1
|
Panda P, Giri SJ, Sherman LA, Kihara D, Aryal UK. Proteomic Analysis of Unicellular Cyanobacterium Crocosphaera subtropica ATCC 51142 under Extended Light or Dark Growth. J Proteome Res 2025; 24:419-432. [PMID: 39879150 DOI: 10.1021/acs.jproteome.4c00439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
The daily light-dark cycle is a recurrent and predictable environmental phenomenon to which many organisms, including cyanobacteria, have evolved to adapt. Understanding how cyanobacteria alter their metabolic attributes in response to subjective light or dark growth may provide key features for developing strains with improved photosynthetic efficiency and applications in enhanced carbon sequestration and renewable energy. Here, we undertook a label-free proteomic approach to investigate the effect of extended light (LL) or extended dark (DD) conditions on the unicellular cyanobacterium Crocosphaera subtropica ATCC 51142. We quantified 2287 proteins, of which 603 proteins, were significantly different between the two growth conditions. These proteins represent several biological processes, including photosynthetic electron transport, carbon fixation, stress responses, translation, and protein degradation. One significant observation is the regulation of over two dozen proteases, including ATP-dependent Clp-proteases (endopeptidases) and metalloproteases, the majority of which were upregulated in LL compared to DD. This suggests that proteases play a crucial role in the regulation and maintenance of photosynthesis, especially the PSI and PSII components. The higher protease activity in LL indicates a need for more frequent degradation and repair of certain photosynthetic components, highlighting the dynamic nature of protein turnover and quality control mechanisms in response to prolonged light exposure. The results enhance our understanding of how Crocosphaera subtropica ATCC 51142 adjusts its molecular machinery in response to extended light or dark growth conditions.
Collapse
Affiliation(s)
- Punyatoya Panda
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Swagarika J Giri
- Department of Computer Science, Purdue University, West Lafayette, Indiana 47907, United States
| | - Louis A Sherman
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, United States
| | - Daisuke Kihara
- Department of Computer Science, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, United States
| | - Uma K Aryal
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
2
|
Panda P, Giri SJ, Sherman L, Kihara D, Aryal UK. Proteomic analysis of unicellular cyanobacterium Crocosphaera subtropica ATCC 51142 under extended light or dark growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.29.605499. [PMID: 39131394 PMCID: PMC11312443 DOI: 10.1101/2024.07.29.605499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The daily light-dark cycle is a recurrent and predictable environmental phenomenon to which many organisms, including cyanobacteria, have evolved to adapt. Understanding how cyanobacteria alter their metabolic attributes in response to subjective light or dark growth may provide key features for developing strains with improved photosynthetic efficiency and applications in enhanced carbon sequestration and renewable energy. Here, we undertook a label-free proteomic approach to investigate the effect of extended light (LL) or extended dark (DD) conditions on the unicellular cyanobacterium Crocosphaera subtropica ATCC 51142. We quantified 2287 proteins, of which 603 proteins were significantly different between the two growth conditions. These proteins represent several biological processes, including photosynthetic electron transport, carbon fixation, stress responses, translation, and protein degradation. One significant observation is the regulation of over two dozen proteases, including ATP dependent Clp-proteases (endopeptidases) and metalloproteases, the majority of which were upregulated in LL compared to DD. This suggests that proteases play a crucial role in the regulation and maintenance of photosynthesis, especially the PSI and PSII components. The higher protease activity in LL indicates a need for more frequent degradation and repair of certain photosynthetic components, highlighting the dynamic nature of protein turnover and quality control mechanisms in response to prolonged light exposure. The results enhance our understanding of how Crocosphaera subtropica ATCC51142 adjusts its molecular machinery in response to extended light or dark growth conditions.
Collapse
Affiliation(s)
- Punyatoya Panda
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907
| | - Swagarika J. Giri
- Department of Computer Science, Purdue University, West Lafayette, IN 47907
| | - Louis Sherman
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | - Daisuke Kihara
- Department of Computer Science, Purdue University, West Lafayette, IN 47907
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | - Uma K. Aryal
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907
- Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
3
|
Huber C, Strack M, Schultheiß I, Pielage J, Mechler X, Hornbogen J, Diller R, Frankenberg-Dinkel N. Darkness inhibits autokinase activity of bacterial bathy phytochromes. J Biol Chem 2024; 300:107148. [PMID: 38462162 PMCID: PMC11021371 DOI: 10.1016/j.jbc.2024.107148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/12/2024] Open
Abstract
Bathy phytochromes are a subclass of bacterial biliprotein photoreceptors that carry a biliverdin IXα chromophore. In contrast to prototypical phytochromes that adopt a red-light-absorbing Pr ground state, the far-red light-absorbing Pfr-form is the thermally stable ground state of bathy phytochromes. Although the photobiology of bacterial phytochromes has been extensively studied since their discovery in the late 1990s, our understanding of the signal transduction process to the connected transmitter domains, which are often histidine kinases, remains insufficient. Initiated by the analysis of the bathy phytochrome PaBphP from Pseudomonas aeruginosa, we performed a systematic analysis of five different bathy phytochromes with the aim to derive a general statement on the correlation of photostate and autokinase output. While all proteins adopt different Pr/Pfr-fractions in response to red, blue, and far-red light, only darkness leads to a pure or highly enriched Pfr-form, directly correlated with the lowest level of autokinase activity. Using this information, we developed a method to quantitatively correlate the autokinase activity of phytochrome samples with well-defined stationary Pr/Pfr-fractions. We demonstrate that the off-state of the phytochromes is the Pfr-form and that different Pr/Pfr-fractions enable the organisms to fine-tune their kinase output in response to a certain light environment. Furthermore, the output response is regulated by the rate of dark reversion, which differs significantly from 5 s to 50 min half-life. Overall, our study indicates that bathy phytochromes function as sensors of light and darkness, rather than red and far-red light, as originally postulated.
Collapse
Affiliation(s)
- Christina Huber
- Department of Microbiology, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Merle Strack
- Department of Physics, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Isabel Schultheiß
- Department of Microbiology, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Julia Pielage
- Department of Microbiology, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Xenia Mechler
- Department of Physics, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Justin Hornbogen
- Department of Physics, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Rolf Diller
- Department of Physics, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Nicole Frankenberg-Dinkel
- Department of Microbiology, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Kaiserslautern, Germany.
| |
Collapse
|
4
|
de Porcellinis AJ, Klähn S, Rosgaard L, Kirsch R, Gutekunst K, Georg J, Hess WR, Sakuragi Y. The Non-Coding RNA Ncr0700/PmgR1 is Required for Photomixotrophic Growth and the Regulation of Glycogen Accumulation in the Cyanobacterium Synechocystis sp. PCC 6803. PLANT & CELL PHYSIOLOGY 2016; 57:2091-2103. [PMID: 27440548 DOI: 10.1093/pcp/pcw128] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 07/12/2016] [Indexed: 06/06/2023]
Abstract
Carbohydrate metabolism is a tightly regulated process in photosynthetic organisms. In the cyanobacterium Synechocystis sp. PCC 6803, the photomixotrophic growth protein A (PmgA) is involved in the regulation of glucose and storage carbohydrate (i.e. glycogen) metabolism, while its biochemical activity and possible factors acting downstream of PmgA are unknown. Here, a genome-wide microarray analysis of a ΔpmgA strain identified the expression of 36 protein-coding genes and 42 non-coding transcripts as significantly altered. From these, the non-coding RNA Ncr0700 was identified as the transcript most strongly reduced in abundance. Ncr0700 is widely conserved among cyanobacteria. In Synechocystis its expression is inversely correlated with light intensity. Similarly to a ΔpmgA mutant, a Δncr0700 deletion strain showed an approximately 2-fold increase in glycogen content under photoautotrophic conditions and wild-type-like growth. Moreover, its growth was arrested by 38 h after a shift to photomixotrophic conditions. Ectopic expression of Ncr0700 in Δncr0700 and ΔpmgA restored the glycogen content and photomixotrophic growth to wild-type levels. These results indicate that Ncr0700 is required for photomixotrophic growth and the regulation of glycogen accumulation, and acts downstream of PmgA. Hence Ncr0700 is renamed here as PmgR1 for photomixotrophic growth RNA 1.
Collapse
Affiliation(s)
- Alice J de Porcellinis
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, DK-1871, Denmark
- These authors contributed equally to this work
| | - Stephan Klähn
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Schänzlestr. 1, Freiburg, D-79104, Germany
- These authors contributed equally to this work
| | - Lisa Rosgaard
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, DK-1871, Denmark
- Present address: R&D Renescience Thermal Power, DONG Energy, Skærbæk-7000 Fredericia, Denmark
| | - Rebekka Kirsch
- Botanical Institute, Christian-Albrechts-University, Am Botanischen Garten 5, Kiel, D-24118, Germany
| | - Kirstin Gutekunst
- Botanical Institute, Christian-Albrechts-University, Am Botanischen Garten 5, Kiel, D-24118, Germany
| | - Jens Georg
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Schänzlestr. 1, Freiburg, D-79104, Germany
| | - Wolfgang R Hess
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Schänzlestr. 1, Freiburg, D-79104, Germany
| | - Yumiko Sakuragi
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, DK-1871, Denmark
| |
Collapse
|
5
|
Diurnal Regulation of Cellular Processes in the Cyanobacterium Synechocystis sp. Strain PCC 6803: Insights from Transcriptomic, Fluxomic, and Physiological Analyses. mBio 2016; 7:mBio.00464-16. [PMID: 27143387 PMCID: PMC4959675 DOI: 10.1128/mbio.00464-16] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
UNLABELLED Synechocystis sp. strain PCC 6803 is the most widely studied model cyanobacterium, with a well-developed omics level knowledgebase. Like the lifestyles of other cyanobacteria, that of Synechocystis PCC 6803 is tuned to diurnal changes in light intensity. In this study, we analyzed the expression patterns of all of the genes of this cyanobacterium over two consecutive diurnal periods. Using stringent criteria, we determined that the transcript levels of nearly 40% of the genes in Synechocystis PCC 6803 show robust diurnal oscillating behavior, with a majority of the transcripts being upregulated during the early light period. Such transcripts corresponded to a wide array of cellular processes, such as light harvesting, photosynthetic light and dark reactions, and central carbon metabolism. In contrast, transcripts of membrane transporters for transition metals involved in the photosynthetic electron transport chain (e.g., iron, manganese, and copper) were significantly upregulated during the late dark period. Thus, the pattern of global gene expression led to the development of two distinct transcriptional networks of coregulated oscillatory genes. These networks help describe how Synechocystis PCC 6803 regulates its metabolism toward the end of the dark period in anticipation of efficient photosynthesis during the early light period. Furthermore, in silico flux prediction of important cellular processes and experimental measurements of cellular ATP, NADP(H), and glycogen levels showed how this diurnal behavior influences its metabolic characteristics. In particular, NADPH/NADP(+) showed a strong correlation with the majority of the genes whose expression peaks in the light. We conclude that this ratio is a key endogenous determinant of the diurnal behavior of this cyanobacterium. IMPORTANCE Cyanobacteria are photosynthetic microbes that use energy from sunlight and CO2 as feedstock. Certain cyanobacterial strains are amenable to facile genetic manipulation, thus enabling synthetic biology and metabolic engineering applications. Such strains are being developed as a chassis for the sustainable production of food, feed, and fuel. To this end, a holistic knowledge of cyanobacterial physiology and its correlation with gene expression patterns under the diurnal cycle is warranted. In this report, a genomewide transcriptional analysis of Synechocystis PCC 6803, the most widely studied model cyanobacterium, sheds light on the global coordination of cellular processes during diurnal periods. Furthermore, we found that, in addition to light, the redox level of NADP(H) is an important endogenous regulator of diurnal entrainment of Synechocystis PCC 6803.
Collapse
|
6
|
Mueller TJ, Welsh EA, Pakrasi HB, Maranas CD. Identifying Regulatory Changes to Facilitate Nitrogen Fixation in the Nondiazotroph Synechocystis sp. PCC 6803. ACS Synth Biol 2016; 5:250-8. [PMID: 26692191 DOI: 10.1021/acssynbio.5b00202] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The incorporation of biological nitrogen fixation into a nondiazotrophic photosynthetic organism provides a promising solution to the increasing fixed nitrogen demand, but is accompanied by a number of challenges for accommodating two incompatible processes within the same organism. Here we present regulatory influence networks for two cyanobacteria, Synechocystis PCC 6803 and Cyanothece ATCC 51142, and evaluate them to co-opt native transcription factors that may be used to control the nif gene cluster once it is transferred to Synechocystis. These networks were further examined to identify candidate transcription factors for other metabolic processes necessary for temporal separation of photosynthesis and nitrogen fixation, glycogen catabolism and cyanophycin synthesis. Two transcription factors native to Synechocystis, LexA and Rcp1, were identified as promising candidates for the control of the nif gene cluster and other pertinent metabolic processes, respectively. Lessons learned in the incorporation of nitrogen fixation into a nondiazotrophic prokaryote may be leveraged to further progress the incorporation of nitrogen fixation in plants.
Collapse
Affiliation(s)
- Thomas J. Mueller
- Department
of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania 16801, United States
| | - Eric A. Welsh
- Cancer
Informatics Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, United States
| | - Himadri B. Pakrasi
- Department
of Energy, Environmental, and Chemical Engineering, Washington University, St. Louis, Missouri 63130, United States
- Department
of Biology, Washington University, St. Louis, Missouri 63130, United States
| | - Costas D. Maranas
- Department
of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania 16801, United States
| |
Collapse
|
7
|
Percival SL, Francolini I, Donelli G. Low-level laser therapy as an antimicrobial and antibiofilm technology and its relevance to wound healing. Future Microbiol 2015; 10:255-72. [DOI: 10.2217/fmb.14.109] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
ABSTRACT The biostimulative effect of low-level laser therapy (LLLT) in tissues has been noted in reference to the treatment of various diseases but little information exists on its effectiveness on chronic wounds and biofilm. The scope of this review was to identify literature reporting on LLLT alone, without photodynamic agents, as an antimicrobial/antibiofilm technology and determine its effects on wound healing. Overall the beneficial effects of LLLT in promoting wound healing in animal and human studies has been demonstrated. However, the lack of credible studies using reproducible models and light dosimetry restricts the analysis of current data. Efforts must be addressed to standardize phototherapy procedures as well as to develop suitable in vitro and in vivo biofilm models to test LLLT efficacy in promoting biofilm eradication and wound healing.
Collapse
Affiliation(s)
- Steven L Percival
- Surface Science Research Centre, University of Liverpool, Liverpool, UK
- Institute of Ageing & Chronic Disease, University of Liverpool, Liverpool, UK
| | | | | |
Collapse
|
8
|
Dörrich AK, Mitschke J, Siadat O, Wilde A. Deletion of the Synechocystis sp. PCC 6803 kaiAB1C1 gene cluster causes impaired cell growth under light-dark conditions. MICROBIOLOGY-SGM 2014; 160:2538-2550. [PMID: 25139948 DOI: 10.1099/mic.0.081695-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In contrast to Synechococcus elongatus PCC 7942, few data exist on the timing mechanism of the widely used cyanobacterium Synechocystis sp. PCC 6803. The standard kaiAB1C1 operon present in this organism was shown to encode a functional KaiC protein that interacted with KaiA, similar to the S. elongatus PCC 7942 clock. Inactivation of this operon in Synechocystis sp. PCC 6803 resulted in a mutant with a strong growth defect when grown under light-dark cycles, which was even more pronounced when glucose was added to the growth medium. In addition, mutants showed a bleaching phenotype. No effects were detected in mutant cells grown under constant light. Microarray experiments performed with cells grown for 1 day under a light-dark cycle revealed many differentially regulated genes with known functions in the ΔkaiABC mutant in comparison with the WT. We identified the genes encoding the cyanobacterial phytochrome Cph1 and the light-repressed protein LrtA as well as several hypothetical ORFs with a complete inverse behaviour in the light cycle. These transcripts showed a stronger accumulation in the light but a weaker accumulation in the dark in ΔkaiABC cells in comparison with the WT. In general, we found a considerable overlap with microarray data obtained for hik31 and sigE mutants. These genes are known to be important regulators of cell metabolism in the dark. Strikingly, deletion of the ΔkaiABC operon led to a much stronger phenotype under light-dark cycles in Synechocystis sp. PCC 6803 than in Synechococcus sp. PCC 7942.
Collapse
Affiliation(s)
- Anja K Dörrich
- Institute for Microbiology and Molecular Biology, Justus-Liebig-University, Heinrich-Buff-Ring 26, 35392 Giessen, Germany
| | - Jan Mitschke
- Institute of Biology III, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Olga Siadat
- Institute of Biology III, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Annegret Wilde
- Institute of Biology III, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| |
Collapse
|
9
|
Zhang X, Chen G, Qin C, Wang Y, Wei D. Slr0643, an S2P homologue, is essential for acid acclimation in the cyanobacterium Synechocystis sp. PCC 6803. Microbiology (Reading) 2012; 158:2765-2780. [DOI: 10.1099/mic.0.060632-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Xu Zhang
- College of Light Industry and Food Sciences, South China University of Technology, 381 Wushan Road, 510641, Guangzhou, PR China
| | - Gu Chen
- College of Light Industry and Food Sciences, South China University of Technology, 381 Wushan Road, 510641, Guangzhou, PR China
| | - Chunyan Qin
- College of Light Industry and Food Sciences, South China University of Technology, 381 Wushan Road, 510641, Guangzhou, PR China
| | - Yuling Wang
- College of Light Industry and Food Sciences, South China University of Technology, 381 Wushan Road, 510641, Guangzhou, PR China
| | - Dong Wei
- College of Light Industry and Food Sciences, South China University of Technology, 381 Wushan Road, 510641, Guangzhou, PR China
| |
Collapse
|
10
|
Diurnal rhythms result in significant changes in the cellular protein complement in the cyanobacterium Cyanothece 51142. PLoS One 2011; 6:e16680. [PMID: 21364985 PMCID: PMC3043056 DOI: 10.1371/journal.pone.0016680] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 01/04/2011] [Indexed: 12/21/2022] Open
Abstract
Cyanothece sp. ATCC 51142 is a diazotrophic cyanobacterium notable for its ability to perform oxygenic photosynthesis and dinitrogen fixation in the same single cell. Previous transcriptional analysis revealed that the existence of these incompatible cellular processes largely depends on tightly synchronized expression programs involving ∼30% of genes in the genome. To expand upon current knowledge, we have utilized sensitive proteomic approaches to examine the impact of diurnal rhythms on the protein complement in Cyanothece 51142. We found that 250 proteins accounting for ∼5% of the predicted ORFs from the Cyanothece 51142 genome and 20% of proteins detected under alternating light/dark conditions exhibited periodic oscillations in their abundances. Our results suggest that altered enzyme activities at different phases during the diurnal cycle can be attributed to changes in the abundance of related proteins and key compounds. The integration of global proteomics and transcriptomic data further revealed that post-transcriptional events are important for temporal regulation of processes such as photosynthesis in Cyanothece 51142. This analysis is the first comprehensive report on global quantitative proteomics in a unicellular diazotrophic cyanobacterium and uncovers novel findings about diurnal rhythms.
Collapse
|
11
|
Régnier P, Hajnsdorf E. Poly(A)-assisted RNA decay and modulators of RNA stability. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 85:137-85. [PMID: 19215772 DOI: 10.1016/s0079-6603(08)00804-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In Escherichia coli, RNA degradation is orchestrated by the degradosome with the assistance of complementary pathways and regulatory cofactors described in this chapter. They control the stability of each transcript and regulate the expression of many genes involved in environmental adaptation. The poly(A)-dependent degradation machinery has diverse functions such as the degradation of decay intermediates generated by endoribonucleases, the control of the stability of regulatory non coding RNAs (ncRNAs) and the quality control of stable RNA. The metabolism of poly(A) and mechanism of poly(A)-assisted degradation are beginning to be understood. Regulatory factors, exemplified by RraA and RraB, control the decay rates of subsets of transcripts by binding to RNase E, in contrast to regulatory ncRNAs which, assisted by Hfq, target RNase E to specific transcripts. Destabilization is often consecutive to the translational inactivation of mRNA. However, there are examples where RNA degradation is the primary regulatory step.
Collapse
Affiliation(s)
- Philippe Régnier
- CNRS UPR9073, Institut de Biologie Physico-Chimique, Paris, France
| | | |
Collapse
|
12
|
Frangeul L, Quillardet P, Castets AM, Humbert JF, Matthijs HCP, Cortez D, Tolonen A, Zhang CC, Gribaldo S, Kehr JC, Zilliges Y, Ziemert N, Becker S, Talla E, Latifi A, Billault A, Lepelletier A, Dittmann E, Bouchier C, de Marsac NT. Highly plastic genome of Microcystis aeruginosa PCC 7806, a ubiquitous toxic freshwater cyanobacterium. BMC Genomics 2008; 9:274. [PMID: 18534010 PMCID: PMC2442094 DOI: 10.1186/1471-2164-9-274] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Accepted: 06/05/2008] [Indexed: 11/29/2022] Open
Abstract
Background The colonial cyanobacterium Microcystis proliferates in a wide range of freshwater ecosystems and is exposed to changing environmental factors during its life cycle. Microcystis blooms are often toxic, potentially fatal to animals and humans, and may cause environmental problems. There has been little investigation of the genomics of these cyanobacteria. Results Deciphering the 5,172,804 bp sequence of Microcystis aeruginosa PCC 7806 has revealed the high plasticity of its genome: 11.7% DNA repeats containing more than 1,000 bases, 6.8% putative transposases and 21 putative restriction enzymes. Compared to the genomes of other cyanobacterial lineages, strain PCC 7806 contains a large number of atypical genes that may have been acquired by lateral transfers. Metabolic pathways, such as fermentation and a methionine salvage pathway, have been identified, as have genes for programmed cell death that may be related to the rapid disappearance of Microcystis blooms in nature. Analysis of the PCC 7806 genome also reveals striking novel biosynthetic features that might help to elucidate the ecological impact of secondary metabolites and lead to the discovery of novel metabolites for new biotechnological applications. M. aeruginosa and other large cyanobacterial genomes exhibit a rapid loss of synteny in contrast to other microbial genomes. Conclusion Microcystis aeruginosa PCC 7806 appears to have adopted an evolutionary strategy relying on unusual genome plasticity to adapt to eutrophic freshwater ecosystems, a property shared by another strain of M. aeruginosa (NIES-843). Comparisons of the genomes of PCC 7806 and other cyanobacterial strains indicate that a similar strategy may have also been used by the marine strain Crocosphaera watsonii WH8501 to adapt to other ecological niches, such as oligotrophic open oceans.
Collapse
|
13
|
Differential transcriptional analysis of the cyanobacterium Cyanothece sp. strain ATCC 51142 during light-dark and continuous-light growth. J Bacteriol 2008; 190:3904-13. [PMID: 18390663 DOI: 10.1128/jb.00206-08] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We analyzed the metabolic rhythms and differential gene expression in the unicellular, diazotrophic cyanobacterium Cyanothece sp. strain ATCC 51142 under N(2)-fixing conditions after a shift from normal 12-h light-12-h dark cycles to continuous light. We found that the mRNA levels of approximately 10% of the genes in the genome demonstrated circadian behavior during growth in free-running (continuous light) conditions. The genes for N(2) fixation displayed a strong circadian behavior, whereas photosynthesis and respiration genes were not as tightly regulated. One of our main objectives was to determine the strategies used by these cells to perform N(2) fixation under normal day-night conditions, as well as under the greater stress caused by continuous light. We determined that N(2) fixation cycled in continuous light but with a lower N(2) fixation activity. Glycogen degradation, respiration, and photosynthesis were also lower; nonetheless, O(2) evolution was about 50% of the normal peak. We also demonstrated that nifH (encoding the nitrogenase Fe protein), nifB, and nifX were strongly induced in continuous light; this is consistent with the role of these proteins during the assembly of the enzyme complex and suggested that the decreased N(2) fixation activity was due to protein-level regulation or inhibition. Many soluble electron carriers (e.g., ferredoxins), as well as redox carriers (e.g., thioredoxin and glutathione), were strongly induced during N(2) fixation in continuous light. We suggest that these carriers are required to enhance cyclic electron transport and phosphorylation for energy production and to maintain appropriate redox levels in the presence of elevated O(2), respectively.
Collapse
|
14
|
Genetic and physiological effects of noncoherent visible light combined with hydrogen peroxide on Streptococcus mutans in biofilm. Antimicrob Agents Chemother 2008; 52:2626-31. [PMID: 18316516 DOI: 10.1128/aac.01666-07] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Oral biofilms are associated with the most common infections of the oral cavity. Bacteria embedded in the biofilms are less sensitive to antibacterial agents than planktonic bacteria are. Recently, an antibacterial synergic effect of noncoherent blue light and hydrogen peroxide (H(2)O(2)) on planktonic Streptococcus mutans was demonstrated. In this study, we tested the effect of a combination of light and H(2)O(2) on the vitality and gene expression of S. mutans embedded in biofilm. Biofilms of S. mutans were exposed to visible light (wavelengths, 400 to 500 nm) for 30 or 60 s (equivalent to 34 or 68 J/cm(2)) in the presence of 3 to 300 mM H(2)O(2). The antibacterial effect was assessed by microbial counts of each treated sample compared with that of the control. The effect of light combined with H(2)O(2) on the different layers of the biofilm was evaluated by confocal laser scanning microscopy. Gene expression was determined by real-time reverse transcription-PCR. Our results show that noncoherent light, in combination with H(2)O(2), has a synergistic antibacterial effect through all of the layers of the biofilm. Furthermore, this treatment was more effective against bacteria in biofilm than against planktonic bacteria. The combined light and H(2)O(2) treatment up-regulated the expression of several genes such as gtfB, brp, smu630, and comDE but did not affect relA and ftf. The ability of noncoherent visible light in combination with H(2)O(2) to affect bacteria in deep layers of the biofilm suggests that this treatment may be applied in biofilm-related diseases as a minimally invasive antibacterial procedure.
Collapse
|
15
|
Kondou Y, Nakazawa M, Higashi SI, Watanabe M, Manabe K. Equal-quantum Action Spectra Indicate Fluence-rate-selective Action of Multiple Photoreceptors for Photomovement of the Thermophilic Cyanobacterium Synechococcus elongatus¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2001)0730090eqasif2.0.co2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Patterson-Fortin LM, Colvin KR, Owttrim GW. A LexA-related protein regulates redox-sensitive expression of the cyanobacterial RNA helicase, crhR. Nucleic Acids Res 2006; 34:3446-54. [PMID: 16840531 PMCID: PMC1524924 DOI: 10.1093/nar/gkl426] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Expression of the cyanobacterial DEAD-box RNA helicase, crhR, is regulated in response to conditions, which elicit reduction of the photosynthetic electron transport chain. A combination of electrophoretic mobility shift assay (EMSA), DNA affinity chromatography and mass spectrometry identified that a LexA-related protein binds specifically to the crhR gene. Transcript analysis indicates that lexA and crhR are divergently expressed, with lexA and crhR transcripts accumulating differentially under conditions, which respectively oxidize and reduce the electron transport chain. In addition, expression of the Synechocystis lexA gene is not DNA damage inducible and its amino acid sequence lacks two of three residues required for activity of prototypical LexA proteins, which repress expression of DNA repair genes in a range of prokaryotes. A direct effect of recombinant LexA protein on crhR expression was confirmed from the observation that LexA reduces crhR expression in a linear manner in an in vitro transcription/translation assay. The results indicate that the Synechocystis LexA-related protein functions as a regulator of redox-responsive crhR gene expression, and not DNA damage repair genes.
Collapse
Affiliation(s)
| | | | - George W. Owttrim
- To whom correspondence should be addressed. Tel: 780 492 1803; Fax: 780 492 9234;
| |
Collapse
|
17
|
Froehlich AC, Noh B, Vierstra RD, Loros J, Dunlap JC. Genetic and molecular analysis of phytochromes from the filamentous fungus Neurospora crassa. EUKARYOTIC CELL 2006; 4:2140-52. [PMID: 16339731 PMCID: PMC1317490 DOI: 10.1128/ec.4.12.2140-2152.2005] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Phytochromes (Phys) comprise a superfamily of red-/far-red-light-sensing proteins. Whereas higher-plant Phys that control numerous growth and developmental processes have been well described, the biochemical characteristics and functions of the microbial forms are largely unknown. Here, we describe analyses of the expression, regulation, and activities of two Phys in the filamentous fungus Neurospora crassa. In addition to containing the signature N-terminal domain predicted to covalently associate with a bilin chromophore, PHY-1 and PHY-2 contain C-terminal histidine kinase and response regulator motifs, implying that they function as hybrid two-component sensor kinases activated by light. A bacterially expressed N-terminal fragment of PHY-2 covalently bound either biliverdin or phycocyanobilin in vitro, with the resulting holoprotein displaying red-/far-red-light photochromic absorption spectra and a photocycle in vitro. cDNA analysis of phy-1 and phy-2 revealed two splice isoforms for each gene. The levels of the phy transcripts are not regulated by light, but the abundance of the phy-1 mRNAs is under the control of the circadian clock. Phosphorylated and unphosphorylated forms of PHY-1 were detected; both species were found exclusively in the cytoplasm, with their relative abundances unaffected by light. Strains containing deletions of phy-1 and phy-2, either singly or in tandem, were not compromised in any known photoresponses in Neurospora, leaving their function(s) unclear.
Collapse
MESH Headings
- Alternative Splicing
- Amino Acid Motifs
- Amino Acid Sequence
- Base Sequence
- Chromosome Mapping
- Chromosomes, Fungal
- Circadian Rhythm
- Cytoplasm/metabolism
- DNA, Complementary/analysis
- DNA, Complementary/genetics
- DNA, Fungal
- Escherichia coli/genetics
- Exons
- Fungal Proteins/chemistry
- Fungal Proteins/genetics
- Fungal Proteins/isolation & purification
- Fungal Proteins/metabolism
- Gene Deletion
- Gene Expression Regulation, Fungal
- Genes, Fungal
- Genetic Linkage
- Genome, Fungal
- Histidine Kinase
- Introns
- Kinetics
- Light
- Molecular Sequence Data
- Neurospora crassa/chemistry
- Neurospora crassa/genetics
- Neurospora crassa/growth & development
- Neurospora crassa/metabolism
- Neurospora crassa/radiation effects
- Open Reading Frames
- Phosphorylation
- Phytochrome/chemistry
- Phytochrome/genetics
- Phytochrome/isolation & purification
- Phytochrome/metabolism
- Pigments, Biological/chemistry
- Pigments, Biological/genetics
- Pigments, Biological/isolation & purification
- Pigments, Biological/metabolism
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Protein Kinases/chemistry
- Protein Kinases/genetics
- Protein Kinases/isolation & purification
- Protein Kinases/metabolism
- Protein Structure, Tertiary
- RNA, Messenger/metabolism
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Allan C Froehlich
- Department of Genetics, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | | | | | |
Collapse
|
18
|
Singh AK, Sherman LA. Pleiotropic effect of a histidine kinase on carbohydrate metabolism in Synechocystis sp. strain PCC 6803 and its requirement for heterotrophic growth. J Bacteriol 2005; 187:2368-76. [PMID: 15774880 PMCID: PMC1065225 DOI: 10.1128/jb.187.7.2368-2376.2005] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The deletion of a gene coding for a histidine kinase (sll0750, Hik8) in the unicellular cyanobacterium Synechocystis sp. strain PCC 6803 resulted in a conditional lethal phenotype with a pleiotropic effect on the expression of genes involved in glucose metabolism. This mutant had comparable doubling times to wild type (WT) in continuous-light-grown photoautotrophic and mixotrophic cultures, whereas it grew poorly under mixotrophic conditions with different light and dark cycles. Growth was completely stopped, and cells eventually died, when the light duration was less than 6 h on a 24-h regimen. Northern blot analysis demonstrated that steady-state transcript levels of genes encoding key enzymes of glycolysis, gluconeogenesis, the oxidative pentose phosphate pathway, and glycogen metabolism were significantly altered in a strain with mutant hik8 (Deltahik8) grown with or without glucose. In some cases, differential expression was dependent on growth conditions (photoautotrophic versus mixotrophic). The enzyme activities of glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, and phosphofructokinase were significantly reduced in Deltahik8 compared to WT. Glycogen determination indicated that Deltahik8 accumulated glycogen under mixotrophic conditions but was unable to utilize these reserves for heterotrophic growth. The results suggest that the loss of gap1 transcription in the absence of Hik8 was the key factor that rendered cells unable to catabolize glucose and grow heterotrophically. Additionally, the transcript levels of the phytochrome gene (cph1) and its cotranscribed response regulator gene (rcp1) were significantly reduced and its dark inducibility was lost in Deltahik8. The results demonstrated that Hik8 plays an important role in glucose metabolism and is necessary for heterotrophic growth.
Collapse
Affiliation(s)
- Abhay K Singh
- Department of Biological Sciences, Purdue University, 1392 Lilly Hall of Life Sciences, West Lafayette, IN 47907, USA
| | | |
Collapse
|
19
|
Salem K, van Waasbergen LG. Light control of hliA transcription and transcript stability in the cyanobacterium Synechococcus elongatus strain PCC 7942. J Bacteriol 2004; 186:1729-36. [PMID: 14996804 PMCID: PMC355953 DOI: 10.1128/jb.186.6.1729-1736.2004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The high-light-inducible proteins (HLIPs) of cyanobacteria are polypeptides involved in protecting the cells from high-intensity light (HL). The hliA gene encoding the HLIP from Synechococcus elongatus strain PCC 7942 is expressed in response to HL or low-intensity blue or UV-A light. In this study, we explore via Northern analysis details of the transcriptional regulation and transcript stability of the hliA gene under various light conditions. Transcript levels of the hliA gene increased dramatically upon a shift to HL or UV-A light to similar levels, followed by a rapid decrease in UV-A light, but not in HL, consistent with blue/UV-A light involvement in early stages of HL-mediated expression. A 3-min pulse of low-intensity UV-A light was enough to trigger hliA mRNA accumulation, indicating that a blue/UV-A photoreceptor is involved in upregulation of the gene. Low-intensity red light was found to cause a slight, transient increase in transcript levels (raising the possibility of red-light photoreceptor involvement), while light of other qualities had no apparent effect. No evidence was found for wavelength-specific attenuation of hliA transcript levels induced by HL or UV-A light. Transcript decay was slowed somewhat in darkness, and when photosynthetic electron transport was inhibited by darkness or treatment with DCMU, there appeared a smaller mRNA species that may represent a decay intermediate that accumulates when mRNA decay is slowed. Evidence suggests that upregulation of hliA by light is primarily a transcriptional response but conditions that cause ribosomes to stall on the transcript (e.g., a shift to darkness) can help stabilize hliA mRNA and affect expression levels.
Collapse
Affiliation(s)
- Kavitha Salem
- Department of Biology and Converging Biotechnology Center, The University of Texas at Arlington, Texas 76019, USA
| | | |
Collapse
|
20
|
Abstract
This review focuses on the blue light responses in bacteria and on the bacterial proteins which have been demonstrated to function as blue light receptors. Results of the previous years reveal that different types of photoreceptors have already evolved in prokaryotes. However, for most of these photoreceptors the exact biological functions and the mechanisms of signaling to downstream components are poorly understood.
Collapse
Affiliation(s)
- Stephan Braatsch
- Institut für Mikrobiologie und Molekularbiologie, Universität Giessen, Heinrich-Buff-Ring 26, 35392, Giessen, Germany,
| | | |
Collapse
|
21
|
Imamura S, Asayama M, Takahashi H, Tanaka K, Takahashi H, Shirai M. Antagonistic dark/light-induced SigB/SigD, group 2 sigma factors, expression through redox potential and their roles in cyanobacteria. FEBS Lett 2003; 554:357-62. [PMID: 14623094 DOI: 10.1016/s0014-5793(03)01188-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The expression of group 2 sigma factors is characterized in a cyanobacterium Synechocystis sp. PCC 6803 grown in culture, changing light conditions (white, red and blue light, and darkness), or the presence of drugs (rifampicin, chloramphenicol, DCMU, and DBMIB), and the roles of these sigma factors are elucidated. The expression of dark/light-induced SigB/SigD was accelerated under opposite redox (oxidation/reduction) states in an electron transport chain of photosynthesis. Expression of the dark-induced lrtA and light-induced psbA2/3 transcript was significantly reduced in the sigB and sigD knockout strains, respectively. Abundant amounts of sigB transcript and protein were observed in the sigC knockout strain, implying that SigC represses SigB expression under light. These findings clearly showed that SigB/SigD with another group 2 sigma, SigC, contribute to transcription for a subset of dark/light-responsive genes in the cyanobacterium. A possible model for SigB/SigD is presented and the potential ability for promoter recognition is also discussed.
Collapse
Affiliation(s)
- Sousuke Imamura
- Laboratory of Molecular Genetics, College of Agriculture, Ibaraki University, Ami, Inashiki, Ibaraki 300-0393, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Choi JS, Ahn MC, Chung YH, Kwon O, Suh KH, Park YM. Light-induced dephosphorylation of a 65-kDa protein in the cyanobacterium Synechocystis sp. PCC6803. JOURNAL OF PLANT PHYSIOLOGY 2003; 160:1259-1261. [PMID: 14610895 DOI: 10.1078/0176-1617-01155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We found that a 65-kDa protein (p65) of Synechocystis sp. PCC 6803 is dephosphorylated in a light-dependent manner. In darkness, p65 was specifically phosphorylated and then completely dephosphorylated within 2 min upon exposure to high-intensity light. The phosphorylation of p65 recurred after 8 hours incubated in the dark following light exposure. Green (540-560 nm) and red (660 nm) light dephosphorylated p65 efficiently, with the efficiency being greater with green light. These results suggest that p65 is a novel substrate involved in the quantity and quality of light-dependent dephosphorylation in cyanobacteria.
Collapse
Affiliation(s)
- Jong-Soon Choi
- Proteome Analysis Team, Korea Basic Science Institute, Daejeon 305-333, Korea
| | | | | | | | | | | |
Collapse
|
23
|
Singh AK, McIntyre LM, Sherman LA. Microarray analysis of the genome-wide response to iron deficiency and iron reconstitution in the cyanobacterium Synechocystis sp. PCC 6803. PLANT PHYSIOLOGY 2003; 132:1825-39. [PMID: 12913140 PMCID: PMC181269 DOI: 10.1104/pp.103.024018] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2003] [Revised: 04/21/2003] [Accepted: 05/12/2003] [Indexed: 05/17/2023]
Abstract
A full-genome microarray of the (oxy)photosynthetic cyanobacterium Synechocystis sp. PCC 6803 was used to identify genes that were transcriptionally regulated by growth in iron (Fe)-deficient versus Fe-sufficient media. Transcript accumulation for 3,165 genes in the genome was analyzed using an analysis of variance model that accounted for slide and replicate (random) effects and dye (a fixed) effect in testing for differences in the four time periods. We determined that 85 genes showed statistically significant changes in the level of transcription (P </= 0.05/3,165 = 0.0000158) across the four time points examined, whereas 781 genes were characterized as interesting (P </= 0.05 but greater than 0.0000158; 731 of these had a fold change >1.25 x). The genes identified included those known previously to be Fe regulated, such as isiA that encodes a novel chlorophyll-binding protein responsible for the pigment characteristics of low-Fe (LoFe) cells. ATP synthetase and phycobilisome genes were down-regulated in LoFe, and there were interesting changes in the transcription of genes involved in chlorophyll biosynthesis, in photosystem I and II assembly, and in energy metabolism. Hierarchical clustering demonstrated that photosynthesis genes, as a class, were repressed in LoFe and induced upon the re-addition of Fe. Specific regulatory genes were transcriptionally active in LoFe, including two genes that show homology to plant phytochromes (cph1 and cph2). These observations established the existence of a complex network of regulatory interactions and coordination in response to Fe availability.
Collapse
Affiliation(s)
- Abhay K Singh
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | |
Collapse
|
24
|
Rott R, Zipor G, Portnoy V, Liveanu V, Schuster G. RNA polyadenylation and degradation in cyanobacteria are similar to the chloroplast but different from Escherichia coli. J Biol Chem 2003; 278:15771-7. [PMID: 12601000 DOI: 10.1074/jbc.m211571200] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mechanism of RNA degradation in Escherichia coli involves endonucleolytic cleavage, polyadenylation of the cleavage product by poly(A) polymerase, and exonucleolytic degradation by the exoribonucleases, polynucleotide phosphorylase (PNPase) and RNase II. The poly(A) tails are homogenous, containing only adenosines in most of the growth conditions. In the chloroplast, however, the same enzyme, PNPase, polyadenylates and degrades the RNA molecule; there is no equivalent for the E. coli poly(A) polymerase enzyme. Because cyanobacteria is a prokaryote believed to be related to the evolutionary ancestor of the chloroplast, we asked whether the molecular mechanism of RNA polyadenylation in the Synechocystis PCC6803 cyanobacteria is similar to that in E. coli or the chloroplast. We found that RNA polyadenylation in Synechocystis is similar to that in the chloroplast but different from E. coli. No poly(A) polymerase enzyme exists, and polyadenylation is performed by PNPase, resulting in heterogeneous poly(A)-rich tails. These heterogeneous tails were found in the amino acid coding region, the 5' and 3' untranslated regions of mRNAs, as well as in rRNA and the single intron located at the tRNA(fmet). Furthermore, unlike E. coli, the inactivation of PNPase or RNase II genes caused lethality. Together, our results show that the RNA polyadenylation and degradation mechanisms in cyanobacteria and chloroplast are very similar to each other but different from E. coli.
Collapse
Affiliation(s)
- Ruth Rott
- Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | | | | | | | |
Collapse
|
25
|
Tuominen I, Tyystjärvi E, Tyystjärvi T. Expression of primary sigma factor (PSF) and PSF-like sigma factors in the cyanobacterium Synechocystis sp. strain PCC 6803. J Bacteriol 2003; 185:1116-9. [PMID: 12533490 PMCID: PMC142826 DOI: 10.1128/jb.185.3.1116-1119.2003] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Large amounts of sigA mRNA, encoding the primary sigma factor (PSF) in Synechocystis sp. strain PCC 6803, accumulated under standard growth conditions, while stress conditions like heat or high salinity led to a rapid decrease in sigA mRNA content. The sigB, sigC, sigD, and sigE genes, encoding PSF-like sigma factors, were under strict physiological control.
Collapse
Affiliation(s)
- Ilona Tuominen
- Plant Physiology and Molecular Biology, Department of Biology, University of Turku, FIN-20014 Turku, Finland
| | | | | |
Collapse
|
26
|
Ogawa T, Bao DH, Katoh H, Shibata M, Pakrasi HB, Bhattacharyya-Pakrasi M. A two-component signal transduction pathway regulates manganese homeostasis in Synechocystis 6803, a photosynthetic organism. J Biol Chem 2002; 277:28981-6. [PMID: 12039966 DOI: 10.1074/jbc.m204175200] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Elemental manganese is essential for the production of molecular oxygen by cyanobacteria, plants, and algae. In the cyanobacterium Synechocystis sp. PCC 6803, transcription of the mntCAB operon, encoding a high affinity Mn transporter, occurs under Mn starvation (nm Mn) conditions but not in Mn-sufficient (microm Mn) growth medium. Using a strain in which the promoter of this operon directs the transcription of the luxAB reporter genes, we determined that inactivation of the slr0640 gene, which encodes a histidine kinase sensor protein component of a two-component signal transduction system, resulted in constitutive high levels of lux luminescence. Systematic targeted inactivation mutagenesis also identified slr1837 as the gene encoding the corresponding response regulator protein. We have named these two genes manS (manganese-sensor) and manR (manganese-regulator), respectively. A polyhistidine-tagged form of the ManS protein was localized in the Synechocystis 6803 cell membrane. Directed replacement of the conserved catalytic His-205 residue of this protein by Leu abolished its activity, although the mutated protein was present in cyanobacterial membrane. This mutant also showed suboptimal rates of Mn uptake under either Mn-starved or Mn-sufficient growth condition. These data suggest that the ManS/ManR two-component system plays a central role in the homeostasis of manganese in Synechocystis 6803 cells.
Collapse
Affiliation(s)
- Teruo Ogawa
- Bioscience Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Tyystjärvi T, Tuominen I, Herranen M, Aro EM, Tyystjärvi E. Action spectrum of psbA gene transcription is similar to that of photoinhibition in Synechocystis sp. PCC 6803. FEBS Lett 2002; 516:167-71. [PMID: 11959126 DOI: 10.1016/s0014-5793(02)02537-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The photosystem II (PSII) reaction center protein D1 undergoes rapid light-dependent turnover, which is caused by photoinhibition. To identify the photoreceptor(s) involved in the light-dependent expression of the psbA gene encoding the D1 protein, we determined the action spectra of psbA transcription, PSII activity, photosynthesis and photoinhibition in Synechocystis sp. PCC 6803. In accordance with its phycobilisome antenna, PSII showed the highest activity in the spectral region from yellow to red and only low activity in the ultraviolet-A (UV-A) to green region. Photoinhibition, in turn, was fastest in UV-A to violet light and a minor peak was found in the orange region. The action spectrum of psbA transcription resembled closely that of photoinhibition, suggesting that photoinhibition creates a signal for up-regulation of the psbA gene.
Collapse
Affiliation(s)
- Taina Tyystjärvi
- Plant Physiology and Molecular Biology, University of Turku, FIN-20014, Turku, Finland.
| | | | | | | | | |
Collapse
|
28
|
de la Cruz J, Vioque A. Increased sensitivity to protein synthesis inhibitors in cells lacking tmRNA. RNA (NEW YORK, N.Y.) 2001; 7:1708-1716. [PMID: 11780628 PMCID: PMC1370211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
tmRNA (also known as SsrA or 10Sa RNA) is involved in a trans-translation reaction that contributes to the recycling of stalled ribosomes at the 3' end of an mRNA lacking a stop codon or at an internal mRNA cluster of rare codons. Inactivation of the ssrA gene in most bacteria results in viable cells bearing subtle phenotypes, such as temperature-sensitive growth. Herein, we report on the functional characterization of the ssrA gene in the cyanobacterium Synechocystis sp. strain PCC6803. Deletion of the ssrA gene in Synechocystis resulted in viable cells with a growth rate identical to wild-type cells. However, null ssrA cells (deltassrA) were not viable in the presence of the protein synthesis inhibitors chloramphenicol, lincomycin, spiramycin, tylosin, erythromycin, and spectinomycin at low doses that do not significantly affect the growth of wild-type cells. Sensitivity of deltassrA cells similar to wild-type cells was observed with kasugamycin, fusidic acid, thiostrepton, and puromycin. Antibiotics unrelated to protein synthesis, such as ampicillin or rifampicin, had no differential effect on the deltassrA strain. Furthermore, deletion of the ssrA gene is sufficient to impair global protein synthesis when chloramphenicol is added at sublethal concentrations for the wild-type strain. These results indicate that ribosomes stalled by some protein synthesis inhibitors can be recycled by tmRNA. In addition, this suggests that the first elongation cycle with tmRNA, which incorporates a noncoded alanine on the growing peptide chain, may have mechanistic differences with the normal elongation cycles that bypasses the block produced by these specific antibiotics. tmRNA inactivation could be an useful therapeutic target to increase the sensitivity of pathogenic bacteria against antibiotics.
Collapse
Affiliation(s)
- J de la Cruz
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Americo Vespucio s/n, Sevilla, Spain
| | | |
Collapse
|
29
|
Hübschmann T, Börner T, Hartmann E, Lamparter T. Characterization of the Cph1 holo-phytochrome from Synechocystis sp. PCC 6803. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:2055-63. [PMID: 11277928 DOI: 10.1046/j.1432-1327.2001.02083.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The cph1 gene from the unicellular cyanobacterium Synechoycstis sp. PCC 6803 encodes a protein with the characteristics of plant phytochromes and histidine kinases of two-component phospho-relay systems. Spectral and biochemical properties of Cph1 have been intensely studied in vitro using protein from recombinant systems, but virtually nothing is known about the situation in the natural host. In the present study, His6-tagged Cph1 was isolated from Synechocystis cells. The cph1-his gene was expressed either under the control of the natural cph1 promoter or over-expressed using the strong promoter of the psbA2 gene. Upon purification with nickel affinity chromatography, the presence of Cph1 in extracts was confirmed by immunoblotting and Zn2+-induced fluorescence. The Cph1 extracts exhibited a red/far-red photoactivity characteristic of phytochromes. Difference spectra were identical with those of the phycocyanobilin adduct of recombinant Cph1, implying that phycocyanobilin is the chromophore of Cph1 in Synechocystis.
Collapse
Affiliation(s)
- T Hübschmann
- Humboldt Universität Berlin, Institut für Biologie/Genetik, Berlin, Germany. thomas=
| | | | | | | |
Collapse
|
30
|
Kondou Y, Nakazawa M, Higashi S, Watanabe M, Manabe K. Equal-quantum action spectra indicate fluence-rate-selective action of multiple photoreceptors for photomovement of the thermophilic cyanobacterium Synechococcus elongatus. Photochem Photobiol 2001; 73:90-5. [PMID: 11202372 DOI: 10.1562/0031-8655(2001)073<0090:eqasif>2.0.co;2] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Unicellular thermophilic cyanobacterium Synechococcus elongatus displayed phototaxis on agar plate at 55 degrees C. Equal-quantum action spectra for phototactic migration were determined at various fluence rates using the Okazaki Large Spectrograph as the light source. The shapes of the action spectra drastically changed depending on the fluence rate of the unilateral monochromatic irradiation: at a low fluence rate (3 mumol/m2/s), only lights in the red region had significant effect; at a medium fluence rate (10 mumol/m2/s), four major action peaks were observed at 530 nm (green), 570 nm (yellow), 640 nm (red) and 680 nm (red). At high fluence rates (30-90 mumol/m2/s), the former two peaks remained, while red peaks at 640 nm and 680 nm disappeared and, interestingly, an action peak around 700-740 nm (far-red) newly appeared. These results indicate that two or more distinct photoreceptors are involved in the phototaxis and that suitable photoreceptors are selectively active in response to the stimulus of light fluence rates. Far-red or red background lights irradiated vertically from above drastically inhibited phototaxis toward red light or far-red light, respectively. These results indicate involvement of some phytochrome(s).
Collapse
Affiliation(s)
- Y Kondou
- Graduate School of Integrated Science, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| | | | | | | | | |
Collapse
|
31
|
Affiliation(s)
- A R Shenoy
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560 012, India,
| |
Collapse
|
32
|
Vierstra RD, Davis SJ. Bacteriophytochromes: new tools for understanding phytochrome signal transduction. Semin Cell Dev Biol 2000; 11:511-21. [PMID: 11145881 DOI: 10.1006/scdb.2000.0206] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The recent discovery of phytochrome-like photoreceptors, collectively called bacteriophytochromes, in a number of bacteria has greatly expanded our understanding of the origins and modes of action of phytochromes in higher plants. These primitive receptors contain an N-terminal domain homologous to the chromophore-binding pocket of phytochromes, and like phytochromes, they bind a variety of bilins to generate photochromic holoproteins. Following the chromophore pocket is a domain similar to two-component histidine kinases, suggesting that these bacterial photoreceptors function in phosphorelay cascades that respond to the light environment. Their organization and distribution support the views that higher-plant phytochromes evolved from a cyanobacterial precursor and that they act as light-regulated kinases. With the ability to exploit bacterial genetics, these bacteriophytochromes now offer simple models to help unravel the biochemical and biophysical events that initiate phytochrome signal transmission.
Collapse
Affiliation(s)
- R D Vierstra
- Cellular and Molecular Biology and Genetics Programs and the Department of Horticulture, University of Wisconsin-Madison, 1575 Linden Drive Madison, WI 53706, USA.
| | | |
Collapse
|