1
|
Wu Y, Zhang S, York DM, Wang L. Adsorption of Flavonoids in a Transcriptional Regulator TtgR: Relative Binding Free Energies and Intermolecular Interactions. J Phys Chem B 2024; 128:6529-6541. [PMID: 38935925 PMCID: PMC11542679 DOI: 10.1021/acs.jpcb.4c02303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Antimicrobial resistance in bacteria often arises from their ability to actively identify and expel toxic compounds. The bacterium strain Pseudomonas putida DOT-T1E utilizes its TtgABC efflux pump to confer robust resistance against antibiotics, flavonoids, and organic solvents. This resistance mechanism is intricately regulated at the transcriptional level by the TtgR protein. Through molecular dynamics and alchemical free energy simulations, we systematically examine the binding of seven flavonoids and their derivatives with the TtgR transcriptional regulator. Our simulations reveal distinct binding geometries and free energies for the flavonoids in the active site of the protein, which are driven by a range of noncovalent forces encompassing van der Waals, electrostatic, and hydrogen bonding interactions. The interplay of molecular structures, substituent patterns, and intermolecular interactions effectively stabilizes the bound flavonoids, confining their movements within the TtgR binding pocket. These findings yield valuable insights into the molecular determinants that govern ligand recognition in TtgR and shed light on the mechanism of antimicrobial resistance in P. putida DOT-T1E.
Collapse
Affiliation(s)
- Yuxuan Wu
- Department of Chemistry and Chemical Biology, Institute for Quantitative Biomedicine, Laboratory for Biomolecular Simulation Research, Rutgers University, Piscataway, NJ 08854, USA
| | - Shi Zhang
- Department of Chemistry and Chemical Biology, Institute for Quantitative Biomedicine, Laboratory for Biomolecular Simulation Research, Rutgers University, Piscataway, NJ 08854, USA
| | - Darrin M. York
- Department of Chemistry and Chemical Biology, Institute for Quantitative Biomedicine, Laboratory for Biomolecular Simulation Research, Rutgers University, Piscataway, NJ 08854, USA
| | - Lu Wang
- Department of Chemistry and Chemical Biology, Institute for Quantitative Biomedicine, Laboratory for Biomolecular Simulation Research, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
2
|
Cárdenas Espinosa MJ, Schmidgall T, Pohl J, Wagner G, Wynands B, Wierckx N, Heipieper HJ, Eberlein C. Assessment of New and Genome-Reduced Pseudomonas Strains Regarding Their Robustness as Chassis in Biotechnological Applications. Microorganisms 2023; 11:microorganisms11040837. [PMID: 37110260 PMCID: PMC10144732 DOI: 10.3390/microorganisms11040837] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/12/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Organic olvent-tolerant strains of the Gram-negative bacterial genus Pseudomonas are discussed as potential biocatalysts for the biotechnological production of various chemicals. However, many current strains with the highest tolerance are belonging to the species P. putida and are classified as biosafety level 2 strains, which makes them uninteresting for the biotechnological industry. Therefore, it is necessary to identify other biosafety level 1 Pseudomonas strains with high tolerance towards solvents and other forms of stress, which are suitable for establishing production platforms of biotechnological processes. In order to exploit the native potential of Pseudomonas as a microbial cell factory, the biosafety level 1 strain P. taiwanensis VLB120 and its genome-reduced chassis (GRC) variants as well as the plastic-degrading strain P. capeferrum TDA1 were assessed regarding their tolerance towards different n-alkanols (1-butanol, 1-hexanol, 1-octanol, 1-decanol). Toxicity of the solvents was investigated by their effects on bacterial growth rates given as the EC50 concentrations. Hereby, both toxicities as well as the adaptive responses of P. taiwanensis GRC3 and P. capeferrum TDA1 showed EC50 values up to two-fold higher than those previously detected for P. putida DOT-T1E (biosafety level 2), one of the best described solvent-tolerant bacteria. Furthermore, in two-phase solvent systems, all the evaluated strains were adapted to 1-decanol as a second organic phase (i.e., OD560 was at least 0.5 after 24 h of incubation with 1% (v/v) 1-decanol), which shows the potential use of these strains as platforms for the bio-production of a wide variety of chemicals at industrial level.
Collapse
Affiliation(s)
- María José Cárdenas Espinosa
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research—UFZ, 04318 Leipzig, Germany
| | - Tabea Schmidgall
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research—UFZ, 04318 Leipzig, Germany
| | - Jessica Pohl
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research—UFZ, 04318 Leipzig, Germany
| | - Georg Wagner
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research—UFZ, 04318 Leipzig, Germany
| | - Benedikt Wynands
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Nick Wierckx
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Hermann J. Heipieper
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research—UFZ, 04318 Leipzig, Germany
| | - Christian Eberlein
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research—UFZ, 04318 Leipzig, Germany
- Correspondence:
| |
Collapse
|
3
|
García-Franco A, Godoy P, Duque E, Ramos JL. Insights into the susceptibility of Pseudomonas putida to industrially relevant aromatic hydrocarbons that it can synthesize from sugars. Microb Cell Fact 2023; 22:22. [PMID: 36732770 PMCID: PMC9893694 DOI: 10.1186/s12934-023-02028-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/21/2023] [Indexed: 02/04/2023] Open
Abstract
Pseudomonas putida DOT-T1E is a highly solvent tolerant strain for which many genetic tools have been developed. The strain represents a promising candidate host for the synthesis of aromatic compounds-opening a path towards a green alternative to petrol-derived chemicals. We have engineered this strain to produce phenylalanine, which can then be used as a raw material for the synthesis of styrene via trans-cinnamic acid. To understand the response of this strain to the bioproducts of interest, we have analyzed the in-depth physiological and genetic response of the strain to these compounds. We found that in response to the exposure to the toxic compounds that the strain can produce, the cell launches a multifactorial response to enhance membrane impermeabilization. This process occurs via the activation of a cis to trans isomerase that converts cis unsaturated fatty acids to their corresponding trans isomers. In addition, the bacterial cells initiate a stress response program that involves the synthesis of a number of chaperones and ROS removing enzymes, such as peroxidases and superoxide dismutases. The strain also responds by enhancing the metabolism of glucose through the specific induction of the glucose phosphorylative pathway, Entner-Doudoroff enzymes, Krebs cycle enzymes and Nuo. In step with these changes, the cells induce two efflux pumps to extrude the toxic chemicals. Through analyzing a wide collection of efflux pump mutants, we found that the most relevant pump is TtgGHI, which is controlled by the TtgV regulator.
Collapse
Affiliation(s)
- Ana García-Franco
- Estación Experimental del Zaidín. Consejo Superior de Investigaciones Científicas, c/Profesor Albareda nº 1, 18008, Granada, Spain
| | - Patricia Godoy
- Estación Experimental del Zaidín. Consejo Superior de Investigaciones Científicas, c/Profesor Albareda nº 1, 18008, Granada, Spain
| | - Estrella Duque
- Estación Experimental del Zaidín. Consejo Superior de Investigaciones Científicas, c/Profesor Albareda nº 1, 18008, Granada, Spain
| | - Juan Luis Ramos
- Estación Experimental del Zaidín. Consejo Superior de Investigaciones Científicas, c/Profesor Albareda nº 1, 18008, Granada, Spain.
| |
Collapse
|
4
|
Eltoukhy A, Jia Y, Lamraoui I, Abo-Kadoum MA, Atta OM, Nahurira R, Wang J, Yan Y. Transcriptome analysis and cytochrome P450 monooxygenase reveal the molecular mechanism of Bisphenol A degradation by Pseudomonas putida strain YC-AE1. BMC Microbiol 2022; 22:294. [PMID: 36482332 PMCID: PMC9733184 DOI: 10.1186/s12866-022-02689-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 11/02/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Bisphenol A (BPA) is a rapid spreading organic pollutant that widely used in many industries especially as a plasticizer in polycarbonate plastic and epoxy resins. BPA reported as a prominent endocrine disruptor compound that possesses estrogenic activity and fulminant toxicity. Pseudomonas putida YC-AE1 was isolated in our previous study and exerted a strong degradation capacity toward BPA at high concentrations; however, the molecular degradation mechanism is still enigmatic. RESULTS We employed RNA sequencing to analyze the differentially expressed genes (DEGs) in the YC-AE1 strain upon BPA induction. Out of 1229 differentially expressed genes, 725 genes were positively regulated, and 504 genes were down-regulated. The pathways of microbial metabolism in diverse environments were significantly enriched among DEGs based on KEGG enrichment analysis. qRT-PCR confirm the involvement of BPA degradation relevant genes in accordance with RNA Seq data. The degradation pathway of BPA in YC-AE1 was proposed with specific enzymes and encoded genes. The role of cytochrome P450 (CYP450) in BPA degradation was further verified. Sever decrease in BPA degradation was recorded by YC-AE1 in the presence of CYP450 inhibitor. Subsequently, CYP450bisdB deficient YC-AE1 strain △ bisdB lost its ability toward BPA transformation comparing with the wild type. Furthermore, Transformation of E. coli with pET-32a-bisdAB empowers it to degrade 66 mg l-1 of BPA after 24 h. Altogether, the results showed the role of CYP450 in biodegradation of BPA by YC-AE1. CONCLUSION In this study we propose the molecular basis and the potential role of YC-AE1cytochrome P450 monooxygenase in BPA catabolism.
Collapse
Affiliation(s)
- Adel Eltoukhy
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Assiut, 71524 Egypt
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Yang Jia
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, and Zhejiang Provincial Key Lab for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035 China
| | - Imane Lamraoui
- Higher National School of Biotechnology “Toufik Khaznadar” (ENSB), 25000 Constantine, Algeria
| | - M. A. Abo-Kadoum
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Assiut, 71524 Egypt
| | - Omar Mohammad Atta
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Assiut, 71524 Egypt
| | - Ruth Nahurira
- Faculty of Science, Kabale University, Kabale, Uganda
| | - Junhuan Wang
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Yanchun Yan
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| |
Collapse
|
5
|
Pernas-Pleite C, Conejo-Martínez AM, Marín I, Abad JP. Green Extracellular Synthesis of Silver Nanoparticles by Pseudomonas alloputida, Their Growth and Biofilm-Formation Inhibitory Activities and Synergic Behavior with Three Classical Antibiotics. Molecules 2022; 27:7589. [PMID: 36364415 PMCID: PMC9656067 DOI: 10.3390/molecules27217589] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/26/2023] Open
Abstract
Bacterial resistance to antibiotics is on the rise and hinders the fight against bacterial infections, which are expected to cause millions of deaths by 2050. New antibiotics are difficult to find, so alternatives are needed. One could be metal-based drugs, such as silver nanoparticles (AgNPs). In general, chemical methods for AgNPs' production are potentially toxic, and the physical ones expensive, while green approaches are not. In this paper, we present the green synthesis of AgNPs using two Pseudomonas alloputida B003 UAM culture broths, sampled from their exponential and stationary growth phases. AgNPs were physicochemically characterized by transmission electron microscopy (TEM), total reflection X-ray fluorescence (TXRF), infrared spectroscopy (FTIR), dynamic light scattering (DLS), and X-ray diffraction (XRD), showing differential characteristics depending on the synthesis method used. Antibacterial activity was tested in three assays, and we compared the growth and biofilm-formation inhibition of six test bacteria: Bacillus subtilis, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, and Staphylococcus epidermidis. We also monitored nanoparticles' synergic behavior through the growth inhibition of E. coli and S. aureus by three classical antibiotics: ampicillin, nalidixic acid, and streptomycin. The results indicate that very good AgNP activity was obtained with particularly low MICs for the three tested strains of P. aeruginosa. A good synergistic effect on streptomycin activity was observed for all the nanoparticles. For ampicillin, a synergic effect was detected only against S. aureus. ROS production was found to be related to the AgNPs' antibacterial activity.
Collapse
Affiliation(s)
| | | | - Irma Marín
- Department of Molecular Biology, Faculty of Sciences, Biology Building, Autonomous University of Madrid, Cantoblanco, 28049 Madrid, Spain
| | - José P. Abad
- Department of Molecular Biology, Faculty of Sciences, Biology Building, Autonomous University of Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
6
|
Tang Z, Zhang Y, Xiao S, Gao Y, Duan Y, Liu B, Xiong C, Yang Z, Wu Y, Zhou S. Insight into the impacts and mechanisms of ketone stress on the antibiotic resistance in Escherichia coli. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:83746-83755. [PMID: 35771331 PMCID: PMC9245865 DOI: 10.1007/s11356-022-21600-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Accumulation of toxic organic has posed a substantial pressure on the proliferation of bacterial resistance. While aromatic organics have been demonstrated to enhance the antibiotic resistance in bacteria, no information is yet available on the effects of non-aromatic organics on the variations of bacterial resistance. Here, we investigated the effects of a typical ketone (i.e., methylisobutanone (MIBK)) on the variations of antibiotic resistance in Escherichia coli (E. coli). The results showed that the growth of resistant E. coli under environmental concentration of 50 μg/L MIBK was firstly inhibited as explained by the transient disruption in the cell membrane and then recovered possibly due to the reactive oxygen species. Exposure to 50 μg/L MIBK gradually raised the abundance of representative resistance gene (ampR) in E. coli. In contrast, the high concentration of 50 mg/L MIBK continuously inhibited the growth of resistant E. coli by disrupting cell membrane and notably promoted the proliferation of ampR through enhancing the horizontal transformation and up-regulating the expression of efflux pump gene. These findings provided the first evidence for the evolution of bacterial resistance in response to ketone organics.
Collapse
Affiliation(s)
- Zhenping Tang
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, China
- Hunan Province Key Laboratory of Rare Metal Minerals Exploitation and Geological Disposal of Wastes, University of South China, Hengyang, 421001, China
| | - Yu Zhang
- School of Civil Engineering, University of South China, Hengyang, 421001, China
| | - Shasha Xiao
- School of Civil Engineering, University of South China, Hengyang, 421001, China
| | - Yuanyuan Gao
- Hunan Province Key Laboratory of Rare Metal Minerals Exploitation and Geological Disposal of Wastes, University of South China, Hengyang, 421001, China
| | - Yi Duan
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, China
- School of Civil Engineering, University of South China, Hengyang, 421001, China
| | - Boyang Liu
- School of Civil Engineering, University of South China, Hengyang, 421001, China
| | - Cong Xiong
- School of Civil Engineering, University of South China, Hengyang, 421001, China
| | - Zhengqing Yang
- School of Civil Engineering, University of South China, Hengyang, 421001, China
| | - Yueyue Wu
- Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Shuai Zhou
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, China.
- Hunan Province Key Laboratory of Rare Metal Minerals Exploitation and Geological Disposal of Wastes, University of South China, Hengyang, 421001, China.
- School of Civil Engineering, University of South China, Hengyang, 421001, China.
| |
Collapse
|
7
|
Mutanda I, Sun J, Jiang J, Zhu D. Bacterial membrane transporter systems for aromatic compounds: Regulation, engineering, and biotechnological applications. Biotechnol Adv 2022; 59:107952. [PMID: 35398204 DOI: 10.1016/j.biotechadv.2022.107952] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/20/2022] [Accepted: 04/02/2022] [Indexed: 12/13/2022]
|
8
|
Wang Y, Batra A, Schulenburg H, Dagan T. Gene sharing among plasmids and chromosomes reveals barriers for antibiotic resistance gene transfer. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200467. [PMID: 34839702 PMCID: PMC8628082 DOI: 10.1098/rstb.2020.0467] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/18/2021] [Indexed: 01/21/2023] Open
Abstract
The emergence of antibiotic resistant bacteria is a major threat to modern medicine. Rapid adaptation to antibiotics is often mediated by the acquisition of plasmids carrying antibiotic resistance (ABR) genes. Nonetheless, the determinants of plasmid-mediated ABR gene transfer remain debated. Here, we show that the propensity of ABR gene transfer via plasmids is higher for accessory chromosomal ABR genes in comparison with core chromosomal ABR genes, regardless of the resistance mechanism. Analysing the pattern of ABR gene occurrence in the genomes of 2635 Enterobacteriaceae isolates, we find that 33% of the 416 ABR genes are shared between chromosomes and plasmids. Phylogenetic reconstruction of ABR genes occurring on both plasmids and chromosomes supports their evolution by lateral gene transfer. Furthermore, accessory ABR genes (encoded in less than 10% of the chromosomes) occur more abundantly in plasmids in comparison with core ABR genes (encoded in greater than or equal to 90% of the chromosomes). The pattern of ABR gene occurrence in plasmids and chromosomes is similar to that in the total Escherichia genome. Our results thus indicate that the previously recognized barriers for gene acquisition by lateral gene transfer apply also to ABR genes. We propose that the functional complexity of the underlying ABR mechanism is an important determinant of ABR gene transferability. This article is part of the theme issue 'The secret lives of microbial mobile genetic elements'.
Collapse
Affiliation(s)
- Yiqing Wang
- Institute of General Microbiology, Kiel University, Kiel, Germany
| | - Aditi Batra
- Zoological institute, Kiel University, Kiel, Germany
| | | | - Tal Dagan
- Institute of General Microbiology, Kiel University, Kiel, Germany
| |
Collapse
|
9
|
Pozdnyakova-Filatova I, Zagoskin A, Zakharova M, Nagornykh MO. Analysis of the genes encoding the MBL-fold metallohydrolase superfamily proteins of the Pseudomonas putida BS3701 petroleum component-degrading strain. CLINICAL MICROBIOLOGY AND ANTIMICROBIAL CHEMOTHERAPY 2022. [DOI: 10.36488/cmac.2022.3.248-253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Objective.
To determine whether the genes whose products are annotated as «MBL-fold metallohydrolase superfamily» are related to the proteins of the metallo-β-lactamase group.
Materials and Methods.
Sequences of the 7 genes annotated as «MBL-fold metallohydrolase superfamily» were analyzed using the following resources: ClustalW, IQ-TREE, iTOL. Selection of the oligonucleotides for real-time PCR was performed using the Primer-BLAST resource. The level of gene expression was assessed using real-time PCR. MIC and MBC measuring was performed using cefepime and meropenem. The double-disc method with EDTA was used to determine the presence of MBL in the strain.
Results.
Analysis of the nucleotide sequences of the studied genes revealed that all of them were not included in the clade containing sequences of metallo-β-lactamase. In the exponential growth phase, mRNAs corresponding to the studied proteins were found. Determination of MIC and MBC revealed a low level of resistance to antibiotics of the β-lactamase group. The phenotypic test was negative for MBL in P. putida strain BS3701.
Conclusions.
The investigated genes and corresponding proteins are not related to metallo-β-lactamases. They are not involved in the resistance of P. putida BS3701 to antibiotics of the metallo-β-lactamase group.
Collapse
Affiliation(s)
- I.Yu. Pozdnyakova-Filatova
- Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of Sciences (Pushchino, Russia)
| | - A.A. Zagoskin
- Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of Sciences (Pushchino, Russia)
| | - M.V. Zakharova
- Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of Sciences (Pushchino, Russia)
| | - Maxim O. Nagornykh
- Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of Sciences (Pushchino, Russia)
| |
Collapse
|
10
|
Li Q, Zhang J, Yang J, Jiang Y, Yang S. Recent progress on n-butanol production by lactic acid bacteria. World J Microbiol Biotechnol 2021; 37:205. [PMID: 34698975 DOI: 10.1007/s11274-021-03173-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 10/13/2021] [Indexed: 11/26/2022]
Abstract
n-Butanol is an essential chemical intermediate produced through microbial fermentation. However, its toxicity to microbial cells has limited its production to a great extent. The anaerobe lactic acid bacteria (LAB) are the most resistant to n-butanol, so it should be the first choice for improving n-butanol production. The present article aims to review the following aspects of n-butanol production by LAB: (1) the tolerance of LAB to n-butanol, including its tolerance level and potential tolerance mechanisms; (2) genome editing tools in the n-butanol-resistant LAB; (3) methods of LAB modification for n-butanol production and the production levels after modification. This review will provide a theoretical basis for further research on n-butanol production by LAB.
Collapse
Affiliation(s)
- Qi Li
- College of Life Sciences, Sichuan Normal University, Chengdu, 610101, China
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | - Jieze Zhang
- Department of Chemistry, University of Southern California, Los Angeles, CA, 90089, USA
| | - Junjie Yang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | - Yu Jiang
- Huzhou Center of Industrial Biotechnology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Huzhou, 313000, China
- Shanghai Taoyusheng Biotechnology Company Ltd, Shanghai, 200032, China
| | - Sheng Yang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China.
- Huzhou Center of Industrial Biotechnology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Huzhou, 313000, China.
| |
Collapse
|
11
|
Passarelli-Araujo H, Jacobs SH, Franco GR, Venancio TM. Phylogenetic analysis and population structure of Pseudomonas alloputida. Genomics 2021; 113:3762-3773. [PMID: 34530104 DOI: 10.1016/j.ygeno.2021.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/16/2021] [Accepted: 09/11/2021] [Indexed: 11/26/2022]
Abstract
The Pseudomonas putida group comprises strains with biotechnological and clinical relevance. P. alloputida was proposed as a new species and highlighted the misclassification of P. putida. Nevertheless, the population structure of P. alloputida remained unexplored. We retrieved 11,025 Pseudomonas genomes and used P. alloputida Kh7T to delineate the species. The P. alloputida population structure comprises at least 7 clonal complexes (CCs). Clinical isolates are mainly found in CC4 and acquired resistance genes are present at low frequency in plasmids. Virulence profiles support the potential of CC7 members to outcompete other plant or human pathogens through a type VI secretion system. Finally, we found that horizontal gene transfer had an important role in shaping the ability of P. alloputida to bioremediate aromatic compounds such as toluene. Our results provide the grounds to understand P. alloputida genetic diversity and its potential for biotechnological applications.
Collapse
Affiliation(s)
- Hemanoel Passarelli-Araujo
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil.
| | - Sarah H Jacobs
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Glória R Franco
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Thiago M Venancio
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil.
| |
Collapse
|
12
|
Towards robust Pseudomonas cell factories to harbour novel biosynthetic pathways. Essays Biochem 2021; 65:319-336. [PMID: 34223620 PMCID: PMC8314020 DOI: 10.1042/ebc20200173] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/01/2021] [Accepted: 05/24/2021] [Indexed: 02/07/2023]
Abstract
Biotechnological production in bacteria enables access to numerous valuable chemical compounds. Nowadays, advanced molecular genetic toolsets, enzyme engineering as well as the combinatorial use of biocatalysts, pathways, and circuits even bring new-to-nature compounds within reach. However, the associated substrates and biosynthetic products often cause severe chemical stress to the bacterial hosts. Species of the Pseudomonas clade thus represent especially valuable chassis as they are endowed with multiple stress response mechanisms, which allow them to cope with a variety of harmful chemicals. A built-in cell envelope stress response enables fast adaptations that sustain membrane integrity under adverse conditions. Further, effective export machineries can prevent intracellular accumulation of diverse harmful compounds. Finally, toxic chemicals such as reactive aldehydes can be eliminated by oxidation and stress-induced damage can be recovered. Exploiting and engineering these features will be essential to support an effective production of natural compounds and new chemicals. In this article, we therefore discuss major resistance strategies of Pseudomonads along with approaches pursued for their targeted exploitation and engineering in a biotechnological context. We further highlight strategies for the identification of yet unknown tolerance-associated genes and their utilisation for engineering next-generation chassis and finally discuss effective measures for pathway fine-tuning to establish stable cell factories for the effective production of natural compounds and novel biochemicals.
Collapse
|
13
|
Alav I, Kobylka J, Kuth MS, Pos KM, Picard M, Blair JMA, Bavro VN. Structure, Assembly, and Function of Tripartite Efflux and Type 1 Secretion Systems in Gram-Negative Bacteria. Chem Rev 2021; 121:5479-5596. [PMID: 33909410 PMCID: PMC8277102 DOI: 10.1021/acs.chemrev.1c00055] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Indexed: 12/11/2022]
Abstract
Tripartite efflux pumps and the related type 1 secretion systems (T1SSs) in Gram-negative organisms are diverse in function, energization, and structural organization. They form continuous conduits spanning both the inner and the outer membrane and are composed of three principal components-the energized inner membrane transporters (belonging to ABC, RND, and MFS families), the outer membrane factor channel-like proteins, and linking the two, the periplasmic adaptor proteins (PAPs), also known as the membrane fusion proteins (MFPs). In this review we summarize the recent advances in understanding of structural biology, function, and regulation of these systems, highlighting the previously undescribed role of PAPs in providing a common architectural scaffold across diverse families of transporters. Despite being built from a limited number of basic structural domains, these complexes present a staggering variety of architectures. While key insights have been derived from the RND transporter systems, a closer inspection of the operation and structural organization of different tripartite systems reveals unexpected analogies between them, including those formed around MFS- and ATP-driven transporters, suggesting that they operate around basic common principles. Based on that we are proposing a new integrated model of PAP-mediated communication within the conformational cycling of tripartite systems, which could be expanded to other types of assemblies.
Collapse
Affiliation(s)
- Ilyas Alav
- Institute
of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Jessica Kobylka
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Miriam S. Kuth
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Klaas M. Pos
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Martin Picard
- Laboratoire
de Biologie Physico-Chimique des Protéines Membranaires, CNRS
UMR 7099, Université de Paris, 75005 Paris, France
- Fondation
Edmond de Rothschild pour le développement de la recherche
Scientifique, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Jessica M. A. Blair
- Institute
of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Vassiliy N. Bavro
- School
of Life Sciences, University of Essex, Colchester, CO4 3SQ United Kingdom
| |
Collapse
|
14
|
Ahmed MS, Lauersen KJ, Ikram S, Li C. Efflux Transporters' Engineering and Their Application in Microbial Production of Heterologous Metabolites. ACS Synth Biol 2021; 10:646-669. [PMID: 33751883 DOI: 10.1021/acssynbio.0c00507] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Metabolic engineering of microbial hosts for the production of heterologous metabolites and biochemicals is an enabling technology to generate meaningful quantities of desired products that may be otherwise difficult to produce by traditional means. Heterologous metabolite production can be restricted by the accumulation of toxic products within the cell. Efflux transport proteins (transporters) provide a potential solution to facilitate the export of these products, mitigate toxic effects, and enhance production. Recent investigations using knockout lines, heterologous expression, and expression profiling of transporters have revealed candidates that can enhance the export of heterologous metabolites from microbial cell systems. Transporter engineering efforts have revealed that some exhibit flexible substrate specificity and may have broader application potentials. In this Review, the major superfamilies of efflux transporters, their mechanistic modes of action, selection of appropriate efflux transporters for desired compounds, and potential transporter engineering strategies are described for potential applications in enhancing engineered microbial metabolite production. Future studies in substrate recognition, heterologous expression, and combinatorial engineering of efflux transporters will assist efforts to enhance heterologous metabolite production in microbial hosts.
Collapse
Affiliation(s)
- Muhammad Saad Ahmed
- Institute for Synthetic Biosystem/Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology (BIT), Beijing 100081, P. R. China
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Abid Majeed Road, The Mall, Rawalpindi 46000, Pakistan
| | - Kyle J. Lauersen
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| | - Sana Ikram
- Beijing Higher Institution Engineering Research Center for Food Additives and Ingredients, Beijing Technology & Business University (BTBU), Beijing 100048, P. R. China
| | - Chun Li
- Institute for Synthetic Biosystem/Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology (BIT), Beijing 100081, P. R. China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Key Laboratory of Systems Bioengineering, Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
- Key Laboratory for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
15
|
Kusumawardhani H, Furtwängler B, Blommestijn M, Kaltenytė A, van der Poel J, Kolk J, Hosseini R, de Winde JH. Adaptive Laboratory Evolution Restores Solvent Tolerance in Plasmid-Cured Pseudomonas putida S12: a Molecular Analysis. Appl Environ Microbiol 2021; 87:e00041-21. [PMID: 33674430 PMCID: PMC8091024 DOI: 10.1128/aem.00041-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/24/2021] [Indexed: 11/23/2022] Open
Abstract
Pseudomonas putida S12 is inherently solvent tolerant and constitutes a promising platform for biobased production of aromatic compounds and biopolymers. The megaplasmid pTTS12 of P. putida S12 carries several gene clusters involved in solvent tolerance, and the removal of this megaplasmid caused a significant reduction in solvent tolerance. In this study, we succeeded in restoring solvent tolerance in plasmid-cured P. putida S12 using adaptive laboratory evolution (ALE), underscoring the innate solvent tolerance of this strain. Whole-genome sequencing identified several single nucleotide polymorphisms (SNPs) and a mobile element insertion enabling ALE-derived strains to survive and sustain growth in the presence of a high toluene concentration (10% [vol/vol]). We identified mutations in an RND efflux pump regulator, arpR, that resulted in constitutive upregulation of the multifunctional efflux pump ArpABC. SNPs were also found in the intergenic region and subunits of ATP synthase, RNA polymerase subunit β', a global two-component regulatory system (GacA/GacS), and a putative AraC family transcriptional regulator, Afr. Transcriptomic analysis further revealed a constitutive downregulation of energy-consuming activities in ALE-derived strains, such as flagellar assembly, FoF1 ATP synthase, and membrane transport proteins. In summary, constitutive expression of a solvent extrusion pump in combination with high metabolic flexibility enabled the restoration of the solvent tolerance trait in P. putida S12 lacking its megaplasmid.IMPORTANCE Sustainable production of high-value chemicals can be achieved by bacterial biocatalysis. However, bioproduction of biopolymers and aromatic compounds may exert stress on the microbial production host and limit the resulting yield. Having a solvent tolerance trait is highly advantageous for microbial hosts used in the biobased production of aromatics. The presence of a megaplasmid has been linked to the solvent tolerance trait of Pseudomonas putida; however, the extent of innate, intrinsic solvent tolerance in this bacterium remained unclear. Using adaptive laboratory evolution, we successfully adapted the plasmid-cured P. putida S12 strain to regain its solvent tolerance. Through these adapted strains, we began to clarify the causes, origins, limitations, and trade-offs of the intrinsic solvent tolerance in P. putida This work sheds light on the possible genetic engineering targets to enhance solvent tolerance in Pseudomonas putida as well as other bacteria.
Collapse
Affiliation(s)
| | | | | | - Adelė Kaltenytė
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Jaap van der Poel
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Jan Kolk
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Rohola Hosseini
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | | |
Collapse
|
16
|
Metabolomics Reveal Potential Natural Substrates of AcrB in Escherichia coli and Salmonella enterica Serovar Typhimurium. mBio 2021; 12:mBio.00109-21. [PMID: 33785633 PMCID: PMC8092203 DOI: 10.1128/mbio.00109-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Multidrug-resistant Gram-negative bacteria pose a global threat to human health. The AcrB efflux pump confers inherent and evolved drug resistance to Enterobacterales, including Escherichia coli and Salmonella enterica serovar Typhimurium. In the fight against antibiotic resistance, drugs that target resistance mechanisms in bacteria can be used to restore the therapeutic effectiveness of antibiotics. The multidrug resistance efflux complex AcrAB-TolC is the most clinically relevant efflux pump in Enterobacterales and is a target for drug discovery. Inhibition of the pump protein AcrB allows the intracellular accumulation of a wide variety of antibiotics, effectively restoring their therapeutic potency. To facilitate the development of AcrB efflux inhibitors, it is desirable to discover the native substrates of the pump, as these could be chemically modified to become inhibitors. We analyzed the native substrate profile of AcrB in Escherichia coli MG1655 and Salmonella enterica serovar Typhimurium SL1344 using an untargeted metabolomics approach. We analyzed the endo- and exometabolome of the wild-type strain and their respective AcrB loss-of-function mutants (AcrB D408A) to determine the metabolites that are native substrates of AcrB. Although there is 95% homology between the AcrB proteins of S. Typhimurium and E. coli, we observed mostly different metabolic responses in the exometabolomes of the S. Typhimurium and E. coli AcrB D408A mutants relative to those in the wild type, potentially indicating a differential metabolic adaptation to the same mutation in these two species. Additionally, we uncovered metabolite classes that could be involved in virulence of S. Typhimurium and a potential natural substrate of AcrB common to both species.
Collapse
|
17
|
Henderson PJF, Maher C, Elbourne LDH, Eijkelkamp BA, Paulsen IT, Hassan KA. Physiological Functions of Bacterial "Multidrug" Efflux Pumps. Chem Rev 2021; 121:5417-5478. [PMID: 33761243 DOI: 10.1021/acs.chemrev.0c01226] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bacterial multidrug efflux pumps have come to prominence in human and veterinary pathogenesis because they help bacteria protect themselves against the antimicrobials used to overcome their infections. However, it is increasingly realized that many, probably most, such pumps have physiological roles that are distinct from protection of bacteria against antimicrobials administered by humans. Here we undertake a broad survey of the proteins involved, allied to detailed examples of their evolution, energetics, structures, chemical recognition, and molecular mechanisms, together with the experimental strategies that enable rapid and economical progress in understanding their true physiological roles. Once these roles are established, the knowledge can be harnessed to design more effective drugs, improve existing microbial production of drugs for clinical practice and of feedstocks for commercial exploitation, and even develop more sustainable biological processes that avoid, for example, utilization of petroleum.
Collapse
Affiliation(s)
- Peter J F Henderson
- School of Biomedical Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Claire Maher
- School of Environmental and Life Sciences, University of Newcastle, Callaghan 2308, New South Wales, Australia
| | - Liam D H Elbourne
- Department of Biomolecular Sciences, Macquarie University, Sydney 2109, New South Wales, Australia.,ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney 2019, New South Wales, Australia
| | - Bart A Eijkelkamp
- College of Science and Engineering, Flinders University, Bedford Park 5042, South Australia, Australia
| | - Ian T Paulsen
- Department of Biomolecular Sciences, Macquarie University, Sydney 2109, New South Wales, Australia.,ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney 2019, New South Wales, Australia
| | - Karl A Hassan
- School of Environmental and Life Sciences, University of Newcastle, Callaghan 2308, New South Wales, Australia.,ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney 2019, New South Wales, Australia
| |
Collapse
|
18
|
Branska B, Vasylkivska M, Raschmanova H, Jureckova K, Sedlar K, Provaznik I, Patakova P. Changes in efflux pump activity of Clostridium beijerinckii throughout ABE fermentation. Appl Microbiol Biotechnol 2021; 105:877-889. [PMID: 33409609 DOI: 10.1007/s00253-020-11072-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 12/05/2020] [Accepted: 12/17/2020] [Indexed: 01/08/2023]
Abstract
Pumping toxic substances through a cytoplasmic membrane by protein transporters known as efflux pumps represents one bacterial mechanism involved in the stress response to the presence of toxic compounds. The active efflux might also take part in exporting low-molecular-weight alcohols produced by intrinsic cell metabolism; in the case of solventogenic clostridia, predominantly acetone, butanol and ethanol (ABE). However, little is known about this active efflux, even though some evidence exists that membrane pumps might be involved in solvent tolerance. In this study, we investigated changes in overall active efflux during ABE fermentation, employing a flow cytometric protocol adjusted for Clostridia and using ethidium bromide (EB) as a fluorescence marker for quantification of direct efflux. A fluctuation in efflux during the course of standard ABE fermentation was observed, with a maximum reached during late acidogenesis, a high efflux rate during early and mid-solventogenesis and an apparent decrease in EB efflux rate in late solventogenesis. The fluctuation in efflux activity was in accordance with transcriptomic data obtained for various membrane exporters in a former study. Surprisingly, under altered cultivation conditions, when solvent production was attenuated, and extended acidogenesis was promoted, stable low efflux activity was reached after an initial peak that appeared in the stage comparable to standard ABE fermentation. This study confirmed that efflux pump activity is not constant during ABE fermentation and suggests that undisturbed solvent production might be a trigger for activation of pumps involved in solvent efflux. KEY POINTS: • Flow cytometric assay for efflux quantification in Clostridia was established. • Efflux rate peaked in late acidogenesis and in early solventogenesis. • Impaired solventogenesis led to an overall decrease in efflux.
Collapse
Affiliation(s)
- Barbora Branska
- Department of Biotechnology, University of Chemistry and Technology Prague, Technicka 5, 166 28, Prague, Czech Republic.
| | - Maryna Vasylkivska
- Department of Biotechnology, University of Chemistry and Technology Prague, Technicka 5, 166 28, Prague, Czech Republic
| | - Hana Raschmanova
- Department of Biotechnology, University of Chemistry and Technology Prague, Technicka 5, 166 28, Prague, Czech Republic
| | - Katerina Jureckova
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 12, 616 00, Brno, Czech Republic
| | - Karel Sedlar
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 12, 616 00, Brno, Czech Republic
| | - Ivo Provaznik
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 12, 616 00, Brno, Czech Republic
| | - Petra Patakova
- Department of Biotechnology, University of Chemistry and Technology Prague, Technicka 5, 166 28, Prague, Czech Republic
| |
Collapse
|
19
|
How to outwit nature: Omics insight into butanol tolerance. Biotechnol Adv 2020; 46:107658. [PMID: 33220435 DOI: 10.1016/j.biotechadv.2020.107658] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/10/2020] [Accepted: 11/13/2020] [Indexed: 12/16/2022]
Abstract
The energy crisis, depletion of oil reserves, and global climate changes are pressing problems of developed societies. One possibility to counteract that is microbial production of butanol, a promising new fuel and alternative to many petrochemical reagents. However, the high butanol toxicity to all known microbial species is the main obstacle to its industrial implementation. The present state of the art review aims to expound the recent advances in modern omics approaches to resolving this insurmountable to date problem of low butanol tolerance. Genomics, transcriptomics, and proteomics show that butanol tolerance is a complex phenomenon affecting multiple genes and their expression. Efflux pumps, stress and multidrug response, membrane transport, and redox-related genes are indicated as being most important during butanol challenge, in addition to fine-tuning of global regulators of transcription (Spo0A, GntR), which may further improve tolerance. Lipidomics shows that the alterations in membrane composition (saturated lipids and plasmalogen increase) are very much species-specific and butanol-related. Glycomics discloses the pleiotropic effect of CcpA, the role of alternative sugar transport, and the production of exopolysaccharides as alternative routes to overcoming butanol stress. Unfortunately, the strain that simultaneously syntheses and tolerates butanol in concentrations that allow its commercialization has not yet been discovered or produced. Omics insight will allow the purposeful increase of butanol tolerance in natural and engineered producers and the effective heterologous expression of synthetic butanol pathways in strains hereditary butanol-resistant up to 3.2 - 4.9% (w/v). Future breakthrough can be achieved by a detailed study of the membrane proteome, of which 21% are proteins with unknown functions.
Collapse
|
20
|
Schwanemann T, Otto M, Wierckx N, Wynands B. Pseudomonasas Versatile Aromatics Cell Factory. Biotechnol J 2020; 15:e1900569. [DOI: 10.1002/biot.201900569] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/08/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Tobias Schwanemann
- Institute of Bio‐ and Geosciences, IBG‐1: Biotechnology Forschungszentrum Jülich, GmbH 52425 Jülich Germany
| | - Maike Otto
- Institute of Bio‐ and Geosciences, IBG‐1: Biotechnology Forschungszentrum Jülich, GmbH 52425 Jülich Germany
| | - Nick Wierckx
- Institute of Bio‐ and Geosciences, IBG‐1: Biotechnology Forschungszentrum Jülich, GmbH 52425 Jülich Germany
| | - Benedikt Wynands
- Institute of Bio‐ and Geosciences, IBG‐1: Biotechnology Forschungszentrum Jülich, GmbH 52425 Jülich Germany
| |
Collapse
|
21
|
Yao X, Tao F, Tang H, Hu H, Wang W, Xu P. Unique regulator SrpR mediates crosstalk between efflux pumps TtgABC and SrpABC in Pseudomonas putida B6-2 (DSM 28064). Mol Microbiol 2020; 115:131-141. [PMID: 32945019 DOI: 10.1111/mmi.14605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 11/28/2022]
Abstract
The coexistence of multiple homologous resistance-nodulation-division (RND) efflux pumps in bacteria is frequently described with overlapping substrate profiles. However, it is unclear how bacteria balance their transcription in response to the changing environment. Here, we characterized a repressor, SrpR, in Pseudomonas putida B6-2 (DSM 28064), whose coding gene is adjacent to srpS that encodes the local repressor of the RND-type efflux pump SrpABC gene cluster. SrpR was demonstrated as a specific repressor of another RND efflux pump gene cluster ttgABC that is locally repressed by TtgR. SrpR was found to be capable of binding to the ttgABC operator with a higher affinity (KD , 138.0 nM) compared to TtgR (KD , 15.4 μM). EMSA and β-galactosidase assays were performed to survey possible effectors of SrpR with 35 available chemicals being tested. Only 2,3,4-trichlorophenol was identified as an effector of SrpR. A regulation model was then proposed, representing a novel strategy for balancing the efflux systems with partially overlapping substrate profiles. This study highlights sophisticated interactions among the RND efflux pumps in a Pseudomonas strain, which may endow bacteria with certain advantages in a fluctuant environment.
Collapse
Affiliation(s)
- Xuemei Yao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China.,School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, People's Republic of China
| | - Fei Tao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Hongzhi Tang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Haiyang Hu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Weiwei Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
22
|
Puja H, Comment G, Chassagne S, Plésiat P, Jeannot K. Coordinate overexpression of two
RND
efflux systems,
ParXY
and
TtgABC
, is responsible for multidrug resistance in
Pseudomonas putida. Environ Microbiol 2020; 22:5222-5231. [DOI: 10.1111/1462-2920.15200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 12/28/2022]
Affiliation(s)
- Hélène Puja
- UMR 6249 Chrono‐environnement UFR Santé, Université de Bourgogne‐Franche Comté Besançon France
| | - Gwendoline Comment
- UMR 6249 Chrono‐environnement UFR Santé, Université de Bourgogne‐Franche Comté Besançon France
| | - Sophie Chassagne
- UMR 6249 Chrono‐environnement UFR Santé, Université de Bourgogne‐Franche Comté Besançon France
| | - Patrick Plésiat
- UMR 6249 Chrono‐environnement UFR Santé, Université de Bourgogne‐Franche Comté Besançon France
- Centre National de Référence de la Résistance aux Antibiotiques, Centre Hospitalier Universitaire de Besançon Besançon France
| | - Katy Jeannot
- UMR 6249 Chrono‐environnement UFR Santé, Université de Bourgogne‐Franche Comté Besançon France
- Centre National de Référence de la Résistance aux Antibiotiques, Centre Hospitalier Universitaire de Besançon Besançon France
| |
Collapse
|
23
|
Role of efflux in enhancing butanol tolerance of bacteria. J Biotechnol 2020; 320:17-27. [PMID: 32553531 DOI: 10.1016/j.jbiotec.2020.06.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 06/02/2020] [Accepted: 06/12/2020] [Indexed: 12/11/2022]
Abstract
N-butanol, a valued solvent and potential fuel extender, could possibly be produced by fermentation using either native producers, i.e. solventogenic Clostridia, or engineered platform organisms such as Escherichia coli or Pseudomonas species, if the main process obstacle, a low final butanol concentration, could be overcome. A low final concentration of butanol is the result of its high toxicity to production cells. Nevertheless, bacteria have developed several mechanisms to cope with this toxicity and one of them is active butanol efflux. This review presents information about a few well characterized butanol efflux pumps from Gram-negative bacteria (P. putida and E. coli) and summarizes knowledge about putative butanol efflux systems in Gram-positive bacteria.
Collapse
|
24
|
Schempp FM, Hofmann KE, Mi J, Kirchner F, Meffert A, Schewe H, Schrader J, Buchhaupt M. Investigation of monoterpenoid resistance mechanisms in Pseudomonas putida and their consequences for biotransformations. Appl Microbiol Biotechnol 2020; 104:5519-5533. [PMID: 32296906 PMCID: PMC7275096 DOI: 10.1007/s00253-020-10566-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/05/2020] [Accepted: 03/20/2020] [Indexed: 12/14/2022]
Abstract
Monoterpenoids are widely used in industrial applications, e.g. as active ingredients in pharmaceuticals, in flavor and fragrance compositions, and in agriculture. Severe toxic effects are known for some monoterpenoids making them challenging compounds for biotechnological production processes. Some strains of the bacterium Pseudomonas putida show an inherent extraordinarily high tolerance towards solvents including monoterpenoids. An understanding of the underlying factors can help to create suitable strains for monoterpenoids de novo production or conversion. In addition, knowledge about tolerance mechanisms could allow a deeper insight into how bacteria can oppose monoterpenoid containing drugs, like tea tree oil. Within this work, the resistance mechanisms of P. putida GS1 were investigated using selected monoterpenoid-hypertolerant mutants. Most of the mutations were found in efflux pump promoter regions or associated transcription factors. Surprisingly, while for the tested monoterpenoid alcohols, ketone, and ether high efflux pump expression increased monoterpenoid tolerance, it reduced the tolerance against geranic acid. However, an increase of geranic acid tolerance could be gained by a mutation in an efflux pump component. It was also found that increased monoterpenoid tolerance can counteract efficient biotransformation ability, indicating the need for a fine-tuned and knowledge-based tolerance improvement for production strain development.Key points• Altered monoterpenoid tolerance mainly related to altered activity of efflux pumps.• Increased tolerance to geranic acid surprisingly caused by decreased export activity. • Reduction of export activity can be beneficial for biotechnological conversions.
Collapse
Affiliation(s)
- Florence Miramella Schempp
- DECHEMA-Forschungsinstitut, Industrial Biotechnology, Theodor-Heuss-Allee 25, 60486, Frankfurt am Main, Germany.,Faculty Biological Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | - Katharina Elisabeth Hofmann
- DECHEMA-Forschungsinstitut, Industrial Biotechnology, Theodor-Heuss-Allee 25, 60486, Frankfurt am Main, Germany
| | - Jia Mi
- DECHEMA-Forschungsinstitut, Industrial Biotechnology, Theodor-Heuss-Allee 25, 60486, Frankfurt am Main, Germany
| | - Ferdinand Kirchner
- DECHEMA-Forschungsinstitut, Industrial Biotechnology, Theodor-Heuss-Allee 25, 60486, Frankfurt am Main, Germany
| | - Annika Meffert
- DECHEMA-Forschungsinstitut, Industrial Biotechnology, Theodor-Heuss-Allee 25, 60486, Frankfurt am Main, Germany
| | - Hendrik Schewe
- DECHEMA-Forschungsinstitut, Industrial Biotechnology, Theodor-Heuss-Allee 25, 60486, Frankfurt am Main, Germany
| | - Jens Schrader
- DECHEMA-Forschungsinstitut, Industrial Biotechnology, Theodor-Heuss-Allee 25, 60486, Frankfurt am Main, Germany
| | - Markus Buchhaupt
- DECHEMA-Forschungsinstitut, Industrial Biotechnology, Theodor-Heuss-Allee 25, 60486, Frankfurt am Main, Germany.
| |
Collapse
|
25
|
Stress-tolerant non-conventional microbes enable next-generation chemical biosynthesis. Nat Chem Biol 2020; 16:113-121. [DOI: 10.1038/s41589-019-0452-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 12/11/2019] [Indexed: 12/13/2022]
|
26
|
Selecting Bacteria Candidates for the Bioaugmentation of Activated Sludge to Improve the Aerobic Treatment of Landfill Leachate. WATER 2020. [DOI: 10.3390/w12010140] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In this study, a multifaceted approach for selecting the suitable candidates for bioaugmentation of activated sludge (AS) that supports leachate treatment was used. To determine the exploitation of 10 bacterial strains isolated from the various matrices for inoculating the AS contaminated with the Kalina pond leachate (KPL), their degradative potential was analyzed along with their aptitude to synthesize compounds improving remediation of pollutants in wastewater and ability to incorporate into the AS flocs. Based on their capability to degrade aromatic compounds (primarily catechol, phenol, and cresols) at a concentration of 1 mg/mL and survive in 12.5% of the KPL, Pseudomonas putida OR45a and P. putida KB3 can be considered to be the best candidates for bioaugmentation of the AS among all of the bacteria tested. Genomic analyses of these two strains revealed the presence of the genes encoding enzymes related to the metabolism of aromatic compounds. Additionally, both microorganisms exhibited a high hydrophobic propensity (above 50%) and an ability to produce biosurfactants as well as high resistance to ammonium (above 600 µg/mL) and heavy metals (especially chromium). These properties enable the exploitation of both bacterial strains in the bioremediation of the AS contaminated with the KPL.
Collapse
|
27
|
Sun Z, Wang X, Zhang JZH. Theoretical understanding of the thermodynamics and interactions in transcriptional regulator TtgR-ligand binding. Phys Chem Chem Phys 2019; 22:1511-1524. [PMID: 31872826 DOI: 10.1039/c9cp05980f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The transcriptional regulator TtgR belongs to the TetR family of transcriptional repressors. It depresses the transcription of the TtgABC operon and itself and thus regulates the extrusion of noxious chemicals with efflux pumps in bacterial cells. As the ligand-binding domain of TtgR is rather flexible, it can bind with a number of structurally diverse ligands, such as antibiotics, flavonoids and aromatic solvents. In the current work, we perform equilibrium and nonequilibrium alchemical free energy simulation to predict the binding affinities of a series of ligands targeting the TtgR protein and an agreement between the theoretical prediction and the experimental result is observed. End-point methods MM/PBSA and MM/GBSA are also employed for comparison. We further study the interaction maps and contacts between the protein and the ligand and identify important interactions in the protein-ligand binding cases. The dynamics fluctuation and secondary structures are also investigated. The current work sheds light on atomic and thermodynamic understanding of the TtgR-ligand interactions.
Collapse
Affiliation(s)
- Zhaoxi Sun
- Computational Biomedicine (IAS-5/INM-9), Forschungszentrum Jülich, Jülich 52425, Germany. and State Key Laboratory of Precision Spectroscopy, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Xiaohui Wang
- State Key Laboratory of Precision Spectroscopy, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China and Institute of Computational Science, Università della Svizzera italiana (USI), Via Giuseppe Buffi 13, CH-6900, Lugano, Ticino, Switzerland
| | - John Z H Zhang
- State Key Laboratory of Precision Spectroscopy, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China and NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China and Department of Chemistry, New York University, NY, NY 10003, USA.
| |
Collapse
|
28
|
Bacteria for Butanol Production: Bottlenecks, Achievements and Prospects. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2019. [DOI: 10.22207/jpam.13.3.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
29
|
Wynands B, Otto M, Runge N, Preckel S, Polen T, Blank LM, Wierckx N. Streamlined Pseudomonas taiwanensis VLB120 Chassis Strains with Improved Bioprocess Features. ACS Synth Biol 2019; 8:2036-2050. [PMID: 31465206 DOI: 10.1021/acssynbio.9b00108] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Microbes harbor many traits that are dispensable or even unfavorable under industrial and laboratory settings. The elimination of such traits could improve the host's efficiency, genetic stability, and robustness, thereby increasing the predictability and boosting its performance as a microbial cell factory. We engineered solvent-tolerant Pseudomonas taiwanensis VLB120 to yield streamlined chassis strains with higher growth rates and biomass yields, enhanced solvent tolerance, and improved process performance. In total, the genome was reduced by up to 10%. This was achieved by the elimination of genes that enable the cell to swim and form biofilms and by the deletion of the megaplasmid pSTY and large proviral segments. The resulting strain GRC1 had a 15% higher growth rate and biomass yield than the wildtype. However, this strain lacks the pSTY-encoded efflux pump TtgGHI, rendering it solvent-sensitive. Through reintegration of ttgGHI by chromosomal insertion without (GRC2) and with (GRC3) the corresponding regulator genes, the solvent-tolerant phenotype was enhanced. The generated P. taiwanensis GRC strains enlarge the repertoire of streamlined chassis with enhanced key performance indicators, making them attractive hosts for biotechnological applications. The different solvent tolerance levels of GRC1, GRC2, and GRC3 enable the selection of a fitting host platform in relation to the desired process requirements in a chassis à la carte principle. This was demonstrated in a metabolic engineering approach for the production of phenol from glycerol. The streamlined producer GRC1Δ5-TPL38 outperformed the equivalent nonstreamlined producer VLB120Δ5-TPL38 concerning phenol titer, rate, and yield, thereby highlighting the added value of the streamlined chassis.
Collapse
Affiliation(s)
- Benedikt Wynands
- Institute of Applied Microbiology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Maike Otto
- Institute of Applied Microbiology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Nadine Runge
- Institute of Applied Microbiology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Sarah Preckel
- Institute of Applied Microbiology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Tino Polen
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Lars M. Blank
- Institute of Applied Microbiology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Nick Wierckx
- Institute of Applied Microbiology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| |
Collapse
|
30
|
The effect of organic solvents on selected microorganisms and model liposome membrane. Mol Biol Rep 2019; 46:3225-3232. [PMID: 30937654 DOI: 10.1007/s11033-019-04782-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 03/21/2019] [Indexed: 12/19/2022]
Abstract
The effect of methanol, ethanol, acetone, N,N-dimethylformamide (DMF), dimethyl sulfoxide and Nujol on the growth of Escherichia coli DH5α, Bacillus subtilis and Saccharomyces cerevisiae D273 was investigated. All of the tested cultures appeared susceptible to the organic media they were treated with, which evinced in apparent hindering of cell development. The observed diverse solvent tolerance, except from their different biochemical activity, may also be related to the changes in cell membrane fluidity induced by the solvent species. Parallel electron paramagnetic resonance investigations using egg yolk lecithin model liposomes revealed that the fluidity of the phospholipid system in cell membranes may either be considerably decreased (Nujol, DMF, ethanol) or increased (acetone), thus rendering difficult the intracellular nutrient supply. Hence, even the chemically neutral Nujol produced a distinct cell-growth inhibitory effect. These results are fairly consistent with the outcome of the survival tests, particularly for the bacteria strains.
Collapse
|
31
|
Thomas T, Elain A, Bazire A, Bruzaud S. Complete genome sequence of the halophilic PHA-producing bacterium Halomonas sp. SF2003: insights into its biotechnological potential. World J Microbiol Biotechnol 2019; 35:50. [PMID: 30852675 DOI: 10.1007/s11274-019-2627-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 03/04/2019] [Indexed: 10/27/2022]
Abstract
A halophilic Gram-negative eubacterium was isolated from the Iroise Sea and identified as an efficient producer of polyhydroxyalkanoates (PHA). The strain, designated SF2003, was found to belong to the Halomonas genus on the basis of 16S rRNA gene sequence similarity. Previous biochemical tests indicated that the Halomonas sp. strain SF2003 is capable of supporting various culture conditions which sometimes can be constraining for marine strains. This versatility could be of great interest for biotechnological applications. Therefore, a complete bacterial genome sequencing and de novo assembly were performed using a PacBio RSII sequencer and Hierarchical Genome Assembly Process software in order to predict Halomonas sp. SF2003 metabolisms, and to identify genes involved in PHA production and stress tolerance. This study demonstrates the complete genome sequence of Halomonas sp. SF2003 which contains a circular 4,36 Mbp chromosome, and replaces the strain in a phylogenetic tree. Genes related to PHA metabolism, carbohydrate metabolism, fatty acid metabolism and stress tolerance were identified and a comparison was made with metabolisms of relative species. Genes annotation highlighted the presence of typical genes involved in PHA biosynthesis such as phaA, phaB and phaC and enabled a preliminary analysis of their organization and characteristics. Several genes of carbohydrates and fatty acid metabolisms were also identified which provided helpful insights into both a better knowledge of the intricacies of PHA biosynthetic pathways and of production purposes. Results show the strong versatility of Halomonas sp. SF2003 to adapt to various temperatures and salinity which can subsequently be exploited for industrial applications such as PHA production.
Collapse
Affiliation(s)
- Tatiana Thomas
- Institut de Recherche Dupuy de Lôme (IRDL), UMR CNRS 6027, Université de Bretagne Sud, Rue Saint Maudé, Lorient, France
| | - Anne Elain
- Institut de Recherche Dupuy de Lôme (IRDL), UMR CNRS 6027, Université de Bretagne Sud, Rue Saint Maudé, Lorient, France
| | - Alexis Bazire
- Laboratoire de Biotechnologie et Chimie Marines, EA3884, IUEM, Université de Bretagne-Sud, Lorient, France
| | - Stéphane Bruzaud
- Institut de Recherche Dupuy de Lôme (IRDL), UMR CNRS 6027, Université de Bretagne Sud, Rue Saint Maudé, Lorient, France.
| |
Collapse
|
32
|
Wang H, Zhu P, Zhang Y, Sun K, Lu Z. ndpT encodes a new protein involved in nicotine catabolism by Sphingomonas melonis TY. Appl Microbiol Biotechnol 2018; 102:10171-10181. [PMID: 30229322 DOI: 10.1007/s00253-018-9371-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 08/28/2018] [Accepted: 09/12/2018] [Indexed: 11/26/2022]
Abstract
Sphingomonas melonis TY utilizes nicotine as a sole source of carbon, nitrogen, and energy to grow. One of the genes in its ndp catabolic cluster, ndpT, encodes a hypothetical transporter. Since no transporter for nicotine has been identified in microorganisms, we investigated whether NdpT is responsible for nicotine transport. ndpT was induced by nicotine, and gene knockout and complementation studies clearly indicated that ndpT is essential for the catabolism of nicotine in strain TY. NdpT-GFP was located at the periphery of the cells, suggesting that NdpT is a membrane protein. Uptake assays with L-[14C] nicotine illustrated that nicotine uptake in strain TY is mediated by a constitutively synthesized permease with a Km of 0.362 ± 0.07 μM and a Vmax of 0.762 ± 0.068 μmol min-1 (mg cell dry weight)-1 and that ndpT may play a role in nicotine exclusion. Hence, we consider NdpT a nicotine catabolism-related protein.
Collapse
Affiliation(s)
- Haixia Wang
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China
| | - Panpan Zhu
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China
| | - Ying Zhang
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China
| | - Kaikai Sun
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China
| | - Zhenmei Lu
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
33
|
Orlewska K, Piotrowska-Seget Z, Cycoń M. Use of the PCR-DGGE Method for the Analysis of the Bacterial Community Structure in Soil Treated With the Cephalosporin Antibiotic Cefuroxime and/or Inoculated With a Multidrug-Resistant Pseudomonas putida Strain MC1. Front Microbiol 2018; 9:1387. [PMID: 29997600 PMCID: PMC6028706 DOI: 10.3389/fmicb.2018.01387] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 06/06/2018] [Indexed: 11/13/2022] Open
Abstract
The widespread use of cefuroxime (XM) has resulted in the increase in its concentration in hospital and domestic wastewaters. Due to the limited removal of antibiotics and antibiotic-resistant genes in conventional systems, the drugs enter the surface water and soils. Moreover, the introduction of XM and/or XM-resistant bacteria into soil may cause a significant modification of the biodiversity of soil bacterial communities. Therefore, the goal of this research was to assess the genetic diversity of a bacterial community in the cefuroxime (XM1 – 1 mg/kg and XM10 – 10 mg/kg) and/or antibiotic-resistant Pseudomonas putida strain MC1 (Ps – 1.6 × 107 cells/g)-treated soils as determined by the DGGE (denaturing gradient gel electrophoresis) method. The obtained data were also evaluated using a multivariate analysis and the resistance (RS)/resilience (RL) concept. Strain MC1 was isolated from raw sewage in the presence of XM and was resistant not only to this antibiotic but also to vancomycin, clindamycin and erythromycin. The DGGE patterns revealed that the XM10 and XM10+Ps treatments modified the composition of the bacterial community by the alteration of the DGGE profiles as well as a decline in the DGGE indices, in particular on days 30, 60, and 90. In turn, the XM1 and XM1+Ps or Ps treatments did not affect the values of richness and diversity of the soil bacteria members. A principal component analysis (PCA) also indicated that XM markedly changed the diversity of bacterial assemblages in the second part of the experiment. Moreover, there were differences in the RS/RL of the DGGE indices to the disturbances caused by XM and/or Ps. Considering the mean values of the RS index, the resistance was categorized in the following order: diversity (0.997) > evenness (0.993) > richness (0.970). The soil RL index was found to be negative, thus reflecting the progressing detrimental impact of XM on the genetic biodiversity of bacteria within the experiment. These results indicate that the introduction of XM at higher dosages into the soil environment may exert a potential risk for functioning of microorganism.
Collapse
Affiliation(s)
- Kamila Orlewska
- Department of Microbiology and Virology, School of Pharmacy with the Division of Laboratory Medicine, Medical University of Silesia, Sosnowiec, Poland
| | | | - Mariusz Cycoń
- Department of Microbiology and Virology, School of Pharmacy with the Division of Laboratory Medicine, Medical University of Silesia, Sosnowiec, Poland
| |
Collapse
|
34
|
Zhang Y, Dong R, Zhang M, Gao H. Native efflux pumps of Escherichia coli responsible for short and medium chain alcohol. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.02.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
35
|
Basler G, Thompson M, Tullman-Ercek D, Keasling J. A Pseudomonas putida efflux pump acts on short-chain alcohols. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:136. [PMID: 29760777 PMCID: PMC5946390 DOI: 10.1186/s13068-018-1133-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 04/28/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND The microbial production of biofuels is complicated by a tradeoff between yield and toxicity of many fuels. Efflux pumps enable bacteria to tolerate toxic substances by their removal from the cells while bypassing the periplasm. Their use for the microbial production of biofuels can help to improve cell survival, product recovery, and productivity. However, no native efflux pump is known to act on the class of short-chain alcohols, important next-generation biofuels, and it was considered unlikely that such an efflux pump exists. RESULTS We report that controlled expression of the RND-type efflux pump TtgABC from Pseudomonas putida DOT-T1E strongly improved cell survival in highly toxic levels of the next-generation biofuels n-butanol, isobutanol, isoprenol, and isopentanol. GC-FID measurements indicated active efflux of n-butanol when the pump is expressed. Conversely, pump expression did not lead to faster growth in media supplemented with low concentrations of n-butanol and isopentanol. CONCLUSIONS TtgABC is the first native efflux pump shown to act on multiple short-chain alcohols. Its controlled expression can be used to improve cell survival and increase production of biofuels as an orthogonal approach to metabolic engineering. Together with the increased interest in P. putida for metabolic engineering due to its flexible metabolism, high native tolerance to toxic substances, and various applications of engineering its metabolism, our findings endorse the strain as an excellent biocatalyst for the high-yield production of next-generation biofuels.
Collapse
Affiliation(s)
- Georg Basler
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA USA
- Max Planck Institute for Molecular Plant Physiology, Potsdam, Germany
| | - Mitchell Thompson
- Department of Plant & Microbial Biology, University of California, Berkeley, CA USA
- Joint BioEnergy Institute, Emeryville, CA USA
| | - Danielle Tullman-Ercek
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL USA
- Center for Synthetic Biology, Northwestern University, Technological Institute B486, Evanston, USA
| | - Jay Keasling
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA USA
- Joint BioEnergy Institute, Emeryville, CA USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA USA
- Novo Nordisk Foundation Center for Sustainability, Technical University of Denmark, Copenhagen, Denmark
| |
Collapse
|
36
|
Multiple Roles for Two Efflux Pumps in the Polycyclic Aromatic Hydrocarbon-Degrading Pseudomonas putida Strain B6-2 (DSM 28064). Appl Environ Microbiol 2017; 83:AEM.01882-17. [PMID: 29030440 DOI: 10.1128/aem.01882-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 10/02/2017] [Indexed: 11/20/2022] Open
Abstract
Microbial bioremediation is a promising approach for the removal of polycyclic aromatic hydrocarbon (PAH) contaminants. Many degraders of PAHs possess efflux pump genes in their genomes; however, their specific roles in the degradation of PAHs have not been clearly elucidated. In this study, two efflux pumps, TtgABC and SrpABC, were systematically investigated to determine their functions in a PAH-degrading Pseudomonas putida strain B6-2 (DSM 28064). The disruption of genes ttgABC or srpABC resulted in a defect in organic solvent tolerance. TtgABC was found to contribute to antibiotic resistance; SrpABC only contributed to antibiotic resistance under an artificial overproduced condition. Moreover, a mutant strain without srpABC did not maintain its activity in long-term biphenyl (BP) degradation, which correlated with the loss of cell viability. The expression of SrpABC was significantly upregulated in the course of BP degradation. BP, 2-hydroxybiphenyl, 3-hydroxybiphenyl, and 2,3-dihydroxybiphenyl (2,3-DHBP) were revealed to be the inducers of srpABC 2,3-DHBP was verified to be a substrate of pump SrpABC; SrpABC can enhance the tolerance to 2,3-DHBP by pumping it out. The mutant strain B6-2ΔsrpS prolonged BP degradation with the increase of srpABC expression. These results suggest that the pump SrpABC of strain B6-2 plays a positive role in BP biodegradation by pumping out metabolized toxic substances such as 2,3-DHBP. This study provides insights into the versatile physiological functions of the widely distributed efflux pumps in the biodegradation of PAHs.IMPORTANCE Polycyclic aromatic hydrocarbons (PAHs) are notorious for their recalcitrance to degradation in the environment. A high frequency of the occurrence of the efflux pump genes was observed in the genomes of effective PAH degraders; however, their specific roles in the degradation of PAHs are still obscure. The significance of our study is in the identification of the function and mechanism of the efflux pump SrpABC of Pseudomonas putida strain B6-2 (DSM 28064) in the biphenyl degradation process. SrpABC is crucial for releasing the toxicity caused by intermediates that are unavoidably produced in PAH degradation, which enables an understanding of how cells maintain the intracellular balance of materials. The findings from this study provide a new perspective on PAH recalcitrance and shed light on enhancing PAH degradation by genetic engineering.
Collapse
|
37
|
Zhang L, Xiao WH, Wang Y, Yao MD, Jiang GZ, Zeng BX, Zhang RS, Yuan YJ. Chassis and key enzymes engineering for monoterpenes production. Biotechnol Adv 2017; 35:1022-1031. [DOI: 10.1016/j.biotechadv.2017.09.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 09/02/2017] [Accepted: 09/04/2017] [Indexed: 02/07/2023]
|
38
|
Tomko TA, Dunlop MJ. Expression of Heterologous Sigma Factor Expands the Searchable Space for Biofuel Tolerance Mechanisms. ACS Synth Biol 2017; 6:1343-1350. [PMID: 28319371 DOI: 10.1021/acssynbio.6b00375] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Microorganisms can produce hydrocarbons that can serve as replacements or additions to conventional liquid fuels for use in the transportation sector. However, a common problem in the microbial synthesis of biofuels is that these compounds often have toxic effects on the cell. In this study, we focused on mitigating the toxicity of the biojet fuel precursor pinene on Escherichia coli. We used genomic DNA from Pseudomonas putida KT2440, which has innate solvent-tolerance properties, to create transgenic libraries in an E. coli host. We exposed cells containing the library to pinene, selecting for genes that improved tolerance. Importantly, we found that expressing the sigma factor RpoD from P. putida greatly expanded the diversity of tolerance genes recovered. With low expression of rpoDP.putida, we isolated a single pinene tolerance gene; with increased expression of the sigma factor our selection experiments returned multiple distinct tolerance mechanisms, including some that have been previously documented and also new mechanisms. Interestingly, high levels of rpoDP.putida induction resulted in decreased diversity. We found that the tolerance levels provided by some genes are highly sensitive to the level of induction of rpoDP.putida, while others provide tolerance across a wide range of rpoDP.putida levels. This method for unlocking diversity in tolerance screening using heterologous sigma factor expression was applicable to both plasmid and fosmid-based transgenic libraries. These results suggest that by controlling the expression of appropriate heterologous sigma factors, we can greatly increase the searchable genomic space within transgenic libraries.
Collapse
Affiliation(s)
- Timothy A. Tomko
- College
of Engineering and Mathematical Sciences, University of Vermont, 33 Colchester Avenue, Burlington, Vermont 05405, United States
| | - Mary J. Dunlop
- College
of Engineering and Mathematical Sciences, University of Vermont, 33 Colchester Avenue, Burlington, Vermont 05405, United States
- Biomedical
Engineering Department, Boston University, 44 Cummington Mall, Boston, Massachusetts 02215, United States
| |
Collapse
|
39
|
Fiedurek J, Trytek M, Szczodrak J. Strain improvement of industrially important microorganisms based on resistance to toxic metabolites and abiotic stress. J Basic Microbiol 2017; 57:445-459. [DOI: 10.1002/jobm.201600710] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/04/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Jan Fiedurek
- Department of Industrial Microbiology; Institute of Microbiology and Biotechnology; Maria Curie-Skłodowska University; Lublin Poland
| | - Mariusz Trytek
- Department of Industrial Microbiology; Institute of Microbiology and Biotechnology; Maria Curie-Skłodowska University; Lublin Poland
| | - Janusz Szczodrak
- Department of Industrial Microbiology; Institute of Microbiology and Biotechnology; Maria Curie-Skłodowska University; Lublin Poland
| |
Collapse
|
40
|
Molina-Santiago C, Udaondo Z, Gómez-Lozano M, Molin S, Ramos JL. Global transcriptional response of solvent-sensitive and solvent-tolerant Pseudomonas putida strains exposed to toluene. Environ Microbiol 2016; 19:645-658. [PMID: 27768818 DOI: 10.1111/1462-2920.13585] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 10/17/2016] [Indexed: 12/23/2022]
Abstract
Pseudomonas putida strains are generally recognized as solvent tolerant, exhibiting varied sensitivity to organic solvents. Pan-genome analysis has revealed that 30% of genes belong to the core-genome of Pseudomonas. Accessory and unique genes confer high degree of adaptability and capabilities for the degradation and synthesis of a wide range of chemicals. For the use of these microbes in bioremediation and biocatalysis, it is critical to understand the mechanisms underlying these phenotypic differences. In this study, RNA-seq analysis compared the short- and long-term responses of the toluene-sensitive KT2440 strain and the highly tolerant DOT-T1E strain. The sensitive strain activates a larger number of genes in a higher magnitude than DOT-T1E. This is expected because KT2440 bears one toluene tolerant pump, while DOT-T1E encodes three of these pumps. Both strains activate membrane modifications to reduce toluene membrane permeability. The KT2440 strain activates the TCA cycle to generate energy, while avoiding energy-intensive processes such as flagellar biosynthesis. This suggests that KT2440 responds to toluene by focusing on survival mechanisms. The DOT-T1E strain activates toluene degradation pathways, using toluene as source of energy. Among the unique genes encoded by DOT-T1E is a 70 kb island composed of genes of unknown function induced in response to toluene.
Collapse
Affiliation(s)
- Carlos Molina-Santiago
- Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, C/Profesor Albareda 1, Granada, E-18008, Spain
| | - Zulema Udaondo
- Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, C/Profesor Albareda 1, Granada, E-18008, Spain
| | - María Gómez-Lozano
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Soren Molin
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Juan-Luis Ramos
- Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, C/Profesor Albareda 1, Granada, E-18008, Spain
| |
Collapse
|
41
|
Morales M, Sentchilo V, Bertelli C, Komljenovic A, Kryuchkova-Mostacci N, Bourdilloud A, Linke B, Goesmann A, Harshman K, Segers F, Delapierre F, Fiorucci D, Seppey M, Trofimenco E, Berra P, El Taher A, Loiseau C, Roggero D, Sulfiotti M, Etienne A, Ruiz Buendia G, Pillard L, Escoriza A, Moritz R, Schneider C, Alfonso E, Ben Jeddou F, Selmoni O, Resch G, Greub G, Emery O, Dubey M, Pillonel T, Robinson-Rechavi M, van der Meer JR. The Genome of the Toluene-Degrading Pseudomonas veronii Strain 1YdBTEX2 and Its Differential Gene Expression in Contaminated Sand. PLoS One 2016; 11:e0165850. [PMID: 27812150 PMCID: PMC5094676 DOI: 10.1371/journal.pone.0165850] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 10/18/2016] [Indexed: 12/31/2022] Open
Abstract
The natural restoration of soils polluted by aromatic hydrocarbons such as benzene, toluene, ethylbenzene and m- and p-xylene (BTEX) may be accelerated by inoculation of specific biodegraders (bioaugmentation). Bioaugmentation mainly involves introducing bacteria that deploy their metabolic properties and adaptation potential to survive and propagate in the contaminated environment by degrading the pollutant. In order to better understand the adaptive response of cells during a transition to contaminated material, we analyzed here the genome and short-term (1 h) changes in genome-wide gene expression of the BTEX-degrading bacterium Pseudomonas veronii 1YdBTEX2 in non-sterile soil and liquid medium, both in presence or absence of toluene. We obtained a gapless genome sequence of P. veronii 1YdBTEX2 covering three individual replicons with a total size of 8 Mb, two of which are largely unrelated to current known bacterial replicons. One-hour exposure to toluene, both in soil and liquid, triggered massive transcription (up to 208-fold induction) of multiple gene clusters, such as toluene degradation pathway(s), chemotaxis and toluene efflux pumps. This clearly underlines their key role in the adaptive response to toluene. In comparison to liquid medium, cells in soil drastically changed expression of genes involved in membrane functioning (e.g., lipid composition, lipid metabolism, cell fatty acid synthesis), osmotic stress response (e.g., polyamine or trehalose synthesis, uptake of potassium) and putrescine metabolism, highlighting the immediate response mechanisms of P. veronii 1YdBTEX2 for successful establishment in polluted soil.
Collapse
Affiliation(s)
- Marian Morales
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Vladimir Sentchilo
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Claire Bertelli
- Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
- SIB Swiss Institute for Bioinformatics, Lausanne, Switzerland
| | - Andrea Komljenovic
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- SIB Swiss Institute for Bioinformatics, Lausanne, Switzerland
| | - Nadezda Kryuchkova-Mostacci
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- SIB Swiss Institute for Bioinformatics, Lausanne, Switzerland
| | - Audrey Bourdilloud
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Burkhard Linke
- Bioinformatics and Systems Biology, Justus-Liebig-University, Gießen, Germany
| | - Alexander Goesmann
- Bioinformatics and Systems Biology, Justus-Liebig-University, Gießen, Germany
| | - Keith Harshman
- Lausanne Genomic Technologies Facility, Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Francisca Segers
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Fabien Delapierre
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Damien Fiorucci
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Mathieu Seppey
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Evgeniya Trofimenco
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Pauline Berra
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Athimed El Taher
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Chloé Loiseau
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Dejan Roggero
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Madeleine Sulfiotti
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Angela Etienne
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Gustavo Ruiz Buendia
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Loïc Pillard
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Angelique Escoriza
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Roxane Moritz
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Cedric Schneider
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Esteban Alfonso
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Fatma Ben Jeddou
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Oliver Selmoni
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Gregory Resch
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Gilbert Greub
- Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Olivier Emery
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Manupriyam Dubey
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Trestan Pillonel
- Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Marc Robinson-Rechavi
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- SIB Swiss Institute for Bioinformatics, Lausanne, Switzerland
| | - Jan Roelof van der Meer
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
42
|
Hernández-Sánchez V, Molina L, Ramos JL, Segura A. New family of biosensors for monitoring BTX in aquatic and edaphic environments. Microb Biotechnol 2016; 9:858-867. [PMID: 27484951 PMCID: PMC5072201 DOI: 10.1111/1751-7915.12394] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 07/08/2016] [Accepted: 07/10/2016] [Indexed: 11/25/2022] Open
Abstract
Benzene, toluene, ethylbenzene and xylenes (BTEX) contamination is a serious threat to public health and the environment, and therefore, there is an urgent need to detect its presence in nature. The use of whole-cell reporters is an efficient, easy-to-use and low-cost approach to detect and follow contaminants outside specialized laboratories; this is especially important in oil spills that are frequent in marine environments. The aim of this study is the construction of a bioreporter system and its comparison and validation for the specific detection of monocyclic aromatic hydrocarbons in different host bacteria and environmental samples. Our bioreporter system is based on the two component regulatory system TodS-TodT of P. putida DOT-T1E, and the PtodX promoter fused to the GFP protein as the reporter protein. For the construction of different biosensors, this bioreporter was transferred into three different bacterial strains isolated from three different environments, and their performance was measured. Validation of the biosensors on water samples spiked with petrol, diesel and crude oil on contaminated waters from oil spills and on contaminated soils demonstrated that they can be used in mapping and monitoring some BTEX compounds (specifically benzene, toluene and two xylene isomers). Validation of biosensors is an important issue for the integration of these devices into pollution-control programmes.
Collapse
Affiliation(s)
| | - Lázaro Molina
- Estación Experimental del Zaidín-CSIC, C/ Profesor Albareda s/n, 18008, Granada, Spain
| | - Juan Luis Ramos
- Estación Experimental del Zaidín-CSIC, C/ Profesor Albareda s/n, 18008, Granada, Spain
| | - Ana Segura
- Estación Experimental del Zaidín-CSIC, C/ Profesor Albareda s/n, 18008, Granada, Spain.
| |
Collapse
|
43
|
Xu Y, Muhamadali H, Sayqal A, Dixon N, Goodacre R. Partial Least Squares with Structured Output for Modelling the Metabolomics Data Obtained from Complex Experimental Designs: A Study into the Y-Block Coding. Metabolites 2016; 6:metabo6040038. [PMID: 27801817 PMCID: PMC5192444 DOI: 10.3390/metabo6040038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/20/2016] [Accepted: 10/24/2016] [Indexed: 12/31/2022] Open
Abstract
Partial least squares (PLS) is one of the most commonly used supervised modelling approaches for analysing multivariate metabolomics data. PLS is typically employed as either a regression model (PLS-R) or a classification model (PLS-DA). However, in metabolomics studies it is common to investigate multiple, potentially interacting, factors simultaneously following a specific experimental design. Such data often cannot be considered as a “pure” regression or a classification problem. Nevertheless, these data have often still been treated as a regression or classification problem and this could lead to ambiguous results. In this study, we investigated the feasibility of designing a hybrid target matrix Y that better reflects the experimental design than simple regression or binary class membership coding commonly used in PLS modelling. The new design of Y coding was based on the same principle used by structural modelling in machine learning techniques. Two real metabolomics datasets were used as examples to illustrate how the new Y coding can improve the interpretability of the PLS model compared to classic regression/classification coding.
Collapse
Affiliation(s)
- Yun Xu
- School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, UK.
| | - Howbeer Muhamadali
- School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, UK.
| | - Ali Sayqal
- School of Chemistry, Umm Al-Qura University, Al Taif Road, Mecca 24382, Saudi Arabia.
| | - Neil Dixon
- School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, UK.
| | - Royston Goodacre
- School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, UK.
| |
Collapse
|
44
|
Molina-Santiago C, Cordero BF, Daddaoua A, Udaondo Z, Manzano J, Valdivia M, Segura A, Ramos JL, Duque E. Pseudomonas putida as a platform for the synthesis of aromatic compounds. MICROBIOLOGY-SGM 2016; 162:1535-1543. [PMID: 27417954 DOI: 10.1099/mic.0.000333] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aromatic compounds such as l-phenylalanine, 2-phenylethanol and trans-cinnamate are aromatic compounds of industrial interest. Current trends support replacement of chemical synthesis of these compounds by 'green' alternatives produced in microbial cell factories. The solvent-tolerant Pseudomonas putida DOT-T1E strain was genetically modified to produce up to 1 g l-1 of l-phenylalanine. In order to engineer this strain, we carried out the following stepwise process: (1) we selected random mutants that are resistant to toxic phenylalanine analogues; (2) we then deleted up to five genes belonging to phenylalanine metabolism pathways, which greatly diminished the internal metabolism of phenylalanine; and (3) in these mutants, we overexpressed the pheAfbr gene, which encodes a recombinant variant of PheA that is insensitive to feedback inhibition by phenylalanine. Furthermore, by introducing new genes, we were able to further extend the diversity of compounds produced. Introduction of histidinol phosphate transferase (PP_0967), phenylpyruvate decarboxylase (kdc) and an alcohol dehydrogenase (adh) enabled the strain to produce up to 180 mg l-1 2-phenylethanol. When phenylalanine ammonia lyase (pal) was introduced, the resulting strain produced up to 200 mg l-1 of trans-cinnamate. These results demonstrate that P. putida can serve as a promising microbial cell factory for the production of l-phenylalanine and related compounds.
Collapse
Affiliation(s)
- Carlos Molina-Santiago
- Biotechnology - CPA Department, Abengoa Research, C/Energía Solar 1, Palmas Altas, Seville, Spain
| | - Baldo F Cordero
- Biotechnology - CPA Department, Abengoa Research, C/Energía Solar 1, Palmas Altas, Seville, Spain
| | - Abdelali Daddaoua
- Biotechnology - CPA Department, Abengoa Research, C/Energía Solar 1, Palmas Altas, Seville, Spain
| | - Zulema Udaondo
- Biotechnology - CPA Department, Abengoa Research, C/Energía Solar 1, Palmas Altas, Seville, Spain
| | - Javier Manzano
- Biotechnology - Process Development Department, Abengoa Research, Babilafuente, Salamanca, Spain
| | - Miguel Valdivia
- Biotechnology - CPA Department, Abengoa Research, C/Energía Solar 1, Palmas Altas, Seville, Spain
| | - Ana Segura
- Biotechnology - CPA Department, Abengoa Research, C/Energía Solar 1, Palmas Altas, Seville, Spain
| | - Juan-Luis Ramos
- Biotechnology - Process Development Department, Abengoa Research, Babilafuente, Salamanca, Spain.,Biotechnology - CPA Department, Abengoa Research, C/Energía Solar 1, Palmas Altas, Seville, Spain
| | - Estrella Duque
- Biotechnology - CPA Department, Abengoa Research, C/Energía Solar 1, Palmas Altas, Seville, Spain
| |
Collapse
|
45
|
Bernardi AC, Gai CS, Lu J, Sinskey AJ, Brigham CJ. Experimental evolution and gene knockout studies reveal AcrA-mediated isobutanol tolerance in Ralstonia eutropha. J Biosci Bioeng 2016; 122:64-9. [DOI: 10.1016/j.jbiosc.2015.12.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 12/02/2015] [Accepted: 12/18/2015] [Indexed: 12/12/2022]
|
46
|
Sayqal A, Xu Y, Trivedi DK, AlMasoud N, Ellis DI, Rattray NJW, Goodacre R. Metabolomics Analysis Reveals the Participation of Efflux Pumps and Ornithine in the Response of Pseudomonas putida DOT-T1E Cells to Challenge with Propranolol. PLoS One 2016; 11:e0156509. [PMID: 27331395 PMCID: PMC4917112 DOI: 10.1371/journal.pone.0156509] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 05/16/2016] [Indexed: 02/07/2023] Open
Abstract
Efflux pumps are critically important membrane components that play a crucial role in strain tolerance in Pseudomonas putida to antibiotics and aromatic hydrocarbons that result in these toxicants being expelled from the bacteria. Here, the effect of propranolol on P. putida was examined by sudden addition of 0.2, 0.4 and 0.6 mg mL-1 of this β-blocker to several strains of P. putida, including the wild type DOT-T1E and the efflux pump knockout mutants DOT-T1E-PS28 and DOT-T1E-18. Bacterial viability measurements reveal that the efflux pump TtgABC plays a more important role than the TtgGHI pump in strain tolerance to propranolol. Mid-infrared (MIR) spectroscopy was then used as a rapid, high-throughput screening tool to investigate any phenotypic changes resulting from exposure to varying levels of propranolol. Multivariate statistical analysis of these MIR data revealed gradient trends in resultant ordination scores plots, which were related to the concentration of propranolol. MIR illustrated phenotypic changes associated with the presence of this drug within the cell that could be assigned to significant changes that occurred within the bacterial protein components. To complement this phenotypic fingerprinting approach metabolic profiling was performed using gas chromatography mass spectrometry (GC-MS) to identify metabolites of interest during the growth of bacteria following toxic perturbation with the same concentration levels of propranolol. Metabolic profiling revealed that ornithine, which was only produced by P. putida cells in the presence of propranolol, presents itself as a major metabolic feature that has important functions in propranolol stress tolerance mechanisms within this highly significant and environmentally relevant species of bacteria.
Collapse
Affiliation(s)
- Ali Sayqal
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, M1 7DN, United Kingdom
| | - Yun Xu
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, M1 7DN, United Kingdom
| | - Drupad K. Trivedi
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, M1 7DN, United Kingdom
| | - Najla AlMasoud
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, M1 7DN, United Kingdom
| | - David I. Ellis
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, M1 7DN, United Kingdom
| | - Nicholas J. W. Rattray
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, M1 7DN, United Kingdom
| | - Royston Goodacre
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, M1 7DN, United Kingdom
- * E-mail:
| |
Collapse
|
47
|
Metabolic Fingerprinting of Pseudomonas putida DOT-T1E Strains: Understanding the Influence of Divalent Cations in Adaptation Mechanisms Following Exposure to Toluene. Metabolites 2016; 6:metabo6020014. [PMID: 27128955 PMCID: PMC4931545 DOI: 10.3390/metabo6020014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 04/20/2016] [Accepted: 04/21/2016] [Indexed: 11/16/2022] Open
Abstract
Pseudomonas putida strains can adapt and overcome the activity of toxic organic solvents by the employment of several resistant mechanisms including efflux pumps and modification to lipopolysaccharides (LPS) in their membranes. Divalent cations such as magnesium and calcium play a crucial role in the development of solvent tolerance in bacterial cells. Here, we have used Fourier transform infrared (FT-IR) spectroscopy directly on cells (metabolic fingerprinting) to monitor bacterial response to the absence and presence of toluene, along with the influence of divalent cations present in the growth media. Multivariate analysis of the data using principal component-discriminant function analysis (PC-DFA) showed trends in scores plots, illustrating phenotypic alterations related to the effect of Mg(2+), Ca(2+) and toluene on cultures. Inspection of PC-DFA loadings plots revealed that several IR spectral regions including lipids, proteins and polysaccharides contribute to the separation in PC-DFA space, thereby indicating large phenotypic response to toluene and these cations. Finally, the saturated fatty acid ratio from the FT-IR spectra showed that upon toluene exposure, the saturated fatty acid ratio was reduced, while it increased in the presence of divalent cations. This study clearly demonstrates that the combination of metabolic fingerprinting with appropriate chemometric analysis can result in practicable knowledge on the responses of important environmental bacteria to external stress from pollutants such as highly toxic organic solvents, and indicates that these changes are manifest in the bacterial cell membrane. Finally, we demonstrate that divalent cations improve solvent tolerance in P. putida DOT‑T1E strains.
Collapse
|
48
|
Espinosa-Urgel M, Serrano L, Ramos JL, Fernández-Escamilla AM. Engineering Biological Approaches for Detection of Toxic Compounds: A New Microbial Biosensor Based on the Pseudomonas putida TtgR Repressor. Mol Biotechnol 2016; 57:558-64. [PMID: 25731724 DOI: 10.1007/s12033-015-9849-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Environmental contamination by toxic organic compounds and antimicrobials is one of the causes for the recent surge of multidrug-resistant pathogenic bacteria. Monitoring contamination is therefore the first step in containment of antimicrobial resistance and requires the development of simple, sensitive, and quantitative tools that detect a broad spectrum of toxic compounds. In this study, we have engineered a new microbial biosensor based on the ttgR-regulated promoter that controls expression of the TtgABC extrusion efflux pump of Pseudomonas putida, coupled to a gfp reporter. The system was introduced in P. putida DOT-T1E, a strain characterized by its ability to survive in the presence of high concentrations of diverse toxic organic compounds. This whole-cell biosensor is capable to detect a wide range of structurally diverse antibiotics, as well as compounds such as toluene or flavonoids.
Collapse
Affiliation(s)
- Manuel Espinosa-Urgel
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), C/Profesor Albareda, 1, 18008, Granada, Spain
| | | | | | | |
Collapse
|
49
|
Abstract
The survival capacity of microorganisms in a contaminated environment is limited by the concentration and/or toxicity of the pollutant. Through evolutionary processes, some bacteria have developed or acquired mechanisms to cope with the deleterious effects of toxic compounds, a phenomenon known as tolerance. Common mechanisms of tolerance include the extrusion of contaminants to the outer media and, when concentrations of pollutants are low, the degradation of the toxic compound. For both of these approaches, plasmids that encode genes for the degradation of contaminants such as toluene, naphthalene, phenol, nitrobenzene, and triazine or are involved in tolerance toward organic solvents and heavy metals, play an important role in the evolution and dissemination of these catabolic pathways and efflux pumps. Environmental plasmids are often conjugative and can transfer their genes between different strains; furthermore, many catabolic or efflux pump genes are often associated with transposable elements, making them one of the major players in bacterial evolution. In this review, we will briefly describe catabolic and tolerance plasmids and advances in the knowledge and biotechnological applications of these plasmids.
Collapse
|
50
|
Sayqal A, Xu Y, Trivedi DK, AlMasoud N, Ellis DI, Muhamadali H, Rattray NJW, Webb C, Goodacre R. Metabolic analysis of the response of Pseudomonas putida DOT-T1E strains to toluene using Fourier transform infrared spectroscopy and gas chromatography mass spectrometry. Metabolomics 2016; 12:112. [PMID: 27398079 PMCID: PMC4916193 DOI: 10.1007/s11306-016-1054-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/04/2016] [Indexed: 01/09/2023]
Abstract
INTRODUCTION An exceptionally interesting stress response of Pseudomonas putida strains to toxic substances is the induction of efflux pumps that remove toxic chemical substances from the bacterial cell out to the external environment. To exploit these microorganisms to their full potential a deeper understanding of the interactions between the bacteria and organic solvents is required. Thus, this study focuses on investigation of metabolic changes in P. putida upon exposure to toluene. OBJECTIVE Investigate observable metabolic alterations during interactions of three strains of P. putida (DOT-T1E, and its mutants DOT-T1E-PS28 and DOT-T1E-18) with the aromatic hydrocarbon toluene. METHODS The growth profiles were measured by taking optical density (OD) measurement at 660 nm (OD660) at various time points during incubation. For fingerprinting analysis, Fourier-transform infrared (FT-IR) spectroscopy was used to investigate any phenotypic changes resulting from exposure to toluene. Metabolic profiling analysis was performed using gas chromatography-mass spectrometry (GC-MS). Principal component-discriminant function analysis (PC-DFA) was applied to the FT-IR data while multiblock principal component analysis (MB-PCA) and N-way analysis of variance (N-way ANOVA) were applied to the GC-MS data. RESULTS The growth profiles demonstrated the effect of toluene on bacterial cultures and the results suggest that the mutant P. putida DOT-T1E-18 was more sensitive (significantly affected) to toluene compared to the other two strains. PC-DFA on FT-IR data demonstrated the differentiation between different conditions of toluene on bacterial cells, which indicated phenotypic changes associated with the presence of the solvent within the cell. Fifteen metabolites associated with this phenotypic change, in P. putida due to exposure to solvent, were from central metabolic pathways. Investigation of MB-PCA loading plots and N-way ANOVA for condition | strain × time blocking (dosage of toluene) suggested ornithine as the most significant compound that increased upon solvent exposure. CONCLUSION The combination of metabolic fingerprinting and profiling with suitable multivariate analysis revealed some interesting leads for understanding the mechanism of Pseudomonas strains response to organic solvent exposure.
Collapse
Affiliation(s)
- Ali Sayqal
- School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, Manchester, M1 7DN UK
| | - Yun Xu
- School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, Manchester, M1 7DN UK
| | - Drupad K. Trivedi
- School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, Manchester, M1 7DN UK
| | - Najla AlMasoud
- School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, Manchester, M1 7DN UK
| | - David I. Ellis
- School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, Manchester, M1 7DN UK
| | - Howbeer Muhamadali
- School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, Manchester, M1 7DN UK
| | - Nicholas J. W. Rattray
- School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, Manchester, M1 7DN UK
| | - Carole Webb
- School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, Manchester, M1 7DN UK
| | - Royston Goodacre
- School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, Manchester, M1 7DN UK
| |
Collapse
|