1
|
Characterization of the Phase-Variable Autotransporter Lav Reveals a Role in Host Cell Adherence and Biofilm Formation in Nontypeable Haemophilus influenzae. Infect Immun 2022; 90:e0056521. [PMID: 35258316 PMCID: PMC9022572 DOI: 10.1128/iai.00565-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Lav is an autotransporter protein found in pathogenic Haemophilus and Neisseria species. Lav in nontypeable Haemophilus influenzae (NTHi) is phase-variable: the gene reversibly switches ON-OFF via changes in length of a locus-located GCAA(n) simple DNA sequence repeat tract. The expression status of lav was examined in carriage and invasive collections of NTHi, where it was predominantly not expressed (OFF). Phenotypic study showed lav expression (ON) results in increased adherence to human lung cells and denser biofilm formation. A survey of Haemophilus species genome sequences showed lav is present in ∼60% of NTHi strains, but lav is not present in most typeable H. influenzae strains. Sequence analysis revealed a total of five distinct variants of the Lav passenger domain present in Haemophilus spp., with these five variants showing a distinct lineage distribution. Determining the role of Lav in NTHi will help understand the role of this protein during distinct pathologies.
Collapse
|
2
|
Pereira RFC, Theizen TH, Machado D, Guarnieri JPDO, Gomide GP, Hollanda LMD, Lancellotti M. Analysis of potential virulence genes and competence to transformation in Haemophilus influenzae biotype aegyptius associated with Brazilian Purpuric Fever. Genet Mol Biol 2021; 44:e20200029. [PMID: 33395458 PMCID: PMC7816109 DOI: 10.1590/1678-4685-gmb-2020-0029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 11/18/2020] [Indexed: 11/21/2022] Open
Abstract
Brazilian Purpuric Fever (BPF) is a hemorrhagic pediatric illness caused by Haemophilus influenzae biogroup aegyptius (Hae), a bacterium that was formerly associated with self-limited purulent conjunctivitis. BPF is assumed to be eradicated. However, the virulence mechanisms inherent to Hae strains associated with BPF is still a mystery and deficient in studies. Here, we aim to analyze the role of the autotransporter genes related to adherence and colonization las, tabA1, and hadA genes through RT-qPCR expression profiling and knockout mutants. Relative quantification by real-time PCR after infection in human cells and infant rat model suggests that las was initially downregulated probably duo to immune evasion, tabA1, and hadA were overexpressed in general, suggesting an active role of TabA1 and HadA1 adhesins in Hae in vitro and in vivo. Transformation attempts were unsuccessful despite the use of multiple technical approaches and in silico analysis revealed that Hae lacks genes related to competence in Haemophilus, which could be part of the elucidation of the difficulty of genetically manipulating Hae strains.
Collapse
Affiliation(s)
| | - Thais Holtz Theizen
- Universidade Estadual de Campinas, Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia, Campinas, SP, Brazil
| | - Daisy Machado
- Universidade Estadual de Campinas, Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia, Campinas, SP, Brazil
| | | | - Gabriel Piccirillo Gomide
- Universidade Estadual de Campinas - UNICAMP, Faculdade de Ciências Farmacêuticas - FCF, Campinas, SP, Brazil
| | - Luciana Maria de Hollanda
- Universidade Estadual de Campinas, Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia, Campinas, SP, Brazil
| | - Marcelo Lancellotti
- Universidade Estadual de Campinas, Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia, Campinas, SP, Brazil.,Universidade Estadual de Campinas - UNICAMP, Faculdade de Ciências Farmacêuticas - FCF, Campinas, SP, Brazil
| |
Collapse
|
3
|
Zhang A, Zhao P, Zhu B, Shi F, Xu L, Gao Y, Xie N, Shao Z. Characterization and Distribution of the autB Gene in Neisseria meningitidis. Front Cell Infect Microbiol 2017; 7:436. [PMID: 29057217 PMCID: PMC5635059 DOI: 10.3389/fcimb.2017.00436] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/21/2017] [Indexed: 11/16/2022] Open
Abstract
We aimed to investigate and understand the characterization and distribution of the autB gene in Neisseria meningitidis in China. autB is flanked by two conservative genes, smpB and glcD, and it can be present in the majority of meningococcal isolates, but not in 053442 of clonal complex 4821 (CC4821) which contains a 968 bp sequence. In this study, we sequenced the intervenient region between smpB and glcD in 178 Chinese N. meningitidis strains isolated from both patients and carriers. There were 110 serogroupable strains, other 68 were non-groupable (NG). Ninety nine of the 178 strains were clustered into 13 CCs, the remaining 79 were unassigned (UA). CC4821 is one of the dominant CCs in China. Forty of the 42 CC4821 strains and 26 of the 79 UA strains were autB-null, while the remaining 12 CCs were autB-positive. According to the N-terminal sequence, most (97/112) of the autB-positive strains were clustered into AutB1 and the remaining 15 were AutB2. The autB gene and its flanking intergenic sequences was superseded by a perfectly conservative sequence of an identical 968 bp in all of the autB-null N. meningitidis strains which had no identity with the relatively conservative intergenic sequences that flanked the autB gene in autB-positive strains. There was a 10 bp DNA uptake sequence (DUS) at the beginning of the interval 968 bp sequence in the autB-null strains while there was a 9 bp Haemophilus-specific uptake sequence (hUS) at the beginning of the partial holB gene and at the end of the partial tmk gene in autB-positive strains, holB and tmk gene were flanking the autB gene in Haemophilus. In conclusion, not all pathogenic N. meningitidis strains especially CC4821 possess the autB gene in China and the corresponding spacer region of the autB-null strains was not homologous to that found in autB-positive strains. There's a hypothesis that the DUS and hUS are likely to play a key part in the mechanism of uptake or loss of the autB gene.
Collapse
Affiliation(s)
- Aiyu Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Pan Zhao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Bingqing Zhu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Fenglin Shi
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Li Xu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuan Gao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Na Xie
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhujun Shao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| |
Collapse
|
4
|
Tommassen J, Arenas J. Biological Functions of the Secretome of Neisseria meningitidis. Front Cell Infect Microbiol 2017; 7:256. [PMID: 28670572 PMCID: PMC5472700 DOI: 10.3389/fcimb.2017.00256] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 05/29/2017] [Indexed: 11/13/2022] Open
Abstract
Neisseria meningitidis is a Gram-negative bacterial pathogen that normally resides as a commensal in the human nasopharynx but occasionally causes disease with high mortality and morbidity. To interact with its environment, it transports many proteins across the outer membrane to the bacterial cell surface and into the extracellular medium for which it deploys the common and well-characterized autotransporter, two-partner and type I secretion mechanisms, as well as a recently discovered pathway for the surface exposure of lipoproteins. The surface-exposed and secreted proteins serve roles in host-pathogen interactions, including adhesion to host cells and extracellular matrix proteins, evasion of nutritional immunity imposed by iron-binding proteins of the host, prevention of complement activation, neutralization of antimicrobial peptides, degradation of immunoglobulins, and permeabilization of epithelial layers. Furthermore, they have roles in interbacterial interactions, including the formation and dispersal of biofilms and the suppression of the growth of bacteria competing for the same niche. Here, we will review the protein secretion systems of N. meningitidis and focus on the functions of the secreted proteins.
Collapse
Affiliation(s)
- Jan Tommassen
- Department of Molecular Microbiology and Institute of Biomembranes, Utrecht UniversityUtrecht, Netherlands
| | - Jesús Arenas
- Department of Molecular Microbiology and Institute of Biomembranes, Utrecht UniversityUtrecht, Netherlands
| |
Collapse
|
5
|
Arenas J, Paganelli FL, Rodríguez-Castaño P, Cano-Crespo S, van der Ende A, van Putten JPM, Tommassen J. Expression of the Gene for Autotransporter AutB of Neisseria meningitidis Affects Biofilm Formation and Epithelial Transmigration. Front Cell Infect Microbiol 2016; 6:162. [PMID: 27921012 PMCID: PMC5118866 DOI: 10.3389/fcimb.2016.00162] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 11/07/2016] [Indexed: 11/15/2022] Open
Abstract
Neisseria meningitidis is a Gram-negative bacterium that resides as a commensal in the upper respiratory tract of humans, but occasionally, it invades the host and causes sepsis and/or meningitis. The bacterium can produce eight autotransporters, seven of which have been studied to some detail. The remaining one, AutB, has not been characterized yet. Here, we show that the autB gene is broadly distributed among pathogenic Neisseria spp. The gene is intact in most meningococcal strains. However, its expression is prone to phase variation due to slipped-strand mispairing at AAGC repeats located within the DNA encoding the signal sequence and is switched off in the vast majority of these strains. Moreover, various genetic disruptions prevent autB expression in most of the strains in which the gene is in phase indicating a strong selection against AutB synthesis. We observed that autB is expressed in two of the strains examined and that AutB is secreted and exposed at the cell surface. Functionality assays revealed that AutB synthesis promotes biofilm formation and delays the passage of epithelial cell layers in vitro. We hypothesize that this autotransporter is produced during the colonization process only in specific niches to facilitate microcolony formation, but its synthesis is switched off probably to evade the immune system and facilitate human tissue invasion.
Collapse
Affiliation(s)
- Jesús Arenas
- Department of Molecular Microbiology and Institute of Biomembranes, Utrecht University Utrecht, Netherlands
| | - Fernanda L Paganelli
- Department of Medical Microbiology, University Medical Center Utrecht Utrecht, Netherlands
| | - Patricia Rodríguez-Castaño
- Department of Molecular Microbiology and Institute of Biomembranes, Utrecht University Utrecht, Netherlands
| | - Sara Cano-Crespo
- Department of Molecular Microbiology and Institute of Biomembranes, Utrecht University Utrecht, Netherlands
| | - Arie van der Ende
- Department of Medical Microbiology, Academic Medical Center Amsterdam, Netherlands
| | - Jos P M van Putten
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University Utrecht, Netherlands
| | - Jan Tommassen
- Department of Molecular Microbiology and Institute of Biomembranes, Utrecht University Utrecht, Netherlands
| |
Collapse
|
6
|
Cury GCG, Pereira RFC, de Hollanda LM, Lancellotti M. Inflammatory response of Haemophilus influenzae biotype aegyptius causing Brazilian Purpuric Fever. Braz J Microbiol 2014; 45:1449-54. [PMID: 25763053 PMCID: PMC4323322 DOI: 10.1590/s1517-83822014000400040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 04/17/2014] [Indexed: 11/22/2022] Open
Abstract
The Brazilian Purpuric Fever (BPF) is a systemic disease with many clinical features of meningococcal sepsis and is usually preceded by purulent conjunctivitis. The illness is caused by Haemophilus influenza biogroup aegyptius, which was associated exclusively with conjunctivitis. In this work construction of the las gene, hypothetically responsible for this virulence, were fusioned with ermAM cassette in Neisseria meningitidis virulent strains and had its DNA transfer to non BPF H. influenzae strains. The effect of the las transfer was capable to increase the cytokines TNFα and IL10 expression in Hec-1B cells line infected with these transformed mutants (in eight log scale of folding change RNA expression). This is the first molecular study involving the las transfer to search an elucidation of the pathogenic factors by horizontal intergeneric transfer from meningococci to H. influenzae.
Collapse
Affiliation(s)
- Gisele Cristiane Gentile Cury
- Biotechnology Laboratory, Department of Biochemistry Institute of Biology State University of Campinas CampinasSP Brazil Biotechnology Laboratory, Department of Biochemistry, Institute of Biology, State University of Campinas, Campinas, SP, Brazil
| | - Rafaella Fabiana Carneiro Pereira
- Biotechnology Laboratory, Department of Biochemistry Institute of Biology State University of Campinas CampinasSP Brazil Biotechnology Laboratory, Department of Biochemistry, Institute of Biology, State University of Campinas, Campinas, SP, Brazil
| | - Luciana Maria de Hollanda
- Biotechnology Laboratory, Department of Biochemistry Institute of Biology State University of Campinas CampinasSP Brazil Biotechnology Laboratory, Department of Biochemistry, Institute of Biology, State University of Campinas, Campinas, SP, Brazil
| | - Marcelo Lancellotti
- Biotechnology Laboratory, Department of Biochemistry Institute of Biology State University of Campinas CampinasSP Brazil Biotechnology Laboratory, Department of Biochemistry, Institute of Biology, State University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
7
|
Ruiz-Perez F, Nataro JP. Bacterial serine proteases secreted by the autotransporter pathway: classification, specificity, and role in virulence. Cell Mol Life Sci 2013; 71:745-70. [PMID: 23689588 DOI: 10.1007/s00018-013-1355-8] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 04/25/2013] [Accepted: 04/29/2013] [Indexed: 01/07/2023]
Abstract
Serine proteases exist in eukaryotic and prokaryotic organisms and have emerged during evolution as the most abundant and functionally diverse group. In Gram-negative bacteria, there is a growing family of high molecular weight serine proteases secreted to the external milieu by a fascinating and widely employed bacterial secretion mechanism, known as the autotransporter pathway. They were initially found in Neisseria, Shigella, and pathogenic Escherichia coli, but have now also been identified in Citrobacter rodentium, Salmonella, and Edwardsiella species. Here, we focus on proteins belonging to the serine protease autotransporter of Enterobacteriaceae (SPATEs) family. Recent findings regarding the predilection of serine proteases to host intracellular or extracellular protein-substrates involved in numerous biological functions, such as those implicated in cytoskeleton stability, autophagy or innate and adaptive immunity, have helped provide a better understanding of SPATEs' contributions in pathogenesis. Here, we discuss their classification, substrate specificity, and potential roles in pathogenesis.
Collapse
Affiliation(s)
- Fernando Ruiz-Perez
- Department of Pediatrics, School of Medicine, University of Virginia, P.O.Box 800326, MR4 Room 4012C, 409 Lane Road, Charlottesville, VA, 22908, USA,
| | | |
Collapse
|
8
|
Mattos IB, Alves DA, Hollanda LM, Ceragiogli HJ, Baranauskas V, Lancellotti M. Effects of multi-walled carbon nanotubes (MWCNT) under Neisseria meningitidis transformation process. J Nanobiotechnology 2011; 9:53. [PMID: 22088149 PMCID: PMC3235062 DOI: 10.1186/1477-3155-9-53] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 11/16/2011] [Indexed: 11/10/2022] Open
Abstract
Background This study aimed at verifying the action of multi-walled carbon nanotubes (MWCNT) under the naturally transformable Neisseria meningitidis against two different DNA obtained from isogenic mutants of this microorganism, an important pathogen implicated in the genetic horizontal transfer of DNA, causing the escape of the principal vaccination measured worldwide by the capsular switching process. Materials and methods The bacterium receptor strain C2135 was cultivated and had its mutant DNA donor M2 and M6, which received a receptor strain and MWCNT at three different concentrations. The inhibition effect of DNAse on the DNA in contact with nanoparticles was evaluated. Results The results indicated an in increase in the transformation capacity of N. meninigtidis in different concentrations of MWCNT when compared with negative control without nanotubes. A final analysis of the interaction between DNA and MWCNT was carried out using Raman Spectroscopy. Conclusion These increases in the transformation capacity mediated by MWCNT, in meningococci, indicate the interaction of these particles with the virulence acquisition of these bacteria, as well as with the increase in the vaccination escape process.
Collapse
Affiliation(s)
- Ives B Mattos
- LABIOTEC - Biotechnology Laboratory, Department of Biochemistry, Institute of Biology CP6109, University of Campinas - UNICAMP 13083-970, Campinas, SP, Brazil
| | | | | | | | | | | |
Collapse
|
9
|
Tracing phylogenomic events leading to diversity of Haemophilus influenzae and the emergence of Brazilian Purpuric Fever (BPF)-associated clones. Genomics 2010; 96:290-302. [PMID: 20654709 DOI: 10.1016/j.ygeno.2010.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2010] [Revised: 07/12/2010] [Accepted: 07/14/2010] [Indexed: 11/22/2022]
Abstract
Here we report the use of a multi-genome DNA microarray to elucidate the genomic events associated with the emergence of the clonal variants of Haemophilus influenzae biogroup aegyptius causing Brazilian Purpuric Fever (BPF), an important pediatric disease with a high mortality rate. We performed directed genome sequencing of strain HK1212 unique loci to construct a species DNA microarray. Comparative genome hybridization using this microarray enabled us to determine and compare gene complements, and infer reliable phylogenomic relationships among members of the species. The higher genomic variability observed in the genomes of BPF-related strains (clones) and their close relatives may be characterized by significant gene flux related to a subset of functional role categories. We found that the acquisition of a large number of virulence determinants featuring numerous cell membrane proteins coupled to the loss of genes involved in transport, central biosynthetic pathways and in particular, energy production pathways to be characteristics of the BPF genomic variants.
Collapse
|
10
|
Dautin N. Serine protease autotransporters of enterobacteriaceae (SPATEs): biogenesis and function. Toxins (Basel) 2010; 2:1179-206. [PMID: 22069633 PMCID: PMC3153244 DOI: 10.3390/toxins2061179] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 05/17/2010] [Accepted: 05/27/2010] [Indexed: 01/19/2023] Open
Abstract
Serine Protease Autotransporters of Enterobacteriaceae (SPATEs) constitute a large family of proteases secreted by Escherichia coli and Shigella. SPATEs exhibit two distinct proteolytic activities. First, a C-terminal catalytic site triggers an intra-molecular cleavage that releases the N-terminal portion of these proteins in the extracellular medium. Second, the secreted N-terminal domains of SPATEs are themselves proteases; each contains a canonical serine-protease catalytic site. Some of these secreted proteases are toxins, eliciting various effects on mammalian cells. Here, we discuss the biogenesis of SPATEs and their function as toxins.
Collapse
Affiliation(s)
- Nathalie Dautin
- Department of Biology, The Catholic University of America, 620 Michigan Avenue N.E., Washington, DC, 20064, USA.
| |
Collapse
|
11
|
Association of IS1016 with the hia adhesin gene and biotypes V and I in invasive nontypeable Haemophilus influenzae. Infect Immun 2008; 76:5221-7. [PMID: 18794287 DOI: 10.1128/iai.00672-08] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A subset of invasive nontypeable Haemophilus influenzae (NTHI) strains has evidence of IS1016, an insertion element associated with division I H. influenzae capsule serotypes. We examined IS1016-positive invasive NTHI isolates collected as part of Active Bacterial Core Surveillance within the Georgia Emerging Infections Program for the presence or absence of hmw1 and hmw2 (two related adhesin genes that are common in NTHI but absent in encapsulated H. influenzae) and hia (homologue of hsf, an encapsulated H. influenzae adhesin gene). Isolates were serotyped using slide agglutination, confirmed as NTHI strains using PCR capsule typing, and biotyped. Two hundred twenty-nine invasive NTHI isolates collected between August 1998 and December 2006 were screened for IS1016; 22/229 (9.6%) were positive. Nineteen of 201 previously identified IS1016-positive invasive NTHI isolates collected between January 1989 and July 1998 were also examined. Forty-one IS1016-positive and 56 randomly selected IS1016-negative invasive NTHI strains were examined. The hia adhesin was present in 39 of 41 (95%) IS1016-positive NTHI strains and 1 of 56 (1.8%) IS1016-negative NTHI strains tested; hmw (hmw1, hmw2, or both) was present in 50 of 56 (89%) IS1016-negative NTHI isolates but in only 5 of 41 (12%; all hmw2) IS1016-positive NTHI isolates. IS1016-positive NTHI strains were more often biotype V (P < 0.001) or biotype I (P = 0.04) than IS1016-negative NTHI strains, which were most often biotype II. Pulsed-field gel electrophoresis revealed the expected genetic diversity of NTHI with some clustering based on IS1016, hmw or hia, and biotypes. A significant association of IS1016 with biotypes V and I and the presence of hia adhesins was found among invasive NTHI. IS1016-positive NTHI strains may represent a unique subset of NTHI strains, with characteristics more closely resembling those of encapsulated H. influenzae.
Collapse
|
12
|
Syed SS, Gilsdorf JR. Prevalence ofhicAB,lav,traA, andhifBCamongHaemophilus influenzaemiddle ear and throat strains. FEMS Microbiol Lett 2007; 274:180-3. [PMID: 17608697 DOI: 10.1111/j.1574-6968.2007.00822.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Nontypeable Haemophilus influenzae (NTHi) is an important cause of illness among children. To further understand the role of laterally transferred genes in NTHi colonization and otitis media, the prevalence of hicAB, lav, tnaA, and hifBC was determined among 44 middle ear and 35 throat NTHi isolates by dot-blot hybridization.
Collapse
Affiliation(s)
- Salma S Syed
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
13
|
Harms K, Schön V, Kickstein E, Wackernagel W. The RecJ DNase strongly suppresses genomic integration of short but not long foreign DNA fragments by homology-facilitated illegitimate recombination during transformation of Acinetobacter baylyi. Mol Microbiol 2007; 64:691-702. [PMID: 17462017 DOI: 10.1111/j.1365-2958.2007.05692.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Homology-facilitated illegitimate recombination (HFIR) promotes genomic integration of foreign DNA with a single segment homologous to the recipient genome by homologous recombination in the segment accompanied by illegitimate fusion of the heterologous sequence. During natural transformation of Acinetobacter baylyi HFIR occurs at about 0.01% of the frequency of fully homologous recombination. The role of the 5' single-strand-specific exonuclease RecJ in HFIR was investigated. Deletion of recJ increased HFIR frequency about 20-fold compared with wild type while homologous recombination was not affected. Illegitimate fusion sites were predominantly located within 360 nucleotides away from the homology whereas in wild type most fusion sites were distal (500-2500 nucleotides away). RecJ overproduction reduced the HFIR frequency to half compared with wild type, and transformants with short foreign DNA segments were diminished, leading to on average 866 foreign nucleotides integrated per event (682 in wild type, 115 in recJ). In recJ always the 3' ends of donor DNA were integrated at the homology whereas in wild type these were 3' or 5'. RecJ apparently suppresses HFIR by degrading 5' non-homologous DNA tails at the post-synaptic stage. We propose that the RecJ activity level controls the HFIR frequency during transformation and the amount of foreign DNA integrated per event.
Collapse
Affiliation(s)
- Klaus Harms
- Genetics, Department of Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, D-26111 Oldenburg, Germany
| | | | | | | |
Collapse
|
14
|
Brockmeyer J, Bielaszewska M, Fruth A, Bonn ML, Mellmann A, Humpf HU, Karch H. Subtypes of the plasmid-encoded serine protease EspP in Shiga toxin-producing Escherichia coli: distribution, secretion, and proteolytic activity. Appl Environ Microbiol 2007; 73:6351-9. [PMID: 17704265 PMCID: PMC2075056 DOI: 10.1128/aem.00920-07] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We investigated the prevalence, distribution, and structure of espP in Shiga toxin-producing Escherichia coli (STEC) and assessed the secretion and proteolytic activity of the encoded autotransporter protein EspP (extracellular serine protease, plasmid encoded). espP was identified in 56 of 107 different STEC serotypes. Sequencing of a 3,747-bp region of the 3,900-bp espP gene distinguished four alleles (espPalpha, espPbeta, espPgamma, and espPdelta), with 99.9%, 99.2%, 95.3%, and 95.1% homology, respectively, to espP of E. coli O157:H7 strain EDL933. The espPbeta, espPgamma, and espPdelta genes contained unique insertions and/or clustered point mutations that enabled allele-specific PCRs; these demonstrated the presence of espPalpha, espPbeta, espPgamma, and espPdelta in STEC isolates belonging to 17, 16, 15, and 8 serotypes, respectively. Among four subtypes of EspP encoded by these alleles, EspPalpha (produced by enterohemorrhagic E. coli [EHEC] O157:H7 and the major non-O157 EHEC serotypes) and EspPgamma cleaved pepsin A, human coagulation factor V, and an oligopeptide alanine-alanine-proline-leucine-para-nitroaniline, whereas EspPbeta and EspPdelta either were not secreted or were proteolytically inactive. The lack of proteolysis correlated with point mutations near the active serine protease site. We conclude that espP is widely distributed among STEC strains and displays genetic heterogeneity, which can be used for subtyping and which affects EspP activity. The presence of proteolytically active EspP in EHEC serogroups O157, O26, O111, and O145, which are bona fide human pathogens, suggests that EspP might play a role as an EHEC virulence factor.
Collapse
Affiliation(s)
- Jens Brockmeyer
- Institut für Hygiene, Universität Münster, Robert Koch Str. 41, 48149 Münster, Germany.
| | | | | | | | | | | | | |
Collapse
|
15
|
Schoen C, Joseph B, Claus H, Vogel U, Frosch M. Living in a changing environment: insights into host adaptation in Neisseria meningitidis from comparative genomics. Int J Med Microbiol 2007; 297:601-13. [PMID: 17572149 DOI: 10.1016/j.ijmm.2007.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 04/25/2007] [Accepted: 04/25/2007] [Indexed: 11/18/2022] Open
Abstract
Neisseria meningitidis (the meningococcus) colonizes the human nasopharynx of about 10% of the human population. However, for reasons that are still mostly unknown meningococci occasionally enter the cerebrospinal fluid leading to often fatal bacterial meningitis especially in children and young adults. The genetic basis for the observed differences in the pathogenic potential of different strains has only partially been unravelled so far. With the advent of whole genome sequencing technologies, complete genome sequences from three pathogenic meningococcal strains have become available and allow for a comprehensive analysis of the genomic and genetic differences occurring within this species. In this review, the general properties of the meningococcal genomes so far sequenced is given with an emphasis on the chromosomal rearrangements that have occurred, and the genomic islands and prophages that have been identified. The concomitant development of microarray technology for comparative genome hybridization studies of a large set of different meningococcal isolates as well as strains from other Neisseria species has extended our understanding of meningococcal population genetics on a genome-wide scale thus bridging the gap between meningococcal epidemiology and genomics. Finally, we briefly discuss the potential impact of meningococcal life style on its genome architecture and how in turn this genomic make-up might lead to a virulent phenotype making N. meningitidis an accidental pathogen. The overall properties of the meningococcal genome are characterized by genomic variability and instability, resulting in increased functional flexibility within this species.
Collapse
Affiliation(s)
- Christoph Schoen
- Institut für Hygiene und Mikrobiologie, Universität Würzburg, Josef-Schneider-Str. 2, Bau E1, D-97080 Würzburg, Germany.
| | | | | | | | | |
Collapse
|
16
|
Moxon R, Bayliss C, Hood D. Bacterial contingency loci: the role of simple sequence DNA repeats in bacterial adaptation. Annu Rev Genet 2007; 40:307-33. [PMID: 17094739 DOI: 10.1146/annurev.genet.40.110405.090442] [Citation(s) in RCA: 293] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacterial pathogens face stringent challenges to their survival because of the many unpredictable, often precipitate, and dynamic changes that occur in the host environment or in the process of transmission from one host to another. Bacterial adaptation to their hosts involves either a mechanism for sensing and responding to external changes or the selection of variants that arise through mutation. Here we review how bacterial pathogens exploit localized hypermutation, through polymerase slippage of simple sequence repeats (SSRs), to generate phenotypic variation and enhanced fitness. These SSRs are located within the reading frame or in the promoter of a subset of genes, often termed contingency loci, whose functions are usually involved in direct interactions with host structures.
Collapse
Affiliation(s)
- Richard Moxon
- Oxford University Department of Paediatrics, Molecular Infectious Diseases Group, Weatherall Institute of Molecular Medicine Oxford, United Kingdom.
| | | | | |
Collapse
|
17
|
Desvaux M, Cooper LM, Filenko NA, Scott-Tucker A, Turner SM, Cole JA, Henderson IR. The unusual extended signal peptide region of the type V secretion system is phylogenetically restricted. FEMS Microbiol Lett 2006; 264:22-30. [PMID: 17020545 DOI: 10.1111/j.1574-6968.2006.00425.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The plasmid encoded toxin, Pet, is a prototypical member of the serine protease autotransporters of the Enterobacteriaceae. In addition to the passenger and beta-domains typical of autotransporters, in silico predictions indicate that Pet possesses an unusually long N-terminal signal sequence. The signal sequence can be divided into five regions termed N1 (charged), H1 (hydrophobic), N2, H2 and C (cleavage site) domains. The N1 and H1 regions, which we have termed the extended signal peptide region, demonstrate remarkable conservation. In contrast, the N2, H2 and C regions demonstrate significant variability and are reminiscent of typical Sec-dependent signal sequences. Despite several investigations, the function of the extended signal peptide region remains obscure and surprisingly it has not been proven that the extended signal peptide region is actually synthesized as part of the signal sequence. Here, we demonstrate that the extended signal peptide region is present only in Gram-negative bacterial proteins originating from the classes Beta- and Gammaproteobacteria, and more particularly only in proteins secreted via the Type V secretion pathway: autotransporters, TpsA exoproteins of the two-partner system and trimeric autotransporters. In vitro approaches demonstrate that the DNA region encoding the extended signal peptide region is transcribed and translated.
Collapse
Affiliation(s)
- Mickaël Desvaux
- Division of Immunity and Infection, The University of Birmingham, Edgbaston, Birmingham, UK
| | | | | | | | | | | | | |
Collapse
|
18
|
Fernaays MM, Lesse AJ, Cai X, Murphy TF. Characterization of igaB, a second immunoglobulin A1 protease gene in nontypeable Haemophilus influenzae. Infect Immun 2006; 74:5860-70. [PMID: 16988265 PMCID: PMC1594874 DOI: 10.1128/iai.00796-06] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Revised: 06/27/2006] [Accepted: 07/18/2006] [Indexed: 11/20/2022] Open
Abstract
Nontypeable Haemophilus influenzae is an important respiratory pathogen, causing otitis media in children and lower respiratory tract infection in adults with chronic obstructive pulmonary disease (COPD). Immunoglobulin A1 (IgA1) protease is a well-described protein and potential virulence factor in this organism as well as other respiratory pathogens. IgA1 proteases cleave human IgA1, are involved in invasion, and display immunomodulatory effects. We have identified a second IgA1 protease gene, igaB, in H. influenzae that is present in addition to the previously described IgA1 protease gene, iga. Reverse transcriptase PCR and IgA1 protease assays indicated that the gene is transcribed, expressed, and enzymatically active in H. influenzae. The product of this gene is a type 2 IgA1 protease with homology to the iga gene of Neisseria species. Mutants that were deficient in iga, igaB, and both genes were constructed in H. influenzae strain 11P6H, a strain isolated from a patient with COPD who was experiencing an exacerbation. Analysis of these mutants indicated that igaB is the primary mediator of IgA1 protease activity in this strain. IgA1 protease activity assays on 20 clinical isolates indicated that the igaB gene is associated with increased levels of IgA1 protease activity. Approximately one-third of 297 strains of H. influenzae of diverse clinical and geographic origin contained igaB. Significant differences in the prevalence of igaB were observed among isolates from different sites of isolation (sputum > middle ear > nasopharynx). These data support the hypothesis that the newly discovered igaB gene is a potential virulence factor in nontypeable H. influenzae.
Collapse
Affiliation(s)
- Matthew M Fernaays
- Department of Microbiology, University at Buffalo, State University of New York, Buffalo, NY 14215, USA
| | | | | | | |
Collapse
|
19
|
Fernaays MM, Lesse AJ, Sethi S, Cai X, Murphy TF. Differential genome contents of nontypeable Haemophilus influenzae strains from adults with chronic obstructive pulmonary disease. Infect Immun 2006; 74:3366-74. [PMID: 16714566 PMCID: PMC1479259 DOI: 10.1128/iai.01904-05] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Haemophilus influenzae is an important cause of otitis media in children and lower respiratory infection in adults with chronic obstructive pulmonary disease (COPD). Patients with COPD experience periodic exacerbations that are associated with acquisition of new bacterial strains. However, not every strain acquisition is associated with exacerbation. To test the hypothesis that genetic differences among strains account for differences in pathogenic potential, a microarray consisting of 4,992 random 1.5- to 3-kb genomic fragments of an exacerbation strain was constructed. Competitive hybridization was performed using six strains associated with exacerbation as well as five strains associated with asymptomatic colonization. Seven sequences that were absent in all five colonization strains and present in at least two exacerbation strains were identified. One such sequence was a previously unreported gene with high homology to the meningococcal immunoglobulin A (IgA) protease gene, which is distinct from the previously described H. influenzae IgA protease. To assess the distribution of the seven sequences among well-characterized strains of H. influenzae, 59 exacerbation strains and 73 asymptomatic colonization strains were screened by PCR for the presence of these sequences. The presence or absence of any single sequence was not significantly associated with exacerbations of COPD. However, logistic regression and subgroup analysis identified combinations of the presence and absence of genes that are associated with exacerbations. These results indicate that patterns of genes are associated with the ability of strains of H. influenzae to cause exacerbations of COPD, supporting the concept that differences in pathogenic potential are based in part on genomic differences among infecting strains, not merely host factors.
Collapse
Affiliation(s)
- Matthew M Fernaays
- Department of Microbiology, VA Western New York Healthcare System, Medical Research 151, 3495 Bailey Avenue, Buffalo, NY 14215, USA
| | | | | | | | | |
Collapse
|
20
|
Highlander SK, Weissenberger S, Alvarez LE, Weinstock GM, Berget PB. Complete nucleotide sequence of a P2 family lysogenic bacteriophage, ϕMhaA1-PHL101, from Mannheimia haemolytica serotype A1. Virology 2006; 350:79-89. [PMID: 16631219 DOI: 10.1016/j.virol.2006.03.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Revised: 03/11/2006] [Accepted: 03/15/2006] [Indexed: 11/21/2022]
Abstract
The 34,525 nucleotide sequence of a double-stranded DNA bacteriophage (phiMhaA1-PHL101) from Mannheimia haemolytica serotype A1 has been determined. The phage encodes 50 open reading frames. Twenty-three of the proteins are similar to proteins of the P2 family of phages. Other protein sequences are most similar to possible prophage sequences from the draft genome of Histophilus somni 2336. Fourteen open reading frames encode proteins with no known homolog. The P2 orthologues are collinear in phiMhaA1-PHL101, with the exception of the phage tail protein gene T, which maps in a unique location between the S and V genes. The phage ORFs can be arranged into 17 possible transcriptional units and many of the genes are predicted to be translationally coupled. Southern blot analysis revealed phiMhaA1-PHL101 sequences in other A1 isolates as well as in serotype A5, A6, A9, and A12 strains of M. haemolytica, but not in the related organisms, Mannheimia glucosida or Pasteurella trehalosi.
Collapse
Affiliation(s)
- Sarah K Highlander
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| | | | | | | | | |
Collapse
|
21
|
Fox KL, Yildirim HH, Deadman ME, Schweda EKH, Moxon ER, Hood DW. Novel lipopolysaccharide biosynthetic genes containing tetranucleotide repeats in Haemophilus influenzae, identification of a gene for adding O-acetyl groups. Mol Microbiol 2006; 58:207-16. [PMID: 16164559 DOI: 10.1111/j.1365-2958.2005.04814.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Many of the genes for lipopolysaccharide (LPS) biosynthesis in Haemophilus influenzae are phase variable. The mechanism of this variable expression involves slippage of tetranucleotide repeats located within the reading frame of these genes. Based on this, we hypothesized that tetranucleotide repeat sequences might be used to identify as yet unrecognized LPS biosynthetic genes. Synthetic oligonucleotides (20 bases), representing all previously reported LPS-related tetranucleotide repeat sequences in H. influenzae, were used to probe a collection of 25 genetically and epidemiologically diverse strains of non-typeable H. influenzae. A novel gene identified through this strategy was a homologue of oafA, a putative O-antigen LPS acetylase of Salmonella typhimurium, that was present in all 25 non-typeable H. influenzae, 19 of which contained multiple copies of the tetranucleotide 5'-GCAA. Using lacZ fusions, we showed that these tetranucleotide repeats could mediate phase variation of this gene. Structural analysis of LPS showed that a major site of acetylation was the distal heptose (HepIII) of the LPS inner-core. An oafA deletion mutant showed absence of O-acetylation of HepIII. When compared with wild type, oafA mutants displayed increased susceptibility to complement-mediated killing by human serum, evidence that O-acetylation of LPS facilitates resistance to host immune clearance mechanisms. These results provide genetic and structural evidence that H. influenzae oafA is required for phase variable O-acetylation of LPS and functional evidence to support the role of O-acetylation of LPS in pathogenesis.
Collapse
Affiliation(s)
- Kate L Fox
- Molecular Infectious Diseases Group, University of Oxford Department of Paediatrics, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK.
| | | | | | | | | | | |
Collapse
|
22
|
Erwin AL, Nelson KL, Mhlanga-Mutangadura T, Bonthuis PJ, Geelhood JL, Morlin G, Unrath WCT, Campos J, Crook DW, Farley MM, Henderson FW, Jacobs RF, Mühlemann K, Satola SW, van Alphen L, Golomb M, Smith AL. Characterization of genetic and phenotypic diversity of invasive nontypeable Haemophilus influenzae. Infect Immun 2005; 73:5853-63. [PMID: 16113304 PMCID: PMC1231076 DOI: 10.1128/iai.73.9.5853-5863.2005] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ability of unencapsulated (nontypeable) Haemophilus influenzae (NTHi) to cause systemic disease in healthy children has been recognized only in the past decade. To determine the extent of similarity among invasive nontypeable isolates, we compared strain R2866 with 16 additional NTHi isolates from blood and spinal fluid, 17 nasopharyngeal or throat isolates from healthy children, and 19 isolates from middle ear aspirates. The strains were evaluated for the presence of several genetic loci that affect bacterial surface structures and for biochemical reactions that are known to differ among H. influenzae strains. Eight strains, including four blood isolates, shared several properties with R2866: they were biotype V (indole and ornithine decarboxylase positive, urease negative), contained sequence from the adhesin gene hia, and lacked a genetic island flanked by the infA and ksgA genes. Multilocus sequence typing showed that most biotype V isolates belonged to the same phylogenetic cluster as strain R2866. When present, the infA-ksgA island contains lipopolysaccharide biosynthetic genes, either lic2B and lic2C or homologs of the losA and losB genes described for Haemophilus ducreyi. The island was found in most nasopharyngeal and otitis isolates but was absent from 40% of invasive isolates. Overall, the 33 hmw-negative isolates were much more likely than hmw-containing isolates to have tryptophanase, ornithine decarboxylase, or lysine decarboxylase activity or to contain the hif genes. We conclude (i) that invasive isolates are genetically and phenotypically diverse and (ii) that certain genetic loci of NTHi are frequently found in association among NTHi strains.
Collapse
Affiliation(s)
- Alice L Erwin
- Seattle Biomedical Research Institute, 307 Westlake Ave. N., Suite 500, Seattle, WA 98109-5219, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Harrison A, Dyer DW, Gillaspy A, Ray WC, Mungur R, Carson MB, Zhong H, Gipson J, Gipson M, Johnson LS, Lewis L, Bakaletz LO, Munson RS. Genomic sequence of an otitis media isolate of nontypeable Haemophilus influenzae: comparative study with H. influenzae serotype d, strain KW20. J Bacteriol 2005; 187:4627-36. [PMID: 15968074 PMCID: PMC1151754 DOI: 10.1128/jb.187.13.4627-4636.2005] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In 1995, the Institute for Genomic Research completed the genome sequence of a rough derivative of Haemophilus influenzae serotype d, strain KW20. Although extremely useful in understanding the basic biology of H. influenzae, these data have not provided significant insight into disease caused by nontypeable H. influenzae, as serotype d strains are not pathogens. In contrast, strains of nontypeable H. influenzae are the primary pathogens of chronic and recurrent otitis media in children. In addition, these organisms have an important role in acute otitis media in children as well as other respiratory diseases. Such strains must therefore contain a gene repertoire that differs from that of strain Rd. Elucidation of the differences between these genomes will thus provide insight into the pathogenic mechanisms of nontypeable H. influenzae. The genome of a representative nontypeable H. influenzae strain, 86-028NP, isolated from a patient with chronic otitis media was therefore sequenced and annotated. Despite large regions of synteny with the strain Rd genome, there are large rearrangements in strain 86-028NP's genome architecture relative to the strain Rd genome. A genomic island similar to an island originally identified in H. influenzae type b is present in the strain 86-028NP genome, while the mu-like phage present in the strain Rd genome is absent from the strain 86-028NP genome. Two hundred eighty open reading frames were identified in the strain 86-028NP genome that were absent from the strain Rd genome. These data provide new insight that complements and extends the ongoing analysis of nontypeable H. influenzae virulence determinants.
Collapse
Affiliation(s)
- Alistair Harrison
- Center for Microbial Pathogenesis, Columbus Children's Research Institute, Ohio State University College of Medicine and Public Health, Columbus, Ohio 43205, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Gladitz J, Shen K, Antalis P, Hu FZ, Post JC, Ehrlich GD. Codon usage comparison of novel genes in clinical isolates of Haemophilus influenzae. Nucleic Acids Res 2005; 33:3644-58. [PMID: 15983137 PMCID: PMC1160521 DOI: 10.1093/nar/gki670] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A similarity statistic for codon usage was developed and used to compare novel gene sequences found in clinical isolates of Haemophilus influenzae with a reference set of 80 prokaryotic, eukaryotic and viral genomes. These analyses were performed to obtain an indication as to whether individual genes were Haemophilus-like in nature, or if they probably had more recently entered the H.influenzae gene pool via horizontal gene transfer from other species. The average and SD values were calculated for the similarity statistics from a study of the set of all genes in the H.influenzae Rd reference genome that encoded proteins of 100 amino acids or longer. Approximately 80% of Rd genes gave a statistic indicating that they were most like other Rd genes. Genes displaying codon usage statistics >1 SD above this range were either considered part of the highly expressed group of H.influenzae genes, or were considered of foreign origin. An alternative determinant for identifying genes of foreign origin was when the similarity statistics produced a value that was much closer to a non-H.influenzae reference organism than to any of the Haemophilus species contained in the reference set. Approximately 65% of the novel sequences identified in the H.influenzae clinical isolates displayed codon usages most similar to Haemophilus sp. The remaining novel sequences produced similarity statistics closer to one of the other reference genomes thereby suggesting that these sequences may have entered the H.influenzae gene pool more recently via horizontal transfer.
Collapse
Affiliation(s)
| | | | | | | | | | - Garth D. Ehrlich
- To whom correspondence should be addressed. Tel: +1 412 359 4228; Fax: +1 412 359 6995;
| |
Collapse
|
25
|
Shen K, Antalis P, Gladitz J, Sayeed S, Ahmed A, Yu S, Hayes J, Johnson S, Dice B, Dopico R, Keefe R, Janto B, Chong W, Goodwin J, Wadowsky RM, Erdos G, Post JC, Ehrlich GD, Hu FZ. Identification, distribution, and expression of novel genes in 10 clinical isolates of nontypeable Haemophilus influenzae. Infect Immun 2005; 73:3479-91. [PMID: 15908377 PMCID: PMC1111819 DOI: 10.1128/iai.73.6.3479-3491.2005] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We hypothesize that Haemophilus influenzae, as a species, possesses a much greater number of genes than that found in any single H. influenzae genome. This supragenome is distributed throughout naturally occurring infectious populations, and new strains arise through autocompetence and autotransformation systems. The effect is that H. influenzae populations can readily adapt to environmental stressors. The supragenome hypothesis predicts that significant differences exist between and among the genomes of individual infectious strains of nontypeable H. influenzae (NTHi). To test this prediction, we obtained 10 low-passage NTHi clinical isolates from the middle ear effusions of patients with chronic otitis media. DNA sequencing was performed with 771 clones chosen at random from a pooled genomic library. Homology searching demonstrated that approximately 10% of these clones were novel compared to the H. influenzae Rd KW20 genome, and most of them did not match any DNA sequence in GenBank. Amino acid homology searches using hypothetical translations of the open reading frames revealed homologies to a variety of proteins, including bacterial virulence factors not previously identified in the NTHi isolates. The distribution and expression of 53 of these genes among the 10 strains were determined by PCR- and reverse transcription PCR-based analyses. These unique genes were nonuniformly distributed among the 10 isolates, and transcription of these genes in planktonic cultures was detected in 50% (177 of 352) of the occurrences. All of the novel sequences were transcribed in one or more of the NTHi isolates. Seventeen percent (9 of 53) of the novel genes were identified in all 10 NTHi strains, with each of the remaining 44 being present in only a subset of the strains. These genic distribution analyses were more effective as a strain discrimination tool than either multilocus sequence typing or 23S ribosomal gene typing methods.
Collapse
Affiliation(s)
- Kai Shen
- Center for Genomic Sciences, Allegheny-Singer Research Institute, Allegheny General Hospital, 320 East North Ave., 11th Floor South Tower, Pittsburgh, PA 15212, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Protein secretion through autotransporter and two-partner pathways. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1694:235-57. [PMID: 15546669 DOI: 10.1016/j.bbamcr.2004.03.008] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2003] [Revised: 03/18/2004] [Accepted: 03/26/2004] [Indexed: 01/19/2023]
Abstract
Two distinct protein secretion pathways, the autotransporter (AT) and the two-partner secretion (TPS) pathways are characterized by their apparent simplicity. Both are devoted to the translocation across the outer membrane of mostly large proteins or protein domains. As implied by their name, AT proteins contain their own transporter domain, covalently attached to the C-terminal extremity of the secreted passenger domain, while TPS systems are composed of two separate proteins, with TpsA being the secreted protein and TpsB its specific transporter. In both pathways, the secreted proteins are exported in a Sec-dependent manner across the inner membrane, after which they cross the outer membrane with the help of their cognate transporters. The AT translocator domains and the TpsB proteins constitute distinct families of protein-translocating, outer membrane porins of Gram-negative bacteria. Both types of transporters insert into the outer membrane as beta-barrel proteins possibly forming oligomeric pores in the case of AT and serve as conduits for their cognate secreted proteins or domains across the outer membrane. Translocation appears to be folding-sensitive in both pathways, indicating that AT passenger domains and TpsA proteins cross the periplasm and the outer membrane in non-native conformations and fold progressively at the cell surface. A major difference between AT and TPS pathways arises from the manner by which specificity is established between the secreted protein and its transporter. In AT, the covalent link between the passenger and the translocator domains ensures the translocation of the former without the need for a specific molecular recognition between the two modules. In contrast, the TPS pathway has solved the question of specific recognition between the TpsA proteins and their transporters by the addition to the TpsA proteins of an N-proximal module, the conserved TPS domain, which represents a hallmark of the TPS pathway.
Collapse
|
27
|
Henderson IR, Navarro-Garcia F, Desvaux M, Fernandez RC, Ala'Aldeen D. Type V protein secretion pathway: the autotransporter story. Microbiol Mol Biol Rev 2004; 68:692-744. [PMID: 15590781 PMCID: PMC539010 DOI: 10.1128/mmbr.68.4.692-744.2004] [Citation(s) in RCA: 595] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Gram-negative bacteria possess an outer membrane layer which constrains uptake and secretion of solutes and polypeptides. To overcome this barrier, bacteria have developed several systems for protein secretion. The type V secretion pathway encompasses the autotransporter proteins, the two-partner secretion system, and the recently described type Vc or AT-2 family of proteins. Since its discovery in the late 1980s, this family of secreted proteins has expanded continuously, due largely to the advent of the genomic age, to become the largest group of secreted proteins in gram-negative bacteria. Several of these proteins play essential roles in the pathogenesis of bacterial infections and have been characterized in detail, demonstrating a diverse array of function including the ability to condense host cell actin and to modulate apoptosis. However, most of the autotransporter proteins remain to be characterized. In light of new discoveries and controversies in this research field, this review considers the autotransporter secretion process in the context of the more general field of bacterial protein translocation and exoprotein function.
Collapse
Affiliation(s)
- Ian R Henderson
- Division of Immunity and Infection, University of Birmingham, Birmingham B15 2TT, UK.
| | | | | | | | | |
Collapse
|
28
|
Fujise O, Lakio L, Wang Y, Asikainen S, Chen C. Clonal distribution of natural competence in Actinobacillus actinomycetemcomitans. ACTA ACUST UNITED AC 2004; 19:340-2. [PMID: 15327649 DOI: 10.1111/j.1399-302x.2004.00157.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The competence for natural transformation was investigated in 67 Actinobacillus actinomycetemcomitans strains. The transformation assays were performed with both cloned DNA fragments and chromosomal markers of A. actinomycetemcomitans. Competence was found in 12 of 18 serotype a strains, 0 of 21 serotype b strains, 0 of 14 serotype c strains, 3 of 6 serotype d strains, 3 of 4 serotype e strains, 0 of 3 serotype f strains, and 0 of 1 nonserotypeable strain. The transformation frequencies varied from 5 x 10(-3) to 4 x 10(-6) (median 1.5 x 10(-4)). The distribution pattern of natural competence is concordant with the major clonal lineages of A. actinomycetemcomitans. Serotype a strains are predominantly competent for transformation, while serotypes b and c strains are apparently non-competent.
Collapse
Affiliation(s)
- O Fujise
- Division of Primary Oral Health Care, University of Southern California School of Dentistry, Los Angeles, California 90089, USA
| | | | | | | | | |
Collapse
|
29
|
Alexander HL, Richardson AR, Stojiljkovic I. Natural transformation and phase variation modulation in Neisseria meningitidis. Mol Microbiol 2004; 52:771-83. [PMID: 15101983 DOI: 10.1111/j.1365-2958.2004.04013.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Neisseria meningitidis has evolved the ability to control the expression-state of numerous genes by phase variation. It has been proposed that the process aids this human pathogen in coping with the diversity of microenvironments and host immune systems. Therefore, increased frequencies of phase variation may augment the organism's adaptability and virulence. In this study, we found that DNA derived from various neisserial co-colonizers of the human nasopharynx increased N. meningitidis switching frequencies, indicating that heterologous neisserial DNA modulates phase variation in a transformation-dependent manner. In order to determine whether the effect of heterologous DNA was specific to the Hb receptor, HmbR, we constructed a Universal Rates of Switching cassette (UROS). With this cassette, we demonstrated that heterologous DNA positively affects phase variation throughout the meningococcal genome, as UROS phase variation frequencies were also increased in the presence of neisserial DNA. Overexpressing components of the neisserial mismatch repair system partially alleviated DNA-induced changes in phase variation frequencies, thus implicating mismatch repair titration as a cause of these transformation-dependent increases in switching. The DNA-dependent effect on phase variation was transient and may serve as a mechanism for meningococcal genetic variability that avoids the fitness costs encountered by global mutators.
Collapse
Affiliation(s)
- Heather L Alexander
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | | | |
Collapse
|
30
|
Nakamura Y, Itoh T, Matsuda H, Gojobori T. Biased biological functions of horizontally transferred genes in prokaryotic genomes. Nat Genet 2004; 36:760-6. [PMID: 15208628 DOI: 10.1038/ng1381] [Citation(s) in RCA: 322] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2003] [Accepted: 05/12/2004] [Indexed: 11/10/2022]
Abstract
Horizontal gene transfer is one of the main mechanisms contributing to microbial genome diversification. To clarify the overall picture of interspecific gene flow among prokaryotes, we developed a new method for detecting horizontally transferred genes and their possible donors by Bayesian inference with training models for nucleotide composition. Our method gives the average posterior probability (horizontal transfer index) for each gene sequence, with a low horizontal transfer index indicating recent horizontal transfer. We found that 14% of open reading frames in 116 prokaryotic complete genomes were subjected to recent horizontal transfer. Based on this data set, we quantitatively determined that the biological functions of horizontally transferred genes, except mobile element genes, are biased to three categories: cell surface, DNA binding and pathogenicity-related functions. Thus, the transferability of genes seems to depend heavily on their functions.
Collapse
Affiliation(s)
- Yoji Nakamura
- Center for Information Biology and DNA Data Bank of Japan, National Institute of Genetics, Research Organization of Information and Systems, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | | | | | | |
Collapse
|
31
|
Munson RS, Harrison A, Gillaspy A, Ray WC, Carson M, Armbruster D, Gipson J, Gipson M, Johnson L, Lewis L, Dyer DW, Bakaletz LO. Partial analysis of the genomes of two nontypeable Haemophilus influenzae otitis media isolates. Infect Immun 2004; 72:3002-10. [PMID: 15102813 PMCID: PMC387840 DOI: 10.1128/iai.72.5.3002-3010.2004] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In 1995, The Institute for Genomic Research completed the genomic sequence of a rough derivative of Haemophilus influenzae serotype d, strain KW20. This sequence, though extremely useful in understanding the basic biology of H. influenzae, has yet to provide significant insight into our understanding of disease caused by nontypeable H. influenzae (NTHI), because serotype d strains are not generally pathogens. In contrast, NTHI strains are frequently mucosal pathogens and are the primary pathogens of chronic otitis media as well as a significant cause of acute otitis media in children. Thus, it is of great importance to further understand their biology. We used a DNA-based microarray approach to identify genes present in a clinical isolate of NTHI that were absent from strain Rd. We also sequenced the genome of a second NTHI isolate from a child with chronic otitis media to threefold coverage and then used an array of bioinformatics tools to identify genes present in this NTHI strain but absent from strain Rd. These methods were complementary in approach and results. We identified, in both strains, homologues of H. influenzae lav, an autotransported protein of unknown function; tnaA, which encodes tryptophanase; as well as a homologue of Pasteurella multocida tsaA, which encodes an alkyl peroxidase that may play a role in protection against reactive oxygen species. We also identified a number of putative restriction-modification systems, bacteriophage genes and transposon-related genes. These data provide new insight that complements and extends our ongoing analysis of NTHI virulence determinants.
Collapse
Affiliation(s)
- Robert S Munson
- Center for Microbial Pathogenesis, Columbus Children's Research Institute and The Department of Pediatrics, The Ohio State University, Columbus, Ohio 43205, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Leyton DL, Sloan J, Hill RE, Doughty S, Hartland EL. Transfer region of pO113 from enterohemorrhagic Escherichia coli: similarity with R64 and identification of a novel plasmid-encoded autotransporter, EpeA. Infect Immun 2003; 71:6307-19. [PMID: 14573650 PMCID: PMC219559 DOI: 10.1128/iai.71.11.6307-6319.2003] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2003] [Revised: 05/20/2003] [Accepted: 07/15/2003] [Indexed: 11/20/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is a prominent, food-borne cause of diarrhea, bloody diarrhea, and the hemolytic uremic syndrome in industrialized countries. Most strains of EHEC carry the locus for enterocyte effacement (LEE) pathogenicity island, but a proportion of isolates from patients with severe disease do not carry LEE and very little is known about virulence factors in these organisms. LEE-negative strains of EHEC typically express Shiga toxin 2 and carry a large plasmid that encodes the production of EHEC hemolysin. In this study, we determined the nucleotide sequence of the transfer region of pO113, the large hemolysin plasmid from LEE-negative EHEC O113:H21 (EH41). This 63.9-kb region showed a high degree of similarity with the transfer region of R64, and pO113 was capable of self-transmission at low frequencies. Unlike R64 and the related dot/icm system of Legionella pneumophila, however, pO113 was unable to mobilize RSF1010. In addition, the pO113 transfer region encoded a novel high-molecular-weight serine protease autotransporter of Enterobacteriaceae (SPATE) protein, termed EpeA. Like other SPATEs, EpeA exhibited protease activity and mucinase activity, but expression was not associated with a cytopathic effect on epithelial cells. Analysis of a second high-molecular-weight secreted protein revealed that pO113 also encodes EspP, a cytopathic SPATE identified previously in EHEC O157:H7. The nucleotide sequences encoding the predicted beta-domains of espP and epeA were identical and also shared significant homology with a third SPATE protein, EspI. Both espP and epeA were detected in several LEE-negative clinical isolates of EHEC and thus may contribute to the pathogenesis of this subset of EHEC.
Collapse
Affiliation(s)
- Denisse L Leyton
- Department of Microbiology, School of Biomedical Sciences, Monash University, Clayton 3800, Victoria, Australia
| | | | | | | | | |
Collapse
|
33
|
Kinsella RJ, Fitzpatrick DA, Creevey CJ, McInerney JO. Fatty acid biosynthesis in Mycobacterium tuberculosis: lateral gene transfer, adaptive evolution, and gene duplication. Proc Natl Acad Sci U S A 2003; 100:10320-5. [PMID: 12917487 PMCID: PMC193559 DOI: 10.1073/pnas.1737230100] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2002] [Indexed: 11/18/2022] Open
Abstract
Mycobacterium tuberculosis is a high GC Gram-positive member of the actinobacteria. The mycobacterial cell wall is composed of a complex assortment of lipids and is the interface between the bacterium and its environment. The biosynthesis of fatty acids plays an essential role in the formation of cell wall components, in particular mycolic acids, which have been targeted by many of the drugs used to treat M. tuberculosis infection. M. tuberculosis has approximately 250 genes involved in fatty acid metabolism, a much higher proportion than in any other organism. In silico methods have been used to compare the genome of M. tuberculosis CDC1551 to a database of 58 complete bacterial genomes. The resulting alignments were scanned for genes specifically involved in fatty acid biosynthetic pathway I. Phylogenetic analysis of these alignments was used to investigate horizontal gene transfer, gene duplication, and adaptive evolution. It was found that of the eight gene families examined, five of the phylogenies reconstructed suggest that the actinobacteria have a closer relationship with the alpha-proteobacteria than expected. This is either due to either an ancient transfer of genes or deep paralogy and subsequent retention of the genes in unrelated lineages. Additionally, adaptive evolution and gene duplication have been an influence in the evolution of the pathway. This study provides a key insight into how M. tuberculosis has developed its unique fatty acid synthetic abilities.
Collapse
Affiliation(s)
- Rhoda J Kinsella
- Bioinformatics and Pharmacogenomics Laboratory, Biology Department, National University of Ireland, Maynooth, County Kildare, Ireland
| | | | | | | |
Collapse
|
34
|
Rose JE, Meyer DH, Fives-Taylor PM. Aae, an autotransporter involved in adhesion of Actinobacillus actinomycetemcomitans to epithelial cells. Infect Immun 2003; 71:2384-93. [PMID: 12704108 PMCID: PMC153273 DOI: 10.1128/iai.71.5.2384-2393.2003] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2002] [Revised: 12/13/2002] [Accepted: 02/06/2003] [Indexed: 11/20/2022] Open
Abstract
The periodontal pathogen Actinobacillus actinomycetemcomitans possesses myriad virulence factors, among them the ability to adhere to and invade epithelial cells. Recent advances in the molecular manipulation of this pathogen and the sequencing of strain HK 1651 (http://www.genome.ou.edu/act.html) have facilitated examination of the genetics of its interaction with epithelial cells. The related gram-negative organism, Haemophilus influenzae, possesses autotransporter adhesins. A search of the sequence database of strain HK 1651 revealed a homologue with similarity in the pore-forming domain to that of the H. influenzae autotransporter, Hap. A. actinomycetemcomitans mutants deficient in the homologue, Aae, showed reduced binding to epithelial cells. A method for making A. actinomycetemcomitans SUNY 465 transiently resistant to spectinomycin was used with conjugation to generate an isogenic aae mutant. An allelic replacement mutant was created in the naturally transformable A. actinomycetemcomitans strain ATCC 29523. Lactoferrin, an important part of the innate host defense system, protects against bacterial infection by bactericidal and antiadhesion mechanisms. Lactoferrin in human milk removes or cleaves Hap and another autotransporter, an immunoglobulin A1 protease, from the surface of H. influenzae, thereby reducing their binding to epithelial cells. Human milk whey had similar effects on Aae from A. actinomycetemcomitans ATCC 29523 and its binding to epithelial cells; however, there was little effect on the binding of SUNY 465. A difference in the genetic structure of aae in the two strains, apparently due to the copy number of a 135-base repeated sequence, may be the cause of the differential action of lactoferrin. aae is the first A. actinomycetemcomitans gene involved in adhesion to epithelial cells to be identified.
Collapse
Affiliation(s)
- John E Rose
- Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont 05405, USA
| | | | | |
Collapse
|
35
|
Williams BJ, Golomb M, Phillips T, Brownlee J, Olson MV, Smith AL. Bacteriophage HP2 of Haemophilus influenzae. J Bacteriol 2002; 184:6893-905. [PMID: 12446640 PMCID: PMC135456 DOI: 10.1128/jb.184.24.6893-6905.2002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Temperate bacteriophages effect chromosomal evolution of their bacterial hosts, mediating rearrangements and the acquisition of novel genes from other taxa. Although the Haemophilus influenzae genome shows evidence of past phage-mediated lateral transfer, the phages presumed responsible have not been identified. To date, six different H. influenzae phages are known; of these, only the HP1/S2 group, which lyosogenizes exclusively Rd strains (which were originally encapsulated serotype d), is well characterized. Phages in this group are genetically very similar, with a highly conserved set of genes. Because the majority of H. influenzae strains are nonencapsulated (nontypeable), it is important to characterize phages infecting this larger, genetically more diverse group of respiratory pathogens. We have identified and sequenced HP2, a bacteriophage of nontypeable H. influenzae. Although related to the fully sequenced HP1 (and even more so to the partially sequenced S2) and similar in genetic organization, HP2 has a few novel genes and differs in host range; HP2 will not infect or lysogenize Rd strains. Genomic comparisons between HP1/S2 and HP2 suggest recent divergence, with new genes completely replacing old ones at certain loci. Sequence comparisons suggest that H. influenzae phages evolve by recombinational exchange of genes with each other, with cryptic prophages, and with the host chromosome.
Collapse
Affiliation(s)
- Bryan J Williams
- Department of Molecular Microbiology & Immunology, University of Missouri-Columbia, Columbia, 65212, USA
| | | | | | | | | | | |
Collapse
|
36
|
Heinemann JA. Gene patents: are they socially acceptable monopolies, essential for drug discovery? -- reply. Drug Discov Today 2002; 7:23-4. [PMID: 11790597 DOI: 10.1016/s1359-6446(01)02106-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|