1
|
Kandari D, Joshi H. PerR: A Peroxide Sensor Eliciting Metal Ion-dependent Regulation in Various Bacteria. Mol Biotechnol 2024:10.1007/s12033-024-01266-8. [PMID: 39294512 DOI: 10.1007/s12033-024-01266-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/20/2024] [Indexed: 09/20/2024]
Abstract
Bacteria have to thrive in difficult conditions wherein their competitors generate partially reduced forms of oxygen, like hydrogen peroxide and superoxides. These oxidative stress molecules can also arise from within via the autoxidation of redox enzymes. To adapt to such conditions, bacteria express detox enzymes as well as repair proteins. Transcription factors regulate these defenses, and PerR is one of them. PerR is a Fur family transcriptional regulator that senses peroxide stress. Metal-bound PerR (either Mn2+ or Fe2+) can repress transcription of its regulon, but only the Fe2+-bound form of PerR can sense H2O2. This review describes different aspects of PerR and its varied roles, specifically in bacterial pathogens. Despite having roles beyond sensing peroxides, it is an underrated regulator that needs to be explored more deeply in pathogens.
Collapse
Affiliation(s)
- Divya Kandari
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Hemant Joshi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
- Division of Experimental Medicine, University of California, San Francisco, CA, 94107, USA.
| |
Collapse
|
2
|
Su MSW, Cheng YL, Lin YS, Wu JJ. Interplay between group A Streptococcus and host innate immune responses. Microbiol Mol Biol Rev 2024; 88:e0005222. [PMID: 38451081 PMCID: PMC10966951 DOI: 10.1128/mmbr.00052-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024] Open
Abstract
SUMMARYGroup A Streptococcus (GAS), also known as Streptococcus pyogenes, is a clinically well-adapted human pathogen that harbors rich virulence determinants contributing to a broad spectrum of diseases. GAS is capable of invading epithelial, endothelial, and professional phagocytic cells while evading host innate immune responses, including phagocytosis, selective autophagy, light chain 3-associated phagocytosis, and inflammation. However, without a more complete understanding of the different ways invasive GAS infections develop, it is difficult to appreciate how GAS survives and multiplies in host cells that have interactive immune networks. This review article attempts to provide an overview of the behaviors and mechanisms that allow pathogenic GAS to invade cells, along with the strategies that host cells practice to constrain GAS infection. We highlight the counteractions taken by GAS to apply virulence factors such as streptolysin O, nicotinamide-adenine dinucleotidase, and streptococcal pyrogenic exotoxin B as a hindrance to host innate immune responses.
Collapse
Affiliation(s)
- Marcia Shu-Wei Su
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Sciences, Asia University, Taichung, Taiwan
- Department of Biotechnology and Laboratory Science in Medicine, College of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Lin Cheng
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yee-Shin Lin
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jiunn-Jong Wu
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Sciences, Asia University, Taichung, Taiwan
- Department of Biotechnology and Laboratory Science in Medicine, College of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
3
|
Shi L, Lin W, Cai Y, Chen F, Zhang Q, Liang D, Xiu Y, Lin S, He B. Oxidative Stress-Mediated Repression of Virulence Gene Transcription and Biofilm Formation as Antibacterial Action of Cinnamomum burmannii Essential Oil on Staphylococcus aureus. Int J Mol Sci 2024; 25:3078. [PMID: 38474323 DOI: 10.3390/ijms25053078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
This work aimed to identify the chemical compounds of Cinnamomum burmannii leaf essential oil (CBLEO) and to unravel the antibacterial mechanism of CBLEO at the molecular level for developing antimicrobials. CBLEO had 37 volatile compounds with abundant borneol (28.40%) and showed good potential to control foodborne pathogens, of which Staphylococcus aureus had the greatest inhibition zone diameter (28.72 mm) with the lowest values of minimum inhibitory concentration (1.0 μg/mL) and bactericidal concentration (2.0 μg/mL). To unravel the antibacterial action of CBLEO on S. aureus, a dynamic exploration of antibacterial growth, material leakage, ROS formation, protein oxidation, cell morphology, and interaction with genome DNA was conducted on S. aureus exposed to CBLEO at different doses (1/2-2×MIC) and times (0-24 h), indicating that CBLEO acts as an inducer for ROS production and the oxidative stress of S. aureus. To highlight the antibacterial action of CBLEO on S. aureus at the molecular level, we performed a comparative association of ROS accumulation with some key virulence-related gene (sigB/agrA/sarA/icaA/cidA/rsbU) transcription, protease production, and biofilm formation in S. aureus subjected to CBLEO at different levels and times, revealing that CBLEO-induced oxidative stress caused transcript suppression of virulence regulators (RsbU and SigB) and its targeted genes, causing a protease level increase destined for the biofilm formation and growth inhibition of S. aureus, which may be a key bactericidal action. Our findings provide valuable information for studying the antibacterial mechanism of essential oil against pathogens.
Collapse
Affiliation(s)
- Lingling Shi
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Wei Lin
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Yanling Cai
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China
| | - Feng Chen
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Qian Zhang
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China
| | - Dongcheng Liang
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China
| | - Yu Xiu
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Shanzhi Lin
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Boxiang He
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China
| |
Collapse
|
4
|
Wilde S, Dash A, Johnson A, Mackey K, Okumura CYM, LaRock CN. Detoxification of reactive oxygen species by the hyaluronic acid capsule of group A Streptococcus. Infect Immun 2023; 91:e0025823. [PMID: 37874162 PMCID: PMC10652860 DOI: 10.1128/iai.00258-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/17/2023] [Indexed: 10/25/2023] Open
Abstract
The pro-inflammatory cytokine IL-6 regulates antimicrobial responses that are broadly crucial in the defense against infection. Our prior work shows that IL-6 promotes the killing of the M4 serotype group A Streptococcus (GAS) but does not impact the globally disseminated M1T1 serotype associated with invasive infections. Using in vitro and in vivo infection models, we show that IL-6 induces phagocyte reactive oxygen species (ROS) that are responsible for the differential susceptibility of M4 and M1T1 GAS to IL-6-mediated defenses. Clinical isolates naturally deficient in capsule, or M1T1 strains deficient in capsule production, are sensitive to this ROS killing. The GAS capsule is made of hyaluronic acid, an antioxidant that detoxifies ROS and can protect acapsular M4 GAS when added exogenously. During in vitro interactions with macrophages and neutrophils, acapsular GAS can also be rescued with the antioxidant N-acetylcysteine, suggesting this is a major virulence contribution of the capsule. In an intradermal infection model with gp91phox -/- (chronic granulomatous disease [CGD]) mice, phagocyte ROS production had a modest effect on bacterial proliferation and the cytokine response but significantly limited the size of the bacterial lesion in the skin. These data suggest that the capsule broadly provides enhanced resistance to phagocyte ROS but is not essential for invasive infection. Since capsule-deficient strains are observed across several GAS serotypes and are competent for transmission and both mild and invasive infections, additional host or microbe factors may contribute to ROS detoxification during GAS infections.
Collapse
Affiliation(s)
- Shyra Wilde
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| | - Ananya Dash
- Immunology and Molecular Pathogenesis Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| | - Anders Johnson
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| | - Kialani Mackey
- Department of Biology, Occidental College, Los Angeles, California, USA
| | | | - Christopher N. LaRock
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
5
|
Huete SG, Benaroudj N. The Arsenal of Leptospira Species against Oxidants. Antioxidants (Basel) 2023; 12:1273. [PMID: 37372003 DOI: 10.3390/antiox12061273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/01/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Reactive oxygen species (ROS) are byproducts of oxygen metabolism produced by virtually all organisms living in an oxic environment. ROS are also produced by phagocytic cells in response to microorganism invasion. These highly reactive molecules can damage cellular constituents (proteins, DNA, and lipids) and exhibit antimicrobial activities when present in sufficient amount. Consequently, microorganisms have evolved defense mechanisms to counteract ROS-induced oxidative damage. Leptospira are diderm bacteria form the Spirochaetes phylum. This genus is diverse, encompassing both free-living non-pathogenic bacteria as well as pathogenic species responsible for leptospirosis, a widespread zoonotic disease. All leptospires are exposed to ROS in the environment, but only pathogenic species are well-equipped to sustain the oxidative stress encountered inside their hosts during infection. Importantly, this ability plays a pivotal role in Leptospira virulence. In this review, we describe the ROS encountered by Leptospira in their different ecological niches and outline the repertoire of defense mechanisms identified so far in these bacteria to scavenge deadly ROS. We also review the mechanisms controlling the expression of these antioxidants systems and recent advances in understanding the contribution of Peroxide Stress Regulators in Leptospira adaptation to oxidative stress.
Collapse
Affiliation(s)
- Samuel G Huete
- Institut Pasteur, Université Paris Cité, Biologie des Spirochètes, CNRS UMR 6047, F-75015 Paris, France
| | - Nadia Benaroudj
- Institut Pasteur, Université Paris Cité, Biologie des Spirochètes, CNRS UMR 6047, F-75015 Paris, France
| |
Collapse
|
6
|
Zhang Y, Guo Q, Fang X, Yuan M, Hu W, Liang X, Liu J, Yang Y, Fang C. Destroying glutathione peroxidase improves the oxidative stress resistance and pathogenicity of Listeria monocytogenes. Front Microbiol 2023; 14:1122623. [PMID: 37032864 PMCID: PMC10073551 DOI: 10.3389/fmicb.2023.1122623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/07/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction Glutathione peroxidase is abundant in eukaryotes as an important antioxidant enzyme. However, prokaryotic glutathione peroxidase has not been thoroughly studied. Listeria monocytogenes is a facultative intracellular pathogen that is capable of causing listeriosis in animals as well as humans. Despite the fact that L. monocytogenes encodes a putative glutathione peroxidase, GSH-Px (encoded by lmo0983)), the functions of the enzyme are still unknown. Here we revealed the unusual roles of L. monocytogenes GSH-Px in bacterial antioxidants and pathogenicity. Methods L. monocytogenes Lm850658 was taken as the parental strain to construct the gsh-px deletion strain and related complement strain. The effect of the gsh-px gene on the resistance of L. monocytogenes to oxidative stress was determined by measuring the concentrations of glutathione and assaying the stress survival rates under different oxidative conditions. In addition, the pathogenicity of L. monocytogenes was determined by cellular adhesion and invasion assays and mice virulence tests, and the expression of virulence factors was determined by Western blot. Results Deficiency of GSH-Px not only increased glutathione concentrations in L. monocytogenes but also enhanced its resistance to oxidative stress when exposed to copper and iron ions. In addition, the absence of gsh-px significantly improved the adhesion and invasion efficiency of L. monocytogenes to Caco-2 cells. More importantly, L. monocytogenes lacking GSH-Px could colonize and proliferate more efficiently in mice livers and spleens, enhancing the pathogenicity of L. monocytogenes by increasing the expression of virulence factors like InlA, InlB, and LLO. Discussion Taken together, we confirmed that GSH-Px of L. monocytogenes has a counter-intuitive effect on the antioxidant capacity and pathogenicity.
Collapse
|
7
|
Wasselin V, Budin-Verneuil A, Rincé I, Léger L, Boukerb AM, Hartke A, Benachour A, Riboulet-Bisson E. The enigmatic physiological roles of AhpCF, Gpx, Npr and Kat in peroxide stress response of Enterococcus faecium. Res Microbiol 2022; 173:103982. [PMID: 35931249 DOI: 10.1016/j.resmic.2022.103982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 06/16/2022] [Accepted: 07/20/2022] [Indexed: 10/16/2022]
Abstract
In this work, the physiological roles of the primary peroxide scavenging activities of Enterococcus faecium AUS0004 strain were analysed. This healthcare-associated pathogen harbours genes encoding putative NADH peroxidase (Npr), alkyl hydroperoxide reductase (AhpCF), glutathione peroxidase (Gpx) and manganese-dependent catalase (Mn-Kat). Gene expression analyses showed that npr and kat genes are especially and significantly induced in cells treated with hydrogen peroxide (H2O2) and cumene hydroperoxide (CuOOH), which suggested an important function of these enzymes to protect E. faecium against peroxide stress. Mutants affected in one or several predicted anti-oxidative activities mentioned above showed that neither the peroxidases nor the catalase are implicated in the defence against peroxide challenges. However, our investigations allowed us to show that Npr is responsible for the degradation of approximately 45% of metabolically derived H2O2 which avoids accumulation of the peroxide to lethal concentrations.
Collapse
Affiliation(s)
- Valentin Wasselin
- Normandie Univ, UNICAEN U2RM-Stress and Virulence, Esplanade de la Paix, 14032 Caen, France.
| | - Aurélie Budin-Verneuil
- Normandie Univ, UNICAEN U2RM-Stress and Virulence, Esplanade de la Paix, 14032 Caen, France.
| | - Isabelle Rincé
- Normandie Univ, UNICAEN U2RM-Stress and Virulence, Esplanade de la Paix, 14032 Caen, France.
| | - Loïc Léger
- Normandie Univ, UNICAEN U2RM-Stress and Virulence, Esplanade de la Paix, 14032 Caen, France.
| | - Amine Mohamed Boukerb
- Normandie Univ, LMSM EA4312-Microbiology Signals and Microenvironment, 27000 Evreux, France.
| | - Axel Hartke
- Normandie Univ, UNICAEN U2RM-Stress and Virulence, Esplanade de la Paix, 14032 Caen, France.
| | - Abdellah Benachour
- Normandie Univ, UNICAEN U2RM-Stress and Virulence, Esplanade de la Paix, 14032 Caen, France.
| | - Eliette Riboulet-Bisson
- Normandie Univ, UNICAEN U2RM-Stress and Virulence, Esplanade de la Paix, 14032 Caen, France.
| |
Collapse
|
8
|
Streptococcus pyogenes ("Group A Streptococcus"), a Highly Adapted Human Pathogen-Potential Implications of Its Virulence Regulation for Epidemiology and Disease Management. Pathogens 2021; 10:pathogens10060776. [PMID: 34205500 PMCID: PMC8234341 DOI: 10.3390/pathogens10060776] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/02/2021] [Accepted: 06/17/2021] [Indexed: 11/16/2022] Open
Abstract
Streptococcus pyogenes (group A streptococci; GAS) is an exclusively human pathogen. It causes a variety of suppurative and non-suppurative diseases in people of all ages worldwide. Not all can be successfully treated with antibiotics. A licensed vaccine, in spite of its global importance, is not yet available. GAS express an arsenal of virulence factors responsible for pathological immune reactions. The transcription of all these virulence factors is under the control of three types of virulence-related regulators: (i) two-component systems (TCS), (ii) stand-alone regulators, and (iii) non-coding RNAs. This review summarizes major TCS and stand-alone transcriptional regulatory systems, which are directly associated with virulence control. It is suggested that this treasure of knowledge on the genetics of virulence regulation should be better harnessed for new therapies and prevention methods for GAS infections, thereby changing its global epidemiology for the better.
Collapse
|
9
|
Sen A, Imlay JA. How Microbes Defend Themselves From Incoming Hydrogen Peroxide. Front Immunol 2021; 12:667343. [PMID: 33995399 PMCID: PMC8115020 DOI: 10.3389/fimmu.2021.667343] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/19/2021] [Indexed: 12/02/2022] Open
Abstract
Microbes rely upon iron as a cofactor for many enzymes in their central metabolic processes. The reactive oxygen species (ROS) superoxide and hydrogen peroxide react rapidly with iron, and inside cells they can generate both enzyme and DNA damage. ROS are formed in some bacterial habitats by abiotic processes. The vulnerability of bacteria to ROS is also apparently exploited by ROS-generating host defense systems and bacterial competitors. Phagocyte-derived O 2 - can toxify captured bacteria by damaging unidentified biomolecules on the cell surface; it is unclear whether phagocytic H2O2, which can penetrate into the cell interior, also plays a role in suppressing bacterial invasion. Both pathogenic and free-living microbes activate defensive strategies to defend themselves against incoming H2O2. Most bacteria sense the H2O2via OxyR or PerR transcription factors, whereas yeast uses the Grx3/Yap1 system. In general these regulators induce enzymes that reduce cytoplasmic H2O2 concentrations, decrease the intracellular iron pools, and repair the H2O2-mediated damage. However, individual organisms have tailored these transcription factors and their regulons to suit their particular environmental niches. Some bacteria even contain both OxyR and PerR, raising the question as to why they need both systems. In lab experiments these regulators can also respond to nitric oxide and disulfide stress, although it is unclear whether the responses are physiologically relevant. The next step is to extend these studies to natural environments, so that we can better understand the circumstances in which these systems act. In particular, it is important to probe the role they may play in enabling host infection by microbial pathogens.
Collapse
Affiliation(s)
| | - James A. Imlay
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
10
|
An Antifungal Polycyclic Tetramate Macrolactam, Heat-Stable Antifungal Factor (HSAF), Is a Novel Oxidative Stress Modulator in Lysobacter enzymogenes. Appl Environ Microbiol 2021; 87:AEM.03105-20. [PMID: 33712422 DOI: 10.1128/aem.03105-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/02/2021] [Indexed: 01/19/2023] Open
Abstract
Polycyclic tetramate macrolactams (PoTeMs) are a fast-growing family of antibiotic natural products found in phylogenetically diverse microorganisms. Surprisingly, none of the PoTeMs have been investigated for potential physiological functions in their producers. Here, we used heat-stable antifungal factor (HSAF), an antifungal PoTeM from Lysobacter enzymogenes, as a model to show that PoTeMs form complexes with iron ions, with an association constant (Ka ) of 2.71 × 106 M-1 The in vivo and in vitro data showed formation of 2:1 and 3:1 complexes between HSAF and iron ions, which were confirmed by molecular mechanical and quantum mechanical calculations. HSAF protected DNA from degradation in high concentrations of iron and H2O2 or under UV radiation. HSAF mutants of L. enzymogenes barely survived under oxidative stress and exhibited markedly increased production of reactive oxygen species (ROS). Exogenous addition of HSAF into the mutants significantly prevented ROS production and restored normal growth in the mutants under the oxidative stress. The results reveal that the function of HSAF is to protect the producer microorganism from oxidative damage rather than as an iron-acquisition siderophore. The characteristic structure of PoTeMs, a 2,4-pyrrolidinedione-embedded macrolactam, may represent a new iron-chelating scaffold of microbial metabolites. The study demonstrated a previously unrecognized strategy for microorganisms to modulate oxidative damage to the cells.IMPORTANCE PoTeMs are a family of structurally distinct metabolites that have been found in a large number of bacteria. Although PoTeMs exhibit diverse therapeutic properties, the physiological function of PoTeMs in the producer microorganisms had not been investigated. HSAF from Lysobacter enzymogenes is an antifungal PoTeM that has been subjected to extensive studies for mechanisms of biosynthesis, regulation, and antifungal activity. Using HSAF as a model system, we here showed that the characteristic structure of PoTeMs, a 2,4-pyrrolidinedione-embedded macrolactam, may represent a new iron-chelating scaffold of microbial metabolites. In L. enzymogenes, HSAF functions as a small-molecule modulator for oxidative damage caused by iron, H2O2, and UV light. Together, the study demonstrated a previously unrecognized strategy for microorganisms to modulate oxidative damage to the cells. HSAF represents the first member of the fast-growing PoTeM family of microbial metabolites whose potential biological function has been studied.
Collapse
|
11
|
Increased Oxidative Stress Tolerance of a Spontaneously Occurring perR Gene Mutation in Streptococcus mutans UA159. J Bacteriol 2021; 203:JB.00535-20. [PMID: 33526613 DOI: 10.1128/jb.00535-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/29/2021] [Indexed: 01/09/2023] Open
Abstract
The ability of bacteria, such as the dental pathogen Streptococcus mutans, to coordinate a response against damage-inducing oxidants is a critical aspect of their pathogenicity. The oxidative stress regulator SpxA1 has been demonstrated to be a major player in the ability of S. mutans to withstand both disulfide and peroxide stresses. While studying spontaneously occurring variants of an S. mutans ΔspxA1 strain, we serendipitously discovered that our S. mutans UA159 host strain bore a single-nucleotide deletion within the coding region of perR, resulting in a premature truncation of the encoded protein. PerR is a metal-dependent transcriptional repressor that senses and responds to peroxide stress such that loss of PerR activity results in activation of oxidative stress responses. To determine the impact of loss of PerR regulation, we obtained a UA159 isolate bearing an intact perR copy and created a clean perR deletion mutant. Our findings indicate that loss of PerR activity results in a strain that is primed to tolerate oxidative stresses in the laboratory setting. Interestingly, RNA deep sequencing (RNA-Seq) and targeted transcriptional expression analyses reveal that PerR offers a minor contribution to the ability of S. mutans to orchestrate a transcriptional response to peroxide stress. Furthermore, we detected loss-of-function perR mutations in two other commonly used laboratory strains of S. mutans, suggesting that this may be not be an uncommon occurrence. This report serves as a cautionary tale regarding the so-called domestication of laboratory strains and advocates for the implementation of more stringent strain authentication practices.IMPORTANCE A resident of the human oral biofilm, Streptococcus mutans is one of the major bacterial pathogens associated with dental caries. This report highlights a spontaneously occurring mutation within the laboratory strain S. mutans UA159 found in the coding region of perR, a gene encoding a transcriptional repressor associated with peroxide tolerance. Though perR mutant strains of S. mutans showed a distinct growth advantage and enhanced tolerance toward H2O2, a ΔperR deletion strain showed a small number of differentially expressed genes compared to the parent strain, suggesting few direct regulatory targets. In addition to characterizing the role of PerR in S. mutans, our findings serve as a warning to laboratory researchers regarding bacterial adaptation to in vitro growth conditions.
Collapse
|
12
|
c-di-AMP-Regulated K + Importer KtrAB Affects Biofilm Formation, Stress Response, and SpeB Expression in Streptococcus pyogenes. Infect Immun 2021; 89:IAI.00317-20. [PMID: 33468578 DOI: 10.1128/iai.00317-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 01/14/2021] [Indexed: 11/20/2022] Open
Abstract
The second messenger cyclic di-AMP (c-di-AMP) controls biofilm formation, stress response, and virulence in Streptococcus pyogenes The deletion of the c-di-AMP synthase gene, dacA, results in pleiotropic effects including reduced expression of the secreted protease SpeB. Here, we report a role for K+ transport in c-di-AMP-mediated SpeB expression. The deletion of ktrB in the ΔdacA mutant restores SpeB expression. KtrB is a subunit of the K+ transport system KtrAB that forms a putative high-affinity K+ importer. KtrB forms a membrane K+ channel, and KtrA acts as a cytosolic gating protein that controls the transport capacity of the system by binding ligands including c-di-AMP. SpeB induction in the ΔdacA mutant by K+ specific ionophore treatment also supports the importance of cellular K+ balance in SpeB production. The ΔdacA ΔktrB double deletion mutant not only produces wild-type levels of SpeB but also partially or fully reverts the defective ΔdacA phenotypes of biofilm formation and stress responses, suggesting that many ΔdacA phenotypes are due to cellular K+ imbalance. However, the null pathogenicity of the ΔdacA mutant in a murine subcutaneous infection model is not restored by ktrB deletion, suggesting that c-di-AMP controls not only cellular K+ balance but also other metabolic and/or virulence pathways. The deletion of other putative K+ importer genes, kup and kimA, does not phenocopy the deletion of ktrB regarding SpeB induction in the ΔdacA mutant, suggesting that KtrAB is the primary K+ importer that is responsible for controlling cellular K+ levels under laboratory growth conditions.
Collapse
|
13
|
Sevilla E, Bes MT, Peleato ML, Fillat MF. Fur-like proteins: Beyond the ferric uptake regulator (Fur) paralog. Arch Biochem Biophys 2021; 701:108770. [PMID: 33524404 DOI: 10.1016/j.abb.2021.108770] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/12/2021] [Accepted: 01/17/2021] [Indexed: 10/22/2022]
Abstract
Proteins belonging to the FUR (ferric uptake regulator) family are the cornerstone of metalloregulation in most prokaryotes. Although numerous reviews have been devoted to these proteins, these reports are mainly focused on the Fur paralog that gives name to the family. In the last years, the increasing knowledge on the other, less ubiquitous members of this family has evidenced their importance in bacterial metabolism. As the Fur paralog, the major regulator of iron homeostasis, Zur, Irr, BosR and PerR are tightly related to stress defenses and host-pathogen interaction being in many cases essential for virulence. Furthermore, the Nur and Mur paralogs largely contribute to control nickel and manganese homeostasis, which are cofactors of pivotal proteins for host colonization and bacterial redox homeostasis. The present review highlights the main features of FUR proteins that differ to the canonical Fur paralog either in the coregulatory metal, such as Zur, Nur and Mur, or in the action mechanism to control target genes, such as PerR, Irr and BosR.
Collapse
Affiliation(s)
- Emma Sevilla
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (GBsC-CSIC and BIFI-IQFR Joint Units), Universidad de Zaragoza, Zaragoza, Spain
| | - M Teresa Bes
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (GBsC-CSIC and BIFI-IQFR Joint Units), Universidad de Zaragoza, Zaragoza, Spain
| | - M Luisa Peleato
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (GBsC-CSIC and BIFI-IQFR Joint Units), Universidad de Zaragoza, Zaragoza, Spain
| | - María F Fillat
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (GBsC-CSIC and BIFI-IQFR Joint Units), Universidad de Zaragoza, Zaragoza, Spain.
| |
Collapse
|
14
|
Akhter F, Womack E, Vidal JE, Le Breton Y, McIver KS, Pawar S, Eichenbaum Z. Hemoglobin stimulates vigorous growth of Streptococcus pneumoniae and shapes the pathogen's global transcriptome. Sci Rep 2020; 10:15202. [PMID: 32938947 PMCID: PMC7494912 DOI: 10.1038/s41598-020-71910-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/20/2020] [Indexed: 12/14/2022] Open
Abstract
Streptococcus pneumoniae (Spn) must acquire iron from the host to establish infection. We examined the impact of hemoglobin, the largest iron reservoir in the body, on pneumococcal physiology. Supplementation with hemoglobin allowed Spn to resume growth in an iron-deplete medium. Pneumococcal growth with hemoglobin was unusually robust, exhibiting a prolonged logarithmic growth, higher biomass, and extended viability in both iron-deplete and standard medium. We observed the hemoglobin-dependent response in multiple serotypes, but not with other host proteins, free iron, or heme. Remarkably, hemoglobin induced a sizable transcriptome remodeling, effecting virulence and metabolism in particular genes facilitating host glycoconjugates use. Accordingly, Spn was more adapted to grow on the human α − 1 acid glycoprotein as a sugar source with hemoglobin. A mutant in the hemoglobin/heme-binding protein Spbhp-37 was impaired for growth on heme and hemoglobin iron. The mutant exhibited reduced growth and iron content when grown in THYB and hemoglobin. In summary, the data show that hemoglobin is highly beneficial for Spn cultivation in vitro and suggest that hemoglobin might drive the pathogen adaptation in vivo. The hemoglobin receptor, Spbhp-37, plays a role in mediating the positive influence of hemoglobin. These novel findings provide intriguing insights into pneumococcal interactions with its obligate human host.
Collapse
Affiliation(s)
- Fahmina Akhter
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Edroyal Womack
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Jorge E Vidal
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Yoann Le Breton
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park (UMCP), College Park, MD, USA.,Wound Infections Department, Bacterial Diseases Branch, The Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Kevin S McIver
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park (UMCP), College Park, MD, USA
| | - Shrikant Pawar
- Department of Biology, Georgia State University, Atlanta, GA, USA.,Yale Center for Genome Analysis, Yale University, New Haven, CT, USA
| | | |
Collapse
|
15
|
Ouyang Y, Li J, Peng Y, Huang Z, Ren Q, Lu J. The Role and Mechanism of Thiol-Dependent Antioxidant System in Bacterial Drug Susceptibility and Resistance. Curr Med Chem 2020; 27:1940-1954. [DOI: 10.2174/0929867326666190524125232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 01/24/2019] [Accepted: 02/21/2019] [Indexed: 12/16/2022]
Abstract
Antibiotics play an irreplaceable role in the prevention and treatment of bacterial infection
diseases. However, because of the improper use of antibiotics, bacterial resistance emerges as a major
challenge of public health all over the world. The small thiol molecules such as glutathione can directly
react and conjugate with some antibiotics, which thus contribute to drug susceptibility and resistance.
Recently, accumulating evidence shows that there is a close link between the antibacterial activities of
some antibiotics and Reactive Oxygen Species (ROS). Thioredoxin and glutathione systems are two
main cellular disulfide reductase systems maintaining cellular ROS level. Therefore, these two thioldependent
antioxidant systems may affect the antibiotic susceptibility and resistance. Microorganisms
are equipped with different thiol-dependent antioxidant systems, which make the role of thioldependent
antioxidant systems in antibiotic susceptibility and resistance is different in various bacteria.
Here we will focus on the review on the advances of the effects of thiol-dependent antioxidant system
in the bacterial antibiotic susceptibility and resistance.
Collapse
Affiliation(s)
- Yanfang Ouyang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education (Southwest University), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Jing Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education (Southwest University), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Yi Peng
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education (Southwest University), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Zhijun Huang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education (Southwest University), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Qiao Ren
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education (Southwest University), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Jun Lu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education (Southwest University), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
16
|
Glutaredoxin-like protein (GLP)-a novel bacteria sulfurtransferase that protects cells against cyanide and oxidative stresses. Appl Microbiol Biotechnol 2020; 104:5477-5492. [PMID: 32307572 DOI: 10.1007/s00253-020-10491-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 02/14/2020] [Accepted: 02/20/2020] [Indexed: 02/01/2023]
Abstract
The pathogen Xylella fastidiosa belongs to the Xanthomonadaceae family, a large group of Gram-negative bacteria that cause diseases in many economically important crops. A predicted gene, annotated as glutaredoxin-like protein (glp), was found to be highly conserved among the genomes of different genera within this family and highly expressed in X. fastidiosa. Analysis of the GLP protein sequences revealed three protein domains: one similar to monothiol glutaredoxins (Grx), an Fe-S cluster and a thiosulfate sulfurtransferase/rhodanese domain (Tst/Rho), which is generally involved in sulfur metabolism and cyanide detoxification. To characterize the biochemical properties of GLP, we expressed and purified the X. fastidiosa recombinant GLP enzyme. Grx activity and Fe-S cluster formation were not observed, while an evaluation of Tst/Rho enzymatic activity revealed that GLP can detoxify cyanide and transfer inorganic sulfur to acceptor molecules in vitro. The biological activity of GLP relies on the cysteine residues in the Grx and Tst/Rho domains (Cys33 and Cys266, respectively), and structural analysis showed that GLP and GLPC266S were able to form high molecular weight oligomers (> 600 kDa), while replacement of Cys33 with Ser destabilized the quaternary structure. In vivo heterologous enzyme expression experiments in Escherichia coli revealed that GLP can protect bacteria against high concentrations of cyanide and hydrogen peroxide. Finally, phylogenetic analysis showed that homologous glp genes are distributed across Gram-negative bacterial families with conservation of the N- to C-domain order. However, no eukaryotic organism contains this enzyme. Altogether, these results suggest that GLP is an important enzyme with cyanide-decomposing and sulfurtransferase functions in bacteria, whose presence in eukaryotes we could not observe, representing a promising biological target for new pharmaceuticals.
Collapse
|
17
|
Streptococcus pyogenes Transcriptome Changes in the Inflammatory Environment of Necrotizing Fasciitis. Appl Environ Microbiol 2019; 85:AEM.01428-19. [PMID: 31471300 PMCID: PMC6803311 DOI: 10.1128/aem.01428-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 08/23/2019] [Indexed: 12/31/2022] Open
Abstract
Necrotizing fasciitis, a life-threatening subcutaneous soft-tissue infection, is principally caused by S. pyogenes. The inflammatory environment at the site of infection causes global gene expression changes for survival of the bacterium and pathogenesis. However, no known study regarding transcriptomic profiling of S. pyogenes in cases of necrotizing fasciitis has been presented. We identified 483 bacterial genes whose expression was consistently altered during infection. Our results showed that S. pyogenes infection induces drastic upregulation of the expression of virulence-associated genes and shifts metabolic pathway usage. In particular, high-level expression of toxins, such as cytolysins, proteases, and nucleases, was observed at infection sites. In addition, genes identified as consistently enriched included those related to metabolism of arginine and histidine as well as carbohydrate uptake and utilization. Conversely, genes associated with the oxidative stress response and cell division were consistently downregulated during infection. The present findings provide useful information for establishing novel treatment strategies. Streptococcus pyogenes is a major cause of necrotizing fasciitis, a life-threatening subcutaneous soft-tissue infection. At the host infection site, the local environment and interactions between the host and bacteria have effects on bacterial gene expression profiles, while the gene expression pattern of S. pyogenes related to this disease remains unknown. In this study, we used a mouse model of necrotizing fasciitis and performed RNA-sequencing (RNA-seq) analysis of S. pyogenes M1T1 strain 5448 by isolating total RNA from infected hind limbs obtained at 24, 48, and 96 h postinfection. RNA-seq analysis results identified 483 bacterial genes whose expression was consistently altered in the infected hindlimbs compared to their expression under in vitro conditions. Genes showing consistent enrichment during infection included 306 encoding molecules involved in virulence, carbohydrate utilization, amino acid metabolism, trace-metal transport, and the vacuolar ATPase transport system. Surprisingly, drastic upregulation of 3 genes, encoding streptolysin S precursor (sagA), cysteine protease (speB), and secreted DNase (spd), was noted in the present mouse model (log2 fold change, >6.0, >9.4, and >7.1, respectively). Conversely, the number of consistently downregulated genes was 177, including those associated with the oxidative stress response and cell division. These results suggest that in necrotizing fasciitis, S. pyogenes shows an altered metabolism, decreased cell proliferation, and upregulation of expression of major toxins. Our findings are considered to provide critical information for developing novel treatment strategies and vaccines for necrotizing fasciitis. IMPORTANCE Necrotizing fasciitis, a life-threatening subcutaneous soft-tissue infection, is principally caused by S. pyogenes. The inflammatory environment at the site of infection causes global gene expression changes for survival of the bacterium and pathogenesis. However, no known study regarding transcriptomic profiling of S. pyogenes in cases of necrotizing fasciitis has been presented. We identified 483 bacterial genes whose expression was consistently altered during infection. Our results showed that S. pyogenes infection induces drastic upregulation of the expression of virulence-associated genes and shifts metabolic pathway usage. In particular, high-level expression of toxins, such as cytolysins, proteases, and nucleases, was observed at infection sites. In addition, genes identified as consistently enriched included those related to metabolism of arginine and histidine as well as carbohydrate uptake and utilization. Conversely, genes associated with the oxidative stress response and cell division were consistently downregulated during infection. The present findings provide useful information for establishing novel treatment strategies.
Collapse
|
18
|
Lee C, Mannaa M, Kim N, Kim J, Choi Y, Kim SH, Jung B, Lee HH, Lee J, Seo YS. Stress Tolerance and Virulence-Related Roles of Lipopolysaccharide in Burkholderia glumae. THE PLANT PATHOLOGY JOURNAL 2019; 35:445-458. [PMID: 31632220 PMCID: PMC6788416 DOI: 10.5423/ppj.oa.04.2019.0124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/26/2019] [Accepted: 07/02/2019] [Indexed: 05/10/2023]
Abstract
The lipopolysaccharide (LPS) composed of lipid A, core, and O-antigen is the fundamental constituent of the outer membrane in gram-negative bacteria. This study was conducted to investigate the roles of LPS in Burkholderia glumae, the phytopathogen causing bacterial panicle blight and seedling rot in rice. To study the roles of the core oligosaccharide (OS) and the O-antigen region, mutant strains targeting the waaC and the wbiFGHI genes were generated. The LPS profile was greatly affected by disruption of the waaC gene and slight reductions were observed in the O-antigen region following wbiFGHI deletions. The results indicated that disruption in the core OS biosynthesis-related gene, waaC, was associated with increased sensitivity to environmental stress conditions including acidic, osmotic, saline, and detergent stress, and to polymyxin B. Moreover, significant impairment in the swimming and swarming motility and attenuation of bacterial virulence to rice were also observed in the waaC-defective mutant. The motility and virulence of O-antigen mutants defective in any gene of the wbiFGHI operon, were not significantly different from the wild-type except in slight decrease in swimming and swarming motility with wbiH deletion. Altogether, the results of present study indicated that the LPS, particularly the core OS region, is required for tolerance to environmental stress and full virulence in B. glumae. To our knowledge, this is the first functional study of LPS in a plant pathogenic Burkholderia sp. and presents a step forward toward full understanding of B. glumae pathogenesis.
Collapse
Affiliation(s)
- Chaeyeong Lee
- Department of Microbiology, Pusan National University, Busan 46241,
Korea
- Department of Integrated Biological Science, Pusan National University, Busan 46241,
Korea
| | - Mohamed Mannaa
- Department of Microbiology, Pusan National University, Busan 46241,
Korea
- Department of Integrated Biological Science, Pusan National University, Busan 46241,
Korea
| | - Namgyu Kim
- Department of Microbiology, Pusan National University, Busan 46241,
Korea
- Department of Integrated Biological Science, Pusan National University, Busan 46241,
Korea
| | - Juyun Kim
- Department of Microbiology, Pusan National University, Busan 46241,
Korea
- Department of Integrated Biological Science, Pusan National University, Busan 46241,
Korea
| | - Yeounju Choi
- Department of Microbiology, Pusan National University, Busan 46241,
Korea
- Department of Integrated Biological Science, Pusan National University, Busan 46241,
Korea
| | - Soo Hyun Kim
- Department of Microbiology, Pusan National University, Busan 46241,
Korea
- Department of Integrated Biological Science, Pusan National University, Busan 46241,
Korea
| | - Boknam Jung
- Department of Applied Biology, Dong-A University, Busan 49315,
Korea
| | - Hyun-Hee Lee
- Department of Microbiology, Pusan National University, Busan 46241,
Korea
- Department of Integrated Biological Science, Pusan National University, Busan 46241,
Korea
| | - Jungkwan Lee
- Department of Applied Biology, Dong-A University, Busan 49315,
Korea
| | - Young-Su Seo
- Department of Microbiology, Pusan National University, Busan 46241,
Korea
- Department of Integrated Biological Science, Pusan National University, Busan 46241,
Korea
- Corresponding author.: Phone) +82-51-510-2267, FAX) +82-51-514-1778, E-mail)
| |
Collapse
|
19
|
The Second Messenger c-di-AMP Regulates Diverse Cellular Pathways Involved in Stress Response, Biofilm Formation, Cell Wall Homeostasis, SpeB Expression, and Virulence in Streptococcus pyogenes. Infect Immun 2019; 87:IAI.00147-19. [PMID: 30936159 DOI: 10.1128/iai.00147-19] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 03/25/2019] [Indexed: 02/07/2023] Open
Abstract
Cyclic di-AMP (c-di-AMP) is a recently discovered second messenger in bacteria. The cellular level of c-di-AMP in Streptococcus pyogenes is predicted to be controlled by the synthase DacA and two putative phosphodiesterases, GdpP and Pde2. To investigate the role of c-di-AMP in S. pyogenes, we generated null mutants in each of these proteins by gene deletion. Unlike those in other Gram-positive pathogens such as Staphylococcus aureus and Listeria monocytogenes, DacA in S. pyogenes was not essential for growth in rich media. The DacA null mutant presented a growth defect that manifested through an increased lag time, produced no detectable biofilm, and displayed increased susceptibility toward environmental stressors such as high salt, low pH, reactive oxygen radicals, and cell wall-targeting antibiotics, suggesting that c-di-AMP plays significant roles in crucial cellular processes involved in stress management. The Pde2 null mutant exhibited a lower growth rate and increased biofilm formation, and interestingly, these phenotypes were distinct from those of the null mutant of GdpP, suggesting that Pde2 and GdpP play distinctive roles in c-di-AMP signaling. DacA and Pde2 were critical to the production of the virulence factor SpeB and to the overall virulence of S. pyogenes, as both DacA and Pde2 null mutants were highly attenuated in a mouse model of subcutaneous infection. Collectively, these results show that c-di-AMP is an important global regulator and is required for a proper response to stress and for virulence in S. pyogenes, suggesting that its signaling pathway could be an attractive antivirulence drug target against S. pyogenes infections.
Collapse
|
20
|
Group A Streptococcus co-ordinates manganese import and iron efflux in response to hydrogen peroxide stress. Biochem J 2019; 476:595-611. [PMID: 30670571 DOI: 10.1042/bcj20180902] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/17/2019] [Accepted: 01/17/2019] [Indexed: 01/08/2023]
Abstract
Bacterial pathogens encounter a variety of adverse physiological conditions during infection, including metal starvation, metal overload and oxidative stress. Here, we demonstrate that group A Streptococcus (GAS) utilises Mn(II) import via MtsABC during conditions of hydrogen peroxide stress to optimally metallate the superoxide dismutase, SodA, with Mn. MtsABC expression is controlled by the DtxR family metalloregulator MtsR, which also regulates the expression of Fe uptake systems in GAS. Our results indicate that the SodA in GAS requires Mn for full activity and has lower activity when it contains Fe. As a consequence, under conditions of hydrogen peroxide stress where Fe is elevated, we observed that the PerR-regulated Fe(II) efflux system PmtA was required to reduce intracellular Fe, thus protecting SodA from becoming mismetallated. Our findings demonstrate the co-ordinate action of MtsR-regulated Mn(II) import by MtsABC and PerR-regulated Fe(II) efflux by PmtA to ensure appropriate Mn(II) metallation of SodA for optimal superoxide dismutase function.
Collapse
|
21
|
Kim J, Mannaa M, Kim N, Lee C, Kim J, Park J, Lee HH, Seo YS. The Roles of Two hfq Genes in the Virulence and Stress Resistance of Burkholderia glumae. THE PLANT PATHOLOGY JOURNAL 2018; 34:412-425. [PMID: 30369851 PMCID: PMC6200039 DOI: 10.5423/ppj.oa.06.2018.0097] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/09/2018] [Accepted: 07/22/2018] [Indexed: 05/08/2023]
Abstract
The Hfq protein is a global small RNA chaperone that interacts with regulatory bacterial small RNAs (sRNA) and plays a role in the post-transcriptional regulation of gene expression. The roles of Hfq in the virulence and pathogenicity of several infectious bacteria have been reported. This study was conducted to elucidate the functions of two hfq genes in Burkholderia glumae, a causal agent of rice grain rot. Therefore, mutant strains of the rice-pathogenic B. glumae BGR1, targeting each of the two hfq genes, as well as the double defective mutant were constructed and tested for several phenotypic characteristics. Bacterial swarming motility, toxoflavin production, virulence in rice, siderophore production, sensitivity to H2O2, and lipase production assays were conducted to compare the mutant strains with the wild-type B. glumae BGR1 and complementation strains. The hfq1 gene showed more influence on bacterial motility and toxoflavin production than the hfq2 gene. Both genes were involved in the full virulence of B. glumae in rice plants. Other biochemical characteristics such as siderophore production and sensitivity to H2O2 induced oxidative stress were also found to be regulated by the hfq1 gene. However, lipase activity was shown to be unassociated with both tested genes. To the best of our knowledge, this is the first study to elucidate the functions of two hfq genes in B. glumae. Identification of virulence-related factors in B. glumae will facilitate the development of efficient control measures.
Collapse
Affiliation(s)
| | | | - Namgyu Kim
- Department of Microbiology, Pusan National University, Busan 46241,
Korea
| | - Chaeyeong Lee
- Department of Microbiology, Pusan National University, Busan 46241,
Korea
| | - Juyun Kim
- Department of Microbiology, Pusan National University, Busan 46241,
Korea
| | - Jungwook Park
- Department of Microbiology, Pusan National University, Busan 46241,
Korea
| | - Hyun-Hee Lee
- Department of Microbiology, Pusan National University, Busan 46241,
Korea
| | - Young-Su Seo
- Department of Microbiology, Pusan National University, Busan 46241,
Korea
| |
Collapse
|
22
|
Ghattargi VC, Gaikwad MA, Meti BS, Nimonkar YS, Dixit K, Prakash O, Shouche YS, Pawar SP, Dhotre DP. Comparative genome analysis reveals key genetic factors associated with probiotic property in Enterococcus faecium strains. BMC Genomics 2018; 19:652. [PMID: 30180794 PMCID: PMC6122445 DOI: 10.1186/s12864-018-5043-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/27/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Enterococcus faecium though commensal in the human gut, few strains provide a beneficial effect to humans as probiotics while few are responsible for the nosocomial infection. Comparative genomics of E. faecium can decipher the genomic differences responsible for probiotic, pathogenic and non-pathogenic properties. In this study, we compared E. faecium strain 17OM39 with a marketed probiotic, non-pathogenic non-probiotic (NPNP) and pathogenic strains. RESULTS E. faecium 17OM39 was found to be closely related with marketed probiotic strain T110 based on core genome analysis. Strain 17OM39 was devoid of known vancomycin, tetracycline resistance and functional virulence genes. Moreover, E. faecium 17OM39 genome was found to be more stable due to the absence of frequently found transposable elements. Genes imparting beneficial functional properties were observed to be present in marketed probiotic T110 and 17OM39 strains. Genes associated with colonization and survival within gastrointestinal tract was also detected across all the strains. CONCLUSIONS Beyond shared genetic features; this study particularly identified genes that are responsible for imparting probiotic, non-pathogenic and pathogenic features to the strains of E. faecium. Higher genomic stability, absence of known virulence factors and antibiotic resistance genes and close genomic relatedness with marketed probiotics makes E. faecium 17OM39 a potential probiotic candidate. The work presented here demonstrates that comparative genome analyses can be applied to large numbers of genomes, to find potential probiotic candidates.
Collapse
Affiliation(s)
- Vikas C. Ghattargi
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science (NCCS), Pune, Maharashtra 411021 India
- Department of Biotechnology, Basaveshwar Engineering College, Bagalkot, Karnataka 587102 India
| | - Meghana A. Gaikwad
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science (NCCS), Pune, Maharashtra 411021 India
| | - Bharati S. Meti
- Department of Biotechnology, Basaveshwar Engineering College, Bagalkot, Karnataka 587102 India
| | - Yogesh S. Nimonkar
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science (NCCS), Pune, Maharashtra 411021 India
| | - Kunal Dixit
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science (NCCS), Pune, Maharashtra 411021 India
| | - Om Prakash
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science (NCCS), Pune, Maharashtra 411021 India
| | - Yogesh S. Shouche
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science (NCCS), Pune, Maharashtra 411021 India
| | - Shrikant P. Pawar
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science (NCCS), Pune, Maharashtra 411021 India
| | - Dhiraj P. Dhotre
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science (NCCS), Pune, Maharashtra 411021 India
| |
Collapse
|
23
|
Dai L, Sahin O, Tang Y, Zhang Q. A Mutator Phenotype Promoting the Emergence of Spontaneous Oxidative Stress-Resistant Mutants in Campylobacter jejuni. Appl Environ Microbiol 2017; 83:e01685-17. [PMID: 29030436 PMCID: PMC5717198 DOI: 10.1128/aem.01685-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 10/03/2017] [Indexed: 12/27/2022] Open
Abstract
Campylobacter jejuni is a leading cause of foodborne illnesses worldwide. As a microaerophilic organism, C. jejuni must be able to defend against oxidative stress encountered both in the host and in the environment. How Campylobacter utilizes a mutation-based mechanism for adaptation to oxidative stress is still unknown. Here we present a previously undescribed phenotypic and genetic mechanism that promotes the emergence of oxidative stress-resistant mutants. Specifically, we showed that a naturally occurring mutator phenotype, resulting from a loss of function mutation in the DNA repair enzyme MutY, increased oxidative stress resistance (OXR) in C. jejuni We further demonstrated that MutY malfunction did not directly contribute to the OXR phenotype but increased the spontaneous mutation rate in the peroxide regulator gene perR, which functions as a repressor for multiple genes involved in oxidative stress resistance. Mutations in PerR resulted in loss of its DNA binding function and derepression of PerR-controlled oxidative stress defense genes, thereby conferring an OXR phenotype and facilitating Campylobacter survival under oxidative stress. These findings reveal a new mechanism that promotes the emergence of spontaneous OXR mutants in bacterial organisms.IMPORTANCE Although a mutator phenotype has been shown to promote antibiotic resistance in many bacterial species, little is known about its contribution to the emergence of OXR mutants. This work describes the link between a mutator phenotype and the enhanced emergence of OXR mutants as well as its underlying mechanism involving DNA repair and mutations in PerR. Since DNA repair systems and PerR are well conserved in many bacterial species, especially in Gram positives, the same mechanism may operate in multiple bacterial species. Additionally, we developed a novel method that allows for rapid quantification of spontaneous OXR mutants in a bacterial population. This method represents a technical innovation and may also be applied to other bacterial species. These findings significantly advance our understanding of bacterial mechanisms for survival under oxidative stress.
Collapse
Affiliation(s)
- Lei Dai
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Orhan Sahin
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Yizhi Tang
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Qijing Zhang
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
24
|
Staerck C, Gastebois A, Vandeputte P, Calenda A, Larcher G, Gillmann L, Papon N, Bouchara JP, Fleury MJ. Microbial antioxidant defense enzymes. Microb Pathog 2017. [DOI: 10.1016/j.micpath.2017.06.015] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
25
|
Mechanism of antagonistic effects of Andrographis paniculata methanolic extract against Staphylococcus aureus. ASIAN PAC J TROP MED 2017; 10:685-695. [DOI: 10.1016/j.apjtm.2017.07.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/17/2017] [Accepted: 06/23/2017] [Indexed: 11/19/2022] Open
|
26
|
The PerR-Regulated P 1B-4-Type ATPase (PmtA) Acts as a Ferrous Iron Efflux Pump in Streptococcus pyogenes. Infect Immun 2017; 85:IAI.00140-17. [PMID: 28373352 DOI: 10.1128/iai.00140-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 03/25/2017] [Indexed: 01/11/2023] Open
Abstract
Streptococcus pyogenes (group A Streptococcus [GAS]) is an obligate human pathogen responsible for a broad spectrum of human disease. GAS has a requirement for metal homeostasis within the human host and, as such, tightly modulates metal uptake and efflux during infection. Metal acquisition systems are required to combat metal sequestration by the host, while metal efflux systems are essential to protect against metal overload poisoning. Here, we investigated the function of PmtA (PerR-regulated metal transporter A), a P1B-4-type ATPase efflux pump, in invasive GAS M1T1 strain 5448. We reveal that PmtA functions as a ferrous iron [Fe(II)] efflux system. In the presence of high Fe(II) concentrations, the 5448ΔpmtA deletion mutant exhibited diminished growth and accumulated 5-fold-higher levels of intracellular Fe(II) than did the wild type and the complemented mutant. The 5448ΔpmtA deletion mutant also showed enhanced susceptibility to killing by the Fe-dependent antibiotic streptonigrin as well as increased sensitivity to hydrogen peroxide and superoxide. We suggest that the PerR-mediated control of Fe(II) efflux by PmtA is important for bacterial defense against oxidative stress. PmtA represents an exemplar for an Fe(II) efflux system in a host-adapted Gram-positive bacterial pathogen.
Collapse
|
27
|
Iron Efflux by PmtA Is Critical for Oxidative Stress Resistance and Contributes Significantly to Group A Streptococcus Virulence. Infect Immun 2017; 85:IAI.00091-17. [PMID: 28348051 DOI: 10.1128/iai.00091-17] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 03/20/2017] [Indexed: 12/20/2022] Open
Abstract
Group A Streptococcus (GAS) is a human-only pathogen that causes a spectrum of disease conditions. Given its survival in inflamed lesions, the ability to sense and overcome oxidative stress is critical for GAS pathogenesis. PerR senses oxidative stress and coordinates the regulation of genes involved in GAS antioxidant defenses. In this study, we investigated the role of PerR-controlled metal transporter A (PmtA) in GAS pathogenesis. Previously, PmtA was implicated in GAS antioxidant defenses and suggested to protect against zinc toxicity. Here, we report that PmtA is a P1B4-type ATPase that functions as an Fe(II) exporter and aids GAS defenses against iron intoxication and oxidative stress. The expression of pmtA is specifically induced by excess iron, and this induction requires PerR. Furthermore, a pmtA mutant exhibited increased sensitivity to iron toxicity and oxidative stress due to an elevated intracellular accumulation of iron. RNA-sequencing analysis revealed that GAS undergoes significant alterations in gene expression to adapt to iron toxicity. Finally, using two mouse models of invasive infection, we demonstrated that iron efflux by PmtA is critical for bacterial survival during infection and GAS virulence. Together, these data demonstrate that PmtA is a key component of GAS antioxidant defenses and contributes significantly to GAS virulence.
Collapse
|
28
|
Turner AG, Ong CLY, Walker MJ, Djoko KY, McEwan AG. Transition Metal Homeostasis in Streptococcus pyogenes and Streptococcus pneumoniae. Adv Microb Physiol 2017; 70:123-191. [PMID: 28528647 DOI: 10.1016/bs.ampbs.2017.01.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Trace metals such as Fe, Mn, Zn and Cu are essential for various biological functions including proper innate immune function. The host immune system has complicated and coordinated mechanisms in place to either starve and/or overload invading pathogens with various metals to combat the infection. Here, we discuss the roles of Fe, Mn and Zn in terms of nutritional immunity, and also the roles of Cu and Zn in metal overload in relation to the physiology and pathogenesis of two human streptococcal species, Streptococcus pneumoniae and Streptococcus pyogenes. S. pneumoniae is a major human pathogen that is carried asymptomatically in the nasopharynx by up to 70% of the population; however, transition to internal sites can cause a range of diseases such as pneumonia, otitis media, meningitis and bacteraemia. S. pyogenes is a human pathogen responsible for diseases ranging from pharyngitis and impetigo, to severe invasive infections. Both species have overlapping capacity with respect to metal acquisition, export and regulation and how metal homeostasis relates to their virulence and ability to invade and survive within the host. It is becoming more apparent that metals have an important role to play in the control of infection, and with further investigations, it could lead to the potential use of metals in novel antimicrobial therapies.
Collapse
Affiliation(s)
- Andrew G Turner
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Cheryl-Lynn Y Ong
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Mark J Walker
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Karrera Y Djoko
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Alastair G McEwan
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
29
|
Sethu R, Gouré E, Signor L, Caux-Thang C, Clémancey M, Duarte V, Latour JM. Reaction of PerR with Molecular Oxygen May Assist H2O2 Sensing in Anaerobes. ACS Chem Biol 2016; 11:1438-44. [PMID: 26963368 DOI: 10.1021/acschembio.5b01054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PerR is the peroxide resistance regulator found in several pathogenic bacteria and governs their resistance to peroxide stress by inducing enzymes that destroy peroxides. However, it has recently been implicated as a key component of the aerotolerance in several facultative or strict anaerobes, including the highly pathogenic Staphylococcus aureus. By combining (18)O labeling studies to ESI- and MALDI-TOF MS detection and EMSA experiments, we demonstrate that the active form of PerR reacts with dioxygen, which leads ultimately to disruption of the PerR/DNA complex and is thus physiologically meaningful. Moreover, we show that the presence of O2 assists PerR sensing of H2O2, another feature likely to be important for anaerobic organisms. These results allow one to envisage different scenarios for the response of anaerobes to air exposure.
Collapse
Affiliation(s)
- Ramakrishnan Sethu
- Université Grenoble Alpes, LCBM, F-38054 Grenoble, France
- CEA, DSV, BIG, LCBM, PMB, F-38054 Grenoble, France
- CNRS UMR 5249, LCBM, F-38054 Grenoble, France
| | - Eric Gouré
- Université Grenoble Alpes, LCBM, F-38054 Grenoble, France
- CEA, DSV, BIG, LCBM, PMB, F-38054 Grenoble, France
- CNRS UMR 5249, LCBM, F-38054 Grenoble, France
| | - Luca Signor
- Université Grenoble Alpes, IBS, F-38044 Grenoble, France
- CNRS, IBS, F-38044 Grenoble, France
- CEA, IBS, F-38044 Grenoble, France
| | - Christelle Caux-Thang
- Université Grenoble Alpes, LCBM, F-38054 Grenoble, France
- CEA, DSV, BIG, LCBM, PMB, F-38054 Grenoble, France
- CNRS UMR 5249, LCBM, F-38054 Grenoble, France
| | - Martin Clémancey
- Université Grenoble Alpes, LCBM, F-38054 Grenoble, France
- CEA, DSV, BIG, LCBM, PMB, F-38054 Grenoble, France
- CNRS UMR 5249, LCBM, F-38054 Grenoble, France
| | - Victor Duarte
- Université Grenoble Alpes, LCBM, F-38054 Grenoble, France
- CEA, DSV, BIG, LCBM, PMB, F-38054 Grenoble, France
- CNRS UMR 5249, LCBM, F-38054 Grenoble, France
| | - Jean-Marc Latour
- Université Grenoble Alpes, LCBM, F-38054 Grenoble, France
- CEA, DSV, BIG, LCBM, PMB, F-38054 Grenoble, France
- CNRS UMR 5249, LCBM, F-38054 Grenoble, France
| |
Collapse
|
30
|
Oh E, McMullen L, Jeon B. Impact of oxidative stress defense on bacterial survival and morphological change in Campylobacter jejuni under aerobic conditions. Front Microbiol 2015; 6:295. [PMID: 25914692 PMCID: PMC4392298 DOI: 10.3389/fmicb.2015.00295] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 03/25/2015] [Indexed: 11/30/2022] Open
Abstract
Campylobacter jejuni, a microaerophilic foodborne pathogen, inescapably faces high oxygen tension during its transmission to humans. Thus, the ability of C. jejuni to survive under oxygen-rich conditions may significantly impact C. jejuni viability in food and food safety as well. In this study, we investigated the impact of oxidative stress resistance on the survival of C. jejuni under aerobic conditions by examining three mutants defective in key antioxidant genes, including ahpC, katA, and sodB. All the three mutants exhibited growth reduction under aerobic conditions compared to the wild-type (WT), and the ahpC mutant showed the most significant growth defect. The CFU reduction in the mutants was recovered to the WT level by complementation. Higher levels of reactive oxygen species were accumulated in C. jejuni under aerobic conditions than microaerobic conditions, and supplementation of culture media with an antioxidant recovered the growth of C. jejuni. The levels of lipid peroxidation and protein oxidation were significantly increased in the mutants compared to WT. Additionally, the mutants exhibited different morphological changes under aerobic conditions. The ahpC and katA mutants developed coccoid morphology by aeration, whereas the sodB mutant established elongated cellular morphology. Compared to microaerobic conditions, interestingly, aerobic culture conditions substantially induced the formation of coccoidal cells, and antioxidant treatment reduced the emergence of coccoid forms under aerobic conditions. The ATP concentrations and PMA–qPCR analysis supported that oxidative stress is a factor that induces the development of a viable-but-non-culturable state in C. jejuni. The findings in this study clearly demonstrated that oxidative stress resistance plays an important role in the survival and morphological changes of C. jejuni under aerobic conditions.
Collapse
Affiliation(s)
- Euna Oh
- School of Public Health, University of Alberta, Edmonton, AB Canada
| | - Lynn McMullen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB Canada
| | - Byeonghwa Jeon
- School of Public Health, University of Alberta, Edmonton, AB Canada
| |
Collapse
|
31
|
Henningham A, Döhrmann S, Nizet V, Cole JN. Mechanisms of group A Streptococcus resistance to reactive oxygen species. FEMS Microbiol Rev 2015; 39:488-508. [PMID: 25670736 PMCID: PMC4487405 DOI: 10.1093/femsre/fuu009] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 12/19/2014] [Indexed: 12/16/2022] Open
Abstract
Streptococcus pyogenes, also known as group A Streptococcus (GAS), is an exclusively human Gram-positive bacterial pathogen ranked among the ‘top 10’ causes of infection-related deaths worldwide. GAS commonly causes benign and self-limiting epithelial infections (pharyngitis and impetigo), and less frequent severe invasive diseases (bacteremia, toxic shock syndrome and necrotizing fasciitis). Annually, GAS causes 700 million infections, including 1.8 million invasive infections with a mortality rate of 25%. In order to establish an infection, GAS must counteract the oxidative stress conditions generated by the release of reactive oxygen species (ROS) at the infection site by host immune cells such as neutrophils and monocytes. ROS are the highly reactive and toxic byproducts of oxygen metabolism, including hydrogen peroxide (H2O2), superoxide anion (O2•−), hydroxyl radicals (OH•) and singlet oxygen (O2*), which can damage bacterial nucleic acids, proteins and cell membranes. This review summarizes the enzymatic and regulatory mechanisms utilized by GAS to thwart ROS and survive under conditions of oxidative stress. This review discusses the mechanisms utilized by the bacterial pathogen group A Streptococcus to detoxify reactive oxygen species and survive in the human host under conditions of oxidative stress.
Collapse
Affiliation(s)
- Anna Henningham
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA The School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia The Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Simon Döhrmann
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Victor Nizet
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA Rady Children's Hospital, San Diego, CA 92123, USA
| | - Jason N Cole
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA The School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia The Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
32
|
Abstract
Gram-positive Streptococcus species are responsible for millions of cases of meningitis, bacterial pneumonia, endocarditis, erysipelas and necrotizing fasciitis. Iron is essential for the growth and survival of Streptococcus in the host environment. Streptococcus species have developed various mechanisms to uptake iron from an environment with limited available iron. Streptococcus can directly extract iron from host iron-containing proteins such as ferritin, transferrin, lactoferrin and hemoproteins, or indirectly by relying on the employment of specialized secreted hemophores (heme chelators) and small siderophore molecules (high affinity ferric chelators). This review presents the most recent discoveries in the iron acquisition system of Streptococcus species - the transporters as well as the regulators.
Collapse
Affiliation(s)
- Ruiguang Ge
- Key Laboratory of Gene Engineering of the Ministry of Education and State Key Laboratory of Biocontrol, College of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| | | |
Collapse
|
33
|
Xu Y, Itzek A, Kreth J. Comparison of genes required for H2O2 resistance in Streptococcus gordonii and Streptococcus sanguinis. MICROBIOLOGY-SGM 2014; 160:2627-2638. [PMID: 25280752 DOI: 10.1099/mic.0.082156-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hydrogen peroxide (H2O2) is produced by several members of the genus Streptococcus mainly through the pyruvate oxidase SpxB under aerobic growth conditions. The acute toxic nature of H2O2 raises the interesting question of how streptococci cope with intrinsically produced H2O2, which subsequently accumulates in the microenvironment and threatens the closely surrounding population. Here, we investigate the H2O2 susceptibility of oral Streptococcus gordonii and Streptococcus sanguinis and elucidate potential mechanisms of how they protect themselves from the deleterious effect of H2O2. Both organisms are considered primary colonizers and occupy the same intraoral niche making them potential targets for H2O2 produced by other species. We demonstrate that S. gordonii produces relatively more H2O2 and has a greater ability for resistance to H2O2 stress. Functional studies show that, unlike in Streptococcus pneumoniae, H2O2 resistance is not dependent on a functional SpxB and confirms the important role of the ferritin-like DNA-binding protein Dps. However, the observed increased H2O2 resistance of S. gordonii over S. sanguinis is likely to be caused by an oxidative stress protection machinery present even under anaerobic conditions, while S. sanguinis requires a longer period of time for adaptation. The ability to produce more H2O2 and be more resistant to H2O2 might aid S. gordonii in the competitive oral biofilm environment, since it is lower in abundance yet manages to survive quite efficiently in the oral biofilm.
Collapse
Affiliation(s)
- Yifan Xu
- Department of Surgical Oncology, The First Hospital of China Medical University, Shenyang, PR China.,Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Andreas Itzek
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Jens Kreth
- College of Dentistry, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.,Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
34
|
A Mur regulator protein in the extremophilic bacterium Deinococcus radiodurans. PLoS One 2014; 9:e106341. [PMID: 25243898 PMCID: PMC4171365 DOI: 10.1371/journal.pone.0106341] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 07/29/2014] [Indexed: 12/11/2022] Open
Abstract
Ferric uptake regulator (Fur) is a transcriptional regulator that controls the expression of genes involved in the uptake of iron and manganese, as well as vital nutrients, and is essential for intracellular redox cycling. We identified a unique Fur homolog (DR0865) from Deinococcus radiodurans, which is known for its extreme resistance to radiation and oxidants. A dr0865 mutant (Mt-0865) showed a higher sensitivity to manganese stress, hydrogen peroxide, gamma irradiation and ultraviolet (UV) irradiation than the wild-type R1 strain. Cellular manganese (Mn) ion (Mn2+) analysis showed that Mn2+, copper (Cu2+), and ferric (Fe3+) ions accumulated significantly in the mutant, which suggests that the dr0865 gene is not only involved in the regulation of Mn2+ homeostasis, but also affects the uptake of other ions. In addition, transcriptome profiles under MnCl2 stress showed that the expression of many genes involved in Mn metabolism was significantly different in the wild-type R1 and DR0865 mutant (Mt-0865). Furthermore, we found that the dr0865 gene serves as a positive regulator of the manganese efflux pump gene mntE (dr1236), and as a negative regulator of Mn ABC transporter genes, such as dr2283, dr2284 and dr2523. Therefore, it plays an important role in maintaining the homoeostasis of intracellular Mn (II), and also other Mn2+, zinc (Zn2+) and Cu2+ ions. Based on its role in manganese homeostasis, DR0865 likely belongs to the Mur sub-family of Fur homolog.
Collapse
|
35
|
Lin CSH, Chao SY, Hammel M, Nix JC, Tseng HL, Tsou CC, Fei CH, Chiou HS, Jeng US, Lin YS, Chuang WJ, Wu JJ, Wang S. Distinct structural features of the peroxide response regulator from group A Streptococcus drive DNA binding. PLoS One 2014; 9:e89027. [PMID: 24586487 PMCID: PMC3931707 DOI: 10.1371/journal.pone.0089027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 01/19/2014] [Indexed: 11/23/2022] Open
Abstract
Group A streptococcus (GAS, Streptococcus pyogenes) is a strict human pathogen that causes severe, invasive diseases. GAS does not produce catalase, but has an ability to resist killing by reactive oxygen species (ROS) through novel mechanisms. The peroxide response regulator (PerR), a member of ferric uptake regulator (Fur) family, plays a key role for GAS to cope with oxidative stress by regulating the expression of multiple genes. Our previous studies have found that expression of an iron-binding protein, Dpr, is under the direct control of PerR. To elucidate the molecular interactions of PerR with its cognate promoter, we have carried out structural studies on PerR and PerR-DNA complex. By combining crystallography and small-angle X-ray scattering (SAXS), we confirmed that the determined PerR crystal structure reflects its conformation in solution. Through mutagenesis and biochemical analysis, we have identified DNA-binding residues suggesting that PerR binds to the dpr promoter at the per box through a winged-helix motif. Furthermore, we have performed SAXS analysis and resolved the molecular architecture of PerR-DNA complex, in which two 30 bp DNA fragments wrap around two PerR homodimers by interacting with the adjacent positively-charged winged-helix motifs. Overall, we provide structural insights into molecular recognition of DNA by PerR and define the hollow structural arrangement of PerR-30bpDNA complex, which displays a unique topology distinct from currently proposed DNA-binding models for Fur family regulators.
Collapse
Affiliation(s)
- Chang Sheng-Huei Lin
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shi-Yu Chao
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Michal Hammel
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Jay C. Nix
- Molecular Biology Consortium, Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Hsiao-Ling Tseng
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Cheng Tsou
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Chun-Hsien Fei
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Huo-Sheng Chiou
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - U-Ser Jeng
- National Synchrotron Radiation Research Center, Hsinchu, Taiwan
| | - Yee-Shin Lin
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Woei-Jer Chuang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jiunn-Jong Wu
- Molecular Biology Consortium, Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shuying Wang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
36
|
Kassem II, Khatri M, Sanad YM, Wolboldt M, Saif YM, Olson JW, Rajashekara G. The impairment of methylmenaquinol:fumarate reductase affects hydrogen peroxide susceptibility and accumulation in Campylobacter jejuni. Microbiologyopen 2014; 3:168-81. [PMID: 24515965 PMCID: PMC3996566 DOI: 10.1002/mbo3.158] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 12/07/2013] [Accepted: 12/26/2013] [Indexed: 12/18/2022] Open
Abstract
The methylmenaquinol:fumarate reductase (Mfr) of Campylobacter jejuni is a periplasmic respiratory (redox) protein that contributes to the metabolism of fumarate and displays homology to succinate dehydrogenase (Sdh). Since chemically oxidized redox-enzymes, including fumarate reductase and Sdh, contribute to the generation of oxidative stress in Escherichia coli, we assessed the role of Mfr in C. jejuni after exposure to hydrogen peroxide (H2 O2 ). Our results show that a Mfr mutant (∆mfrA) strain was less susceptible to H2 O2 as compared to the wildtype (WT). Furthermore, the H2 O2 concentration in the ∆mfrA cultures was significantly higher than that of WT after exposure to the oxidant. In the presence of H2 O2 , catalase (KatA) activity and katA expression were significantly lower in the ∆mfrA strain as compared to the WT. Exposure to H2 O2 resulted in a significant decrease in total intracellular iron in the ∆mfrA strain as compared to WT, while the addition of iron to the growth medium mitigated H2 O2 susceptibility and accumulation in the mutant. The ∆mfrA strain was significantly more persistent in RAW macrophages as compared to the WT. Scanning electron microscopy showed that infection with the ∆mfrA strain caused prolonged changes to the macrophages' morphology, mainly resulting in spherical-shaped cells replete with budding structures and craters. Collectively, our results suggest a role for Mfr in maintaining iron homeostasis in H2 O2 stressed C. jejuni, probably via affecting the concentrations of intracellular iron.
Collapse
Affiliation(s)
- Issmat I Kassem
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, Ohio
| | | | | | | | | | | | | |
Collapse
|
37
|
PerR-regulated manganese ion uptake contributes to oxidative stress defense in an oral streptococcus. Appl Environ Microbiol 2014; 80:2351-9. [PMID: 24487543 DOI: 10.1128/aem.00064-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Metal homeostasis plays a critical role in antioxidative stress. Streptococcus oligofermentans, an oral commensal facultative anaerobe lacking catalase activity, produces and tolerates abundant H2O2, whereas Dpr (an Fe(2+)-chelating protein)-dependent H2O2 protection does not confer such high tolerance. Here, we report that inactivation of perR, a peroxide-responsive repressor that regulates zinc and iron homeostasis in Gram-positive bacteria, increased the survival of H2O2-pulsed S. oligofermentans 32-fold and elevated cellular manganese 4.5-fold. perR complementation recovered the wild-type phenotype. When grown in 0.1 to 0.25 mM MnCl2, S. oligofermentans increased survival after H2O2 stress 2.5- to 23-fold, and even greater survival was found for the perR mutant, indicating that PerR is involved in Mn(2+)-mediated H2O2 resistance in S. oligofermentans. Mutation of mntA could not be obtained in brain heart infusion (BHI) broth (containing ~0.4 μM Mn(2+)) unless it was supplemented with ≥2.5 μM MnCl2 and caused 82 to 95% reduction of the cellular Mn(2+) level, while mntABC overexpression increased cellular Mn(2+) 2.1- to 4.5-fold. Thus, MntABC was identified as a high-affinity Mn(2+) transporter in S. oligofermentans. mntA mutation reduced the survival of H2O2-pulsed S. oligofermentans 5.7-fold, while mntABC overexpression enhanced H2O2-challenged survival 12-fold, indicating that MntABC-mediated Mn(2+) uptake is pivotal to antioxidative stress in S. oligofermentans. perR mutation or H2O2 pulsing upregulated mntABC, while H2O2-induced upregulation diminished in the perR mutant. This suggests that perR represses mntABC expression but H2O2 can release the suppression. In conclusion, this work demonstrates that PerR regulates manganese homeostasis in S. oligofermentans, which is critical to H2O2 stress defenses and may be distributed across all oral streptococci lacking catalase.
Collapse
|
38
|
Abstract
The thioredoxin (Trx) system, which is composed of NADPH, thioredoxin reductase (TrxR), and thioredoxin, is a key antioxidant system in defense against oxidative stress through its disulfide reductase activity regulating protein dithiol/disulfide balance. The Trx system provides the electrons to thiol-dependent peroxidases (peroxiredoxins) to remove reactive oxygen and nitrogen species with a fast reaction rate. Trx antioxidant functions are also shown by involvement in DNA and protein repair by reducing ribonucleotide reductase, methionine sulfoxide reductases, and regulating the activity of many redox-sensitive transcription factors. Moreover, Trx systems play critical roles in the immune response, virus infection, and cell death via interaction with thioredoxin-interacting protein. In mammalian cells, the cytosolic and mitochondrial Trx systems, in which TrxRs are high molecular weight selenoenzymes, together with the glutathione-glutaredoxin (Grx) system (NADPH, glutathione reductase, GSH, and Grx) control the cellular redox environment. Recently mammalian thioredoxin and glutathione systems have been found to be able to provide the electrons crossly and to serve as a backup system for each other. In contrast, bacteria TrxRs are low molecular weight enzymes with a structure and reaction mechanism distinct from mammalian TrxR. Many bacterial species possess specific thiol-dependent antioxidant systems, and the significance of the Trx system in the defense against oxidative stress is different. Particularly, the absence of a GSH-Grx system in some pathogenic bacteria such as Helicobacter pylori, Mycobacterium tuberculosis, and Staphylococcus aureus makes the bacterial Trx system essential for survival under oxidative stress. This provides an opportunity to kill these bacteria by targeting the TrxR-Trx system.
Collapse
Affiliation(s)
- Jun Lu
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| | - Arne Holmgren
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
39
|
Wang CH, Chiang-Ni C, Kuo HT, Zheng PX, Tsou CC, Wang S, Tsai PJ, Chuang WJ, Lin YS, Liu CC, Wu JJ. Peroxide responsive regulator PerR of group A Streptococcus is required for the expression of phage-associated DNase Sda1 under oxidative stress. PLoS One 2013; 8:e81882. [PMID: 24312597 PMCID: PMC3849366 DOI: 10.1371/journal.pone.0081882] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 10/17/2013] [Indexed: 12/17/2022] Open
Abstract
The peroxide regulator (PerR) is a ferric uptake repressor-like protein, which is involved in adaptation to oxidative stress and iron homeostasis in group A streptococcus. A perR mutant is attenuated in surviving in human blood, colonization of the pharynx, and resistance to phagocytic clearance, indicating that the PerR regulon affects both host environment adaptation and immune escape. Sda1 is a phage-associated DNase which promotes M1T1 group A streptococcus escaping from phagocytic cells by degrading DNA-based neutrophil extracellular traps. In the present study, we found that the expression of sda1 is up-regulated under oxidative conditions in the wild-type strain but not in the perR mutant. A gel mobility shift assay showed that the recombinant PerR protein binds the sda1 promoter. In addition, mutation of the conserved histidine residue in the metal binding site of PerR abolished sda1 expression under hydrogen peroxide treatment conditions, suggesting that PerR is directly responsible for the sda1 expression under oxidative stress. Our results reveal PerR-dependent sda1 expression under oxidative stress, which may aid innate immune escape of group A streptococcus.
Collapse
Affiliation(s)
- Chih-Hung Wang
- Departments of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
The sal lantibiotic locus plays an important role in the virulence of Streptococcus pyogenes. Our transcriptional analysis of the sal locus provides new information on the complex regulation of this operon. Transcription of the operon is regulated by a promoter upstream of the operon and by a second internal promoter upstream of the salKRZ genes. Here we identify the location of the internal promoter and provide information on how this promoter is autoregulated by proteins within the locus. We determined by primer extension that the salKR promoter is located within the salY gene and identified several regulatory regions important for expression. The higher activity of the promoter in a salKR deletion strain indicates a role in repression by the SalR response regulator. Further, this promoter had higher activity in a salA deletion strain, implicating corepression or a signaling role for the SalA peptide. Finally, we demonstrate that this promoter can be controlled by host factors. Analysis of transcriptional regulation of this locus provides a better understanding of the function of the sal locus in S. pyogenes pathogenesis.
Collapse
|
41
|
Cho KH, Kang SO. Streptococcus pyogenes c-di-AMP phosphodiesterase, GdpP, influences SpeB processing and virulence. PLoS One 2013; 8:e69425. [PMID: 23869242 PMCID: PMC3711813 DOI: 10.1371/journal.pone.0069425] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 06/10/2013] [Indexed: 01/09/2023] Open
Abstract
Small cyclic nucleotide derivatives are employed as second messengers by both prokaryotes and eukaryotes to regulate diverse cellular processes responding to various signals. In bacteria, c-di-AMP has been discovered most recently, and some Gram-positive pathogens including S. pyogenes use this cyclic nucleotide derivative as a second messenger instead of c-di-GMP, a well-studied important bacterial second messenger. GdpP, c-di-AMP phosphodiesterase, is responsible for degrading c-di-AMP inside cells, and the cellular role of GdpP in S. pyogenes has not been examined yet. To test the cellular role of GdpP, we created a strain with a nonpolar inframe deletion of the gdpP gene, and examined the properties of the strain including virulence. From this study, we demonstrated that GdpP influences the biogenesis of SpeB, the major secreted cysteine protease, at a post-translational level, susceptibility to the beta lactam antibiotic ampicillin, and is necessary for full virulence in a murine subcutaneous infection model.
Collapse
Affiliation(s)
- Kyu Hong Cho
- Department of Microbiology, Southern Illinois University, Carbondale, Illinois, USA.
| | | |
Collapse
|
42
|
Makthal N, Rastegari S, Sanson M, Ma Z, Olsen RJ, Helmann JD, Musser JM, Kumaraswami M. Crystal structure of peroxide stress regulator from Streptococcus pyogenes provides functional insights into the mechanism of oxidative stress sensing. J Biol Chem 2013; 288:18311-24. [PMID: 23645680 DOI: 10.1074/jbc.m113.456590] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Regulation of oxidative stress responses by the peroxide stress regulator (PerR) is critical for the in vivo fitness and virulence of group A Streptococcus. To elucidate the molecular mechanism of DNA binding, peroxide sensing, and gene regulation by PerR, we performed biochemical and structural characterization of PerR. Sequence-specific DNA binding by PerR does not require regulatory metal occupancy. However, metal binding promotes higher affinity PerR-DNA interactions. PerR metallated with iron directly senses peroxide stress and dissociates from operator sequences. The crystal structure revealed that PerR exists as a homodimer with two metal-binding sites per subunit as follows: a structural zinc site and a regulatory metal site that is occupied in the crystals by nickel. The regulatory metal-binding site in PerR involves a previously unobserved HXH motif located in its unique N-terminal extension. Mutational analysis of the regulatory site showed that the PerR metal ligands are involved in regulatory metal binding, and integrity of this site is critical for group A Streptococcus virulence. Interestingly, the metal-binding HXH motif is not present in the structurally characterized members of ferric uptake regulator (Fur) family but is fully conserved among PerR from the genus Streptococcus. Thus, it is likely that the PerR orthologs from streptococci share a common mechanism of metal binding, peroxide sensing, and gene regulation that is different from that of well characterized PerR from Bacillus subtilis. Together, our findings provide key insights into the peroxide sensing and regulation of the oxidative stress-adaptive responses by the streptococcal subfamily of PerR.
Collapse
Affiliation(s)
- Nishanth Makthal
- Center for Molecular and Translational Human Infectious Diseases Research, The Methodist Hospital Research Institute, and Department of Pathology and Genomic Medicine, The Methodist Hospital System, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Yesilkaya H, Andisi VF, Andrew PW, Bijlsma JJE. Streptococcus pneumoniae and reactive oxygen species: an unusual approach to living with radicals. Trends Microbiol 2013; 21:187-95. [PMID: 23415028 DOI: 10.1016/j.tim.2013.01.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 01/15/2013] [Accepted: 01/18/2013] [Indexed: 11/25/2022]
Abstract
Streptococcus pneumoniae, an aerotolerant anaerobe, is an important human pathogen that regularly encounters toxic oxygen radicals from the atmosphere and from the host metabolism and immune system. Additionally, S. pneumoniae produces large amounts of H2O2 as a byproduct of its metabolism, which contributes to its virulence but also has adverse effects on its biology. Understanding how S. pneumoniae defends against oxidative stress is far from complete, but it is apparent that it does not follow the current paradigm of having canonical enzymes to detoxify oxygen radicals or homologues of typical oxidative stress responsive global regulators. We will give an overview of how S. pneumoniae copes with oxygen radicals. Furthermore, we draw parallels with other pathogenic streptococcal species and provide future research perspectives.
Collapse
Affiliation(s)
- Hasan Yesilkaya
- University of Leicester, Department of Infection, Immunity, and Inflammation, Maurice Shock Building, University Road, P.O. Box 138, Leicester, LE1 9HN, UK
| | | | | | | |
Collapse
|
44
|
PolA1, a putative DNA polymerase I, is coexpressed with PerR and contributes to peroxide stress defenses of group A Streptococcus. J Bacteriol 2012. [PMID: 23204468 DOI: 10.1128/jb.01847-12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The peroxide stress response regulator PerR coordinates the oxidative-stress defenses of group A Streptococcus (GAS). We now show that PerR is expressed from an operon encoding a putative DNA polymerase I (PolA1), among other GAS products. A polA1 deletion mutant exhibited wild-type growth but showed reduced capacity to repair DNA damage caused by UV light or ciprofloxacin. Mutant bacteria were hypersensitive to H(2)O(2), compared with the wild type or a complemented mutant strain, and remained severely attenuated even after adaptation at sublethal H(2)O(2) levels, whereas wild-type bacteria could adapt to withstand peroxide challenge under identical conditions. The hypersensitivity of the mutant was reversed when bacteria were grown in iron-depleted medium and challenged in the presence of a hydroxyl radical scavenger, results that indicated sensitivity to hydroxyl radicals generated by Fenton chemistry. The peroxide resistance of a perR polA1 double mutant following adaptation at sublethal H(2)O(2) levels was decreased 9-fold relative to a perR single mutant, thus implicating PolA1 in PerR-mediated defenses against peroxide stress. Cultures of the polA1 mutant grown with or without prior H(2)O(2) exposure yielded considerably lower numbers of rifampin-resistant mutants than cultures of the wild type or the complemented mutant strain, a finding consistent with PolA1 lacking proofreading activity. We conclude that PolA1 promotes genome sequence diversity while playing an essential role in oxidative DNA damage repair mechanisms of GAS, dual functions predicted to confer optimal adaptive capacity and fitness in the host. Together, our studies reveal a unique genetic and functional relationship between PerR and PolA1 in streptococci.
Collapse
|
45
|
Abstract
SIGNIFICANCE In bacteria, transcriptional responses to reactive oxygen and nitrogen species (ROS and RNS, respectively) are typically coordinated by regulatory proteins that employ metal centers or reactive thiols to detect the presence of those species. This review is focused on the structure, function and mechanism of three regulatory proteins (Fur, PerR, and NorR) that contain non-heme iron and regulate the transcription of target genes in response to ROS and/or RNS. The targets for regulation include genes encoding detoxification activities, and genes encoding proteins involved in the repair of the damage caused by ROS and RNS. RECENT ADVANCES Three-dimensional structures of several Fur proteins and of PerR are revealing important details of the metal binding sites of these proteins, showing a surprising degree of structural diversity in the Fur family. CRITICAL ISSUES Discussion of the interaction of Fur with ROS and RNS will illustrate the difficulty that sometimes exists in distinguishing between true physiological responses and adventitious reactions of a regulatory protein with a reactive ligand. FUTURE DIRECTIONS Consideration of these three sensor proteins illuminates some of the key questions that remain unanswered, for example, the nature of the biochemical determinants that dictate the sensitivity and specificity of the interaction of the sensor proteins with their cognate signals.
Collapse
Affiliation(s)
- Stephen Spiro
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, Texas 75080, USA.
| | | |
Collapse
|
46
|
Zhang T, Ding Y, Li T, Wan Y, Li W, Chen H, Zhou R. A Fur-like protein PerR regulates two oxidative stress response related operons dpr and metQIN in Streptococcus suis. BMC Microbiol 2012; 12:85. [PMID: 22646062 PMCID: PMC3458967 DOI: 10.1186/1471-2180-12-85] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 05/02/2012] [Indexed: 01/16/2023] Open
Abstract
Background Metal ions are important micronutrients in cellular metabolism, but excess ions that cause toxic reactive oxygen species are harmful to cells. In bacteria, Fur family proteins such as Fur, Zur and PerR manage the iron and zinc uptake and oxidative stress responses, respectively. The single Fur-like protein (annotated as PerR) in Streptococcus suis has been demonstrated to be involved in zinc and iron uptake in previous studies, but the reports on oxidative stress response and gene regulation are limited. Results In the present study, the perR gene deletion mutant ΔperR was constructed in Streptococcus suis serotype 2 strain SC-19, and the mutant strain ΔperR exhibited less sensitivity to H2O2 stress compared to the wild-type. The dpr and metQIN were found to be upregulated in the ΔperR strain compared with SC-19. Electrophoretic mobility shift assays showed that the promoters of dpr and metQIN could be bound by the PerR protein. These results suggest that dpr and metQIN are members of the PerR regulon of S. suis. dpr encodes a Dps-like peroxide resistance protein, and the dpr knockout strains (Δdpr and ΔdprΔperR) were highly sensitive to H2O2. MetQIN is a methionine transporter, and the increased utilization of methionine in the ΔperR strain indirectly affected the peroxide resistance. Using a promoter–EGFP gene fusion reporting system, we found that the PerR regulon was induced by H2O2, and the induction was modulated by metal ions. Finally, we found that the pathogenicity of the perR mutant was attenuated and easily cleared by mice. Conclusions These data strongly suggest that the Fur-like protein PerR directly regulates dpr and metQIN and plays a crucial role in oxidative stress response in S. suis.
Collapse
Affiliation(s)
- Tengfei Zhang
- Division of Animal Infectious Diseases in the State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Shizishan Street, Wuhan 430070, China
| | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
We have characterized group A Streptococcus (GAS) genome-wide responses to hydrogen peroxide and assessed the role of the peroxide response regulator (PerR) in GAS under oxidative stress. Comparison of transcriptome changes elicited by peroxide in wild-type bacteria with those in a perR deletion mutant showed that 76 out of 237 peroxide-regulated genes are PerR dependent. Unlike the PerR-mediated upregulation of peroxidases and other peroxide stress defense mechanisms previously reported in gram-positive species, PerR-dependent genes in GAS were almost exclusively downregulated and encoded proteins involved in purine and deoxyribonucleotide biosynthesis, heme uptake, and amino acid/peptide transport, but they also included a strongly activated putative transcriptional regulator (SPy1198). Of the 161 PerR-independent loci, repressed genes (86 of 161) encoded proteins with functions similar to those coordinated by PerR, in contrast to upregulated loci that encoded proteins that function in DNA damage repair, cofactor metabolism, reactive oxygen species detoxification, pilus biosynthesis, and hypothetical proteins. Complementation of the perR deletion mutant with wild-type PerR restored PerR-dependent regulation, whereas complementation with either one of two PerR variants carrying single mutations in two predicted metal-binding sites did not rescue the mutant phenotype. Metal content analyses of the recombinant wild type and respective PerR mutants, in addition to regulation studies in metal-supplemented and iron-depleted media, showed binding of zinc and iron by PerR and an iron requirement for optimal responses to peroxide. Our findings reveal a novel physiological contribution of PerR in coordinating DNA and protein metabolic functions in peroxide and identify GAS adaptive responses that may serve to enhance oxidative stress resistance and virulence in the host.
Collapse
|
48
|
Belzer C, van Schendel BAM, Hoogenboezem T, Kusters JG, Hermans PWM, van Vliet AHM, Kuipers EJ. PerR controls peroxide- and iron-responsive expression of oxidative stress defense genes in Helicobacter hepaticus. Eur J Microbiol Immunol (Bp) 2011; 1:215-22. [PMID: 24516727 DOI: 10.1556/eujmi.1.2011.3.5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 06/30/2011] [Indexed: 12/15/2022] Open
Abstract
Chronic intestinal and hepatic colonization with the microaerophilic murine pathogen Helicobacter hepaticus can lead to a range of inflammatory diseases of the lower digestive tract. Colonization is associated with an active cellular immune response and production of oxygen radicals. During colonization, H. hepaticus needs to cope with and respond to oxidative stress, and here we report on the role of the H. hepaticus PerR-regulator (HH0942) in the expression of the peroxidase-encoding katA (HH0043) and ahpC (HH1564) genes. Transcription of katA and ahpC was induced by hydrogen peroxide, and by iron restriction of growth media. This iron- and hydrogen peroxide-responsive regulation of katA and ahpC was mediated at the transcriptional level, from promoters directly upstream of the genes. Inactivation of the perR gene resulted in constitutive, iron-independent high-level expression of the katA and ahpC transcripts and corresponding proteins. Finally, inactivation of the katA gene resulted in increased sensitivity of H. hepaticus to hydrogen peroxide and reduced aerotolerance. In H. hepaticus, iron metabolism and oxidative stress defense are intimately connected via the PerR regulatory protein. This regulatory pattern resembles that observed in the enteric pathogen Campylobacter jejuni, but contrasts with the pattern observed in the closely related human gastric pathogen Helicobacter pylori.
Collapse
|
49
|
Abstract
Exposure to hydrogen peroxide (H(2)O(2)) and other reactive oxygen species is a universal feature of life in an aerobic environment. Bacteria express enzymes to detoxify H(2)O(2) and to repair the resulting damage, and their synthesis is typically regulated by redox-sensing transcription factors. The best characterized bacterial peroxide-sensors are Escherichia coli OxyR and Bacillus subtilis PerR. Analysis of their regulons has revealed that, in addition to inducible detoxification enzymes, adaptation to H(2)O(2) is mediated by modifications of metal ion homeostasis. Analogous adaptations appear to be present in other bacteria as here reviewed for Deinococcus radiodurans, Neisseria gonorrhoeae, Streptococcus pyogenes, and Bradyrhizobium japonicum. As a general theme, peroxide stress elicits changes in cytosolic metal distribution with the net effect of reducing the damage caused by reactive ferrous iron. Iron levels are reduced by repression of uptake, sequestration in storage proteins, and incorporation into metalloenzymes. In addition, peroxide-inducible transporters elevate cytosolic levels of Mn(II) and/or Zn(II) that can displace ferrous iron from sensitive targets. Although bacteria differ significantly in the detailed mechanisms employed to modulate cytosolic metal levels, a high Mn:Fe ratio has emerged as one key correlate of reactive oxygen species resistance.
Collapse
Affiliation(s)
- Melinda J Faulkner
- Department of Microbiology, Cornell University, Ithaca, New York 14853-8101, USA
| | | |
Collapse
|
50
|
Transcriptional response of Leptospira interrogans to iron limitation and characterization of a PerR homolog. Infect Immun 2010; 78:4850-9. [PMID: 20805337 DOI: 10.1128/iai.00435-10] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Leptospirosis is a globally significant zoonosis caused by Leptospira spp. Iron is essential for growth of most bacterial species. Since iron availability is low in the host, pathogens have evolved complex iron acquisition mechanisms to survive and establish infection. In many bacteria, expression of iron uptake and storage proteins is regulated by Fur. L. interrogans encodes four predicted Fur homologs; we have constructed a mutation in one of these, la1857. We conducted microarray analysis to identify iron-responsive genes and to study the effects of la1857 mutation on gene expression. Under iron-limiting conditions, 43 genes were upregulated and 49 genes were downregulated in the wild type. Genes encoding proteins with predicted involvement in inorganic ion transport and metabolism (including TonB-dependent proteins and outer membrane transport proteins) were overrepresented in the upregulated list, while 54% of differentially expressed genes had no known function. There were 16 upregulated genes of unknown function which are absent from the saprophyte L. biflexa and which therefore may encode virulence-associated factors. Expression of iron-responsive genes was not significantly affected by mutagenesis of la1857, indicating that LA1857 is not a global regulator of iron homeostasis. Upregulation of heme biosynthetic genes and a putative catalase in the mutant suggested that LA1857 is more similar to PerR, a regulator of the oxidative stress response. Indeed, the la1857 mutant was more resistant to peroxide stress than the wild type. Our results provide insights into the role of iron in leptospiral metabolism and regulation of the oxidative stress response, including genes likely to be important for virulence.
Collapse
|