1
|
Healy C, Ehrt S, Gouzy A. An exacerbated phosphate starvation response triggers Mycobacterium tuberculosis glycerol utilization at acidic pH. mBio 2025; 16:e0282524. [PMID: 39611843 PMCID: PMC11708021 DOI: 10.1128/mbio.02825-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/07/2024] [Indexed: 11/30/2024] Open
Abstract
The mechanisms controlling Mycobacterium tuberculosis (Mtb) replication and survival inside its human host remain ill-defined. Phagosome acidification and nutrient deprivation are common mechanisms used by macrophages to restrict the replication of intracellular bacteria. Mtb stops replicating at mildly acidic pH (
Collapse
Affiliation(s)
- Claire Healy
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| | - Sabine Ehrt
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| | - Alexandre Gouzy
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
2
|
Kojima K, Wakabayashi Y, Nishijima S, Sakata J, Sekiya S, Iwamoto S, Tanaka K. Characterisation of glucose-induced protein fragments among the order Enterobacterales using matrix-assisted laser desorption ionization-time of flight mass spectrometry. Biochem Biophys Res Commun 2024; 732:150407. [PMID: 39033555 DOI: 10.1016/j.bbrc.2024.150407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024]
Abstract
To characterise the glucose-induced protein fragments by MALDI-TOF MS analysis, we compared data for samples from Escherichia coli cultured in media with or without glucose. Characteristic peaks were observed in the presence of glucose, and MS/MS revealed Asr-specific fragments. The amino acid sequences of the fragments suggested sequence-specific proteolysis. Blast-analysis revealed that numerous Enterobacterales harbored genes encoding Asr as well as E. coli. Here, we analysed 32 strains from 20 genera and 25 species of seven Enterobacterales families. We did not detect changes in the mass spectra of four strains of Morganellaceae lacking asr, whereas peaks of Asr-specific fragments were detected in the other 28 strains. We therefore concluded that the induction of Asr production in the presence of glucose is common among the Enterobacterales, except for certain Morganellaceae species. In members of family Budviciaceae, unfragmented Asr was detected. Molecular genetic information suggested that the amino acid sequences of Asr homologs are diverse, with fragments varying in number and size, indicating that Asr may serve as a discriminative biomarker for identifying Enterobacterales species.
Collapse
Affiliation(s)
- Koichi Kojima
- Koichi Tanaka Mass Spectrometry Research Laboratory, Shimadzu Corporation, Kyoto, Japan.
| | - Yuki Wakabayashi
- Division of Bacteriology, Osaka Institute of Public Health, Osaka, Japan
| | - Shunya Nishijima
- Division of Bacteriology, Osaka Institute of Public Health, Osaka, Japan
| | - Junko Sakata
- Division of Bacteriology, Osaka Institute of Public Health, Osaka, Japan
| | - Sadanori Sekiya
- Koichi Tanaka Mass Spectrometry Research Laboratory, Shimadzu Corporation, Kyoto, Japan
| | - Shinichi Iwamoto
- Koichi Tanaka Mass Spectrometry Research Laboratory, Shimadzu Corporation, Kyoto, Japan
| | - Koichi Tanaka
- Koichi Tanaka Mass Spectrometry Research Laboratory, Shimadzu Corporation, Kyoto, Japan
| |
Collapse
|
3
|
Fitzgerald DM, Stringer AM, Smith C, Lapierre P, Wade JT. Genome-Wide Mapping of the Escherichia coli PhoB Regulon Reveals Many Transcriptionally Inert, Intragenic Binding Sites. mBio 2023; 14:e0253522. [PMID: 37067422 PMCID: PMC10294691 DOI: 10.1128/mbio.02535-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 03/23/2023] [Indexed: 04/18/2023] Open
Abstract
Genome-scale analyses have revealed many transcription factor binding sites within, rather than upstream of, genes, raising questions as to the function of these binding sites. Here, we use complementary approaches to map the regulon of the Escherichia coli transcription factor PhoB, a response regulator that controls transcription of genes involved in phosphate homeostasis. Strikingly, the majority of PhoB binding sites are located within genes, but these intragenic sites are not associated with detectable transcription regulation and are not evolutionarily conserved. Many intragenic PhoB sites are located in regions bound by H-NS, likely due to shared sequence preferences of PhoB and H-NS. However, these PhoB binding sites are not associated with transcription regulation even in the absence of H-NS. We propose that for many transcription factors, including PhoB, binding sites not associated with promoter sequences are transcriptionally inert and hence are tolerated as genomic "noise." IMPORTANCE Recent studies have revealed large numbers of transcription factor binding sites within the genes of bacteria. The function, if any, of the vast majority of these binding sites has not been investigated. Here, we map the binding of the transcription factor PhoB across the Escherichia coli genome, revealing that the majority of PhoB binding sites are within genes. We show that PhoB binding sites within genes are not associated with regulation of the overlapping genes. Indeed, our data suggest that bacteria tolerate the presence of large numbers of nonregulatory, intragenic binding sites for transcription factors and that these binding sites are not under selective pressure.
Collapse
Affiliation(s)
- Devon M. Fitzgerald
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, New York, USA
| | - Anne M. Stringer
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Carol Smith
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Pascal Lapierre
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Joseph T. Wade
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, New York, USA
| |
Collapse
|
4
|
Yu Z, Li W, Ge C, Sun X, Wang J, Shen X, Yuan Q. Functional expansion of the natural inorganic phosphorus starvation response system in Escherichia coli. Biotechnol Adv 2023; 66:108154. [PMID: 37062526 DOI: 10.1016/j.biotechadv.2023.108154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/08/2023] [Accepted: 04/09/2023] [Indexed: 04/18/2023]
Abstract
Phosphorus, an indispensable nutrient, plays an essential role in cell composition, metabolism, and signal transduction. When inorganic phosphorus (Pi) is scarce, the Pi starvation response in E. coli is activated to increase phosphorus acquisition and drive the cells into a non-growing state to reduce phosphorus consumption. In the six decades of research history, the initiation, output, and shutdown processes of the Pi starvation response have been extensively studied. Simultaneously, Pi starvation has been used in biosensor development, recombinant protein production, and natural product biosynthesis. In this review, we focus on the output process and the applications of the Pi starvation response that have not been summarized before. Meanwhile, based on the current status of mechanistic studies and applications, we propose practical strategies to develop the natural Pi starvation response into a multifunctional and standardized regulatory system in four aspects, including response threshold, temporal expression, intensity range, and bifunctional regulation, which will contribute to its broader application in more fields such as industrial production, medical analysis, and environmental protection.
Collapse
Affiliation(s)
- Zheng Yu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wenna Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chang Ge
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xinxiao Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jia Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaolin Shen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
5
|
Effect of preliminary stresses on the induction of viable but non-culturable Escherichia coli O157:H7 NCTC 12900 and Staphylococcus aureus ATCC 6538. Food Res Int 2023; 167:112710. [PMID: 37087272 DOI: 10.1016/j.foodres.2023.112710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023]
Abstract
As a novel non-thermal pasteurization technology, high pressure carbon dioxide (HPCD) has been used in food processing. However, it could induce microorganisms into a viable but nonculturable (VBNC) state, posing a potential risk to food safety and public health. In this study, we attempted to investigate the effect of various preliminary stresses including cold, heat, osmosis, acidity and oxidation on HPCD-induced VBNC formation. The results indicated that there was no effect of preliminary stresses on VBNC Staphylococcus aureus induction. However, heat, acidity and long-term (24 h) cultivation preadaptation could significantly increase the VBNC E. coli production induced by HPCD. Transcriptome analysis revealed that genes involved in ATP production were significantly decreased in these three stress-treated cells, and further ATP levels determination revealed that the ATP levels of the cell were significantly decreased after heat, acidity and long-term cultivation preadaptation, implying the decrease of ATP level caused by these stresses might be the reason for increasing VBNC production. To further study the relationship between ATP level and VBNC cell ratios after preadaptation. We artificially decreased the ATP levels, and detect their VBNC ratios after HPCD treatment. We found that with the ATP concentration decreasing after exposure to carbonyl cyanide m-chlorophenyl hydrazine (CCCP), the VBNC ratios were increased after HPCD treatment, indicating that the ATP contents were highly negatively correlated with VBNC ratios. This study proved that the preadaptation of heat, acidity and long-term cultivation could promote VBNC induction by decreasing the intracellular ATP level. In general, the obtained result gave the instruction about the storage environment for food materials, helped to further develop and optimize the HPCD processing to prevent VBNC formation and accelerate the development of HPCD technology in food industry.
Collapse
|
6
|
Fitzgerald D, Stringer A, Smith C, Lapierre P, Wade JT. Genome-wide mapping of the Escherichia coli PhoB regulon reveals many transcriptionally inert, intragenic binding sites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.07.527549. [PMID: 36798257 PMCID: PMC9934606 DOI: 10.1101/2023.02.07.527549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Genome-scale analyses have revealed many transcription factor binding sites within, rather than upstream of genes, raising questions as to the function of these binding sites. Here, we use complementary approaches to map the regulon of the Escherichia coli transcription factor PhoB, a response regulator that controls transcription of genes involved in phosphate homeostasis. Strikingly, the majority of PhoB binding sites are located within genes, but these intragenic sites are not associated with detectable transcription regulation and are not evolutionarily conserved. Many intragenic PhoB sites are located in regions bound by H-NS, likely due to shared sequence preferences of PhoB and H-NS. However, these PhoB binding sites are not associated with transcription regulation even in the absence of H-NS. We propose that for many transcription factors, including PhoB, binding sites not associated with promoter sequences are transcriptionally inert, and hence are tolerated as genomic "noise". IMPORTANCE Recent studies have revealed large numbers of transcription factor binding sites within the genes of bacteria. The function, if any, of the vast majority of these binding sites has not been investigated. Here, we map the binding of the transcription factor PhoB across the Escherichia coli genome, revealing that the majority of PhoB binding sites are within genes. We show that PhoB binding sites within genes are not associated with regulation of the overlapping genes. Indeed, our data suggest that bacteria tolerate the presence of large numbers of non-regulatory, intragenic binding sites for transcription factors, and that these binding sites are not under selective pressure.
Collapse
Affiliation(s)
- Devon Fitzgerald
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, New York, USA
| | - Anne Stringer
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Carol Smith
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Pascal Lapierre
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Joseph T. Wade
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, New York, USA
| |
Collapse
|
7
|
Schwarz J, Schumacher K, Brameyer S, Jung K. Bacterial battle against acidity. FEMS Microbiol Rev 2022; 46:6652135. [PMID: 35906711 DOI: 10.1093/femsre/fuac037] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/11/2022] [Accepted: 07/27/2022] [Indexed: 01/09/2023] Open
Abstract
The Earth is home to environments characterized by low pH, including the gastrointestinal tract of vertebrates and large areas of acidic soil. Most bacteria are neutralophiles, but can survive fluctuations in pH. Herein, we review how Escherichia, Salmonella, Helicobacter, Brucella, and other acid-resistant Gram-negative bacteria adapt to acidic environments. We discuss the constitutive and inducible defense mechanisms that promote survival, including proton-consuming or ammonia-producing processes, cellular remodeling affecting membranes and chaperones, and chemotaxis. We provide insights into how Gram-negative bacteria sense environmental acidity using membrane-integrated and cytosolic pH sensors. Finally, we address in more detail the powerful proton-consuming decarboxylase systems by examining the phylogeny of their regulatory components and their collective functionality in a population.
Collapse
Affiliation(s)
- Julia Schwarz
- Faculty of Biology, Microbiology, Ludwig-Maximilians-University München, Großhaderner Str. 2-4, 82152 Martinsried, Germany
| | - Kilian Schumacher
- Faculty of Biology, Microbiology, Ludwig-Maximilians-University München, Großhaderner Str. 2-4, 82152 Martinsried, Germany
| | - Sophie Brameyer
- Faculty of Biology, Microbiology, Ludwig-Maximilians-University München, Großhaderner Str. 2-4, 82152 Martinsried, Germany
| | - Kirsten Jung
- Faculty of Biology, Microbiology, Ludwig-Maximilians-University München, Großhaderner Str. 2-4, 82152 Martinsried, Germany
| |
Collapse
|
8
|
Ketcham A, Freddolino PL, Tavazoie S. Intracellular acidification is a hallmark of thymineless death in E. coli. PLoS Genet 2022; 18:e1010456. [PMID: 36279294 PMCID: PMC9632930 DOI: 10.1371/journal.pgen.1010456] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 11/03/2022] [Accepted: 10/01/2022] [Indexed: 11/05/2022] Open
Abstract
Thymidine starvation causes rapid cell death. This enigmatic process known as thymineless death (TLD) is the underlying killing mechanism of diverse antimicrobial and antineoplastic drugs. Despite decades of investigation, we still lack a mechanistic understanding of the causal sequence of events that culminate in TLD. Here, we used a diverse set of unbiased approaches to systematically determine the genetic and regulatory underpinnings of TLD in Escherichia coli. In addition to discovering novel genes in previously implicated pathways, our studies revealed a critical and previously unknown role for intracellular acidification in TLD. We observed that a decrease in cytoplasmic pH is a robust early event in TLD across different genetic backgrounds. Furthermore, we show that acidification is a causal event in the death process, as chemical and genetic perturbations that increase intracellular pH substantially reduce killing. We also observe a decrease in intracellular pH in response to exposure to the antibiotic gentamicin, suggesting that intracellular acidification may be a common mechanistic step in the bactericidal effects of other antibiotics.
Collapse
Affiliation(s)
- Alexandra Ketcham
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
- Department of Systems Biology, Columbia University, New York, New York, United States of America
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, United States of America
| | - Peter L. Freddolino
- Department of Systems Biology, Columbia University, New York, New York, United States of America
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, United States of America
| | - Saeed Tavazoie
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
- Department of Systems Biology, Columbia University, New York, New York, United States of America
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, United States of America
| |
Collapse
|
9
|
Yao X, Liu P, Chen B, Wang X, Tao F, Lin Z, Yang X. Synthetic acid stress-tolerance modules improve growth robustness and lysine productivity of industrial Escherichia coli in fermentation at low pH. Microb Cell Fact 2022; 21:68. [PMID: 35459210 PMCID: PMC9026648 DOI: 10.1186/s12934-022-01795-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 04/10/2022] [Indexed: 11/10/2022] Open
Abstract
Background During fermentation, industrial microorganisms encounter multiple stresses that inhibit cell growth and decrease fermentation yields, in particular acid stress, which is due to the accumulation of acidic metabolites in the fermentation medium. Although the addition of a base to the medium can counteract the effect of acid accumulation, the engineering of acid-tolerant strains is considered a more intelligent and cost-effective solution. While synthetic biology theoretically provides a novel approach for devising such tolerance modules, in practice it is difficult to assemble stress-tolerance modules from hundreds of stress-related genes. Results In this study, we designed a set of synthetic acid-tolerance modules for fine-tuning the expression of multi-component gene blocks comprising a member of the proton-consuming acid resistance system (gadE), a periplasmic chaperone (hdeB), and reactive oxygen species (ROS) scavengers (sodB and katE). Directed evolution was used to construct an acid-responsive asr promoter library, from which four variants were selected and used in the synthetic modules. The module variants were screened in a stepwise manner under mild acidic conditions (pH 5–6), first by cell growth using the laboratory Escherichia coli strain MG1655 cultured in microplates, and then by lysine production performance using the industrial lysine-producing E. coli strain MG1655 SCEcL3 cultured first in multiple 10-mL micro-bioreactors, and then in 1.3-L parallel bioreactors. The procedure resulted in the identification of a best strain with lysine titer and yield at pH 6.0 comparable to the parent strain at pH 6.8. Conclusion Our results demonstrate a promising synthetic-biology strategy to enhance the growth robustness and productivity of E. coli upon the mildly acidic conditions, in both a general lab strain MG1655 and an industrial lysine-producing strain SCEcL3, by using the stress-responsive synthetic acid-tolerance modules comprising a limited number of genes. This study provides a reliable and efficient method for achieving synthetic modules of interest, particularly in improving the robustness and productivity of industrial strains. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01795-4.
Collapse
Affiliation(s)
- Xurong Yao
- School of Biology and Biological Engineering, South China University of Technology, 382 East Outer Loop Road, University Park, Guangzhou, 510006, Guangdong, China
| | - Peng Liu
- School of Biology and Biological Engineering, South China University of Technology, 382 East Outer Loop Road, University Park, Guangzhou, 510006, Guangdong, China
| | - Bo Chen
- COFCO Nutrition & Health Research Institute, Beijing, 102209, China
| | - Xiaoyan Wang
- COFCO Nutrition & Health Research Institute, Beijing, 102209, China
| | - Fei Tao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhanglin Lin
- School of Biology and Biological Engineering, South China University of Technology, 382 East Outer Loop Road, University Park, Guangzhou, 510006, Guangdong, China.
| | - Xiaofeng Yang
- School of Biology and Biological Engineering, South China University of Technology, 382 East Outer Loop Road, University Park, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
10
|
Ren C, Zheng Y, Liu C, Mencius J, Wu Z, Quan S. Molecular Characterization of an Intrinsically Disordered Chaperone Reveals Net-Charge Regulation in Chaperone Action. J Mol Biol 2021; 434:167405. [PMID: 34914967 DOI: 10.1016/j.jmb.2021.167405] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 11/18/2022]
Abstract
Molecular chaperones are diverse biomacromolecules involved in the maintenance of cellular protein homeostasis (proteostasis). Here we demonstrate that in contrast to most chaperones with defined three-dimensional structures, the acid-inducible protein Asr in Escherichia coli is intrinsically disordered and exhibits varied aggregation-preventing or aggregation-promoting activities, acting as a "conditionally active chaperone". Bioinformatics and experimental analyses of Asr showed that it is devoid of hydrophobic patches but rich in positive charges and local polyproline II backbone structures. Asr contributes to the integrity of the bacterial outer membrane under mildly acidic conditions in vivo and possesses chaperone activities toward model clients in vitro. Notably, its chaperone activity is dependent on the net charges of clients: on the one hand, it inhibits the aggregation of clients with similar net charges; on the other hand, it stimulates the aggregation of clients with opposite net charges. Mutational analysis confirmed that positively charged residues in Asr are essential for the varied effects on protein aggregation, suggesting that electrostatic interactions are the major driving forces underlying Asr's proteostasis-related activity. These findings present a unique example of an intrinsically disordered molecular chaperone with distinctive dual functions-as an aggregase or as a chaperone-depending on the net charges of clients.
Collapse
Affiliation(s)
- Chang Ren
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB), Shanghai 200237, China
| | - Yongxin Zheng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB), Shanghai 200237, China
| | - Chunlan Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB), Shanghai 200237, China
| | - Jun Mencius
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB), Shanghai 200237, China
| | - Zhili Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB), Shanghai 200237, China
| | - Shu Quan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB), Shanghai 200237, China; Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai 200237, China.
| |
Collapse
|
11
|
Investigation of Stress Response Genes in Antimicrobial Resistant Pathogens Sampled from Five Countries. Processes (Basel) 2021. [DOI: 10.3390/pr9060927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Pathogens, which survive from stressed environmental conditions and evolve with antimicrobial resistance, cause millions of human diseases every year in the world. Fortunately, the NCBI Pathogen Detection Isolates Browser (NPDIB) collects the detected stress response genes and antimicrobial resistance genes in pathogen isolates sampled around the world. While several studies have been conducted to identify important antimicrobial resistance genes, little work has been done to analyze the stress response genes in the NPDIB database. In order to address this, this work conducted the first comprehensive statistical analysis of the stress response genes from five countries of the major residential continents, including the US, the UK, China, Australia, and South Africa. Principal component analysis was first conducted to project the stress response genes onto a two-dimensional space, and hierarchical clustering was then implemented to identify the outlier (i.e., important) genes that show high occurrences in the historical data from 2010 to 2020. Stress response genes and AMR genes were finally analyzed together to investigate the co-occurring relationship between these two types of genes. It turned out that seven genes were commonly found in all five countries (i.e., arsR, asr, merC, merP, merR, merT, and qacdelta1). Pathogens E. coli and Shigella, Salmonella enterica, and Klebsiella pneumoniae were the major pathogens carrying the stress response genes. The hierarchical clustering result showed that certain stress response genes and AMR genes were grouped together, including golT~golS and mdsB~mdsC, ymgB and mdtM, and qacEdelta1 and sul1. The occurrence analysis showed that the samples containing three stress response genes and three AMR genes had the highest detection frequency in the historical data. The findings of this work on the important stress response genes, along with their connection with AMR genes, could inform future drug development that targets stress response genes to weaken antimicrobial resistance pathogens.
Collapse
|
12
|
Padelli M, Aubron C, Huet O, Héry-Arnaud G, Vermeersch V, Hoffmann C, Bettacchioli É, Maguet H, Carré JL, Leven C. Is hypophosphataemia an independent predictor of mortality in critically ill patients with bloodstream infection? A multicenter retrospective cohort study. Aust Crit Care 2021; 34:47-54. [DOI: 10.1016/j.aucc.2020.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/28/2022] Open
|
13
|
Stirling F, Naydich A, Bramante J, Barocio R, Certo M, Wellington H, Redfield E, O’Keefe S, Gao S, Cusolito A, Way J, Silver P. Synthetic Cassettes for pH-Mediated Sensing, Counting, and Containment. Cell Rep 2020; 30:3139-3148.e4. [DOI: 10.1016/j.celrep.2020.02.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/15/2019] [Accepted: 02/07/2020] [Indexed: 12/18/2022] Open
|
14
|
Cross-talk between the RcsCDB and RstAB systems to control STM1485 gene expression in Salmonella Typhimurium during acid-resistance response. Biochimie 2019; 160:46-54. [PMID: 30763640 DOI: 10.1016/j.biochi.2019.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 02/08/2019] [Indexed: 01/13/2023]
Abstract
Bacterial survive and respond to adverse changes in the environment by regulating gene transcription through two-component regulatory systems. In Salmonella Typhimurium the STM1485 gene expression is induced under low pH (4.5) during replication inside the epithelial host cell, but it is not involved in sensing or resisting to this condition. Since the RcsCDB system is activated under acidic conditions, we investigated whether this system is able to modulate STM1485 expression. We demonstrated that acid-induced activation of the RcsB represses STM1485 transcription by directly binding to the promoter. Under the same condition, the RstA regulator activates the expression of this gene. Physiologically, we observed that RcsB-dependent repression is required for the survival of bacteria when they are exposed to pancreatic fluids. We hypothesized that STM1485 plays an important role in Salmonella adaptation to pH changes, during transition in the gastrointestinal tract. We suggest that bacteria surviving the gastrointestinal environment invade the epithelial cells, where they can remain in vacuoles. In this new environment, acidity and magnesium starvation activate the expression of the RstA regulator in a PhoPQ-dependent manner, which in turn induces STM1485 expression. These levels of STM1485 allow increased bacterial replication within vacuoles to continue the course of infection.
Collapse
|
15
|
PhoPR Contributes to Staphylococcus aureus Growth during Phosphate Starvation and Pathogenesis in an Environment-Specific Manner. Infect Immun 2018; 86:IAI.00371-18. [PMID: 30061377 DOI: 10.1128/iai.00371-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/21/2018] [Indexed: 12/31/2022] Open
Abstract
Microbial pathogens must obtain all essential nutrients, including phosphate, from the host. To optimize phosphate acquisition in diverse and dynamic environments, such as mammalian tissues, many bacteria use the PhoPR two-component system. Despite the necessity of this system for virulence in several species, PhoPR has not been studied in the major human pathogen Staphylococcus aureus To illuminate its role in staphylococcal physiology, we initially assessed whether PhoPR controls the expression of the three inorganic phosphate (Pi) importers (PstSCAB, NptA, and PitA) in S. aureus This analysis revealed that PhoPR is required for the expression of pstSCAB and nptA and can modulate pitA expression. Consistent with a role in phosphate homeostasis, PhoPR-mediated regulation of the transporters is influenced by phosphate availability. Further investigations revealed that PhoPR is necessary for growth under Pi-limiting conditions, and in some environments, its primary role is to induce the expression of pstSCAB or nptA Interestingly, in other environments, PhoPR is necessary for growth independent of Pi transporter expression, indicating that additional PhoPR-regulated factors promote S. aureus adaptation to low-Pi conditions. Together, these data suggest that PhoPR differentially contributes to growth in an environment-specific manner. In a systemic infection model, a mutant of S. aureus lacking PhoPR is highly attenuated. Further investigation revealed that PhoPR-regulated factors, in addition to Pi transporters, are critical for staphylococcal pathogenesis. Cumulatively, these findings point to an important role for PhoPR in orchestrating Pi acquisition as well as transporter-independent mechanisms that contribute to S. aureus virulence.
Collapse
|
16
|
Robertson J, Gizdavic-Nikolaidis M, Nieuwoudt MK, Swift S. The antimicrobial action of polyaniline involves production of oxidative stress while functionalisation of polyaniline introduces additional mechanisms. PeerJ 2018; 6:e5135. [PMID: 29967756 PMCID: PMC6026458 DOI: 10.7717/peerj.5135] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/08/2018] [Indexed: 12/31/2022] Open
Abstract
Polyaniline (PANI) and functionalised polyanilines (fPANI) are novel antimicrobial agents whose mechanism of action was investigated. Escherichia coli single gene deletion mutants revealed that the antimicrobial mechanism of PANI likely involves production of hydrogen peroxide while homopolymer poly(3-aminobenzoic acid), P3ABA, used as an example of a fPANI, disrupts metabolic and respiratory machinery, by targeting ATP synthase and causes acid stress. PANI was more active against E. coli in aerobic, compared to anaerobic, conditions, while this was apparent for P3ABA only in rich media. Greater activity in aerobic conditions suggests involvement of reactive oxygen species. P3ABA treatment causes an increase in intracellular free iron, which is linked to perturbation of metabolic enzymes and could promote reactive oxygen species production. Addition of exogenous catalase protected E. coli from PANI antimicrobial action; however, this was not apparent for P3ABA treated cells. The results presented suggest that PANI induces production of hydrogen peroxide, which can promote formation of hydroxyl radicals causing biomolecule damage and potentially cell death. P3ABA is thought to act as an uncoupler by targeting ATP synthase resulting in a futile cycle, which precipitates dysregulation of iron homeostasis, oxidative stress, acid stress, and potentially the fatal loss of proton motive force.
Collapse
Affiliation(s)
- Julia Robertson
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | | | | | - Simon Swift
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| |
Collapse
|
17
|
Iwadate Y, Kato JI. Involvement of the ytfK gene from the PhoB regulon in stationary-phase H 2 O 2 stress tolerance in Escherichia coli. Microbiology (Reading) 2017; 163:1912-1923. [DOI: 10.1099/mic.0.000534] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Yumi Iwadate
- Department of Biological Sciences, Graduate Schools of Science and Engineering, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Jun-ichi Kato
- Department of Biological Sciences, Graduate Schools of Science and Engineering, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| |
Collapse
|
18
|
Padelli M, Leven C, Sakka M, Plée-Gautier E, Carré JL. [Causes, consequences and treatment of hypophosphatemia: A systematic review]. Presse Med 2017; 46:987-999. [PMID: 29089216 DOI: 10.1016/j.lpm.2017.09.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/24/2017] [Accepted: 09/12/2017] [Indexed: 12/16/2022] Open
Abstract
CONTEXT Although hypophosphatemia is usually very seldom, it can reach two to 3% of hospitalized patients and until 28% of intensive care unit patients. Due to the lack of knowledge, clinical practice regarding seeking or treatment of hypophosphatemia is very heterogenous. However its clinical consequences might be heavy. A better knowledge of its causes, physiopathological effects and treatment should lead to a documented and homogenous care of these patients in clinics. OBJECTIVE The aim of our study was a systematic review of littérature, seeking for publications about causes, consequences and treatment of hypophosphatemia. DOCUMENTARY SOURCES (KEYWORDS AND LANGUAGE) A research has been conducted on the Medline database by using the following keywords "phosphorus supplementation", "hypophosphatemia" and ("physiopathology" or "complications"). RESULTS Three mains mechanisms might be responsible for hypophosphatemia: a decrease in digestive absorption, a rise in kidney excretion and a transfer of phosphorus to the intracellular compartment. Denutrition, acid base balance troubles, parenteral nutrition or several drugs are capable of provoking or favouring hypophosphatemia. All these situations are frequently encountered in intensive care unit. Consequences of hypophosphatemia might be serious. Best studied and documented are cardiac and respiratory muscle contractility decrease, sometimes leading to acute cardiac and respiratory failure, cardiac rhythm troubles and cardiac arrest. Hypophosphatemia is frequent during sepsis. It could be responsible for leucocyte dysfunction that might favour or increase sepsis. The treatment of hypophosphatemia is usually simple through a supplementation that quickly restores a regular concentration, with few adverse effects when regularly used. CONCLUSION During at-risk situations, the systematic search for hypophosphatemia and its treatment may limit the occurrence of serious consequences.
Collapse
Affiliation(s)
- Maël Padelli
- University hospital of Brest, department of biochemistry and pharmaco-toxicology, 29200 Brest, France.
| | - Cyril Leven
- University hospital of Brest, department of biochemistry and pharmaco-toxicology, 29200 Brest, France
| | - Mehdi Sakka
- University hospital of Brest, department of biochemistry and pharmaco-toxicology, 29200 Brest, France
| | - Emmanuelle Plée-Gautier
- University hospital of Brest, department of biochemistry and pharmaco-toxicology, 29200 Brest, France
| | - Jean-Luc Carré
- University hospital of Brest, department of biochemistry and pharmaco-toxicology, 29200 Brest, France
| |
Collapse
|
19
|
Transient MutS-Based Hypermutation System for Adaptive Evolution of Lactobacillus casei to Low pH. Appl Environ Microbiol 2017; 83:AEM.01120-17. [PMID: 28802267 DOI: 10.1128/aem.01120-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/01/2017] [Indexed: 11/20/2022] Open
Abstract
This study explored transient inactivation of the gene encoding the DNA mismatch repair enzyme MutS as a tool for adaptive evolution of Lactobacillus casei MutS deletion derivatives of L. casei 12A and ATCC 334 were constructed and subjected to a 100-day adaptive evolution process to increase lactic acid resistance at low pH. Wild-type parental strains were also subjected to this treatment. At the end of the process, the ΔmutS lesion was repaired in representative L. casei 12A and ATCC 334 ΔmutS mutant isolates. Growth studies in broth at pH 4.0 (titrated with lactic acid) showed that all four adapted strains grew more rapidly, to higher cell densities, and produced significantly more lactic acid than untreated wild-type cells. However, the adapted ΔmutS derivative mutants showed the greatest increases in growth and lactic acid production. Further characterization of the L. casei 12A-adapted ΔmutS derivative revealed that it had a significantly smaller cell volume, a rougher cell surface, and significantly better survival at pH 2.5 than parental L. casei 12A. Genome sequence analysis confirmed that transient mutS inactivation decreased DNA replication fidelity in both L. casei strains, and it identified genetic changes that might contribute to the lactic acid-resistant phenotypes of adapted cells. Targeted inactivation of three genes that had acquired nonsense mutations in the adapted L. casei 12A ΔmutS mutant derivative showed that NADH dehydrogenase (ndh), phosphate transport ATP-binding protein PstB (pstB), and two-component signal transduction system (TCS) quorum-sensing histidine protein kinase (hpk) genes act in combination to increase lactic acid resistance in L. casei 12A.IMPORTANCE Adaptive evolution has been applied to microorganisms to increase industrially desirable phenotypes, including acid resistance. We developed a method to increase the adaptability of Lactobacillus casei 12A and ATCC 334 through transient inactivation of the DNA mismatch repair enzyme MutS. Here, we show this method was effective in increasing the resistance of L. casei to lactic acid at low pH. Additionally, we identified three genes that contribute to increased acid resistance in L. casei 12A. These results provide valuable insight on methods to enhance an organism's fitness to complex phenotypes through adaptive evolution and targeted gene inactivation.
Collapse
|
20
|
Santos-Beneit F, Ordóñez-Robles M, Martín JF. Glycopeptide resistance: Links with inorganic phosphate metabolism and cell envelope stress. Biochem Pharmacol 2016; 133:74-85. [PMID: 27894856 DOI: 10.1016/j.bcp.2016.11.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/15/2016] [Indexed: 10/20/2022]
Abstract
Antimicrobial resistance is a critical health issue today. Many pathogens have become resistant to many or all available antibiotics and limited new antibiotics are in the pipeline. Glycopeptides are used as a 'last resort' antibiotic treatment for many bacterial infections, but worryingly, glycopeptide resistance has spread to very important pathogens such as Enterococcus faecium and Staphylococcus aureus. Bacteria confront multiple stresses in their natural environments, including nutritional starvation and the action of cell-wall stressing agents. These stresses impact bacterial susceptibility to different antimicrobials. This article aims to review the links between glycopeptide resistance and different stresses, especially those related with cell-wall biosynthesis and inorganic phosphate metabolism, and to discuss promising alternatives to classical antibiotics to avoid the problem of antimicrobial resistance.
Collapse
Affiliation(s)
- Fernando Santos-Beneit
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, NE2 4AX Newcastle upon Tyne, UK
| | - María Ordóñez-Robles
- Department of Biotechnology, Faculty of Natural Sciences and Technology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Juan F Martín
- Microbiology Area, Department of Molecular Biology, University of León, 24071 León, Spain.
| |
Collapse
|
21
|
Knopp M, Andersson DI. Amelioration of the Fitness Costs of Antibiotic Resistance Due To Reduced Outer Membrane Permeability by Upregulation of Alternative Porins. Mol Biol Evol 2015; 32:3252-63. [DOI: 10.1093/molbev/msv195] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
22
|
Santos-Beneit F. The Pho regulon: a huge regulatory network in bacteria. Front Microbiol 2015; 6:402. [PMID: 25983732 PMCID: PMC4415409 DOI: 10.3389/fmicb.2015.00402] [Citation(s) in RCA: 251] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 04/17/2015] [Indexed: 12/15/2022] Open
Abstract
One of the most important achievements of bacteria is its capability to adapt to the changing conditions of the environment. The competition for nutrients with other microorganisms, especially in the soil, where nutritional conditions are more variable, has led bacteria to evolve a plethora of mechanisms to rapidly fine-tune the requirements of the cell. One of the essential nutrients that are normally found in low concentrations in nature is inorganic phosphate (Pi). Bacteria, as well as other organisms, have developed several systems to cope for the scarcity of this nutrient. To date, the unique mechanism responding to Pi starvation known in detail is the Pho regulon, which is normally controlled by a two component system and constitutes one of the most sensible and efficient regulatory mechanisms in bacteria. Many new members of the Pho regulon have emerged in the last years in several bacteria; however, there are still many unknown questions regarding the activation and function of the whole system. This review describes the most important findings of the last three decades in relation to Pi regulation in bacteria, including: the PHO box, the Pi signaling pathway and the Pi starvation response. The role of the Pho regulon in nutritional regulation cross-talk, secondary metabolite production, and pathogenesis is discussed in detail.
Collapse
Affiliation(s)
- Fernando Santos-Beneit
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne UK
| |
Collapse
|
23
|
Shimizu K. Metabolic Regulation and Coordination of the Metabolism in Bacteria in Response to a Variety of Growth Conditions. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 155:1-54. [PMID: 25712586 DOI: 10.1007/10_2015_320] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Living organisms have sophisticated but well-organized regulation system. It is important to understand the metabolic regulation mechanisms in relation to growth environment for the efficient design of cell factories for biofuels and biochemicals production. Here, an overview is given for carbon catabolite regulation, nitrogen regulation, ion, sulfur, and phosphate regulations, stringent response under nutrient starvation as well as oxidative stress regulation, redox state regulation, acid-shock, heat- and cold-shock regulations, solvent stress regulation, osmoregulation, and biofilm formation, and quorum sensing focusing on Escherichia coli metabolism and others. The coordinated regulation mechanisms are of particular interest in getting insight into the principle which governs the cell metabolism. The metabolism is controlled by both enzyme-level regulation and transcriptional regulation via transcription factors such as cAMP-Crp, Cra, Csr, Fis, P(II)(GlnB), NtrBC, CysB, PhoR/B, SoxR/S, Fur, MarR, ArcA/B, Fnr, NarX/L, RpoS, and (p)ppGpp for stringent response, where the timescales for enzyme-level and gene-level regulations are different. Moreover, multiple regulations are coordinated by the intracellular metabolites, where fructose 1,6-bisphosphate (FBP), phosphoenolpyruvate (PEP), and acetyl-CoA (AcCoA) play important roles for enzyme-level regulation as well as transcriptional control, while α-ketoacids such as α-ketoglutaric acid (αKG), pyruvate (PYR), and oxaloacetate (OAA) play important roles for the coordinated regulation between carbon source uptake rate and other nutrient uptake rate such as nitrogen or sulfur uptake rate by modulation of cAMP via Cya.
Collapse
Affiliation(s)
- Kazuyuki Shimizu
- Kyushu Institute of Technology, Iizuka, Fukuoka, 820-8502, Japan. .,Institute of Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0017, Japan.
| |
Collapse
|
24
|
Lee SJ, Park YS, Kim SJ, Lee BJ, Suh SW. Crystal structure of PhoU from Pseudomonas aeruginosa, a negative regulator of the Pho regulon. J Struct Biol 2014; 188:22-9. [PMID: 25220976 DOI: 10.1016/j.jsb.2014.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 08/26/2014] [Accepted: 08/28/2014] [Indexed: 11/27/2022]
Abstract
In Escherichia coli, seven genes (pstS, pstC, pstA, pstB, phoU, phoR, and phoB) are involved in sensing environmental phosphate (Pi) and controlling the expression of the Pho regulon. PhoU is a negative regulator of the Pi-signaling pathway and modulates Pi transport through Pi transporter proteins (PstS, PstC, PstA, and PstB) through the two-component system PhoR and PhoB. Inactivation of PhoY2, one of the two PhoU homologs in Mycobacterium tuberculosis, causes defects in persistence phenotypes and increased susceptibility to antibiotics and stresses. Despite the important biological role, the mechanism of PhoU function is still unknown. Here we have determined the crystal structure of PhoU from Pseudomonas aeruginosa. It exists as a dimer in the crystal, with each monomer consisting of two structurally similar three-helix bundles. Our equilibrium sedimentation measurements support the reversible monomer-dimer equilibrium model in which P. aeruginosa PhoU exists in solution predominantly as dimers, with monomers in a minor fraction, at low protein concentrations. The dissociation constant for PhoU dimerization is 3.2×10(-6)M. The overall structure of P. aeruginosa PhoU dimer resembles those of Aquifex aeolicus PhoU and Thermotoga maritima PhoU2. However, it shows distinct structural features in some loops and the dimerization pattern.
Collapse
Affiliation(s)
- Sang Jae Lee
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea; Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Ye Seol Park
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Soon-Jong Kim
- Department of Chemistry, Mokpo National University, Chonnam 534-729, Republic of Korea
| | - Bong-Jin Lee
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea.
| | - Se Won Suh
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151-742, Republic of Korea; Department of Biophysics and Chemical Biology, College of Natural Sciences, Seoul National University, Seoul 151-742, Republic of Korea.
| |
Collapse
|
25
|
Schuhmacher T, Löffler M, Hurler T, Takors R. Phosphate limited fed-batch processes: impact on carbon usage and energy metabolism in Escherichia coli. J Biotechnol 2014; 190:96-104. [PMID: 24833421 DOI: 10.1016/j.jbiotec.2014.04.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 04/22/2014] [Accepted: 04/28/2014] [Indexed: 10/25/2022]
Abstract
Phosphate starvation is often applied as a tool to limit cell growth in microbial production processes without hampering carbon and/or nitrogen supply alternatively. This contribution focuses on the interplay of process induced phosphate starvation and microbial performance studying an l-tryptophan overproducing Escherichia coli strain as a model for highly ATP demanding processes in comparison with an E. coli wildtype strain. To enable a time-resolved analysis, constant phosphate feeding strategies were applied to elongate the transition from phosphate saturated to phosphate limited cell growth. With increasing phosphate limitation, a reduced cellular efficiency of ATP formation via respiratory chain activity and the ATP synthase complex was found for both strains. Process balancing, transcriptome analysis and flux balance analysis are pointing toward a multi-stage decoupling scenario, which in essence deteriorates the stoichiometric ratio of ATP formation to proton translocation, thereby affecting ATP availability from respiration and carbon usage. Starting off with a potential influence on ATP-synthase efficiency (stage 1), decoupling is further increased by modified respiratory activity (stage 2) and byproduct overflow (stage 3) finally resulting in a metabolic breakdown entering complete phosphate depletion (stage 4). The decoupling is initiated by phosphate limitation; further effects are mainly mediated on metabolic level through ATP availability and energy charge, additionally affected by ATP demanding product synthesis.
Collapse
Affiliation(s)
- Tom Schuhmacher
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, D-70569 Stuttgart, Germany.
| | - Michael Löffler
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, D-70569 Stuttgart, Germany.
| | - Thilo Hurler
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, D-70569 Stuttgart, Germany.
| | - Ralf Takors
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, D-70569 Stuttgart, Germany.
| |
Collapse
|
26
|
Chekabab SM, Jubelin G, Dozois CM, Harel J. PhoB activates Escherichia coli O157:H7 virulence factors in response to inorganic phosphate limitation. PLoS One 2014; 9:e94285. [PMID: 24710330 PMCID: PMC3978041 DOI: 10.1371/journal.pone.0094285] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Accepted: 03/13/2014] [Indexed: 01/15/2023] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC), an emerging food- and water-borne hazard, is highly pathogenic to humans. In the environment, EHEC must survive phosphate (Pi) limitation. The response to such Pi starvation is an induction of the Pho regulon including the Pst system that senses Pi variation. The interplay between the virulence of EHEC, Pho-Pst system and environmental Pi remains unknown. To understand the effects of Pi deprivation on the molecular mechanisms involved in EHEC survival and virulence under Pho regulon control, we undertook transcriptome profiling of the EDL933 wild-type strain grown under high Pi and low Pi conditions and its isogenic ΔphoB mutant grown in low Pi conditions. The differentially expressed genes included 1067 Pi-dependent genes and 603 PhoB-dependent genes. Of these 131 genes were both Pi and PhoB-dependent. Differentially expressed genes that were selected included those involved in Pi homeostasis, cellular metabolism, acid stress, oxidative stress and RpoS-dependent stress responses. Differentially expressed virulence systems included the locus of enterocyte effacement (LEE) encoding the type-3 secretion system (T3SS) and its effectors, as well as BP-933W prophage encoded Shiga toxin 2 genes. Moreover, PhoB directly regulated LEE and stx2 gene expression through binding to specific Pho boxes. However, in Pi-rich medium, constitutive activation of the Pho regulon decreased LEE gene expression and reduced adherence to HeLa cells. Together, these findings reveal that EHEC has evolved a sophisticated response to Pi limitation involving multiple biochemical strategies that contribute to its ability to respond to variations in environmental Pi and to coordinating the virulence response.
Collapse
Affiliation(s)
- Samuel Mohammed Chekabab
- Research Group on Infectious Diseases of Swine, Montreal University, Faculty of Veterinary Medicine, Saint-Hyacinthe, Québec, Canada
| | - Grégory Jubelin
- Unité de Microbiologie (UR454) INRA Clermont-Ferrand-Theix, St-Genes-Champanelle, France
| | | | - Josée Harel
- Research Group on Infectious Diseases of Swine, Montreal University, Faculty of Veterinary Medicine, Saint-Hyacinthe, Québec, Canada
- * E-mail:
| |
Collapse
|
27
|
Regulation Systems of Bacteria such as Escherichia coli in Response to Nutrient Limitation and Environmental Stresses. Metabolites 2013; 4:1-35. [PMID: 24958385 PMCID: PMC4018673 DOI: 10.3390/metabo4010001] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 11/18/2013] [Accepted: 12/06/2013] [Indexed: 11/16/2022] Open
Abstract
An overview was made to understand the regulation system of a bacterial cell such as Escherichia coli in response to nutrient limitation such as carbon, nitrogen, phosphate, sulfur, ion sources, and environmental stresses such as oxidative stress, acid shock, heat shock, and solvent stresses. It is quite important to understand how the cell detects environmental signals, integrate such information, and how the cell system is regulated. As for catabolite regulation, F1,6B P (FDP), PEP, and PYR play important roles in enzyme level regulation together with transcriptional regulation by such transcription factors as Cra, Fis, CsrA, and cAMP-Crp. αKG plays an important role in the coordinated control between carbon (C)- and nitrogen (N)-limitations, where αKG inhibits enzyme I (EI) of phosphotransferase system (PTS), thus regulating the glucose uptake rate in accordance with N level. As such, multiple regulation systems are co-ordinated for the cell synthesis and energy generation against nutrient limitations and environmental stresses. As for oxidative stress, the TCA cycle both generates and scavenges the reactive oxygen species (ROSs), where NADPH produced at ICDH and the oxidative pentose phosphate pathways play an important role in coping with oxidative stress. Solvent resistant mechanism was also considered for the stresses caused by biofuels and biochemicals production in the cell.
Collapse
|
28
|
Kelly L, Ding H, Huang KH, Osburne MS, Chisholm SW. Genetic diversity in cultured and wild marine cyanomyoviruses reveals phosphorus stress as a strong selective agent. ISME JOURNAL 2013; 7:1827-41. [PMID: 23657361 DOI: 10.1038/ismej.2013.58] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 02/22/2013] [Accepted: 03/04/2013] [Indexed: 11/09/2022]
Abstract
Viruses that infect marine cyanobacteria-cyanophages-often carry genes with orthologs in their cyanobacterial hosts, and the frequency of these genes can vary with habitat. To explore habitat-influenced genomic diversity more deeply, we used the genomes of 28 cultured cyanomyoviruses as references to identify phage genes in three ocean habitats. Only about 6-11% of genes were consistently observed in the wild, revealing high gene-content variability in these populations. Numerous shared phage/host genes differed in relative frequency between environments, including genes related to phosphorous acquisition, photorespiration, photosynthesis and the pentose phosphate pathway, possibly reflecting environmental selection for these genes in cyanomyovirus genomes. The strongest emergent signal was related to phosphorous availability; a higher fraction of genomes from relatively low-phosphorus environments-the Sargasso and Mediterranean Sea-contained host-like phosphorus assimilation genes compared with those from the N. Pacific Gyre. These genes are known to be upregulated when the host is phosphorous starved, a response mediated by pho box motifs in phage genomes that bind a host regulatory protein. Eleven cyanomyoviruses have predicted pho boxes upstream of the phosphate-acquisition genes pstS and phoA; eight of these have a conserved cyanophage-specific gene (PhCOG173) between the pho box and pstS. PhCOG173 is also found upstream of other shared phage/host genes, suggesting a unique regulatory role. Pho boxes are found upstream of high light-inducible (hli) genes in cyanomyoviruses, suggesting that this motif may have a broader role than regulating phosphorous-stress responses in infected hosts or that these hlis are involved in the phosphorous-stress response.
Collapse
Affiliation(s)
- Libusha Kelly
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
29
|
Lery LMS, Goulart CL, Figueiredo FR, Verdoorn KS, Einicker-Lamas M, Gomes FM, Machado EA, Bisch PM, von Kruger WMA. A comparative proteomic analysis of Vibrio cholerae O1 wild-type cells versus a phoB mutant showed that the PhoB/PhoR system is required for full growth and rpoS expression under inorganic phosphate abundance. J Proteomics 2013; 86:1-15. [PMID: 23665147 DOI: 10.1016/j.jprot.2013.04.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 04/09/2013] [Accepted: 04/26/2013] [Indexed: 10/26/2022]
Abstract
UNLABELLED PhoB/PhoR is a two-component system originally described as involved in inorganic phosphate (Pi) transport and metabolism under Pi limitation. In order to disclose other roles of this system, a proteomic analysis of Vibrio cholerae 569BSR and its phoB/phoR mutant under high Pi levels was performed. Most of the proteins downregulated by the mutant have roles in energy production and conversion and in amino acid transport and metabolism. In contrast, the phoB/phoR mutant upregulated genes mainly involved in adaptation to atypical conditions, indicating that the absence of a functional PhoB/PhoR caused increased expression of a number of genes from distinct stress response pathways. This might be a strategy to overcome the lack of RpoS, whose expression in the stationary phase cells of V. cholerae seems to be controlled by PhoB/PhoR. Moreover, compared to the wild-type strain the phoB/phoR mutant presented a reduced cell density at stationary phase of culture in Pi abundance, lower resistance to acid shock, but higher tolerance to thermal and osmotic stresses. Together our findings show, for the first time, the requirement of PhoB/PhoR for full growth under high Pi level and for the accumulation of RpoS, indicating that PhoB/PhoR is a fundamental system for the biology of V. cholerae. BIOLOGICAL SIGNIFICANCE Certain V. cholerae strains are pathogenic to humans, causing cholera, an acute dehydrating diarrhoeal disease endemic in Southern Asia, parts of Africa and Latin America, where it has been responsible for significant mortality and economical damage. Its ability to grow within distinct niches is dependent on gene expression regulation. PhoB/PhoR is a two-component system originally described as involved in inorganic phosphate (Pi) transport and metabolism under Pi limitation. However, Pho regulon genes also play roles in virulence, motility and biofilm formation, among others. In this paper we report that the absence of a functional PhoB/PhoR caused increased expression of a number of genes from distinct stress response pathways, in Pi abundance. Moreover, we showed, for the first time, that the interrelationship between PhoB-RpoS-(p)ppGpp-poly(P) in V. cholerae, is somewhat diverse from the model of inter-regulation between those systems, described in Escherichia coli. The V. cholerae dependence on PhoB/PhoR for the RpoS mediated stress response and cellular growth under Pi abundance, suggests that this system's roles are broader than previously thought.
Collapse
Affiliation(s)
- Letícia M S Lery
- Unidade Multidisciplinar de Genômica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Shimizu K. Metabolic Regulation of a Bacterial Cell System with Emphasis on Escherichia coli Metabolism. ISRN BIOCHEMISTRY 2013; 2013:645983. [PMID: 25937963 PMCID: PMC4393010 DOI: 10.1155/2013/645983] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 10/25/2012] [Indexed: 12/19/2022]
Abstract
It is quite important to understand the overall metabolic regulation mechanism of bacterial cells such as Escherichia coli from both science (such as biochemistry) and engineering (such as metabolic engineering) points of view. Here, an attempt was made to clarify the overall metabolic regulation mechanism by focusing on the roles of global regulators which detect the culture or growth condition and manipulate a set of metabolic pathways by modulating the related gene expressions. For this, it was considered how the cell responds to a variety of culture environments such as carbon (catabolite regulation), nitrogen, and phosphate limitations, as well as the effects of oxygen level, pH (acid shock), temperature (heat shock), and nutrient starvation.
Collapse
Affiliation(s)
- Kazuyuki Shimizu
- Kyushu Institute of Technology, Fukuoka, Iizuka 820-8502, Japan
- Institute of Advanced Bioscience, Keio University, Yamagata, Tsuruoka 997-0017, Japan
| |
Collapse
|
31
|
Effect of acidic condition on the metabolic regulation of Escherichia coli and its phoB mutant. Arch Microbiol 2012; 195:161-71. [DOI: 10.1007/s00203-012-0861-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 12/05/2012] [Accepted: 12/06/2012] [Indexed: 10/27/2022]
|
32
|
Cheng C, Wakefield MJ, Yang J, Tauschek M, Robins-Browne RM. Genome-wide analysis of the Pho regulon in a pstCA mutant of Citrobacter rodentium. PLoS One 2012; 7:e50682. [PMID: 23226353 PMCID: PMC3511308 DOI: 10.1371/journal.pone.0050682] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 10/26/2012] [Indexed: 11/19/2022] Open
Abstract
The phosphate-specific transport operon, pstSCAB-phoU, of Gram-negative bacteria is an essential part of the Pho regulon. Its key roles are to encode a high-affinity inorganic phosphate transport system and to prevent activation of PhoB in phosphate-rich environments. In general, mutations in pstSCAB-phoU lead to the constitutive expression of the Pho regulon. Previously, we constructed a pstCA deletion mutant of Citrobacter rodentium and found it to be attenuated for virulence in mice, its natural host. This attenuation was dependent on PhoB or PhoB-regulated gene(s) because a phoB mutation restored virulence for mice to the pstCA mutant. To investigate how downstream genes may contribute to the virulence of C. rodentium, we used microarray analysis to investigate global gene expression of C. rodentium strain ICC169 and its isogenic pstCA mutant when grown in phosphate-rich medium. Overall 323 genes of the pstCA mutant were differentially expressed by at least 1.5-fold compared to the wild-type C. rodentium. Of these 145 were up-regulated and 178 were down-regulated. Differentially expressed genes included some involved in phosphate homoeostasis, cellular metabolism and protein metabolism. A large number of genes involved in stress responses and of unknown function were also differentially expressed, as were some virulence-associated genes. Up-regulated virulence-associated genes in the pstCA mutant included that for DegP, a serine protease, which appeared to be directly regulated by PhoB. Down-regulated genes included those for the production of the urease, flagella, NleG8 (a type III-secreted protein) and the tad focus (which encodes type IVb pili in Yersinia enterocolitica). Infection studies using C57/BL6 mice showed that DegP and NleG8 play a role in bacterial virulence. Overall, our study provides evidence that Pho is a global regulator of gene expression in C. rodentium and indicates the presence of at least two previously unrecognized virulence determinants of C. rodentium, namely, DegP and NleG8.
Collapse
Affiliation(s)
- Catherine Cheng
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria, Australia
| | - Matthew J. Wakefield
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Genetics, The University of Melbourne, Parkville, Victoria, Australia
| | - Ji Yang
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria, Australia
| | - Marija Tauschek
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria, Australia
| | - Roy M. Robins-Browne
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria, Australia
- Murdoch Childrens Research Institute, Royal Children’s Hospital, Parkville, Victoria, Australia
- * E-mail:
| |
Collapse
|
33
|
Allam US, Krishna MG, Sen M, Thomas R, Lahiri A, Gnanadhas DP, Chakravortty D. Acidic pH induced STM1485 gene is essential for intracellular replication of Salmonella. Virulence 2012; 3:122-35. [PMID: 22460643 PMCID: PMC3396692 DOI: 10.4161/viru.19029] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
During the course of infection, Salmonella has to face several potentially lethal environmental conditions, one such being acidic pH. The ability to sense and respond to the acidic pH is crucial for the survival and replication of Salmonella. The physiological role of one gene (STM1485) involved in this response, which is upregulated inside the host cells (by 90- to 113-fold) is functionally characterized in Salmonella pathogenesis. In vitro, the ΔSTM1485 neither exhibited any growth defect at pH 4.5 nor any difference in the acid tolerance response. The ΔSTM1485 was compromised in its capacity to proliferate inside the host cells and complementation with STM1485 gene restored its virulence. We further demonstrate that the surface translocation of Salmonella pathogenicity island-2 (SPI-2) encoded translocon proteins, SseB and SseD were reduced in the ΔSTM1485. The increase in co-localization of this mutant with lysosomes was also observed. In addition, the ΔSTM1485 displayed significantly reduced competitive indices (CI) in spleen, liver and mesenteric lymph nodes in murine typhoid model when infected by intra-gastric route. Based on these results, we conclude that the acidic pH induced STM1485 gene is essential for intracellular replication of Salmonella.
Collapse
Affiliation(s)
- Uday Sankar Allam
- Department of Microbiology, Centre for Infectious Disease Research and Biosafety Laboratories, Indian Institute of Science, Bangalore, India
| | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
The first stress that foodborne pathogens find upon ingestion is the very acidic pH of the stomach of the host. In addition, intracellular pathogens like Salmonella are submitted to low pH inside the host cells. Two general acid survival systems are found in these organisms: acid resistance mechanisms and acid tolerance responses. These mechanisms involve the synthesis of a series of acid shock proteins. Only a subset of these proteins is directly involved in acid survival. This is related to the fact that low pH is not only a stress to cope with, but it is also an important signal that indicates to the bacterium that it is in a potential host environment and that triggers the induction of many virulence genes. Asr is an acid shock protein that supports growth of Escherichia coli at moderate acidity. In this issue of Virulence, Allam et al. investigate the role of STM1485, the homologous of asr in Salmonella enterica serovar Typhimurium, in acid survival and virulence. Although STM1485 is not required for acid survival of S. enterica, it is necessary for intracellular replication in human epithelial cells and murine macrophages, and to prevent the progression of the Salmonella-containing vacuole along the degradative pathway. In addition, Allam et al. are able to show that the defects of the STM1485 mutant at the cellular level correlate with reduced virulence in the mouse model.
Collapse
|
35
|
Joerger RD, Sartori C, Frye JG, Turpin JB, Schmidt C, McClelland M, Porwollik S. Gene expression analysis of Salmonella enterica Enteritidis Nal(R) and Salmonella enterica Kentucky 3795 exposed to HCl and acetic acid in rich medium. Foodborne Pathog Dis 2012; 9:331-7. [PMID: 22356573 DOI: 10.1089/fpd.2011.0984] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In the United States, serovar Kentucky has become one of the most frequently isolated Salmonella enterica serovars from chickens. The reasons for this prevalence are not well understood. Phenotypic comparisons of poultry Salmonella isolates belonging to various serovars demonstrated that serovar Kentucky isolates differed from those of most other serovars in their response to acid. Microarray and qPCR analyses were performed with aerated exponentially growing poultry isolates, Salmonella enterica serovar Kentucky 3795 and Enteritidis Nal(R), exposed for 10 min to tryptic soy broth (TSB) adjusted to pH 4.5 with HCl and to pH 5.5 with HCl or acetic acid. Data obtained by microarray analysis indicated that more genes were up- or down-regulated in strain Kentucky 3795 than in Enteritidis Nal(R) under acidic conditions. Acid exposure in general caused up-regulation of energy metabolism genes and down-regulation of protein synthesis genes, particularly of ribosomal protein genes. Both strains appear to similarly utilize the lysine-based pH homeostasis system, as up-regulation of cadB was observed under the acidic conditions. Expression of regulatory genes (rpoS, fur, phoPQ) known to be involved in the acid response showed similar trends in both isolates. Differences between Kentucky 3795 and Enteritidis Nal(R) were observed with respect to the expression of the hdeB-like locus SEN1493 (potentially encoding a chaperone important to acid response), and some differences in the expression of other genes such as those involved in citrate utilization and motility were noted. It appears that the early stages of the transcriptional response to acid by isolates Kentucky 3795 and Enteritidis Nal(R) are similar, but differences exist in the scope and in some facets of the response. Possibly, the quantitative differences observed might lead to differences in protein levels that could explain the observed differences in the acid phenotype of serovar Kentucky and other Salmonella serovars.
Collapse
Affiliation(s)
- Rolf D Joerger
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716, USA.
| | | | | | | | | | | | | |
Collapse
|
36
|
Characterization of Escherichia coli dinJ-yafQ toxin-antitoxin system using insights from mutagenesis data. J Bacteriol 2012; 194:1523-32. [PMID: 22247505 DOI: 10.1128/jb.06104-11] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli dinJ-yafQ operon codes for a functional toxin-antitoxin (TA) system. YafQ toxin is an RNase which, upon overproduction, specifically inhibits the translation process by cleaving cellular mRNA at specific sequences. DinJ is an antitoxin and counteracts YafQ-mediated toxicity by forming a strong protein complex. In the present study we used site-directed mutagenesis of YafQ to determine the amino acids important for its catalytic activity. His50Ala, His63Ala, Asp67Ala, Trp68Ala, Trp68Phe, Arg83Ala, His87Ala, and Phe91Ala substitutions of the predicted active-site residues of YafQ abolished mRNA cleavage in vivo, whereas Asp61Ala and Phe91Tyr mutations inhibited YafQ RNase activity only moderately. We show that YafQ, upon overexpression, cleaved mRNAs preferably 5' to A between the second and third nucleotides in the codon in vivo. YafQ also showed RNase activity against mRNA, tRNA, and 5S rRNA molecules in vitro, albeit with no strong specificity. The endoribonuclease activity of YafQ was inhibited in the complex with DinJ antitoxin in vitro. DinJ-YafQ protein complex and DinJ antitoxin alone selectively bind to one of the two palindromic sequences present in the intergenic region upstream of the dinJ-yafQ operon, suggesting the autoregulation mode of this TA system.
Collapse
|
37
|
Viala JPM, Méresse S, Pocachard B, Guilhon AA, Aussel L, Barras F. Sensing and adaptation to low pH mediated by inducible amino acid decarboxylases in Salmonella. PLoS One 2011; 6:e22397. [PMID: 21799843 PMCID: PMC3143133 DOI: 10.1371/journal.pone.0022397] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 06/21/2011] [Indexed: 01/16/2023] Open
Abstract
During the course of infection, Salmonella enterica serovar Typhimurium must successively survive the harsh acid stress of the stomach and multiply into a mild acidic compartment within macrophages. Inducible amino acid decarboxylases are known to promote adaptation to acidic environments. Three low pH inducible amino acid decarboxylases were annotated in the genome of S. Typhimurium, AdiA, CadA and SpeF, which are specific for arginine, lysine and ornithine, respectively. In this study, we characterized and compared the contributions of those enzymes in response to acidic challenges. Individual mutants as well as a strain deleted for the three genes were tested for their ability (i) to survive an extreme acid shock, (ii) to grow at mild acidic pH and (iii) to infect the mouse animal model. We showed that the lysine decarboxylase CadA had the broadest range of activity since it both had the capacity to promote survival at pH 2.3 and growth at pH 4.5. The arginine decarboxylase AdiA was the most performant in protecting S. Typhimurium from a shock at pH 2.3 and the ornithine decarboxylase SpeF conferred the best growth advantage under anaerobiosis conditions at pH 4.5. We developed a GFP-based gene reporter to monitor the pH of the environment as perceived by S. Typhimurium. Results showed that activities of the lysine and ornithine decarboxylases at mild acidic pH did modify the local surrounding of S. Typhimurium both in culture medium and in macrophages. Finally, we tested the contribution of decarboxylases to virulence and found that these enzymes were dispensable for S. Typhimurium virulence during systemic infection. In the light of this result, we examined the genomes of Salmonella spp. normally responsible of systemic infection and observed that the genes encoding these enzymes were not well conserved, supporting the idea that these enzymes may be not required during systemic infection.
Collapse
Affiliation(s)
- Julie P M Viala
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, CNRS (UPR-CNRS 9043), Marseille, France.
| | | | | | | | | | | |
Collapse
|
38
|
Crépin S, Chekabab SM, Le Bihan G, Bertrand N, Dozois CM, Harel J. The Pho regulon and the pathogenesis of Escherichia coli. Vet Microbiol 2011; 153:82-8. [PMID: 21700403 DOI: 10.1016/j.vetmic.2011.05.043] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 05/18/2011] [Accepted: 05/25/2011] [Indexed: 11/18/2022]
Abstract
During the course of infection, bacteria must coordinately regulate gene expression in response to environmental stimuli. The phosphate (Pho) regulon is controlled by the two component-regulatory system PhoBR. PhoBR is activated during starvation and regulates genes involved in phosphate homeostasis. Several studies have highlighted the importance of the Pho regulon in bacterial pathogenesis, showing how induction of PhoBR, in addition to regulating genes participating in phosphate metabolism, leads to modulation of many cellular processes. The pleiotropic effects of Pho regulon activation include attenuated virulence and alteration of many virulence traits, including adhesion to host cells and resistance to cationic antimicrobial peptides, acidity and oxidative stresses. This review provides an overview of the relationship between the Pho regulon and virulence in Escherichia coli and illustrates that, in addition to regulating phosphate homeostasis, the Pho regulon plays a key role in regulating stress responses and virulence.
Collapse
Affiliation(s)
- Sébastien Crépin
- INRS-Institut Armand-Frappier, 531 Boul. des Prairies, Laval, Québec, Canada H7V 1B7
| | | | | | | | | | | |
Collapse
|
39
|
Marzan LW, Shimizu K. Metabolic regulation of Escherichia coli and its phoB and phoR genes knockout mutants under phosphate and nitrogen limitations as well as at acidic condition. Microb Cell Fact 2011; 10:39. [PMID: 21599905 PMCID: PMC3129296 DOI: 10.1186/1475-2859-10-39] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 05/20/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The phosphorus compounds serve as major building blocks of many biomolecules, and have important roles in signal transduction. The phosphate is involved in many biochemical reactions by the transfer of phosphoryl groups. All living cells sophisticatedly regulate the phosphate uptake, and survive even under phosphate-limiting condition, and thus phosphate metabolism is closely related to the diverse metabolism including energy and central carbon metabolism. In particular, phosphorylation may play important roles in the metabolic regulation at acidic condition and nitrogen limiting condition, which typically appears at the late growth phase in the batch culture. Moreover, phosphate starvation is a relatively inexpensive means of gene induction in practice, and the phoA promoter has been used for overexpression of heterologous genes. A better understanding of phosphate regulation would allow for optimization of such processes. RESULTS The effect of phosphate (P) concentration on the metabolism in Escherichia coli was investigated in terms of fermentation characteristics and gene transcript levels for the aerobic continuous culture at the dilution rate of 0.2 h-1. The result indicates that the specific glucose consumption rate and the specific acetate production rate significantly increased, while the cell concentration decreased at low P concentration (10% of the M9 medium). The increase in the specific glucose uptake rate may be due to ATP demand caused by limited ATP production under P-limitation. The lower cell concentration was also caused by less ATP production. The less ATP production by H+-ATPase may have caused less cytochrome reaction affecting in quinone pool, and caused up-regulation of ArcA/B, which repressed TCA cycle genes and caused more acetate production. In the case of phoB mutant (and also phoR mutant), the fermentation characteristics were less affected by P-limitation as compared to the wild type where the PhoB regulated genes were down-regulated, while phoR and phoU changed little. The phoR gene knockout caused phoB gene to be down-regulated as well as PhoB regulated genes, while phoU and phoM changed little. The effect of pH together with lower P concentration on the metabolic regulation was also investigated. In accordance with up-regulation of arcA gene expression, the expressions of the TCA cycle genes such as sdhC and mdh were down-regulated at acidic condition. The gene expression of rpoS was up-regulated, and the expression of gadA was up-regulated at pH 6.0. In accordance with this, PhoB regulated genes were up-regulated in the wild type under P-rich and P-limited conditions at pH 6.0 as compared to those at pH 7.0. Moreover, the effect of nitrogen limitation on the metabolic regulation was investigated, where the result indicates that phoB gene was up-regulated, and PhoB regulated genes were also up-regulated under N-limitation, as well as nitrogen-regulated genes. CONCLUSION The present result shows the complicated nature of the metabolic regulation for the fermentation characteristics upon phosphate limitation, acidic condition, and nitrogen limitation based on the transcript levels of selected genes. The result implies that the regulations under phosphate limitation, acidic condition, and nitrogen limitation, which occur typically at the late growth phase of the batch culture, are interconnected through RpoS and RpoD together with Pho genes.
Collapse
Affiliation(s)
- Lolo Wal Marzan
- Department of Bioscience & Bioinformatics, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan
| | | |
Collapse
|
40
|
Metabolic regulation in Escherichia coli in response to culture environments via global regulators. Biotechnol J 2011; 6:1330-41. [DOI: 10.1002/biot.201000447] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 02/14/2011] [Accepted: 02/16/2011] [Indexed: 11/07/2022]
|
41
|
de Lucena DKC, Pühler A, Weidner S. The role of sigma factor RpoH1 in the pH stress response of Sinorhizobium meliloti. BMC Microbiol 2010; 10:265. [PMID: 20955556 PMCID: PMC2976971 DOI: 10.1186/1471-2180-10-265] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 10/18/2010] [Indexed: 11/14/2022] Open
Abstract
Background Environmental pH stress constitutes a limiting factor for S. meliloti survival and development. The response to acidic pH stress in S. meliloti is versatile and characterized by the differential expression of genes associated with various cellular functions. The purpose of this study was to gain detailed insight into the participation of sigma factors in the complex stress response system of S. meliloti 1021 using pH stress as an effector. Results In vitro assessment of S meliloti wild type and sigma factor mutants provided first evidence that the sigma factor RpoH1 plays a major role in the pH stress response. Differential expression of genes related to rhizobactin biosynthesis was observed in microarray analyses performed with the rpoH1 mutant at pH 7.0. The involvement of the sigma factor RpoH1 in the regulation of S. meliloti genes upon pH stress was analyzed by comparing time-course experiments of the wild type and the rpoH1 mutant. Three classes of S. meliloti genes could be identified, which were transcriptionally regulated in an RpoH1-independent, an RpoH1-dependent or in a complex manner. The first class of S. meliloti genes, regulated in an RpoH1-independent manner, comprises the group of the exopolysaccharide I biosynthesis genes and also the group of genes involved in motility and flagellar biosynthesis. The second class of S. meliloti genes, regulated in an RpoH1-dependent manner, is composed of genes known from heat shock studies, like ibpA, grpE and groEL5, as well as genes involved in translation like tufA and rplC. Finally, the third class of S. meliloti genes was regulated in a complex manner, which indicates that besides sigma factor RpoH1, further regulation takes place. This was found to be the case for the genes dctA, ndvA and smc01505. Conclusions Clustering of time-course microarray data of S. meliloti wild type and sigma factor rpoH1 mutant allowed for the identification of gene clusters, each with a unique time-dependent expression pattern, as well as for the classification of genes according to their dependence on RpoH1 expression and regulation. This study provided clear evidence that the sigma factor RpoH1 plays a major role in pH stress response.
Collapse
|
42
|
Burton NA, Johnson MD, Antczak P, Robinson A, Lund PA. Novel Aspects of the Acid Response Network of E. coli K-12 Are Revealed by a Study of Transcriptional Dynamics. J Mol Biol 2010; 401:726-42. [DOI: 10.1016/j.jmb.2010.06.054] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 06/10/2010] [Accepted: 06/25/2010] [Indexed: 10/19/2022]
|
43
|
Pratt JT, Ismail AM, Camilli A. PhoB regulates both environmental and virulence gene expression in Vibrio cholerae. Mol Microbiol 2010; 77:1595-605. [PMID: 20659293 DOI: 10.1111/j.1365-2958.2010.07310.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Vibrio cholerae is a facultative pathogen that thrives in two nutritionally disparate environments, aquatic and human small intestine. Phosphate (P(i) ) is an essential nutrient that is limited in aquatic ecosystems and of unknown availability in the small intestine. Here, we show that the P(i) (Pho) regulon, which is controlled by the P(i)-specific transporter (Pst) and two-component system PhoBR, is required for V. cholerae survival in both environments, though for differing reasons. While induction of P(i) acquisition systems including Pst is critical for survival in the aquatic environment, regulation of virulence genes by PhoB and not P(i) transport per se is required for colonization of the small intestine. We show that PhoB regulates virulence genes by directly controlling expression of a key upstream transcriptional regulator, tcpPH. Thus, the Pho regulon includes virulence genes and represents a diverse gene set essential to pathogenic V. cholerae throughout its life cycle.
Collapse
Affiliation(s)
- Jason T Pratt
- Howard Hughes Medical Institute and Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | |
Collapse
|
44
|
Ogasawara H, Yamada K, Kori A, Yamamoto K, Ishihama A. Regulation of the Escherichia coli csgD promoter: interplay between five transcription factors. Microbiology (Reading) 2010; 156:2470-2483. [DOI: 10.1099/mic.0.039131-0] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Under stressful conditions in nature, Escherichia coli forms biofilms for long-term survival. Curli fimbriae are an essential architecture for cell–cell contacts within biofilms. Structural components and assembly factors of curli are encoded by two operons, csgBA and csgDEFG. The csgD gene product controls transcription of both operons. Reflecting the response of csgD expression to external stresses, a number of transcription factors participate in the regulation of the csgD promoter. Analysis of the csgD mRNA obtained from E. coli mutants in different transcription factors indicated that CpxR and H-NS act as repressors while OmpR, RstA and IHF act as activators. An acid-stress response regulator, RstA, activates csgD only under acidic conditions. These five factors bind within a narrow region of about 200 bp upstream of the csgD promoter. After pair-wise promoter-binding assays, the increase in csgD transcription in the stationary phase was suggested to be due, at least in part, to the increase in IHF level cancelling the silencing effect of H-NS. In addition, we propose a novel regulation model of this complex csgD promoter through cooperation between the two positive factors (OmpR–IHF and RstA–IHF) and also between the two negative factors (CpxR–H-NS).
Collapse
Affiliation(s)
- Hiroshi Ogasawara
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo 184-8584, Japan
| | - Kayoko Yamada
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo 184-8584, Japan
| | - Ayako Kori
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo 184-8584, Japan
| | - Kaneyoshi Yamamoto
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo 184-8584, Japan
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo 184-8584, Japan
| | - Akira Ishihama
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo 184-8584, Japan
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo 184-8584, Japan
| |
Collapse
|
45
|
Global regulation by the seven-component Pi signaling system. Curr Opin Microbiol 2010; 13:198-203. [PMID: 20171928 DOI: 10.1016/j.mib.2010.01.014] [Citation(s) in RCA: 287] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 01/21/2010] [Accepted: 01/22/2010] [Indexed: 11/23/2022]
Abstract
This review concerns how Escherichia coli detects environmental inorganic orthophosphate (P(i)) to regulate genes of the phosphate (Pho) regulon by the PhoR/PhoB two-component system (TCS). P(i) control by the PhoR/PhoB TCS is a paradigm of a bacterial signal transduction pathway in which occupancy of a cell surface receptor(s) controls gene expression in the cytoplasm. The P(i) signaling pathway requires seven proteins, all of which probably interact in a membrane-associated signaling complex. Our latest studies show that P(i) signaling involves three distinct processes, which appear to correspond to different states of the sensory histidine kinase PhoR: an inhibition state, an activation state, and a deactivation state. We describe a revised model for P(i) signal transduction of the E. coli Pho regulon.
Collapse
|
46
|
Functional genomic study of exogenous n-butanol stress in Escherichia coli. Appl Environ Microbiol 2010; 76:1935-45. [PMID: 20118358 DOI: 10.1128/aem.02323-09] [Citation(s) in RCA: 188] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
n-Butanol has been proposed as an alternative biofuel to ethanol, and several industrially used microbes, including Escherichia coli, have been engineered to produce it. Unfortunately, n-butanol is more toxic than ethanol to these organisms. To understand the basis for its toxicity, cell-wide studies were conducted at the transcript, protein, and metabolite levels to obtain a global view of the n-butanol stress response. Analysis of the data indicates that n-butanol stress has components common to other stress responses, including perturbation of respiratory functions (nuo and cyo operons), oxidative stress (sodA, sodC, and yqhD), heat shock and cell envelope stress (rpoE, clpB, htpG, cpxR, and cpxP), and metabolite transport and biosynthesis (malE and opp operon). Assays using fluorescent dyes indicated a large increase in reactive oxygen species during n-butanol stress, confirming observations from the microarray and proteomics measurements. Mutant strains with mutations in several genes whose products changed most dramatically during n-butanol stress were examined for increased sensitivity to n-butanol. Results from these analyses allowed identification of key genes that were recruited to alleviate oxidative stress, protein misfolding, and other causes of growth defects. Cellular engineering based on these cues may assist in developing a high-titer, n-butanol-producing host.
Collapse
|
47
|
Abstract
Signaling through the second messenger cyclic di-GMP (c-di-GMP) is central to the life cycle of Vibrio cholerae. However, relatively little is known about the signaling mechanism, including the specific external stimuli that regulate c-di-GMP concentration. Here, we show that the phosphate responsive regulator PhoB regulates an operon, acgAB, which encodes c-di-GMP metabolic enzymes. We show that induction of acgAB by PhoB positively regulates V. cholerae motility in vitro and that PhoB regulates expression of acgAB at late stages during V. cholerae infection in the infant mouse small intestine. These data support a model whereby PhoB becomes activated at a late stage of infection in preparation for dissemination of V. cholerae to the aquatic environment and suggest that the concentration of exogenous phosphate may become limited at late stages of infection.
Collapse
|
48
|
Gristwood T, Fineran PC, Everson L, Williamson NR, Salmond GP. The PhoBR two-component system regulates antibiotic biosynthesis in Serratia in response to phosphate. BMC Microbiol 2009; 9:112. [PMID: 19476633 PMCID: PMC2695467 DOI: 10.1186/1471-2180-9-112] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Accepted: 05/28/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Secondary metabolism in Serratia sp. ATCC 39006 (Serratia 39006) is controlled via a complex network of regulators, including a LuxIR-type (SmaIR) quorum sensing (QS) system. Here we investigate the molecular mechanism by which phosphate limitation controls biosynthesis of two antibiotic secondary metabolites, prodigiosin and carbapenem, in Serratia 39006. RESULTS We demonstrate that a mutation in the high affinity phosphate transporter pstSCAB-phoU, believed to mimic low phosphate conditions, causes upregulation of secondary metabolism and QS in Serratia 39006, via the PhoBR two-component system. Phosphate limitation also activated secondary metabolism and QS in Serratia 39006. In addition, a pstS mutation resulted in upregulation of rap. Rap, a putative SlyA/MarR-family transcriptional regulator, shares similarity with the global regulator RovA (regulator of virulence) from Yersina spp. and is an activator of secondary metabolism in Serratia 39006. We demonstrate that expression of rap, pigA-O (encoding the prodigiosin biosynthetic operon) and smaI are controlled via PhoBR in Serratia 39006. CONCLUSION Phosphate limitation regulates secondary metabolism in Serratia 39006 via multiple inter-linked pathways, incorporating transcriptional control mediated by three important global regulators, PhoB, SmaR and Rap.
Collapse
Affiliation(s)
- Tamzin Gristwood
- Department of Microbiology & Immunology, University of Otago, Dunedin, New Zealand.
| | | | | | | | | |
Collapse
|
49
|
Hellweg C, Pühler A, Weidner S. The time course of the transcriptomic response of Sinorhizobium meliloti 1021 following a shift to acidic pH. BMC Microbiol 2009; 9:37. [PMID: 19216801 PMCID: PMC2651895 DOI: 10.1186/1471-2180-9-37] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2008] [Accepted: 02/15/2009] [Indexed: 11/21/2022] Open
Abstract
Background The symbiotic soil bacterium Sinorhizobium meliloti often has to face low pH in its natural habitats. To identify genes responding to pH stress a global transcriptional analysis of S. meliloti strain 1021 following a pH shift from pH 7.0 to pH 5.75 was carried out. In detail, oligo-based whole genome microarrays were used in a time course experiment. The monitoring period covered a time span of about one hour after the pH shift. The obtained microarray data was filtered and grouped by K-means clustering in order to obtain groups of genes behaving similarly concerning their expression levels throughout the time course. Results The results display a versatile response of S. meliloti 1021 represented by distinct expression profiles of subsets of genes with functional relation. The eight generated clusters could be subdivided into a group of four clusters containing genes that were up-regulated and another group of four clusters containing genes that were down-regulated in response to the acidic pH shift. The respective mean expression progression of the four up-regulated clusters could be described as (i) permanently and strong, (ii) permanently and intermediate, (iii) permanently and progressive, and (iv) transiently up-regulated. The expression profile of the four down-regulated clusters could be characterized as (i) permanently, (ii) permanently and progressive, (iii) transiently, and (iv) ultra short down-regulated. Genes coding for proteins with functional relation were mostly cumulated in the same cluster, pointing to a characteristic expression profile for distinct cellular functions. Among the strongest up-regulated genes lpiA, degP1, cah, exoV and exoH were found. The most striking functional groups responding to the shift to acidic pH were genes of the exopolysaccharide I biosynthesis as well as flagellar and chemotaxis genes. While the genes of the exopolysaccharide I biosynthesis (exoY, exoQ, exoW, exoV, exoT, exoH, exoK exoL, exoO, exoN, exoP) were up-regulated, the expression level of the flagellar and chemotaxis genes (visR, motA, flgF, flgB, flgC, fliE, flgG, flgE, flgL, flbT, mcpU) simultaneously decreased in response to acidic pH. Other responding functional groups of genes mainly belonged to nitrogen uptake and metabolism (amtB, nrtB, nirB, nirD), methionine metabolism (metA, metF, metH, metK, bmt and ahcY) as well as ion transport systems (sitABCD, phoCD). It is noteworthy, that several genes coding for hypothetical proteins of unknown function could be identified as up-regulated in response to the pH shift. Conclusion It was shown that the short term response to acidic pH stress does not result in a simple induction or repression of genes, but in a sequence of responses varying in their intensity over time. Obviously, the response to acidic pH is not based on a few specific genes, but involves whole sets of genes associated with various cellular functions.
Collapse
Affiliation(s)
- Christoph Hellweg
- Lehrstuhl für Genetik, Fakultät für Biologie, Universität Bielefeld, Bielefeld, Germany.
| | | | | |
Collapse
|
50
|
Crépin S, Lamarche MG, Garneau P, Séguin J, Proulx J, Dozois CM, Harel J. Genome-wide transcriptional response of an avian pathogenic Escherichia coli (APEC) pst mutant. BMC Genomics 2008; 9:568. [PMID: 19038054 PMCID: PMC2648988 DOI: 10.1186/1471-2164-9-568] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Accepted: 11/28/2008] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Avian pathogenic E. coli (APEC) are associated with extraintestinal diseases in poultry. The pstSCAB-phoU operon belongs to the Pho regulon and encodes the phosphate specific transport (Pst) system. A functional Pst system is required for full virulence in APEC and other bacteria and contributes to resistance of APEC to serum, to cationic antimicrobial peptides and acid shock. The global mechanisms contributing to the attenuation and decreased resistance of the APEC pst mutant to environmental stresses have not been investigated at the transcriptional level. To determine the global effect of a pst mutation on gene expression, we compared the transcriptomes of APEC strain chi7122 and its isogenic pst mutant (K3) grown in phosphate-rich medium. RESULTS Overall, 470 genes were differentially expressed by at least 1.5-fold. Interestingly, the pst mutant not only induced systems involved in phosphate acquisition and metabolism, despite phosphate availability, but also modulated stress response mechanisms. Indeed, transcriptional changes in genes associated with the general stress responses, including the oxidative stress response were among the major differences observed. Accordingly, the K3 strain was less resistant to reactive oxygen species (ROS) than the wild-type strain. In addition, the pst mutant demonstrated reduced expression of genes involved in lipopolysaccharide modifications and coding for cell surface components such as type 1 and F9 fimbriae. Phenotypic tests also established that the pst mutant was impaired in its capacity to produce type 1 fimbriae, as demonstrated by western blotting and agglutination of yeast cells, when compared to wild-type APEC strain chi7122. CONCLUSION Overall, our data elucidated the effects of a pst mutation on the transcriptional response, and further support the role of the Pho regulon as part of a complex network contributing to phosphate homeostasis, adaptive stress responses, and E. coli virulence.
Collapse
Affiliation(s)
- Sébastien Crépin
- Groupe de Recherche sur les Maladies Infectieuses du Porc (GREMIP), Université de Montréal, Faculté de médecine vétérinaire, C. P. 5000, Saint-Hyacinthe, Québec, J2S 7C6, Canada
- Institut National de la Recherche Scientifique, INRS-Institut Armand-Frappier, Laval, Québec, Canada
| | - Martin G Lamarche
- Groupe de Recherche sur les Maladies Infectieuses du Porc (GREMIP), Université de Montréal, Faculté de médecine vétérinaire, C. P. 5000, Saint-Hyacinthe, Québec, J2S 7C6, Canada
- Institut National de la Recherche Scientifique, INRS-Institut Armand-Frappier, Laval, Québec, Canada
| | - Philippe Garneau
- Groupe de Recherche sur les Maladies Infectieuses du Porc (GREMIP), Université de Montréal, Faculté de médecine vétérinaire, C. P. 5000, Saint-Hyacinthe, Québec, J2S 7C6, Canada
| | - Julie Séguin
- Institut National de la Recherche Scientifique, INRS-Institut Armand-Frappier, Laval, Québec, Canada
| | - Julie Proulx
- Institut National de la Recherche Scientifique, INRS-Institut Armand-Frappier, Laval, Québec, Canada
| | - Charles M Dozois
- Institut National de la Recherche Scientifique, INRS-Institut Armand-Frappier, Laval, Québec, Canada
| | - Josée Harel
- Groupe de Recherche sur les Maladies Infectieuses du Porc (GREMIP), Université de Montréal, Faculté de médecine vétérinaire, C. P. 5000, Saint-Hyacinthe, Québec, J2S 7C6, Canada
| |
Collapse
|