrastructural, adhesive, and mechanical properties of mycobacteria. The molecular forces with which mycobacterial adhesins bind to host factors, like heparin and fibronectin, and the hydrophobic properties of the mycomembrane have been unraveled by AFM force spectroscopy studies. Real-time correlative AFM and fluorescence imaging have delineated a complex interplay between surface ultrastructure, tensile stresses within the cell envelope, and cellular processes leading to division. The unique capabilities of AFM, which include subdiffraction-limit topographic imaging and piconewton force sensitivity, have great potential to resolve important questions that remain unanswered on the molecular interactions, surface properties, and growth dynamics of this important class of pathogens.
Collapse
|
10
|
Lanfranconi MP, Arabolaza A, Gramajo H, Alvarez HM. Insights into the evolutionary history of the virulent factor HBHA of Mycobacterium tuberculosis. Arch Microbiol 2021; 203:2171-2182. [PMID: 33620522 DOI: 10.1007/s00203-021-02192-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 12/23/2020] [Accepted: 02/04/2021] [Indexed: 12/20/2022]
Abstract
In Mycobacterium tuberculosis, heparin-binding hemagglutinin (HBHAMT) has a relevant role in infection. It is also present in non-virulent mycobacteria and ancient actinobacteria, such as Rhodococcus opacus. To have a better understanding of the underlying mechanisms that shaped the evolutionary divergence of these proteins, we performed a comprehensive phylogenetic analysis of the regulatory sequences that drive the expression of hbha in saprophytic and pathogenic mycobacterial species. The alignment of the hbha loci showed the appearance of intergenic sequences containing regulatory elements upstream the hbha gene; this sequence arrangement is present only in slow-growing pathogenic mycobacteria. The heterologous expression of HBHAMT in oleaginous R. opacus PD630 results in protein binding to lipid droplets, as it happens with HBHA proteins from saprophytic mycobacteria. We hypothesize that mycobacterial hbha gene cluster underwent functional divergence during the evolutionary differentiation of slow-growing pathogenic mycobacteria. We propose here an evolutionary scenario to explain the structural and functional divergence of HBHA in fast and slow-growing mycobacteria.
Collapse
Affiliation(s)
- Mariana P Lanfranconi
- Facultad de Ciencias Naturales y Ciencias de la Salud, INBIOP (Instituto de Biociencias de la Patagonia), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de la Patagonia San Juan Bosco, Ruta Provincial N° 1, Km 4-Ciudad Universitaria, 9000, Comodoro Rivadavia, Chubut, Argentina
| | - Ana Arabolaza
- Facultad de Ciencias Bioquímicas y Farmacéuticas, IBR (Instituto de Biología Molecular y Celular de Rosario), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Rosario, Ocampo y Esmeralda, 2000, Rosario, Santa Fe, Argentina
| | - Hugo Gramajo
- Facultad de Ciencias Bioquímicas y Farmacéuticas, IBR (Instituto de Biología Molecular y Celular de Rosario), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Rosario, Ocampo y Esmeralda, 2000, Rosario, Santa Fe, Argentina
| | - Héctor M Alvarez
- Facultad de Ciencias Naturales y Ciencias de la Salud, INBIOP (Instituto de Biociencias de la Patagonia), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de la Patagonia San Juan Bosco, Ruta Provincial N° 1, Km 4-Ciudad Universitaria, 9000, Comodoro Rivadavia, Chubut, Argentina.
| |
Collapse
|
11
|
Immunoinformatics Approach to Engineer a Potent Poly-epitope Fusion Protein Vaccine Against Coxiella burnetii. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-019-10013-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
12
|
Rodríguez-Hernández E, Quintas-Granados LI, Flores-Villalva S, Cantó-Alarcón JG, Milián-Suazo F. Application of antigenic biomarkers for Mycobacterium tuberculosis. J Zhejiang Univ Sci B 2020; 21:856-870. [PMID: 33150770 PMCID: PMC7670104 DOI: 10.1631/jzus.b2000325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/19/2020] [Indexed: 01/12/2023]
Abstract
The study and characterization of biomolecules involved in the interaction between mycobacteria and their hosts are crucial to determine their roles in the invasion process and provide basic knowledge about the biology and pathogenesis of disease. Promising new biomarkers for diagnosis and immunotherapy have emerged recently. Mycobacterium is an ancient pathogen that has developed complex strategies for its persistence in the host and environment, likely based on the complexity of the network of interactions between the molecules involved in infection. Several biomarkers have received recent attention in the process of developing rapid and reliable detection techniques for tuberculosis. Among the most widely investigated antigens are CFP-10 (10-kDa culture filtrate protein), ESAT-6 (6-kDa early secretory antigenic target), Ag85A, Ag85B, CFP-7, and PPE18. Some of these antigens have been proposed as biomarkers to assess the key elements of the response to infection of both the pathogen and host. The design of novel and accurate diagnostic methods is essential for the control of tuberculosis worldwide. Presently, the diagnostic methods are based on the identification of molecules in the humoral response in infected individuals. Therefore, these tests depend on the capacity of the host to develop an immune response, which usually is heterogeneous. In the last 20 years, special attention has been given to the design of multiantigenic diagnostic methods to improve the levels of sensitivity and specificity. In this review, we summarize the state of the art in the study and use of mycobacterium biomolecules with the potential to support novel tuberculosis control strategies.
Collapse
Affiliation(s)
- Elba Rodríguez-Hernández
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Centro Nacional de Investigación Disciplinaria en Fisiología y Mejoramiento Animal, Km. 1 Carretera a Colón, Ajuchitlán Colón, 76280, Colón, Querétaro, México
| | - Laura Itzel Quintas-Granados
- Universidad Mexiquense del Bicentenario, Unidad de Estudios Superiores de Tultitlán, Avenida Ex-Hacienda de Portales s/n, Villa Esmeralda, Tultitlán Estado de México, 54910, Tultitlán, México
| | - Susana Flores-Villalva
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Centro Nacional de Investigación Disciplinaria en Fisiología y Mejoramiento Animal, Km. 1 Carretera a Colón, Ajuchitlán Colón, 76280, Colón, Querétaro, México
| | - Jorge Germinal Cantó-Alarcón
- Universidad Autónoma de Querétaro, Facultad de Ciencias Naturales, Avenida de las Ciencias s/n, Juriquilla, Delegación Santa Rosa Jáuregui, 76230, Querétaro, México
| | - Feliciano Milián-Suazo
- Universidad Autónoma de Querétaro, Facultad de Ciencias Naturales, Avenida de las Ciencias s/n, Juriquilla, Delegación Santa Rosa Jáuregui, 76230, Querétaro, México
| |
Collapse
|
13
|
Ji X, Zhang X, Sun L, Hou X, Song H, Han L, Xu S, Li H, Qiu X, Li M, Wang X, Zheng N, Li Z. The Heparin-Binding Hemagglutinin of Nocardia cyriacigeorgica GUH-2 Stimulates Inflammatory Cytokine Secretion Through Activation of Nuclear Factor κB and Mitogen-Activated Protein Kinase Pathways via TLR4. Front Cell Infect Microbiol 2020; 10:3. [PMID: 32117792 PMCID: PMC7031410 DOI: 10.3389/fcimb.2020.00003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/07/2020] [Indexed: 01/14/2023] Open
Abstract
Heparin-binding hemagglutinin (HBHA) from mycobacteria is involved in the dissemination of infection and the activation of the host immune response. However, the interaction of Nocardia cyriacigeorgica HBHA with the host cells remains unknown. In the present study, we describe N. cyriacigeorgica HBHA interactions with epithelial cells and organ colonization. We then investigate the mechanisms by which HBHA induces the production of inflammatory cytokines in macrophages. Immunofluorescent microscopy showed that HBHA adhered to A549 cells and HeLa cells and that the C-terminal fragment, which contains a Pro-Ala-Lys–rich domain, was responsible for adhesion. The deletion of the hbha gene in N. cyriacigeorgica mutant strains impaired adhesion to A549 cells and HeLa cells. In addition, the HBHA protein activated the mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB) signaling pathways and promoted the production of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and IL-10 in macrophages. HBHA-mediated TNF-α production was dependent on the activation of the c-Jun N-terminal kinase (JNK) signal pathways, and the IL-6 and IL-10 production was dependent on the activation of extracellular regulated kinase (ERK) 1/2, MAPK p38 (p38), JNK, and nuclear NF-κB signaling pathways. Additionally, the HBHA-mediated activation of innate immunity was dependent on Toll-like receptor 4 (TLR4). Taken together, these results indicate that N. cyriacigeorgica HBHA not only adheres to epithelial cells and may be involved in organ colonization, but also plays a critical role in the modulation of innate immunity through the MAPK and NF-κB signaling pathways via TLR4.
Collapse
Affiliation(s)
- Xingzhao Ji
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiujuan Zhang
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Lina Sun
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xuexin Hou
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Han Song
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Lichao Han
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Department of Medicine, Tibet University, Lhasa, China
| | - Shuai Xu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Heqiao Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xiaotong Qiu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Minghui Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xuebing Wang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ningwei Zheng
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhenjun Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
14
|
De Maio F, Squeglia F, Goletti D, Delogu G. The Mycobacterial HBHA Protein: A Promising Biomarker for Tuberculosis. Curr Med Chem 2019; 26:2051-2060. [PMID: 30378481 DOI: 10.2174/0929867325666181029165805] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/01/2018] [Accepted: 10/18/2018] [Indexed: 02/06/2023]
Abstract
A major goal in tuberculosis (TB) research is the identification, among the subjects infected with Mycobacterium tuberculosis (Mtb), of those with active TB, or at higher risk of developing active disease, from the latently infected subjects. The classical heterogeneity of Mtb infection and TB disease is a major obstacle toward the identification of reliable biomarkers that can stratify Mtb infected subjects based on disease risk. The heparin-binding haemagglutinin (HBHA) is a mycobacterial surface antigen that is implicated in tuberculosis (TB) pathogenesis. The host immune response against HBHA varies depending on the TB status and several studies are supporting the role of HBHA as a useful biomarker of TB.
Collapse
Affiliation(s)
- Flavio De Maio
- Institute of Microbiology, Università Cattolica del Sacro Cuore, Milano, Italy.,Fondazione Policlinico Universitario A. Gemelli- IRCCS, Rome, Italy
| | - Flavia Squeglia
- Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16. I-80134 Napoli, Italy
| | - Delia Goletti
- Translational Research Unit, Department of Epidemiology and Preclinical Research, "L. Spallanzani" National Institute for Infectious Diseases (INMI) IRCCCS, Rome, Italy
| | - Giovanni Delogu
- Institute of Microbiology, Università Cattolica del Sacro Cuore, Milano, Italy.,Fondazione Policlinico Universitario A. Gemelli- IRCCS, Rome, Italy
| |
Collapse
|
15
|
Kolbe K, Veleti SK, Reiling N, Lindhorst TK. Lectins of Mycobacterium tuberculosis - rarely studied proteins. Beilstein J Org Chem 2019; 15:1-15. [PMID: 30680034 PMCID: PMC6334816 DOI: 10.3762/bjoc.15.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 11/29/2018] [Indexed: 12/19/2022] Open
Abstract
The importance of bacterial lectins for adhesion, pathogenicity, and biofilm formation is well established for many Gram-positive and Gram-negative bacteria. However, there is very little information available about lectins of the tuberculosis-causing bacterium, Mycobacterium tuberculosis (Mtb). In this paper we review previous studies on the carbohydrate-binding characteristics of mycobacteria and related Mtb proteins, discussing their potential relevance to Mtb infection and pathogenesis.
Collapse
Affiliation(s)
- Katharina Kolbe
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, 33 North Drive, Bethesda, 20892, MD, United States
| | - Sri Kumar Veleti
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, 33 North Drive, Bethesda, 20892, MD, United States
| | - Norbert Reiling
- Microbial Interface Biology, Research Center Borstel, Leibniz Lung Center, Parkallee 22, 23845 Borstel, Germany.,German Center for Infection Research (DZIF), Borstel Site, 23845 Borstel, Germany
| | - Thisbe K Lindhorst
- Otto Diels Institute of Organic Chemistry, Christiana Albertina University of Kiel, Otto-Hahn-Platz 3-4, 24118 Kiel, Germany
| |
Collapse
|
16
|
De Maio F, Battah B, Palmieri V, Petrone L, Corrente F, Salustri A, Palucci I, Bellesi S, Papi M, Rubino S, Sali M, Goletti D, Sanguinetti M, Manganelli R, De Spirito M, Delogu G. PE_PGRS3 of Mycobacterium tuberculosis is specifically expressed at low phosphate concentration, and its arginine-rich C-terminal domain mediates adhesion and persistence in host tissues when expressed in Mycobacterium smegmatis. Cell Microbiol 2018; 20:e12952. [PMID: 30192424 DOI: 10.1111/cmi.12952] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 08/22/2018] [Accepted: 08/28/2018] [Indexed: 12/14/2022]
Abstract
PE_PGRSs of Mycobacterium tuberculosis (Mtb) represent a family of complex and peculiar proteins whose role and function remain elusive. In this study, we investigated PE_PGRS3 and PE_PGRS4, two highly homologous PE_PGRSs encoded by two contiguous genes in the Mtb genome. Using a gene-reporter system in Mycobacterium smegmatis (Ms) and transcriptional analysis in Mtb, we show that PE_PGRS3, but not PE_PGRS4, is specifically expressed under low phosphate concentrations. Interestingly, PE_PGRS3, but not PE_PGRS4, has a unique, arginine-rich C-terminal domain of unknown function. Heterologous expression of PE_PGRS3 in Ms was used to demonstrate cellular localisation of the protein on the mycobacterial surface, where it significantly affects net surface charge. Moreover, expression of full-length PE_PGRS3 enhanced adhesion of Ms to murine macrophages and human epithelial cells and improved bacterial persistence in spleen tissue following infection in mice. Expression of the PE_PGRS3 functional deletion mutant lacking the C-terminal domain in Ms did not enhance adhesion to host cells, showing a phenotype similar to the Ms parental strain. Interestingly, enhanced persistence of Ms expressing PE_PGRS3 did not correlate with increased concentrations of inflammatory cytokines. These results point to a critical role for the ≈ 80 amino acids long, arginine-rich C-terminal domain of PE_PGRS3 in tuberculosis pathogenesis.
Collapse
Affiliation(s)
- Flavio De Maio
- Institute of Microbiology, Fondazione Policlinico Universitario A. Gemelli, IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy
| | - Basem Battah
- Institute of Microbiology, Fondazione Policlinico Universitario A. Gemelli, IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy.,Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Valentina Palmieri
- Institute of Physics, Fondazione Policlinico Universitario A. Gemelli, IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy
| | - Linda Petrone
- Translational Research Unit, Department of Epidemiology and Preclinical Research, National Institute for Infectious Diseases, Rome, Italy
| | - Francesco Corrente
- Institute of Haematology, Fondazione Policlinico Universitario A. Gemelli, IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alessandro Salustri
- Institute of Microbiology, Fondazione Policlinico Universitario A. Gemelli, IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy
| | - Ivana Palucci
- Institute of Microbiology, Fondazione Policlinico Universitario A. Gemelli, IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy
| | - Silvia Bellesi
- Institute of Haematology, Fondazione Policlinico Universitario A. Gemelli, IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy
| | - Massimiliano Papi
- Institute of Physics, Fondazione Policlinico Universitario A. Gemelli, IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy
| | - Salvatore Rubino
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Michela Sali
- Institute of Microbiology, Fondazione Policlinico Universitario A. Gemelli, IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy
| | - Delia Goletti
- Translational Research Unit, Department of Epidemiology and Preclinical Research, National Institute for Infectious Diseases, Rome, Italy
| | - Maurizio Sanguinetti
- Institute of Microbiology, Fondazione Policlinico Universitario A. Gemelli, IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Marco De Spirito
- Institute of Physics, Fondazione Policlinico Universitario A. Gemelli, IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giovanni Delogu
- Institute of Microbiology, Fondazione Policlinico Universitario A. Gemelli, IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
17
|
Raze D, Verwaerde C, Deloison G, Werkmeister E, Coupin B, Loyens M, Brodin P, Rouanet C, Locht C. Heparin-Binding Hemagglutinin Adhesin (HBHA) Is Involved in Intracytosolic Lipid Inclusions Formation in Mycobacteria. Front Microbiol 2018; 9:2258. [PMID: 30333800 PMCID: PMC6176652 DOI: 10.3389/fmicb.2018.02258] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/05/2018] [Indexed: 12/19/2022] Open
Abstract
The heparin-binding hemagglutinin adhesin (HBHA) is an important virulence factor of Mycobacterium tuberculosis. It is a surface-displayed protein that serves as an adhesin for non-phagocytic cells and is involved in extra-pulmonary dissemination of the tubercle bacillus. It is also an important latency antigen useful for the diagnosis of latently M. tuberculosis-infected individuals. Using fluorescence time-lapse microscopy on mycobacteria that produce HBHA-green fluorescent protein chimera, we show here that HBHA can be found at two different locations and dynamically alternates between the mycobacterial surface and the interior of the cell, where it participates in the formation of intracytosolic lipid inclusions (ILI). Compared to HBHA-producing mycobacteria, HBHA-deficient mutants contain significantly lower amounts of ILI when grown in vitro or within macrophages, and the sizes of their ILI are significantly smaller. Lipid-binding assays indicate that HBHA is able to specifically bind to phosphatidylinositol and in particular to 4,5 di-phosphorylated phosphatidylinositol, but not to neutral lipids, the main constituents of ILI. HBHA derivatives lacking the C-terminal methylated, lysine-rich repeat region fail to bind to these lipids and these derivatives also fail to complement the phenotype of HBHA-deficient mutants. These studies indicate that HBHA is a moonlighting protein that serves several functions depending on its location. When surface exposed, HBHA serves as an adhesin, and when intracellularly localized, it participates in the generation of ILI, possibly as a cargo to transport phospholipids from the plasma membrane to the ILI in the process of being formed.
Collapse
Affiliation(s)
- Dominique Raze
- CNRS UMR8204, INSERM U1019, Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, Université de Lille, Lille, France
| | - Claudie Verwaerde
- CNRS UMR8204, INSERM U1019, Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, Université de Lille, Lille, France
| | - Gaspard Deloison
- CNRS UMR8204, INSERM U1019, Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, Université de Lille, Lille, France
| | - Elisabeth Werkmeister
- CNRS UMR8204, INSERM U1019, Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, Université de Lille, Lille, France
| | - Baptiste Coupin
- CNRS UMR8204, INSERM U1019, Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, Université de Lille, Lille, France
| | - Marc Loyens
- CNRS UMR8204, INSERM U1019, Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, Université de Lille, Lille, France
| | - Priscille Brodin
- CNRS UMR8204, INSERM U1019, Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, Université de Lille, Lille, France
| | - Carine Rouanet
- CNRS UMR8204, INSERM U1019, Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, Université de Lille, Lille, France
| | - Camille Locht
- CNRS UMR8204, INSERM U1019, Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, Université de Lille, Lille, France
| |
Collapse
|
18
|
Veyron-Churlet R, Dupres V, Saliou JM, Lafont F, Raze D, Locht C. Rv0613c/MSMEG_1285 Interacts with HBHA and Mediates Its Proper Cell-Surface Exposure in Mycobacteria. Int J Mol Sci 2018; 19:E1673. [PMID: 29874861 PMCID: PMC6032435 DOI: 10.3390/ijms19061673] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/23/2018] [Accepted: 05/29/2018] [Indexed: 12/18/2022] Open
Abstract
Heparin-binding haemagglutinin (HBHA) is a surface-exposed virulence factor of Mycobacterium tuberculosis and is involved in the binding of mycobacteria to non-phagocytic cells, allowing for extra-pulmonary dissemination of the bacilli. Despite its surface exposure, HBHA is not produced as a pre-protein containing a typical cleavable N-terminal signal peptide and is thus likely secreted by a Sec-independent, as of yet unknown mechanism. Here, we used the bacterial adenylate cyclase two-hybrid system to identify the proteins encoded by rv0613c and mmpL14 as being able to interact with HBHA. Our study was focused on Rv0613c, as it showed more consistent interactions with HBHA than MmpL14. Deletion of its orthologous gene MSMEG_1285 in recombinant Mycobacterium smegmatis producing HBHA from M. tuberculosis resulted in the loss of proper surface exposure of HBHA, as evidenced by atomic force microscopy. Furthermore, the lack of MSMEG_1285 also abolished the clumping phenotype and rough colony morphology of the recombinant M. smegmatis and reduced its adherence to A549 epithelial cells. These phenotypes have previously been associated with surface-exposed HBHA. Thus, MSMEG_1285 is directly involved in the proper cell-surface exposure of HBHA. These observations identify MSMEG_1285/Rv0613c as the first accessory protein involved in the cell surface exposure of HBHA.
Collapse
Affiliation(s)
- Romain Veyron-Churlet
- Université de Lille, CNRS UMR8204, INSERM U1019, Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, 59000 Lille, France.
| | - Vincent Dupres
- Université de Lille, CNRS UMR8204, INSERM U1019, Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, 59000 Lille, France.
| | - Jean-Michel Saliou
- Université de Lille, CNRS UMR8204, INSERM U1019, Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, 59000 Lille, France.
| | - Frank Lafont
- Université de Lille, CNRS UMR8204, INSERM U1019, Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, 59000 Lille, France.
| | - Dominique Raze
- Université de Lille, CNRS UMR8204, INSERM U1019, Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, 59000 Lille, France.
| | - Camille Locht
- Université de Lille, CNRS UMR8204, INSERM U1019, Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, 59000 Lille, France.
| |
Collapse
|
19
|
Squeglia F, Ruggiero A, De Simone A, Berisio R. A structural overview of mycobacterial adhesins: Key biomarkers for diagnostics and therapeutics. Protein Sci 2017; 27:369-380. [PMID: 29139177 DOI: 10.1002/pro.3346] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/09/2017] [Accepted: 11/09/2017] [Indexed: 01/14/2023]
Abstract
Adherence, colonization, and survival of mycobacteria in host cells require surface adhesins, which are attractive pharmacotherapeutic targets. A large arsenal of pilus and non-pilus adhesins have been identified in mycobacteria. These adhesins are capable of interacting with host cells, including macrophages and epithelial cells and are essential to microbial pathogenesis. In the last decade, several structures of mycobacterial adhesins responsible for adhesion to either macrophages or extra cellular matrix proteins have been elucidated. In addition, key structural and functional information have emerged for the process of mycobacterial adhesion to epithelial cells, mediated by the Heparin-binding hemagglutinin (HBHA). In this review, we provide an overview of the structural and functional features of mycobacterial adhesins and discuss their role as important biomarkers for diagnostics and therapeutics. Based on the reported data, it appears clear that adhesins are endowed with a variety of different structures and functions. Most adhesins play important roles in the cell life of mycobacteria and are key virulence factors. However, they have adapted to an extracellular life to exert a role in host-pathogen interaction. The type of interactions they form with the host and the adhesin regions involved in binding is partly known and is described in this review.
Collapse
Affiliation(s)
- Flavia Squeglia
- Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16, Napoli, I-80134, Italy
| | - Alessia Ruggiero
- Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16, Napoli, I-80134, Italy
| | - Alfonso De Simone
- Division of Molecular Biosciences, Imperial College London, SW7 2AZ, UK
| | - Rita Berisio
- Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16, Napoli, I-80134, Italy
| |
Collapse
|
20
|
Huang TY, Irene D, Zulueta MML, Tai TJ, Lain SH, Cheng CP, Tsai PX, Lin SY, Chen ZG, Ku CC, Hsiao CD, Chyan CL, Hung SC. Structure of the Complex between a Heparan Sulfate Octasaccharide and Mycobacterial Heparin-Binding Hemagglutinin. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201612518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Teng-Yi Huang
- Genomics Research Center; Academia Sinica; No. 128, Section 2, Academia Road Taipei 115 Taiwan
| | - Deli Irene
- Department of Chemistry; National Dong Hwa University; No. 1, Section 2, Da Hsueh Road, Shoufeng Hualien 974 Taiwan
| | - Medel Manuel L. Zulueta
- Genomics Research Center; Academia Sinica; No. 128, Section 2, Academia Road Taipei 115 Taiwan
| | - Tzu-Jui Tai
- Department of Chemistry; National Dong Hwa University; No. 1, Section 2, Da Hsueh Road, Shoufeng Hualien 974 Taiwan
| | - Shih-Han Lain
- Department of Chemistry; National Dong Hwa University; No. 1, Section 2, Da Hsueh Road, Shoufeng Hualien 974 Taiwan
| | - Cheng-Po Cheng
- Genomics Research Center; Academia Sinica; No. 128, Section 2, Academia Road Taipei 115 Taiwan
| | - Ping-Xi Tsai
- Genomics Research Center; Academia Sinica; No. 128, Section 2, Academia Road Taipei 115 Taiwan
| | - Shu-Yi Lin
- Genomics Research Center; Academia Sinica; No. 128, Section 2, Academia Road Taipei 115 Taiwan
| | - Zhi-Geng Chen
- Genomics Research Center; Academia Sinica; No. 128, Section 2, Academia Road Taipei 115 Taiwan
| | - Chiao-Chu Ku
- Institute of Molecular Biology; Academia Sinica; No. 128, Section 2, Academia Road Taipei 115 Taiwan
| | - Chwan-Deng Hsiao
- Institute of Molecular Biology; Academia Sinica; No. 128, Section 2, Academia Road Taipei 115 Taiwan
| | - Chia-Lin Chyan
- Department of Chemistry; National Dong Hwa University; No. 1, Section 2, Da Hsueh Road, Shoufeng Hualien 974 Taiwan
| | - Shang-Cheng Hung
- Genomics Research Center; Academia Sinica; No. 128, Section 2, Academia Road Taipei 115 Taiwan
| |
Collapse
|
21
|
Huang TY, Irene D, Zulueta MML, Tai TJ, Lain SH, Cheng CP, Tsai PX, Lin SY, Chen ZG, Ku CC, Hsiao CD, Chyan CL, Hung SC. Structure of the Complex between a Heparan Sulfate Octasaccharide and Mycobacterial Heparin-Binding Hemagglutinin. Angew Chem Int Ed Engl 2017; 56:4192-4196. [PMID: 28294485 DOI: 10.1002/anie.201612518] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 02/11/2016] [Indexed: 11/06/2022]
Abstract
Heparin-binding hemagglutinin (HBHA) is a 199 amino acid virulence factor at the envelope of Mycobacterium tuberculosis that contributes to latent tuberculosis. The binding of HBHA to respiratory epithelial cells, which leads to extrapulmonary dissemination of the pathogen, is mediated by cell-surface heparan sulfate (HS). We report the structural characterization of the HBHA/HS complex by NMR spectroscopy. To develop a model for the molecular recognition, the first chemically synthesized uniformly 13 C- and 15 N-labeled HS octasaccharide and a uniformly 13 C- and 15 N-labeled form of HBHA were prepared. Residues 180-195 at the C-terminal region of HBHA show large chemical shift perturbation upon association with the octasaccharide. Molecular dynamics simulations conforming to the multidimensional NMR data revealed key electrostatic and even hydrophobic interactions between the binding partners that may aid in the development of agents targeting the binding event.
Collapse
Affiliation(s)
- Teng-Yi Huang
- Genomics Research Center, Academia Sinica, No. 128, Section 2, Academia Road, Taipei, 115, Taiwan
| | - Deli Irene
- Department of Chemistry, National Dong Hwa University, No. 1, Section 2, Da Hsueh Road, Shoufeng, Hualien, 974, Taiwan
| | - Medel Manuel L Zulueta
- Genomics Research Center, Academia Sinica, No. 128, Section 2, Academia Road, Taipei, 115, Taiwan
| | - Tzu-Jui Tai
- Department of Chemistry, National Dong Hwa University, No. 1, Section 2, Da Hsueh Road, Shoufeng, Hualien, 974, Taiwan
| | - Shih-Han Lain
- Department of Chemistry, National Dong Hwa University, No. 1, Section 2, Da Hsueh Road, Shoufeng, Hualien, 974, Taiwan
| | - Cheng-Po Cheng
- Genomics Research Center, Academia Sinica, No. 128, Section 2, Academia Road, Taipei, 115, Taiwan
| | - Ping-Xi Tsai
- Genomics Research Center, Academia Sinica, No. 128, Section 2, Academia Road, Taipei, 115, Taiwan
| | - Shu-Yi Lin
- Genomics Research Center, Academia Sinica, No. 128, Section 2, Academia Road, Taipei, 115, Taiwan
| | - Zhi-Geng Chen
- Genomics Research Center, Academia Sinica, No. 128, Section 2, Academia Road, Taipei, 115, Taiwan
| | - Chiao-Chu Ku
- Institute of Molecular Biology, Academia Sinica, No. 128, Section 2, Academia Road, Taipei, 115, Taiwan
| | - Chwan-Deng Hsiao
- Institute of Molecular Biology, Academia Sinica, No. 128, Section 2, Academia Road, Taipei, 115, Taiwan
| | - Chia-Lin Chyan
- Department of Chemistry, National Dong Hwa University, No. 1, Section 2, Da Hsueh Road, Shoufeng, Hualien, 974, Taiwan
| | - Shang-Cheng Hung
- Genomics Research Center, Academia Sinica, No. 128, Section 2, Academia Road, Taipei, 115, Taiwan
| |
Collapse
|
22
|
Gubbiotti MA, Vallet SD, Ricard-Blum S, Iozzo RV. Decorin interacting network: A comprehensive analysis of decorin-binding partners and their versatile functions. Matrix Biol 2016; 55:7-21. [PMID: 27693454 DOI: 10.1016/j.matbio.2016.09.009] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Decorin, a prototype small leucine-rich proteoglycan, regulates a vast array of cellular processes including collagen fibrillogenesis, wound repair, angiostasis, tumor growth, and autophagy. This functional versatility arises from a wide array of decorin/protein interactions also including interactions with its single glycosaminoglycan side chain. The decorin-binding partners encompass numerous categories ranging from extracellular matrix molecules to cell surface receptors to growth factors and enzymes. Despite the diversity of the decorin interacting network, two main roles emerge as prominent themes in decorin function: maintenance of cellular structure and outside-in signaling, culminating in anti-tumorigenic effects. Here we present contemporary knowledge regarding the decorin interacting network and discuss in detail the biological relevance of these pleiotropic interactions, some of which could be targeted by therapeutic interventions.
Collapse
Affiliation(s)
- Maria A Gubbiotti
- Department of Pathology, Anatomy, and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Sylvain D Vallet
- Pericellular and Extracellular Supramolecular Assemblies, Institute of Molecular and Supramolecular Chemistry and Biochemistry, University Claude Bernard, Lyon, France
| | - Sylvie Ricard-Blum
- Pericellular and Extracellular Supramolecular Assemblies, Institute of Molecular and Supramolecular Chemistry and Biochemistry, University Claude Bernard, Lyon, France
| | - Renato V Iozzo
- Department of Pathology, Anatomy, and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States.
| |
Collapse
|
23
|
Functional divergence of HBHA from Mycobacterium tuberculosis and its evolutionary relationship with TadA from Rhodococcus opacus. Biochimie 2016; 127:241-8. [DOI: 10.1016/j.biochi.2016.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 06/06/2016] [Indexed: 12/13/2022]
|
24
|
Zimmermann N, Saiga H, Houthuys E, Moura-Alves P, Koehler A, Bandermann S, Dorhoi A, Kaufmann SHE. Syndecans promote mycobacterial internalization by lung epithelial cells. Cell Microbiol 2016; 18:1846-1856. [PMID: 27279134 DOI: 10.1111/cmi.12627] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 05/11/2016] [Accepted: 06/05/2016] [Indexed: 01/16/2023]
Abstract
Pulmonary tuberculosis (TB) is an airborne disease caused by the intracellular bacterial pathogen Mycobacterium tuberculosis (Mtb). Alveolar epithelial cells and macrophages are the first point of contact for Mtb in the respiratory tract. However, the mechanisms of mycobacterial attachment to, and internalization by, nonprofessional phagocytes, such as epithelial cells, remain incompletely understood. We identified syndecan 4 (Sdc4) as mycobacterial attachment receptor on alveolar epithelial cells. Sdc4 mRNA expression was increased in human and mouse alveolar epithelial cells after mycobacterial infection. Sdc4 knockdown in alveolar epithelial cells or blocking with anti-Sdc4 antibody reduced mycobacterial attachment and internalization. At the molecular level, interactions between epithelial cells and mycobacteria involved host Sdc and the mycobacterial heparin-binding hemagglutinin adhesin. In vivo, Sdc1/Sdc4 double-knockout mice were more resistant to Mtb colonization of the lung. Our work reveals a role for distinct Sdcs in promoting mycobacterial entry into alveolar epithelial cells with impact on outcome of TB disease.
Collapse
Affiliation(s)
- Natalie Zimmermann
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany.,Research Group of Molecular Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Hiroyuki Saiga
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Erica Houthuys
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Pedro Moura-Alves
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Anne Koehler
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Silke Bandermann
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Anca Dorhoi
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Stefan H E Kaufmann
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| |
Collapse
|
25
|
Govender VS, Ramsugit S, Pillay M. Mycobacterium tuberculosis adhesins: potential biomarkers as anti-tuberculosis therapeutic and diagnostic targets. Microbiology (Reading) 2014; 160:1821-1831. [DOI: 10.1099/mic.0.082206-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Adhesion to host cells is a precursor to host colonization and evasion of the host immune response. Conversely, it triggers the induction of the immune response, a process vital to the host’s defence against infection. Adhesins are microbial cell surface molecules or structures that mediate the attachment of the microbe to host cells and thus the host–pathogen interaction. They also play a crucial role in bacterial aggregation and biofilm formation. In this review, we discuss the role of adhesins in the pathogenesis of the aetiological agent of tuberculosis, Mycobacterium tuberculosis. We also provide insight into the structure and characteristics of some of the characterized and putative M. tuberculosis adhesins. Finally, we examine the potential of adhesins as targets for the development of tuberculosis control strategies.
Collapse
Affiliation(s)
- Viveshree S. Govender
- Medical Microbiology and Infection Control, University of KwaZulu-Natal, Durban, South Africa
| | - Saiyur Ramsugit
- Medical Microbiology and Infection Control, University of KwaZulu-Natal, Durban, South Africa
| | - Manormoney Pillay
- Medical Microbiology and Infection Control, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
26
|
Dias AA, Raze D, de Lima CS, Marques MADM, Drobecq H, Debrie AS, Ribeiro-Guimarães ML, Biet F, Pessolani MCV. Mycobacterial laminin-binding histone-like protein mediates collagen-dependent cytoadherence. Mem Inst Oswaldo Cruz 2013; 107 Suppl 1:174-82. [PMID: 23283469 DOI: 10.1590/s0074-02762012000900025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Accepted: 07/17/2012] [Indexed: 11/22/2022] Open
Abstract
When grown in the presence of exogenous collagen I, Mycobacterium bovis BCG was shown to form clumps. Scanning electron microscopy examination of these clumps revealed the presence of collagen fibres cross-linking the bacilli. Since collagen is a major constituent of the eukaryotic extracellular matrices, we assayed BCG cytoadherence in the presence of exogenous collagen I. Collagen increased the interaction of the bacilli with A549 type II pneumocytes or U937 macrophages, suggesting that BCG is able to recruit collagen to facilitate its attachment to host cells. Using an affinity chromatography approach, we have isolated a BCG collagen-binding protein corresponding to the previously described mycobacterial laminin-binding histone-like protein (LBP/Hlp), a highly conserved protein associated with the mycobacterial cell wall. Moreover, Mycobacterium leprae LBP/Hlp, a well-characterized adhesin, was also able to bind collagen I. Finally, using recombinant fragments of M. leprae LBP/Hlp, we mapped the collagen-binding activity within the C-terminal domain of the adhesin. Since this protein was already shown to be involved in the recognition of laminin and heparan sulphate-containing proteoglycans, the present observations reinforce the adhesive activities of LBP/Hlp, which can be therefore considered as a multifaceted mycobacterial adhesin, playing an important role in both leprosy and tuberculosis pathogenesis.
Collapse
Affiliation(s)
- André Alves Dias
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brasil
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Tsolaki AG, Nagy J, Leiva S, Kishore U, Rosenkrands I, Robertson BD. Mycobacterium tuberculosis antigen 85B and ESAT-6 expressed as a recombinant fusion protein in Mycobacterium smegmatis elicits cell-mediated immune response in a murine vaccination model. Mol Immunol 2013; 54:278-83. [DOI: 10.1016/j.molimm.2012.11.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 11/22/2012] [Accepted: 11/27/2012] [Indexed: 11/25/2022]
|
28
|
Cronje L, Warren R, Klumperman B. pH-dependent adhesion of mycobacteria to surface-modified polymer nanofibers. J Mater Chem B 2013; 1:6608-6618. [DOI: 10.1039/c3tb21393e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Abhinav KV, Sharma A, Vijayan M. Identification of mycobacterial lectins from genomic data. Proteins 2012. [DOI: 10.1002/prot.24219] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
30
|
Forrellad MA, Klepp LI, Gioffré A, Sabio y García J, Morbidoni HR, de la Paz Santangelo M, Cataldi AA, Bigi F. Virulence factors of the Mycobacterium tuberculosis complex. Virulence 2012; 4:3-66. [PMID: 23076359 PMCID: PMC3544749 DOI: 10.4161/viru.22329] [Citation(s) in RCA: 379] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The Mycobacterium tuberculosis complex (MTBC) consists of closely related species that cause tuberculosis in both humans and animals. This illness, still today, remains to be one of the leading causes of morbidity and mortality throughout the world. The mycobacteria enter the host by air, and, once in the lungs, are phagocytated by macrophages. This may lead to the rapid elimination of the bacillus or to the triggering of an active tuberculosis infection. A large number of different virulence factors have evolved in MTBC members as a response to the host immune reaction. The aim of this review is to describe the bacterial genes/proteins that are essential for the virulence of MTBC species, and that have been demonstrated in an in vivo model of infection. Knowledge of MTBC virulence factors is essential for the development of new vaccines and drugs to help manage the disease toward an increasingly more tuberculosis-free world.
Collapse
|
31
|
Esposito C, Cantisani M, D'Auria G, Falcigno L, Pedone E, Galdiero S, Berisio R. Mapping key interactions in the dimerization process of HBHA fromMycobacterium tuberculosis, insights into bacterial agglutination. FEBS Lett 2012; 586:659-67. [DOI: 10.1016/j.febslet.2012.01.047] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 12/28/2011] [Accepted: 01/18/2012] [Indexed: 11/16/2022]
|
32
|
Heparin-binding hemagglutinin HBHA from Mycobacterium tuberculosis affects actin polymerisation. Biochem Biophys Res Commun 2011; 410:339-44. [DOI: 10.1016/j.bbrc.2011.05.159] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 05/31/2011] [Indexed: 11/23/2022]
|
33
|
Delogu G, Chiacchio T, Vanini V, Butera O, Cuzzi G, Bua A, Molicotti P, Zanetti S, Lauria FN, Grisetti S, Magnavita N, Fadda G, Girardi E, Goletti D. Methylated HBHA produced in M. smegmatis discriminates between active and non-active tuberculosis disease among RD1-responders. PLoS One 2011; 6:e18315. [PMID: 21479248 PMCID: PMC3066236 DOI: 10.1371/journal.pone.0018315] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2010] [Accepted: 02/24/2011] [Indexed: 11/25/2022] Open
Abstract
Background A challenge in tuberculosis (TB) research is to develop a new immunological test that can help distinguish, among subjects responsive to QuantiFERON TB Gold In tube (QFT-IT), those who are able to control Mtb replication (remote LTBI, recent infection and past TB) from those who cannot (active TB disease). IFN-γ response to the Heparin-binding-hemagglutinin (HBHA) of Mtb has been associated with LTBI, but the cumbersome procedures of purifying the methylated and immunological active form of the protein from Mtb or M. bovis Bacillus Calmette et Guerin (BCG) have prevented its implementation in a diagnostic test. Therefore, the aim of the present study was to evaluate the IFN-γ response to methylated HBHA of Mtb produced in M. smegmatis (rHBHAms) in individuals at different stages of TB who scored positive to QFT-IT. Methodology/Principal Findings 87 individuals at different stages of TB who scored positive to QFT-IT were selected. IFN-γ response to in vitro whole blood stimulation with rHBHAms was evaluated by short-term and long-term tests and detected by ELISA or flow cytometry. We demonstrated that the IFN-γ response to rHBHAms is mediated by CD4+ T-cells with an effector-memory phenotype. This response, evaluated by short-term-tests, is significantly lower in active TB than in remote LTBI (p = 0.0010) and past TB (p = 0.0152). These results were confirmed by long-term tests. The qualitative data confirmed that IFN-γ responses higher than the cut-off point identified by ROC analysis are associated with the status of non-active disease. Conclusions In this study we show that the T-cell response to a recombinant and methylated HBHA of Mtb produced in M. smegmatis is useful to discriminate between active and non-active TB disease among those responsive to QFT-IT in a whole blood system. Further studies are needed to improve the accuracy of the assay.
Collapse
Affiliation(s)
- Giovanni Delogu
- Istituto di Microbiologia, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Teresa Chiacchio
- Translational Research Unit, Department of Epidemiology and Preclinical Research, L. Spallanzani National Institute for Infectious Diseases (INMI), Rome, Italy
| | - Valentina Vanini
- Translational Research Unit, Department of Epidemiology and Preclinical Research, L. Spallanzani National Institute for Infectious Diseases (INMI), Rome, Italy
| | - Ornella Butera
- Translational Research Unit, Department of Epidemiology and Preclinical Research, L. Spallanzani National Institute for Infectious Diseases (INMI), Rome, Italy
| | - Gilda Cuzzi
- Translational Research Unit, Department of Epidemiology and Preclinical Research, L. Spallanzani National Institute for Infectious Diseases (INMI), Rome, Italy
| | - Alessandra Bua
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Paola Molicotti
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Stefania Zanetti
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Francesco Nicola Lauria
- Division of Infectious Diseases of the Respiratory Tract, Department of Clinical Research, INMI, Rome, Italy
| | - Susanna Grisetti
- Third Division of the Clinic, Department of Clinical Research, INMI, Rome, Italy
| | - Nicola Magnavita
- Istituto di Medicina del Lavoro, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Giovanni Fadda
- Istituto di Microbiologia, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Enrico Girardi
- Department of Epidemiology and Preclinical Research, INMI, Rome, Italy
| | - Delia Goletti
- Translational Research Unit, Department of Epidemiology and Preclinical Research, L. Spallanzani National Institute for Infectious Diseases (INMI), Rome, Italy
- * E-mail:
| |
Collapse
|
34
|
Weigoldt M, Meens J, Doll K, Fritsch I, Möbius P, Goethe R, Gerlach GF. Differential proteome analysis of Mycobacterium avium subsp. paratuberculosis grown in vitro and isolated from cases of clinical Johne's disease. Microbiology (Reading) 2011; 157:557-565. [DOI: 10.1099/mic.0.044859-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Bovine Johne's disease (paratuberculosis), caused by Mycobacterium avium subspecies paratuberculosis, poses a significant economic problem to the beef and dairy industry worldwide. Despite its relevance, however, pathogenesis of Johne's disease is still only partially resolved. Since mycobacterial membrane proteins expressed during infection are likely to play an important role in pathogenesis, membrane-enriched fractions, namely mucosa-derived membranes (MDM) and culture-derived membranes (CDM), of M. avium subsp. paratuberculosis from three cows with clinical paratuberculosis were investigated. An initial analysis by 2D difference gel electrophoresis (2D DIGE) and MALDI-TOF-MS analysis revealed four differentially expressed proteins with only one predicted membrane protein. Due to this limited outcome, membrane preparations were subjected to a tube–gel trypsin digestion and investigated by using nanoflow-liquid-chromatography-coupled tandem MS. Based on this approach a total of 212 proteins were detected in MDM including 32 proteins of bovine origin; 275 proteins were detected in CDM; 59 % of MDM and CDM proteins were predicted to be membrane-associated. A total of 130 of the proteins were detected in both MDM and CDM and 48 predicted membrane proteins were detected in MDM from at least two cows. Four of these proteins were not detected in CDM, implying differential expression in the host. All membrane-associated proteins, especially the four identified as being differentially expressed, might be relevant targets for further analyses into the pathogenesis of bovine paratuberculosis.
Collapse
Affiliation(s)
- Mathias Weigoldt
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Jochen Meens
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Klaus Doll
- Clinic for Ruminants and Swine (Internal Medicine and Surgery), Justus-Liebig-University, Giessen, Germany
| | - Isabel Fritsch
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Jena, Germany
| | - Petra Möbius
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Jena, Germany
| | - Ralph Goethe
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Gerald. F. Gerlach
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
35
|
Influence of maternal gestational treatment with mycobacterial antigens on postnatal immunity in an experimental murine model. PLoS One 2010; 5:e9699. [PMID: 20300629 PMCID: PMC2837747 DOI: 10.1371/journal.pone.0009699] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 02/14/2010] [Indexed: 12/23/2022] Open
Abstract
Background It has been proposed that the immune system could be primed as early as during the fetal life and this might have an impact on postnatal vaccination. Therefore, we addressed in murine models whether gestational treatment with mycobacterial antigens could induce better immune responses in the postnatal life. Methods/Findings BALB/c mice were treated subcutaneously (s.c.) at the second week of gestation with antigen (Ag)85A or heparin-binding hemagglutinin (HBHA) in the absence of adjuvant. Following birth, offspring mice were immunized intranasally (i.n.) with the same antigens formulated with the adjuvant cholera toxin (CT) at week 1 and week 4. One week after the last immunization, we assessed antigen-specific recall interferon gamma (IFN-γ) responses by in vitro restimulation of lung-derived lymphocytes. Protection against infection was assessed by challenge with high dose Mycobacterium bovis Bacille Calmette-Guérin (BCG) given i.n. We found that recall IFN-γ responses were higher in the offspring born to the treated mother compared to the untreated-mother. More importantly, we observed that the offspring born to the treated mother controlled infection better than the offspring born to the untreated mother. Since the gestational treatment was done in absence of adjuvant, essentially there was no antibody production observed in the pregnant mice and therefore no influence of maternal antibodies was expected. We hypothesized that the effect of maternal treatment with antigen on the offspring occurred due to antigen transportation through placenta. To trace the antigens, we conjugated fluorescent nanocrystals with Ag85A (Qdot-ITK-Ag85A). After inoculation in the pregnant mice, Qdot-ITK-Ag85A conjugates were detected in the liver, spleen of pregnant females and in all the fetuses and placentas examined. Conclusion The fetal immune system could be primed in utero by mycobacterial antigens transported through the placenta.
Collapse
|
36
|
Esposito C, Carullo P, Pedone E, Graziano G, Del Vecchio P, Berisio R. Dimerisation and structural integrity of Heparin Binding Hemagglutinin A from Mycobacterium tuberculosis: implications for bacterial agglutination. FEBS Lett 2010; 584:1091-6. [PMID: 20178790 DOI: 10.1016/j.febslet.2010.02.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 02/12/2010] [Accepted: 02/16/2010] [Indexed: 11/19/2022]
Abstract
Heparin Binding Hemagglutinin A (HBHA) is hitherto the sole virulence factor associated with tuberculosis dissemination from the lungs, the site of primary infection, to epithelial cells. We have previously reported the solution structure of HBHA, a dimeric and elongated molecule. Since oligomerisation of HBHA is associated with its ability to induce bacterial agglutination, we investigated this process using experimental and modelling techniques. We here identified a short segment of HBHA whose presence is mandatory for the stability of folded conformation, whose denaturation is a reversible two-state process. Our data suggest that agglutination-driven cell-cell interactions do not occur via association of HBHA monomers, nor via association of HBHA dimers and open the scenario to a possible trans-dimerisation process.
Collapse
Affiliation(s)
- Carla Esposito
- Istitute of Biostructures and Bioimaging, CNR, Naples, Italy
| | | | | | | | | | | |
Collapse
|
37
|
Dupres V, Verbelen C, Raze D, Lafont F, Dufrêne YF. Force spectroscopy of the interaction between mycobacterial adhesins and heparan sulphate proteoglycan receptors. Chemphyschem 2009; 10:1672-5. [PMID: 19475637 DOI: 10.1002/cphc.200900208] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Understanding the molecular interactions between bacterial adhesion proteins (adhesins) and their receptors is essential for elucidating the molecular mechanisms of bacterial pathogenesis. Here, atomic force microscopy (AFM) is used to explore the specific interactions between the heparin-binding hemagglutinin (HBHA) from Mycobacterium tuberculosis, and heparan sulphate proteoglycan (HSPG) receptors on live A549 pneumocytes. First, we show that the specific binding forces between single HBHA-HSPG pairs, 57+/-16 pN, are similar to the forces measured earlier between HBHA and heparin molecules. Second, we mapped the distribution of single HSPG receptors on the surface of A549 cells, revealing that the proteins are widely and homogeneously exposed. Third, we observed force curves with constant force plateaus at large pulling velocities, reflecting the extraction of membrane tethers or nanotubes. These single-molecule measurements provide new avenues in pathogenesis research, particularly for elucidating the molecular basis of pathogen-host interactions.
Collapse
Affiliation(s)
- Vincent Dupres
- Unité de Chimie des Interfaces, Université Catholique de Louvain, Croix du Sud 2/18, B-1348 Louvain-la-Neuve, Belgium
| | | | | | | | | |
Collapse
|
38
|
Rahman MJ, Fernández C. Neonatal vaccination with Mycobacterium bovis BCG: potential effects as a priming agent shown in a heterologous prime-boost immunization protocol. Vaccine 2009; 27:4038-46. [PMID: 19379788 DOI: 10.1016/j.vaccine.2009.04.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Revised: 03/02/2009] [Accepted: 04/09/2009] [Indexed: 12/20/2022]
Abstract
In general prime-boost immunization including Mycobacterium bovis bacille Calmette-Guérin (BCG) as a priming agent has been a recent successful strategy in animal models. However, the effects of BCG as a priming vaccine have not been investigated systematically. Thus, we modelled a heterologous prime-boost immunization in mice with BCG administered at the neonatal period and mycobacterial heparin-binding hemagglutinin (HBHA) at adult ages. Mice were challenged with a high dose of BCG (10(7) colony forming units) via intranasal (i.n.) route. We addressed whether the route of administration and addition of adjuvants could be of importance in HBHA-immunizations while animals were primed with BCG. Our results showed that prime-boost immunization induced significantly higher levels of protection in animals compared to the group vaccinated with BCG alone. Most importantly, the levels of protection were comparable between the i.n. and subcutaneous (s.c.) boostings with native (n) HBHA and the coadministration of adjuvant was not necessary. Moreover, priming with BCG improved also the protection promoted by the recombinant form of HBHA, even if to a lower degree to that observed after nHBHA boosting. In general, vaccination with BCG prior to the HBHA administration was found to contribute in two ways: it primed the immune system and provided adjuvant effect. We discuss the several outcomes following neonatal BCG priming and HBHA boosting for better protection against tuberculosis.
Collapse
Affiliation(s)
- Muhammad Jubayer Rahman
- Department of Immunology, Wenner-Gren Institute, Stockholm University, S-10691 Stockholm, Sweden.
| | | |
Collapse
|
39
|
Interaction of the mycobacterial heparin-binding hemagglutinin with actin, as evidenced by single-molecule force spectroscopy. J Bacteriol 2008; 190:7614-20. [PMID: 18835984 DOI: 10.1128/jb.00974-08] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Although Mycobacterium tuberculosis and related species are considered to be typical endosomal pathogens, recent studies have suggested that mycobacteria can be present in the cytoplasm of infected cells and cause cytoskeleton rearrangements, the mechanisms of which remain unknown. Here, we used single-molecule force spectroscopy to demonstrate that the heparin-binding hemagglutinin (HBHA), a surface adhesin from Mycobacterium tuberculosis displaying sequence similarities with actin-binding proteins, is able to bind to actin. Force curves recorded between actin and the coiled-coil, N-terminal domain of HBHA showed a bimodal distribution of binding forces reflecting the detection of single and double HBHA-actin interactions. Force curves obtained between actin and the lysine-rich C-terminal domain of HBHA showed a broader distribution of binding events, suggesting they originate primarily from intermolecular electrostatic bridges between cationic HBHA domains and anionic actin residues. We also explored the dynamics of the HBHA-actin interaction, showing that the binding force and binding frequency increased with the pulling speed and contact time, respectively. Taken together, our data indicate that HBHA is able to specifically bind actin, via both its N-terminal and C-terminal domains, strongly suggesting a role of the HBHA-actin interaction in the pathogenesis of mycobacterial diseases.
Collapse
|
40
|
Guerrero GG, Feunou F P, Locht C. The coiled-coil N-terminal domain of the heparin-binding haemagglutinin is required for the humoral and cellular immune responses in mice. Mol Immunol 2008; 46:116-24. [PMID: 18801574 DOI: 10.1016/j.molimm.2008.07.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Accepted: 07/10/2008] [Indexed: 11/17/2022]
Abstract
Heparin-binding haemagglutinin (HBHA) is a 28-kDa mycobacterial adhesin, composed of three functional domains. Previous work has shown that the C-terminal methylated domain is important for adherence, and it is involved in protective T cell immunity in mouse models. However, the role of the coiled-coil N-terminal domain of HBHA in its overall immunogenic capacity remains elusive. Herein, a comparison of the antibody and cellular immune responses after subcutaneous and intranasal immunization of mice with HBHA (native and recombinant) revealed that the methylation pattern is important but not essential for this property. Subcutaneous immunization of mice with a truncated protein, rHBHADeltaC, which lacks the C-terminal methylated domain, was sufficient to trigger humoral and cellular immune responses to HBHA in mice. Altogether we provide evidence that the coiled-coil N-terminal domain is required for HBHA immunogenicity in vivo.
Collapse
|
41
|
Esposito C, Pethoukov MV, Svergun DI, Ruggiero A, Pedone C, Pedone E, Berisio R. Evidence for an elongated dimeric structure of heparin-binding hemagglutinin from Mycobacterium tuberculosis. J Bacteriol 2008; 190:4749-53. [PMID: 18441065 PMCID: PMC2446800 DOI: 10.1128/jb.01988-07] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Accepted: 04/13/2008] [Indexed: 11/20/2022] Open
Abstract
Heparin-binding hemagglutinin (HBHA) is a virulence factor of tuberculosis which is responsible for extrapulmonary dissemination of this disease. A thorough biochemical characterization of HBHA has provided experimental evidence of a coiled-coil nature of HBHA. These data, together with the low-resolution structures of a full-length form and a truncated form of HBHA obtained by small-angle X-ray scattering, have unambiguously indicated that HBHA has a dimeric structure with an elongated shape.
Collapse
Affiliation(s)
- Carla Esposito
- Istituto di Biostrutture e Bioimmagini, C.N.R., I-80134, Napoli, Italy
| | | | | | | | | | | | | |
Collapse
|
42
|
Portugal MI, Todeschini AR, de Lima CS, Silva CAM, Mohana-Borges R, Ottenhoff THM, Mendonça-Previato L, Previato JO, Pessolani MCV. Characterization of two heparan sulphate-binding sites in the mycobacterial adhesin Hlp. BMC Microbiol 2008; 8:75. [PMID: 18482453 PMCID: PMC2409343 DOI: 10.1186/1471-2180-8-75] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Accepted: 05/15/2008] [Indexed: 11/10/2022] Open
Abstract
Background The histone-like Hlp protein is emerging as a key component in mycobacterial pathogenesis, being involved in the initial events of host colonization by interacting with laminin and glycosaminoglycans (GAGs). In the present study, nuclear magnetic resonance (NMR) was used to map the binding site(s) of Hlp to heparan sulfate and identify the nature of the amino acid residues directly involved in this interaction. Results The capacity of a panel of 30 mer synthetic peptides covering the full length of Hlp to bind to heparin/heparan sulfate was analyzed by solid phase assays, NMR, and affinity chromatography. An additional active region between the residues Gly46 and Ala60 was defined at the N-terminal domain of Hlp, expanding the previously defined heparin-binding site between Thr31 and Phe50. Additionally, the C-terminus, rich in Lys residues, was confirmed as another heparan sulfate binding region. The amino acids in Hlp identified as mediators in the interaction with heparan sulfate were Arg, Val, Ile, Lys, Phe, and Thr. Conclusion Our data indicate that Hlp interacts with heparan sulfate through two distinct regions of the protein. Both heparan sulfate-binding regions here defined are preserved in all mycobacterial Hlp homologues that have been sequenced, suggesting important but possibly divergent roles for this surface-exposed protein in both pathogenic and saprophic species.
Collapse
Affiliation(s)
- Michelle I Portugal
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, FIOCRUZ, Av, Brasil 4365, Manguinhos, Rio de Janeiro, RJ 21045-900, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Mucosal immunization with recombinant heparin-binding haemagglutinin adhesin suppresses extrapulmonary dissemination of Mycobacterium bovis bacillus Calmette-Guérin (BCG) in infected mice. Vaccine 2007; 26:924-32. [PMID: 18192091 DOI: 10.1016/j.vaccine.2007.12.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 11/12/2007] [Accepted: 12/05/2007] [Indexed: 12/28/2022]
Abstract
It is generally accepted that cellular immunity plays a critical role in the protection against Mycobacterium tuberculosis, an intracellular pathogen. Recently, however, an increasing number of reports indicate the important contribution of humoral immunity against mycobacterial infection. Since M. tuberculosis establishes its primary lesion in the lung, induction of humoral immunity in the airway tract by mucosal immunization regime could provide protective immunity against tuberculosis. In this study, mycobacterial heparin-binding haemagglutinin adhesin (HBHA) was used as an immunization antigen because HBHA is an essential virulence factor required for the infection of lung epithelial cells and extrapulmonary dissemination of mycobacteria. The effects of intranasal immunization with a yeast-expressed recombinant (r) HBHA co-administered with a mucosal adjuvant cholera toxin (CT) on the induction of humoral and cellular immunity were examined, and its protective efficacy against pulmonary challenge infection with Mycobacterium bovis bacillus Calmette-Guérin (BCG) was evaluated. HBHA-specific antibodies were induced in serum and airway tract of immunized mice, which specifically recognized native HBHA expressed on M. bovis BCG. Th1-type immunity against mycobacterial antigens was also enhanced in the lung of immunized mice after pulmonary BCG infection. Furthermore, the immunization suppressed bacterial load in the spleen after pulmonary BCG infection. These results indicate that systemic and local humoral immunity induced by the HBHA-based mucosal vaccine impairs extrapulmonary dissemination, thus providing immune protection against mycobacterial infection.
Collapse
|
44
|
Locht C, Rouanet C, Hougardy JM, Mascart F. How a different look at latency can help to develop novel diagnostics and vaccines against tuberculosis. Expert Opin Biol Ther 2007; 7:1665-77. [PMID: 17961090 DOI: 10.1517/14712598.7.11.1665] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Mycobacterium tuberculosis is one of the most successful human pathogens. It kills every year approximately 1.5 - 2 million people, and at present a third of the human population is estimated to be infected. Fortunately, only a relatively small proportion of the infected individuals will progress to active disease, and most will maintain a latent infection. Although a latent infection is clinically silent and not contagious, it can reactivate to cause highly contagious pulmonary tuberculosis, the most prevalent form of the disease in adults. Therefore, a thorough understanding of latency and reactivation may help to develop novel control strategies against tuberculosis. The most widely held view is that the mycobacteria are imprisoned in granulomatous structures during latency, where they can survive in a non-replicating, dormant form until reactivation occurs. However, there is no hard data to sustain that the reactivating mycobacteria are indeed those that laid dormant within the granulomas. In this review an alternative model, based on evidence from early studies, as well as recent reports is presented, in which the latent mycobacteria reside outside granulomas, within non-macrophage cell types throughout the infected body. Potential implications for new diagnostic and vaccine design are discussed.
Collapse
|
45
|
Single-molecule force spectroscopy of mycobacterial adhesin-adhesin interactions. J Bacteriol 2007; 189:8801-6. [PMID: 17933894 DOI: 10.1128/jb.01299-07] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The heparin-binding hemagglutinin (HBHA) is one of the few virulence factors identified for Mycobacterium tuberculosis. It is a surface-associated adhesin that expresses a number of different activities, including mycobacterial adhesion to nonphagocytic cells and microbial aggregation. Previous evidence indicated that HBHA is likely to form homodimers or homopolymers via a predicted coiled-coil region located within the N-terminal portion of the molecule. Here, we used single-molecule atomic-force microscopy to measure individual homophilic HBHA-HBHA interaction forces. Force curves recorded between tips and supports derivatized with HBHA proteins exposing their N-terminal domains showed a bimodal distribution of binding forces reflecting the formation of dimers or multimers. Moreover, the binding peaks showed elongation forces that were consistent with the unfolding of alpha-helical coiled-coil structures. By contrast, force curves obtained for proteins exposing their lysine-rich C-terminal domains showed a broader distribution of binding events, suggesting that they originate primarily from intermolecular electrostatic bridges between cationic and anionic residues rather than from specific coiled-coil interactions. Notably, similar homophilic HBHA-HBHA interactions were demonstrated on live mycobacteria producing HBHA, while they were not observed on an HBHA-deficient mutant. Together with the fact that HBHA mediates bacterial aggregation, these observations suggest that the single homophilic HBHA interactions measured here reflect the formation of multimers that may promote mycobacterial aggregation.
Collapse
|
46
|
Host H, Drobecq H, Locht C, Menozzi FD. Enzymatic methylation of the Mycobacterium tuberculosis heparin-binding haemagglutinin. FEMS Microbiol Lett 2007; 268:144-50. [PMID: 17263844 DOI: 10.1111/j.1574-6968.2007.00636.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Heparin-binding haemagglutinin (HBHA) is an important Mycobacterium tuberculosis virulence factor. It displays a complex methylation pattern in its C-terminal, functional domain, which protects this domain against proteolysis. Here, it is shown that HBHA methylation is catalysed by mycobacterial enzymes and a radio-enzymatic and a nonradioactive enzyme assay are described, based on the recognition of methylated HBHA by monoclonal antibodies. MS analysis of in vitro methylated HBHA shows a complex methylation pattern similar to that of naturally methylated HBHA. Using recombinant hybrid molecules as acceptor substrates, it was found that the N-terminal domain of HBHA is not required for recognition by the HBHA-methyltransferase(s), although it is required for in vivo methylation.
Collapse
|
47
|
Biet F, Angela de Melo Marques M, Grayon M, Xavier da Silveira EK, Brennan PJ, Drobecq H, Raze D, Vidal Pessolani MC, Locht C, Menozzi FD. Mycobacterium smegmatis produces an HBHA homologue which is not involved in epithelial adherence. Microbes Infect 2006; 9:175-82. [PMID: 17208488 DOI: 10.1016/j.micinf.2006.11.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Revised: 11/06/2006] [Accepted: 11/07/2006] [Indexed: 11/25/2022]
Abstract
Mycobacterium tuberculosis produces heparin-binding hemagglutinin (TB-HBHA), an adhesin involved in binding to non-professional phagocytes and in extrapulmonary dissemination. TB-HBHA binds sulphated glycoconjugates through its C-terminal lysine-rich domain and can be purified by heparin-Sepharose chromatography. Homologues of HBHA are found in other pathogenic mycobacteria, but previous investigations failed to demonstrate them in non-pathogenic Mycobacterium smegmatis. We identified a gene encoding a HBHA-like protein, named MS-HBHA, from the complete M. smegmatis genome. The deduced MS-HBHA amino acid sequence revealed 68% identity with that of TB-HBHA and contains lysine-rich repeats in its C-terminal domain. However, in contrast to TB-HBHA, the lysine-rich domain of MS-HBHA is preceded by a stretch of acidic residues. This difference likely explains the low affinity for heparin displayed by MS-HBHA compared to TB-HBHA. Isolation by heparin-Sepharose chromatography procedure and mass spectrometry analysis indicated that MS-HBHA, similar to TB-HBHA contains several methylated lysine residues in its C-terminal domain. Although MS-HBHA is associated with M. smegmatis cell wall fractions, it does not seem to play a role in epithelial adherence and its function remains unknown. We therefore conclude that TB-HBHA may have evolved as an adhesin in pathogenic mycobacteria from a homolog that serves a different function in a saprophytic mycobacterium.
Collapse
MESH Headings
- Adhesins, Bacterial/biosynthesis
- Adhesins, Bacterial/genetics
- Adhesins, Bacterial/isolation & purification
- Amino Acid Sequence
- Bacterial Adhesion
- Bacterial Proteins/biosynthesis
- Bacterial Proteins/genetics
- Bacterial Proteins/isolation & purification
- Cell Fractionation
- Cell Line
- Cell Wall/chemistry
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- Epithelial Cells/microbiology
- Genome, Bacterial/genetics
- Humans
- Lectins/biosynthesis
- Lectins/genetics
- Lectins/isolation & purification
- Mass Spectrometry
- Molecular Sequence Data
- Mycobacterium smegmatis/genetics
- Mycobacterium smegmatis/physiology
- Protein Structure, Tertiary/genetics
- Repetitive Sequences, Amino Acid/genetics
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Franck Biet
- UR1282, Infectiologie Animale, Santé Publique (IASP-311), INRA Centre de Tours, F-37380 Nouzilly France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Shin AR, Lee KS, Lee JS, Kim SY, Song CH, Jung SB, Yang CS, Jo EK, Park JK, Paik TH, Kim HJ. Mycobacterium tuberculosis HBHA protein reacts strongly with the serum immunoglobulin M of tuberculosis patients. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2006; 13:869-75. [PMID: 16893986 PMCID: PMC1539112 DOI: 10.1128/cvi.00103-06] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Identification and characterization of serologically active mycobacterial antigens are prerequisites for the development of diagnostic reagents. We examined the humoral immune responses of active tuberculosis (TB) patients against Triton-soluble proteins extracted from Mycobacterium tuberculosis by immunoblotting. A 29-kDa protein reacted with immunoglobulin M (IgM) in the pooled sera of the patients, and its N-terminal amino acid sequence matched that of the heparin-binding hemagglutinin (HBHA). Recombinant full-length HBHA was expressed in Escherichia coli (rEC-HBHA) and M. smegmatis (rMS-HBHA). In immunoblot analysis, the IgM antibodies of the TB patients reacted strongly with rMS-HBHA but not with rEC-HBHA, whereas the IgG antibodies of these patients reacted weakly with both recombinant HBHA proteins. In enzyme-linked immunosorbent assay analysis using rMS-HBHA and 85B as antigens, the mean levels and sensitivities of the anti-HBHA IgM antibodies of the TB patients were significantly higher than those of the anti-antigen 85B IgM antibodies, while the IgG antibodies showed the opposite results. Of interest in this respect, the pooled sera from the TB patients that contained anti-HBHA IgM antibodies neutralized the entry of M. tuberculosis into epithelial cells. These findings suggest that IgM antibody to HBHA may play a role in protection against extrapulmonary dissemination.
Collapse
Affiliation(s)
- A-Rum Shin
- Department of Microbiology, College of Medicine, Chungnam National University, 6 Muwha-Dong, Jung-Ku, Daejeon 301-747, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Delogu G, Sanguinetti M, Posteraro B, Rocca S, Zanetti S, Fadda G. The hbhA gene of Mycobacterium tuberculosis is specifically upregulated in the lungs but not in the spleens of aerogenically infected mice. Infect Immun 2006; 74:3006-11. [PMID: 16622240 PMCID: PMC1459695 DOI: 10.1128/iai.74.5.3006-3011.2006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report that hbhA is differentially regulated during Mycobacterium tuberculosis infection. Upregulation was observed in epithelial cell infection but not in macrophage infection and in the lungs but not in the spleens of infected mice, and it was greater during the early steps of infection, when bacilli disseminate from the site of primary infection.
Collapse
Affiliation(s)
- Giovanni Delogu
- Institute of Microbiology, Catholic University of the Sacred Hearth, Largo Gemelli 8, 00168 Rome, Italy.
| | | | | | | | | | | |
Collapse
|
50
|
Soares de Lima C, Zulianello L, Marques MADM, Kim H, Portugal MI, Antunes SL, Menozzi FD, Ottenhoff THM, Brennan PJ, Pessolani MCV. Mapping the laminin-binding and adhesive domain of the cell surface-associated Hlp/LBP protein from Mycobacterium leprae. Microbes Infect 2006; 7:1097-109. [PMID: 15919224 DOI: 10.1016/j.micinf.2005.02.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2004] [Revised: 02/28/2005] [Accepted: 02/28/2005] [Indexed: 10/25/2022]
Abstract
Binding of Mycobacterium leprae to and invasion of Schwann cells (SC) represent a crucial step that initiates nerve damage in leprosy. We and others have described that M. leprae colonization of the peripheral nerve system may be mediated in part by a surface-exposed histone-like protein (Hlp), characterized as a laminin-binding protein (LBP). Hlp/LBP has also been shown to play a role in the binding of mycobacteria to alveolar epithelial cells and macrophages. In the present study we report that M. leprae expresses Hlp/LBP protein during the course of human infection. Additionally, we analyzed the interaction of Hlp/LBP with the extracellular matrix and host cell surface. We show that Hlp/LBP, besides laminin, also binds heparin and heparan sulfate. Testing truncated recombinant Hlp molecules corresponding to the N-terminal (rHlp-N) and the C-terminal (rHlp-C) domains of the protein, we established that interaction of Hlp/LBP with laminin-2 and heparin is mainly mediated by the C-terminal domain of the protein. Moreover, the same domain was found to be involved in Hlp/LBP-mediating bacterial binding to human SC. Finally, evidence is shown suggesting that M. leprae produces a post-translationally modified Hlp/LBP containing methyllysine residues. Methylation of the lysine residues, however, seems not to affect the adhesive properties of Hlp/LBP. Taken together, our observations reinforce the involvement of Hlp/LBP as an adhesin in mycobacterial infections and define its highly positive C-terminal region as the major adhesive domain of this protein.
Collapse
|