1
|
Soto-Aceves MP, Smalley NE, Schaefer AL, Greenberg EP. The relationship between pqs gene expression and acylhomoserine lactone signaling in Pseudomonas aeruginosa. J Bacteriol 2024; 206:e0013824. [PMID: 39235221 PMCID: PMC11500497 DOI: 10.1128/jb.00138-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/01/2024] [Indexed: 09/06/2024] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa has complex quorum sensing (QS) circuitry, which involves two acylhomoserine lactone (AHL) systems, the LasI AHL synthase and LasR AHL-dependent transcriptional activator system and the RhlI AHL synthase-RhlR AHL-responsive transcriptional activator. There is also a quinoline signaling system [the Pseudomonas quinolone signal (PQS) system]. Although there is a core set of genes regulated by the AHL circuits, there is strain-to-strain variation in the non-core QS regulon. A size reduction of the QS regulon occurs in laboratory evolution experiments with the model strain PAO1. We used transcriptomics to test the hypothesis that reductive evolution in the PAO1 QS regulon can in large part be explained by a null mutation in pqsR, the gene encoding the transcriptional activator of the pqs operon. We found that PqsR had very little influence on the AHL QS regulon. This was a surprising finding because the last gene in the PqsR-dependent pqs operon, pqsE, codes for a protein, which physically interacts with RhlR, and this interaction is required for RhlR-dependent activation of some genes. We used comparative transcriptomics to examine the influence of a pqsE mutation on the QS regulon and identified only three transcripts, which were strictly dependent on PqsE. By using reporter constructs, we showed that the PqsE influence on other genes was dependent on experimental conditions and we have gained some insight about those conditions. This work adds to our understanding of the plasticity of the P. aeruginosa QS regulon and to the role PqsE plays in RhlR-dependent gene activation.IMPORTANCEOver many generations of growth in certain conditions, Pseudomonas aeruginosa undergoes a large reductive evolution in the number of genes activated by quorum sensing. Here, we rule out one plausible route of the reductive evolution: that a mutation in a transcriptional activator PqsR or the PqsR activation of pqsE, which codes for a chaperone for the quorum sensing signal-responsive transcription factor RhlR, explains the finding. We further provide information about the influence of PqsR and PqsE on quorum sensing in P. aeruginosa.
Collapse
Affiliation(s)
- Martín P. Soto-Aceves
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Nicole E. Smalley
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Amy L. Schaefer
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - E. Peter Greenberg
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
2
|
Lee SI, Kim DR, Kwak YS. Genome analysis of Streptomyces recifensis SN1E1 to investigate mechanisms for inhibiting fire blight disease. J Appl Microbiol 2024; 135:lxae253. [PMID: 39363195 DOI: 10.1093/jambio/lxae253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/13/2024] [Accepted: 10/02/2024] [Indexed: 10/05/2024]
Abstract
AIM Fire blight, attributed to the bacterium Erwinia amylovora, significantly damages economically important crops, such as apples and pears. Conventional methods for managing fire blight involve the application of chemical pesticides, such as streptomycin and oxytetracycline. Nevertheless, apprehensions are increasing regarding developing antibiotic and pesticide-resistant strains, compounded by documented instances of plant toxicity. Here, we present that Streptomyces recifensis SN1E1 has exhibited remarkable efficacy in suppressing apple fire blight disease. This study aims to unravel the molecular-level antimicrobial mechanisms employed by the SN1E1 strain. METHODS AND RESULTS We identified four antimicrobial-associated biosynthetic gene clusters within the genomics of S. recifensis SN1E1. To validate antimicrobial activity against E. amylovora, knock-out mutants of biosynthetic genes linked to antimicrobial activity were generated using the CRISPR/Cas9 mutagenesis system. Notably, the whiE4 and phzB deficient mutants displayed statistically reduced antibacterial activity against E. amylovora. CONCLUSION This research establishes a foundation for environmental and biological control studies. The potential utilization of environmentally friendly microbial agents derived from the SN1E1 strain holds promise for the biological control of fire blight disease.
Collapse
Affiliation(s)
- Su In Lee
- Division of Applied Life Science (BK21Plus), Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea
| | - Da-Ran Kim
- Department of Plant Medicine and RILS, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea
| | - Youn-Sig Kwak
- Division of Applied Life Science (BK21Plus), Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea
- Department of Plant Medicine and RILS, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea
| |
Collapse
|
3
|
Chen KZM, Vu LM, Vollmer AC. Cultivation in long-term simulated microgravity is detrimental to pyocyanin production and subsequent biofilm formation ability of Pseudomonas aeruginosa. Microbiol Spectr 2024; 12:e0021124. [PMID: 39162544 PMCID: PMC11448113 DOI: 10.1128/spectrum.00211-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/27/2024] [Indexed: 08/21/2024] Open
Abstract
Pseudomonas aeruginosa forms aggregates known as biofilms. Previous studies have shown that when P. aeruginosa is cultivated in space, thicker and structurally different biofilms are formed than from those grown on Earth. We investigated how microgravity, simulated in a laboratory setting, influenced the growth, colonization, and virulence potentials of a P. aeruginosa PA14 wild-type strain, as well as two surface attachment-defective (sad) mutants altered at crucial biofilm-forming steps: flgK and pelA. Using high-aspect ratio rotating-wall vessel (HARV) bioreactors, P. aeruginosa bacteria were grown to stationary phase under prolonged (6 days) exposure to simulated microgravity or normal gravity conditions. After the exposure, the capacity of the culture to form biofilms was measured. Additionally, pigment (pyocyanin) formed by each culture during the incubation was extracted and quantified. We demonstrate that the first prolonged exposure to low-shear modeled microgravity (LSMMG) and without nutrient replenishment significantly diminishes wild-type P. aeruginosa PA14 biofilm formation abilities after exposure and pyocyanin production during exposure, while the mutant strains exhibit differing outcomes for both properties. IMPORTANCE Given plans for humans to engage in prolonged space travel, we investigated biofilm and pigment/virulence factor formation in Pseudomonas aeruginosa when cultivated in microgravity. These bacteria are opportunistic pathogens in immunocompromised individuals. Previous studies of space travelers have shown some immune system diminutions. Hence, our studies shed some light on how prolonged cultivation of bacteria in simulated microgravity conditions affect their growth characteristics.
Collapse
Affiliation(s)
| | - Linda My Vu
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania, USA
- Department of Microbial Pathogenesis, University of Maryland—Baltimore, Baltimore, Maryland, USA
| | - Amy Cheng Vollmer
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania, USA
| |
Collapse
|
4
|
Lapitan LD, Felisilda BMB, Tiangco CE, Rosin Jose A. Advances in Bioreceptor Layer Engineering in Nanomaterial-based Sensing of Pseudomonas Aeruginosa and its Metabolites. Chem Asian J 2024; 19:e202400090. [PMID: 38781439 DOI: 10.1002/asia.202400090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 05/25/2024]
Abstract
Pseudomonas aeruginosa is a pathogen that infects wounds and burns and causes severe infections in immunocompromised humans. The high virulence, the rise of antibiotic-resistant strains, and the easy transmissibility of P. aeruginosa necessitate its fast detection and control. The gold standard for detecting P. aeruginosa, the plate culture method, though reliable, takes several days to complete. Therefore, developing accurate, rapid, and easy-to-use diagnostic tools for P. aeruginosa is highly desirable. Nanomaterial-based biosensors are at the forefront of detecting P. aeruginosa and its secondary metabolites. This review summarises the biorecognition elements, biomarkers, immobilisation strategies, and current state-of-the-art biosensors for P. aeruginosa. The review highlights the underlying principles of bioreceptor layer engineering and the design of optical, electrochemical, mass-based, and thermal biosensors based on nanomaterials. The advantages and disadvantages of these biosensors and their future point-of-care applications are also discussed. This review outlines significant advancements in biosensors and sensors for detecting P. aeruginosa and its metabolites. Research efforts have identified biorecognition elements specific and selective towards P. aeruginosa. The stability, ease of preparation, cost-effectiveness, and integration of these biorecognition elements onto transducers are pivotal for their application in biosensors and sensors. At the same time, when developing sensors for clinically significant analytes such as P. aeruginosa, virulence factors need to be addressed, such as the sensor's sensitivity, reliability, and response time in samples obtained from patients. The point-of-care applicability of the developed sensor may be an added advantage since it enables onsite determination. In this context, optical methods developed for P. aeruginosa offer promising potential.
Collapse
Affiliation(s)
- Lorico Ds Lapitan
- Department of Chemical Engineering, Faculty of Engineering, University of Santo Tomas, España Boulevard, Manila, Philippines, Center for Advanced Materials and Technologies-CEZAMAT, Warsaw University of Technology, 02-822, Warsaw, Poland
| | - Bren Mark B Felisilda
- Department of Electrode Processes, Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland, Department of Chemistry, College of Arts & Sciences, Xavier University-Ateneo de Cagayan, Corrales Street, Cagayan de Oro, Philippines
| | - Cristina E Tiangco
- Research Center for the Natural and Applied Sciences and, Department of Chemical Engineering, Faculty of Engineering, University of Santo Tomas, España Boulevard, Manila, Philippines
| | - Ammu Rosin Jose
- Department of Chemistry, Sacred Heart College (Autonomous), Pandit Karuppan Rd, Thevara, Ernakulam, Kerala, India
| |
Collapse
|
5
|
González-Valdez A, Vázquez-Bueno PG, Hernández-Pineda J, Soberón-Chávez G. Synthesis of di-rhamnolipids by the avirulent, mono-rhamnolipid producing strain Pseudomonas aeruginosa ATCC 9027. Biotechnol Lett 2024:10.1007/s10529-024-03527-7. [PMID: 39225887 DOI: 10.1007/s10529-024-03527-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/25/2024] [Accepted: 08/03/2024] [Indexed: 09/04/2024]
Abstract
To construct a derivative of the avirulent Pseudomonas aeruginosa ATCC 9027 that produces high levels of di-rhamnolipid, that has better physico-chemical characteristics for biotechnological applications than mono-rhamnolipid, which is the sole type produced by ATCC 9027. We used plasmids expressing the rhlC gene, which encodes for rhamnosyl transferase II that transforms mono- to di-rhamnolipids under different promoters and in combination with the gene coding for the RhlR quorum sensing regulator, or the mono-rhamnolipid biosynthetic rhlAB operon. The plasmids tested carrying the rhlC gene under the lac promoter were plasmid prhlC and prhlRC, while prhlAB-R-C expressed this gene from the rhlA promoter, forming part of the artificially constructed rhlAB-R-C operon. We measured rhamnolipds concentrations using the orcinol method and determined the proportion of mono-rhamnolipids and di-rhamnolipids by UPLC/MS/MS. We found that the expression of rhlC in P. aeruginosa ATCC 9027 caused the production of di-rhamnolipids and that the derivative carrying plasmid prhlAB-R-C gives the best results considering total rhamnolipids and a higher proportion of di-rhamnolipids. A P. aeruginosa ATCC 9027 derivative with increased di-rhamnolipids production was developed by expressing plasmid prhlAB-R-C, that produces similar rhamnolipids levels as PAO1 type-strain and presented a higher proportion of di-rhamnolipids than this type-strain.
Collapse
Affiliation(s)
- Abigail González-Valdez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apdo. Postal 70228, C. P. 04510, University City, CDMX, Mexico
| | - Paola G Vázquez-Bueno
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apdo. Postal 70228, C. P. 04510, University City, CDMX, Mexico
| | - Jessica Hernández-Pineda
- Departamento de Infectología E Inmunología, Instituto Nacional de Perinatología, SSA, C. P. 11000, Mexico City, CDMX, Mexico
| | - Gloria Soberón-Chávez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apdo. Postal 70228, C. P. 04510, University City, CDMX, Mexico.
| |
Collapse
|
6
|
Sachdeva C, Satyamoorthy K, Murali TS. Pseudomonas aeruginosa: metabolic allies and adversaries in the world of polymicrobial infections. Crit Rev Microbiol 2024:1-20. [PMID: 39225080 DOI: 10.1080/1040841x.2024.2397359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 08/10/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Pseudomonas aeruginosa (PA), an opportunistic human pathogen that is frequently linked with chronic infections in immunocompromised individuals, is also metabolically versatile, and thrives in diverse environments. Additionally, studies report that PA can interact with other microorganisms, such as bacteria, and fungi, producing unique metabolites that can modulate the host immune response, and contribute to disease pathogenesis. This review summarizes the current knowledge related to the metabolic interactions of PA with other microorganisms (Staphylococcus, Acinetobacter, Klebsiella, Enterococcus, and Candida) and human hosts, and the importance of these interactions in a polymicrobial context. Further, we highlight the potential applications of studying these metabolic interactions toward designing better diagnostic tools, and therapeutic strategies to prevent, and treat infections caused by this pathogen.
Collapse
Affiliation(s)
- Chandni Sachdeva
- Department of Public Health Genomics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Kapaettu Satyamoorthy
- Department of Cell & Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
- SDM College of Medical Sciences and Hospital, Shri Dharmasthala Manjunatheshwara (SDM) University, Sattur, Karnataka, India
| | - Thokur Sreepathy Murali
- Department of Public Health Genomics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
7
|
Baumgarten J, Schneider P, Thiemann M, Zimmermann M, Diederich C, Blankenfeldt W, Kunick C. Substrate-Based Ligand Design for Phenazine Biosynthesis Enzyme PhzF. ChemMedChem 2024:e202400466. [PMID: 39163032 DOI: 10.1002/cmdc.202400466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024]
Abstract
The phenazine pyocyanin is an important virulence factor of the pathogen Pseudomonas aeruginosa, which is on the WHO list of antibiotic resistant "priority pathogens". In this study the isomerase PhzF, a key bacterial enzyme of the pyocyanin biosynthetic pathway, was investigated as a pathoblocker target. The aim of the pathoblocker strategy is to reduce the virulence of the pathogen without killing it, thus preventing the rapid development of resistance. Based on crystal structures of PhzF, derivatives of the inhibitor 3-hydroxyanthranilic acid were designed. Co-crystal structures of the synthesized derivatives with PhzF revealed spacial limitations of the binding pocket of PhzF in the closed conformation. In contrast, ligands aligned to the open conformation of PhzF provided more room for structural modifications. The intrinsic fluorescence of small 3-hydroxyanthranilic acid derivatives enabled direct affinity determinations using FRET assays. The analysis of structure-activity relationships showed that the carboxylic acid moiety is essential for binding to the target enzyme. The results of this study provide fundamental structural insights that will be useful for the design of PhzF-inhibitors.
Collapse
Affiliation(s)
- Janosch Baumgarten
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstraße 55, Braunschweig, 38106, Germany
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Franz-Liszt-Str. 35a, Braunschweig, 38106, Germany
- Structure and Function of Proteins (SFPR), Helmholtz Centre for Infection Research (HZI), Inhoffenstraße 7, Braunschweig, 38124, Germany
| | - Philipp Schneider
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Franz-Liszt-Str. 35a, Braunschweig, 38106, Germany
- Structure and Function of Proteins (SFPR), Helmholtz Centre for Infection Research (HZI), Inhoffenstraße 7, Braunschweig, 38124, Germany
| | - Marie Thiemann
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstraße 55, Braunschweig, 38106, Germany
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Franz-Liszt-Str. 35a, Braunschweig, 38106, Germany
- Structure and Function of Proteins (SFPR), Helmholtz Centre for Infection Research (HZI), Inhoffenstraße 7, Braunschweig, 38124, Germany
| | - Moritz Zimmermann
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstraße 55, Braunschweig, 38106, Germany
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Franz-Liszt-Str. 35a, Braunschweig, 38106, Germany
- Structure and Function of Proteins (SFPR), Helmholtz Centre for Infection Research (HZI), Inhoffenstraße 7, Braunschweig, 38124, Germany
| | - Christina Diederich
- Structure and Function of Proteins (SFPR), Helmholtz Centre for Infection Research (HZI), Inhoffenstraße 7, Braunschweig, 38124, Germany
| | - Wulf Blankenfeldt
- Structure and Function of Proteins (SFPR), Helmholtz Centre for Infection Research (HZI), Inhoffenstraße 7, Braunschweig, 38124, Germany
- Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Rebenring 56, Braunschweig, 38106, Germany
| | - Conrad Kunick
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstraße 55, Braunschweig, 38106, Germany
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Franz-Liszt-Str. 35a, Braunschweig, 38106, Germany
| |
Collapse
|
8
|
Truong-Bolduc QC, Wang Y, Lawton BG, Brown Harding H, Yonker LM, Vyas JM, Hooper DC. Phenazine-1 carboxylic acid of Pseudomonas aeruginosa induces the expression of Staphylococcus aureus Tet38 MDR efflux pump and mediates resistance to phenazines and antibiotics. Antimicrob Agents Chemother 2024; 68:e0063624. [PMID: 39028191 PMCID: PMC11304736 DOI: 10.1128/aac.00636-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/26/2024] [Indexed: 07/20/2024] Open
Abstract
In this study, we showed that phenazine-1 carboxylic acid (PCA) of Pseudomonas aeruginosa induced the expression of Tet38 efflux pump triggering Staphylococcus aureus resistance to tetracycline and phenazines. Exposure of S. aureus RN6390 to supernatants of P. aeruginosa PA14 and its pyocyanin (PYO)-deficient mutants showed that P. aeruginosa non-PYO phenazines could induce the expression of Tet38 efflux pump. Direct exposure of RN6390 to PCA compound at 0.25× MIC led to a five-fold increase in tet38 transcripts. Expression of Tet38 protein was identified through confocal microscopy using RN6390(pRN-tet38p-yfp) that expressed YFP under control of the tet38 promoter by PCA at 0.25× MIC. The MICs of PCA of a Tet38-overexpressor and a Δtet38 mutant showed a three-fold increase and a two-fold decrease, respectively, compared with that of wild-type. Pre-exposure of RN6390 to PCA (0.25× MIC) for 1 hour prior to addition of tetracycline (1× or 10× MIC) improved bacteria viability of 1.5-fold and 2.6-fold, respectively, but addition of NaCl 7% together with tetracycline at 10× MIC reduced the number of viable PCA-exposed RN6390 of a 2.0-log10 CFU/mL. The transcript levels of tetR21, a repressor of tet38, decreased and increased two-fold in the presence of PCA and NaCl, respectively, suggesting that the effects of PCA and NaCl on tet38 production occurred through TetR21 expression. These data suggest that PCA-induced Tet38 protects S. aureus against tetracycline during coinfection with P. aeruginosa; however, induced tet38-mediated S. aureus resistance to tetracycline is reversed by NaCl 7%, a nebulized treatment used to enhance sputum mobilization in CF patients.
Collapse
Affiliation(s)
- Q. C. Truong-Bolduc
- Infectious Diseases Division and Medical Services, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Y. Wang
- Infectious Diseases Division and Medical Services, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - B. G. Lawton
- Department of Pediatrics, Cystic Fibrosis Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - H. Brown Harding
- Infectious Diseases Division and Medical Services, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - L. M. Yonker
- Department of Pediatrics, Cystic Fibrosis Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - J. M. Vyas
- Infectious Diseases Division and Medical Services, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - D. C. Hooper
- Infectious Diseases Division and Medical Services, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Honselmann Genannt Humme J, Dubrowska K, Grygorcewicz B, Gliźniewicz M, Paszkiewicz O, Głowacka A, Musik D, Story G, Rakoczy R, Augustyniak A. Optimised stress - intensification of pyocyanin production with zinc oxide nanoparticles. Microb Cell Fact 2024; 23:215. [PMID: 39061071 PMCID: PMC11282796 DOI: 10.1186/s12934-024-02486-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Pyocyanin is a blue pigment produced by Pseudomonas aeruginosa. Due to its unique redox properties over the last decade, it has gained more and more interest as a utile chemical. Nevertheless, it remains a rather costly reagent. It was previously shown that the production of pyocyanin can be enhanced by employing various methods. Among them are using statistical methods for planning the experiments or exposing bacterial cultures to stressors such as nanoparticles dosed in sublethal concentrations, e.g. zinc oxide nanoparticles. RESULTS The Design of Experiment (DoE) methodology allowed for calculating the optimal process temperature and nanoparticle concentration to intensify pyocyanin production. Low concentrations of the nanoparticles (6.06 µg/mL) and a temperature of 32℃ enhanced pyocyanin production, whereas higher concentrations of nanoparticles (275.75 µg/mL) and higher temperature stimulated biomass production and caused the abolishment of pyocyanin production. Elevated pigment production in zinc oxide nanoparticles-supplemented media was sustained in the scaled-up culture. Conducted analyses confirmed that observed stimulation of pyocyanin production is followed by higher membrane potential, altered gene expression, generation of reactive oxygen species, and accumulation of zinc in the cell's biomass. CONCLUSIONS Pyocyanin production can be steered using ZnO nanoparticles. Elevated production of pyocyanin due to exposure to nanoparticles is followed by the number of changes in physiology of bacteria and is a result of the cellular stress. We showed that the stress response of bacteria can be optimised using statistical methods and result in producing the desired metabolite more effectively.
Collapse
Affiliation(s)
- Joanna Honselmann Genannt Humme
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Avenue 42, Szczecin, 71-065, Poland.
| | - Kamila Dubrowska
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Avenue 42, Szczecin, 71-065, Poland
| | - Bartłomiej Grygorcewicz
- Department of Forensic Genetics, Faculty of Medicine and Dentistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, Szczecin, 70-111, Poland
| | - Marta Gliźniewicz
- Department of Forensic Genetics, Faculty of Medicine and Dentistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, Szczecin, 70-111, Poland
| | - Oliwia Paszkiewicz
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Avenue 42, Szczecin, 71-065, Poland
- Department of Environmental Engineering, Faculty of Civil and Environmental Engineering, West Pomeranian University of Technology in Szczecin, Piastów Avenue 50a, Szczecin, 70-311, Poland
| | - Anna Głowacka
- Department of Environmental Engineering, Faculty of Civil and Environmental Engineering, West Pomeranian University of Technology in Szczecin, Piastów Avenue 50a, Szczecin, 70-311, Poland
| | - Daniel Musik
- ESC Global, Sp. z o.o., Słoneczny Sad 4F, 72-002, Dołuje, Poland
| | - Grzegorz Story
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Avenue 42, Szczecin, 71-065, Poland
| | - Rafał Rakoczy
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Avenue 42, Szczecin, 71-065, Poland
- Center for Advanced Materials and Manufacturing Process Engineering (CAMMPE), Piastow Avenue 42, Szczecin, 71-065, Poland
| | - Adrian Augustyniak
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Avenue 42, Szczecin, 71-065, Poland
- Center for Advanced Materials and Manufacturing Process Engineering (CAMMPE), Piastow Avenue 42, Szczecin, 71-065, Poland
- Chair of Building Materials and Construction Chemistry, Technische Universität Berlin, Gustav- Meyer-Allee 25, 13355, Berlin, Germany
| |
Collapse
|
10
|
Acharya K, Shaw S, Bhattacharya SP, Biswas S, Bhandary S, Bhattacharya A. Pigments from pathogenic bacteria: a comprehensive update on recent advances. World J Microbiol Biotechnol 2024; 40:270. [PMID: 39030429 DOI: 10.1007/s11274-024-04076-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/08/2024] [Indexed: 07/21/2024]
Abstract
Bacterial pigments stand out as exceptional natural bioactive compounds with versatile functionalities. The pigments represent molecules from distinct chemical categories including terpenes, terpenoids, carotenoids, pyridine, pyrrole, indole, and phenazines, which are synthesized by diverse groups of bacteria. Their spectrum of physiological activities encompasses bioactive potentials that often confer fitness advantages to facilitate the survival of bacteria amid challenging environmental conditions. A large proportion of such pigments are produced by bacterial pathogens mostly as secondary metabolites. Their multifaceted properties augment potential applications in biomedical, food, pharmaceutical, textile, paint industries, bioremediation, and in biosensor development. Apart from possessing a less detrimental impact on health with environmentally beneficial attributes, tractable and scalable production strategies render bacterial pigments a sustainable option for novel biotechnological exploration for untapped discoveries. The review offers a comprehensive account of physiological role of pigments from bacterial pathogens, production strategies, and potential applications in various biomedical and biotechnological fields. Alongside, the prospect of combining bacterial pigment research with cutting-edge approaches like nanotechnology has been discussed to highlight future endeavours.
Collapse
Affiliation(s)
- Kusumita Acharya
- AMR-Research Laboratory, Department of Biological Sciences, Adamas University, Barasat-Barrackpore Rd, Kolkata, 700126, India
| | - Swarna Shaw
- AMR-Research Laboratory, Department of Biological Sciences, Adamas University, Barasat-Barrackpore Rd, Kolkata, 700126, India
| | | | - Shatarupa Biswas
- AMR-Research Laboratory, Department of Biological Sciences, Adamas University, Barasat-Barrackpore Rd, Kolkata, 700126, India
| | - Suman Bhandary
- AMR-Research Laboratory, Department of Biological Sciences, Adamas University, Barasat-Barrackpore Rd, Kolkata, 700126, India.
| | - Arijit Bhattacharya
- AMR-Research Laboratory, Department of Biological Sciences, Adamas University, Barasat-Barrackpore Rd, Kolkata, 700126, India.
| |
Collapse
|
11
|
Balsam SS, Zhong F, Pence N, Levintov L, Andhare D, Hammond JH, Ragusa MJ, Vashisth H, Hogan DA, Pletneva EV. Conserved C-Terminal Tail Is Responsible for Membrane Localization and Function of Pseudomonas aeruginosa Hemerythrin. Biochemistry 2024; 63:1795-1807. [PMID: 38951132 PMCID: PMC11481101 DOI: 10.1021/acs.biochem.4c00174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Many bacteria have hemerythrin (Hr) proteins that bind O2, including Pseudomonas aeruginosa, in which microoxia-induced Hr (Mhr) provide fitness advantages under microoxic conditions. Mhr has a 23 amino-acid extension at its C-terminus relative to a well-characterized Hr from Methylococcus capsulatus, and similar extensions are also found in Hrs from other bacteria. The last 11 amino acids of this extended, C-terminal tail are highly conserved in gammaproteobacteria and predicted to form a helix with positively charged and hydrophobic faces. In cellular fractionation assays, wild-type (WT) Mhr was found in both membrane and cytosolic fractions, while a MhrW143* variant lacking the last 11 residues was largely in the cytosol and did not complement Mhr function in competition assays. MhrL112Y, a variant that has a much longer-lived O2-bound form, was fully functional and had a similar localization pattern to that of WT Mhr. Both MhrW143* and MhrL112Y had secondary structures, stabilities, and O2-binding kinetics similar to those of WT Mhr. Fluorescence studies revealed that the C-terminal tail, and particularly the fragment corresponding to its last 11 residues, was sufficient and necessary for association with lipid vesicles. Molecular dynamics simulations and subsequent cellular analysis of Mhr variants have demonstrated that conserved, positively charged residues in the tail are important for Mhr interactions with negatively charged membranes and the contribution of this protein to competitive fitness. Together, these data suggest that peripheral interactions of Mhr with membranes are guided by the C-terminal tail and are independent of O2-binding.
Collapse
Affiliation(s)
- Stacie Stuut Balsam
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA
| | - Fangfang Zhong
- Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA
| | - Natasha Pence
- Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA
| | - Lev Levintov
- Department of Chemical Engineering and Bioengineering, University of New Hampshire, Durham, NH, 03824, USA
| | - Devika Andhare
- Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA
| | - John H. Hammond
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA
| | | | - Harish Vashisth
- Department of Chemical Engineering and Bioengineering, University of New Hampshire, Durham, NH, 03824, USA
- Department of Chemistry, University of New Hampshire, Durham, NH, 03824, USA
- Integrated Applied Mathematics Program, University of New Hampshire, Durham, NH, 03824, USA
- Molecular and Cellular Biotechnology Program, University of New Hampshire, Durham, NH, 03824, USA
| | - Deborah A. Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA
| | | |
Collapse
|
12
|
Qais FA, Ahmad I, Husain FM, Arshad M, Khan A, Adil M. Umbelliferone modulates the quorum sensing and biofilm of Gram - ve bacteria: in vitro and in silico investigations. J Biomol Struct Dyn 2024; 42:5827-5840. [PMID: 37394824 DOI: 10.1080/07391102.2023.2229454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/17/2023] [Indexed: 07/04/2023]
Abstract
In last two decades, the world has seen an exponential increase in the antimicrobial resistance (AMR), making the issue a serious threat to human health. The mortality caused by AMR is one of the leading causes of human death worldwide. Till the end of the twentieth century, a tremendous success in the discovery of new antibiotics was seen, but in last two decades, there is negligible progress in this direction. The increase in AMR combined with slow progress of antibiotic drug discovery has created an urgent demand to search for newer methods of intervention to combat infectious diseases. One of such approach is to look for biofilm and quorum sensing (QS) inhibitors. Plants are excellent source of wide class compounds that can be harnessed to look for the compounds with such properties. This study proves a broad-spectrum biofilm and QS inhibitory potential of umbelliferone. More than 85% reduction in violacein production Chromobacterium violaceum 12472 was found. All tested virulent traits of Pseudomonas aeruginosa PAO1 and Serratia marcescens MTCC 97 were remarkably inhibited that ranged from 56.62% to 86.24%. Umbelliferone also successfully prevented the biofilm of test bacteria at least by 67.68%. Umbelliferone interacted at the active site of many proteins of QS circuit, which led to the mitigation of virulent traits. The stable nature of complexes of umbelliferone with proteins further strengthens in vitro results. After examining the toxicological profile and other drug-like properties, umbelliferone could be potentially developed as new drug to target the infections caused by Gram - ve bacteria.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Faizan Abul Qais
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Iqbal Ahmad
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | | | - Mohammed Arshad
- Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh, KSA
| | - Altaf Khan
- College of Pharmacy, Department of Pharmacology, Central Laboratory, King Saud University, Riyadh, KSA
| | - Mohd Adil
- Department of Environmental Sciences, Dalhousie University, Truro, NS, Canada
| |
Collapse
|
13
|
Qi X, Gao X, Wang X, Xu P. Harnessing Pseudomonas putida in bioelectrochemical systems. Trends Biotechnol 2024; 42:877-894. [PMID: 38184440 DOI: 10.1016/j.tibtech.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/02/2023] [Accepted: 12/04/2023] [Indexed: 01/08/2024]
Abstract
Bioelectrochemical systems (BESs), a group of promising integrated systems that combine the advantages of biotechnology and electrochemical techniques, offer new opportunities to address environmental and energy challenges. Exoelectrogens capable of extracellular electron transfer (EET) are the critical factor enabling electrocatalytic activity in BESs. Pseudomonas putida, an aerobe widely used in environmental bioremediation, the biosynthesis of valuable chemicals, and energy bioproduction, has attracted much attention due to its unique application potential in BESs. This review provides a comprehensive understanding of the working principles, key factors, and applications of BESs using P. putida as the exoelectrogen. The challenges and perspectives for the development of BESs with P. putida as the exoelectrogen are also proposed and discussed.
Collapse
Affiliation(s)
- Xiaoyan Qi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Xinyu Gao
- College of Arts and Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Xia Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China.
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| |
Collapse
|
14
|
Marey MA, Abozahra R, El-Nikhely NA, Kamal MF, Abdelhamid SM, El-Kholy MA. Transforming microbial pigment into therapeutic revelation: extraction and characterization of pyocyanin from Pseudomonas aeruginosa and its therapeutic potential as an antibacterial and anticancer agent. Microb Cell Fact 2024; 23:174. [PMID: 38867319 PMCID: PMC11170807 DOI: 10.1186/s12934-024-02438-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/23/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND The objectives of the current study were to extract pyocyanin from Pseudomonas aeruginosa clinical isolates, characterize its chemical nature, and assess its biological activity against different bacteria and cancer cells. Due to its diverse bioactive properties, pyocyanin, being one of the virulence factors of P. aeruginosa, holds a promising, safe, and available therapeutic potential. METHODS 30 clinical P. aeruginosa isolates were collected from different sources of infections and identified by routine methods, the VITEK 2 compact system, and 16 S rRNA. The phenazine-modifying genes (phzM, phzS) were identified using polymerase chain reaction (PCR). Pyocyanin chemical characterization included UV-Vis spectrophotometry, Fourier Transform Infra-Red spectroscopy (FTIR), Gas Chromatography-Mass Spectrometry (GC-MS), and Liquid Chromatography-Mass Spectrometry (LC-MS). The biological activity of pyocyanin was explored by determining the MIC values against different clinical bacterial strains and assessing its anticancer activity against A549, MDA-MB-231, and Caco-2 cancer cell lines using cytotoxicity, wound healing and colony forming assays. RESULTS All identified isolates harboured at least one of the phzM or phzS genes. The co-presence of both genes was demonstrated in 13 isolates. The UV-VIS absorbance peaks were maxima at 215, 265, 385, and 520 nm. FTIR could identify the characteristic pyocyanin functional groups, whereas both GC-MS and LC-MS elucidated the chemical formula C11H18N2O2, with a molecular weight 210. The quadri-technical analytical approaches confirmed the chemical nature of the extracted pyocyanin. The extract showed broad-spectrum antibacterial activity, with the greatest activity against Bacillus, Staphylococcus, and Streptococcus species (MICs 31.25-125 µg/mL), followed by E. coli isolates (MICs 250-1000 µg/mL). Regarding the anticancer activity, the pyocyanin extract showed IC50 values against A549, MDA-MB-231, and Caco-2 cancer cell lines of 130, 105, and 187.9 µg/mL, respectively. Furthermore, pyocyanin has markedly suppressed colony formation and migratory abilities in these cells. CONCLUSIONS The extracted pyocyanin has demonstrated to be a potentially effective candidate against various bacterial infections and cancers. Hence, the current findings could contribute to producing this natural compound easily through an affordable method. Nonetheless, future studies are required to investigate pyocyanin's effects in vivo and analyse the results of combining it with other traditional antibiotics or anticancer drugs.
Collapse
Affiliation(s)
- Moustafa A Marey
- Department of Microbiology and Biotechnology, Division of Clinical and Biological Sciences, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport (AASTMT), Abu Kir Campus, P.O. Box 1029, Alexandria, Egypt
| | - Rania Abozahra
- Microbiology and Immunology Department, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Nefertiti A El-Nikhely
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Miranda F Kamal
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Damanhour University, Beheira, Egypt
| | - Sarah M Abdelhamid
- Microbiology and Immunology Department, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Mohammed A El-Kholy
- Department of Microbiology and Biotechnology, Division of Clinical and Biological Sciences, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport (AASTMT), Abu Kir Campus, P.O. Box 1029, Alexandria, Egypt.
| |
Collapse
|
15
|
Kim JH, Dong J, Le BH, Lonergan ZR, Gu W, Girke T, Zhang W, Newman DK, Martins-Green M. Pseudomonas aeruginosa Activates Quorum Sensing, Antioxidant Enzymes and Type VI Secretion in Response to Oxidative Stress to Initiate Biofilm Formation and Wound Chronicity. Antioxidants (Basel) 2024; 13:655. [PMID: 38929094 PMCID: PMC11200925 DOI: 10.3390/antiox13060655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/29/2024] [Accepted: 05/13/2024] [Indexed: 06/28/2024] Open
Abstract
Pseudomonas aeruginosa (PA) is an opportunistic pathogen frequently isolated from cutaneous chronic wounds. How PA, in the presence of oxidative stress (OS), colonizes chronic wounds and forms a biofilm is still unknown. The purpose of this study is to investigate the changes in gene expression seen when PA is challenged with the high levels of OS present in chronic wounds. We used a biofilm-forming PA strain isolated from the chronic wounds of our murine model (RPA) and performed a qPCR to obtain gene expression patterns as RPA developed a biofilm in vitro in the presence of high levels of OS, and then compared the findings in vivo, in our mouse model of chronic wounds. We found that the planktonic bacteria under OS conditions overexpressed quorum sensing genes that are important for the bacteria to communicate with each other, antioxidant stress genes important to reduce OS in the microenvironment for survival, biofilm formation genes and virulence genes. Additionally, we performed RNAseq in vivo and identified the activation of novel genes/pathways of the Type VI Secretion System (T6SS) involved in RPA pathogenicity. In conclusion, RPA appears to survive the high OS microenvironment in chronic wounds and colonizes these wounds by turning on virulence, biofilm-forming and survival genes. These findings reveal pathways that may be promising targets for new therapies aimed at disrupting PA-containing biofilms immediately after debridement to facilitate the treatment of chronic human wounds.
Collapse
Affiliation(s)
- Jane H. Kim
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA
| | - Julianna Dong
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA
| | - Brandon H. Le
- Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Zachery R. Lonergan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Weifeng Gu
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA
| | - Thomas Girke
- Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Wei Zhang
- Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Dianne K. Newman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Manuela Martins-Green
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA
| |
Collapse
|
16
|
Shao Z, Guo R, Tang J, Zhang X. Effect of Pseudomonas aeruginosa on Corrosion Behavior of X65 Carbon Steel. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2428. [PMID: 38793494 PMCID: PMC11123138 DOI: 10.3390/ma17102428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/01/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
X65 pipeline steel is widely used in the field of offshore oil and gas exploitation due to its excellent performance. However, due to the complex environment in the ocean, X65 pipeline steel is faced with a great risk of microbial corrosion failure. Therefore, it is of great significance to study the corrosion mechanism of X65 pipeline steel by microorganisms. In this paper, the corrosion effect of Pseudomonas aeruginosa (P. aeruginosa) secreting phenazine compounds on X65 pipeline steel was studied by the weight loss method, biofilm scanning electron microscopy analysis, surface corrosion morphology observation, electrochemical testing and medium pH test corrosion products. The results showed that the inoculation of P. aeruginosa accelerated the corrosion of X65 steel. After knocking out the phzM and phzS genes that regulate the synthesis of PYO, P. aeruginosa can still produce biofilms on the surface of X65 steel consistent with the morphology of wild-type P. aeruginosa, but the corrosion of X65 steel is significantly reduced. It is proved that PYO plays an important role in the corrosion process of P. aeruginosa on steel.
Collapse
Affiliation(s)
- Zixuan Shao
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China; (Z.S.); (R.G.)
| | - Ruiqi Guo
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China; (Z.S.); (R.G.)
| | - Jianhua Tang
- China National Offshore Oil Corporation, Beijing 100010, China;
| | - Xin Zhang
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China; (Z.S.); (R.G.)
| |
Collapse
|
17
|
Neve RL, Giedraitis E, Akbari MS, Cohen S, Phelan VV. Secondary metabolite profiling of Pseudomonas aeruginosa isolates reveals rare genomic traits. mSystems 2024; 9:e0033924. [PMID: 38619244 PMCID: PMC11097636 DOI: 10.1128/msystems.00339-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 03/20/2024] [Indexed: 04/16/2024] Open
Abstract
Pseudomonas aeruginosa is a ubiquitous Gram-negative opportunistic pathogen with remarkable phylogenetic and phenotypic variabilities. In this work, we applied classical molecular networking analysis to secondary metabolite profiling data from seven Pseudomonas aeruginosa strains, including five clinical isolates from the lung secretions of people with cystic fibrosis (CF). We provide three vignettes illustrating how secondary metabolite profiling aids in the identification of rare genomics traits in P. aeruginosa. First, we describe the identification of a previously unreported class of acyl putrescines produced by isolate mFLRO1. Secondary analysis of publicly available metabolomics data revealed that acyl putrescines are produced by <5% of P. aeruginosa strains. Second, we show that isolate SH3A does not produce di-rhamnolipids. Whole-genome sequencing and comparative genomics revealed that SH3A cannot produce di-rhamnolipids because its genome belongs to clade 5 of the P. aeruginosa phylogenetic tree. Previous phylogenetic analysis of thousands of P. aeruginosa strains concluded that <1% of publicly available genome sequences contribute to this clade. Last, we show that isolate SH1B does not produce the phenazine pyocyanin or rhamnolipids because it has a one-base insertion frameshift mutation (678insC) in the gene rhlR, which disrupts rhl-driven quorum sensing. Secondary analysis of the tens of thousands of publicly available genomes in the National Center for Biotechnology Information (NCBI) and the Pseudomonas Genome Database revealed that this mutation was present in only four P. aeruginosa genomes. Taken together, this study highlights that secondary metabolite profiling combined with genomic analysis can identify rare genetic traits of P. aeruginosa isolates.IMPORTANCESecondary metabolite profiling of five Pseudomonas aeruginosa isolates from cystic fibrosis sputum captured three traits present in <1%-5% of publicly available data, pointing to how our current library of P. aeruginosa strains may not represent the diversity within this species or the genetic variance that occurs in the CF lung.
Collapse
Affiliation(s)
- Rachel L. Neve
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Emily Giedraitis
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Madeline S. Akbari
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Shirli Cohen
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Vanessa V. Phelan
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
18
|
Xia L, Li Y, Wang Y, Zhou H, Dandekar AA, Wang M, Xu F. Quorum-sensing regulation of phenazine production heightens Pseudomonas aeruginosa resistance to ciprofloxacin. Antimicrob Agents Chemother 2024; 68:e0011824. [PMID: 38526048 PMCID: PMC11064481 DOI: 10.1128/aac.00118-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 03/07/2024] [Indexed: 03/26/2024] Open
Abstract
Quorum sensing is a type of cell-cell communication that modulates various biological activities of bacteria. Previous studies indicate that quorum sensing contributes to the evolution of bacterial resistance to antibiotics, but the underlying mechanisms are not fully understood. In this study, we grew Pseudomonas aeruginosa in the presence of sub-lethal concentrations of ciprofloxacin, resulting in a large increase in ciprofloxacin minimal inhibitory concentration. We discovered that quorum sensing-mediated phenazine biosynthesis was significantly enhanced in the resistant isolates, where the quinolone circuit was the predominant contributor to this phenomenon. We found that production of pyocyanin changed carbon flux and showed that the effect can be partially inhibited by the addition of pyruvate to cultures. This study illustrates the role of quorum sensing-mediated phenotypic resistance and suggests a strategy for its prevention.
Collapse
Affiliation(s)
- Lexin Xia
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yue Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Yufan Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Hui Zhou
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ajai A. Dandekar
- Department of Microbiology, University of Washington, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Meizhen Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Feng Xu
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
19
|
Zhu Y, Luo B, Mou X, Song Y, Zhou Y, Luo Y, Sun B, Luo Y, Tang H, Su Z, Bao R. Pseudomonas aeruginosa regulator PvrA binds simultaneously to multiple pseudo-palindromic sites for efficient transcription activation. SCIENCE CHINA. LIFE SCIENCES 2024; 67:900-912. [PMID: 37938507 DOI: 10.1007/s11427-022-2363-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/10/2023] [Indexed: 11/09/2023]
Abstract
Tetracycline repressor (TetR) family regulators (TFRs) are the largest group of DNA-binding transcription factors and are widely distributed in bacteria and archaea. TFRs play vital roles in controlling the expression of various genes and regulating diverse physiological processes. Recently, a TFR protein Pseudomonas virulence regulator A (PvrA), was identified from Pseudomonas aeruginosa as the transcriptional activator of genes involved in fatty acid utilization and bacterial virulence. Here, we show that PvrA can simultaneously bind to multiple pseudo-palindromic sites and upregulate the expression levels of target genes. Cryo-electron microscopy (cryo-EM) analysis indicates the simultaneous DNA recognition mechanism of PvrA and suggests that the bound DNA fragments consist of a distorted B-DNA double helix. The crystal structure and functional analysis of PvrA reveal a hinge region that secures the correct domain motion for recognition of the promiscuous promoter. Additionally, our results showed that mutations disrupting the regulatory hinge region have differential effects on biofilm formation and pyocyanin biosynthesis, resulting in attenuated bacterial virulence. Collectively, these findings will improve the understanding of the relationship between the structure and function of the TetR family and provide new insights into the mechanism of regulation of P. aeruginosa virulence.
Collapse
Affiliation(s)
- Yibo Zhu
- Center of Infectious Diseases, Division of Infectious Diseases in State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Accurate Biotechnology (Hunan) Co., Ltd, Changsha, 410006, China
| | - Bingnan Luo
- Center of Infectious Diseases, Division of Infectious Diseases in State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xingyu Mou
- Center of Infectious Diseases, Division of Infectious Diseases in State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yingjie Song
- College of Life Science, Sichuan Normal University, Chengdu, 610101, China
| | - Yonghong Zhou
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa, 850000, China
| | - Yongbo Luo
- Center of Infectious Diseases, Division of Infectious Diseases in State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bo Sun
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Youfu Luo
- Center of Infectious Diseases, Division of Infectious Diseases in State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hong Tang
- Center of Infectious Diseases, Division of Infectious Diseases in State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Zhaoming Su
- Center of Infectious Diseases, Division of Infectious Diseases in State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Rui Bao
- Center of Infectious Diseases, Division of Infectious Diseases in State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
20
|
Gonzales M, Jacquet P, Gaucher F, Chabrière É, Plener L, Daudé D. AHL-Based Quorum Sensing Regulates the Biosynthesis of a Variety of Bioactive Molecules in Bacteria. JOURNAL OF NATURAL PRODUCTS 2024; 87:1268-1284. [PMID: 38390739 DOI: 10.1021/acs.jnatprod.3c00672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Bacteria are social microorganisms that use communication systems known as quorum sensing (QS) to regulate diverse cellular behaviors including the production of various secreted molecules. Bacterial secondary metabolites are widely studied for their bioactivities including antibiotic, antifungal, antiparasitic, and cytotoxic compounds. Besides playing a crucial role in natural bacterial niches and intermicrobial competition by targeting neighboring organisms and conferring survival advantages to the producer, these bioactive molecules may be of prime interest to develop new antimicrobials or anticancer therapies. This review focuses on bioactive compounds produced under acyl homoserine lactone-based QS regulation by Gram-negative bacteria that are pathogenic to humans and animals, including the Burkholderia, Serratia, Pseudomonas, Chromobacterium, and Pseudoalteromonas genera. The synthesis, regulation, chemical nature, biocidal effects, and potential applications of these identified toxic molecules are presented and discussed in light of their role in microbial interactions.
Collapse
Affiliation(s)
- Mélanie Gonzales
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille 13288, France
- Gene&GreenTK, Marseille 13005, France
| | | | | | - Éric Chabrière
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille 13288, France
| | | | | |
Collapse
|
21
|
Fashina B, Deng Y, Cagin T, Cygan R. Insights on adsorption of pyocyanin in montmorillonite using molecular dynamics simulation. Phys Chem Chem Phys 2024; 26:10310-10322. [PMID: 38498351 DOI: 10.1039/d3cp05762c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Pyocyanin is an important virulence factor in the resistance of Pseudomonas aeruginosa to antibiotics. Pyocyanin is a planar three ring aromatic molecule that occurs as zwitterionic (PYO) or protonated species (PYOH+). Our earlier studies have shown that montmorillonite, through adsorption and transformation, can inactivate both PYO and PYOH+ in the interlayer space. The objective of this study was to elucidate the interaction mechanisms between montmorillonite and the adsorbed pyocyanin and to characterize the structure of the pyocyanin-montmorillonite complex via molecular dynamics (MD) simulations. The MD simulations were performed for the complexes of hydrated Na-montmorillonite (HM) with (i) neutral pyocyanin (HMP) and (ii) protonated pyocyanin (HMPH); and dehydrated Na-montmorillonite (DM) with (iii) neutral pyocyanin (DMP) and (iv) protonated pyocyanin (DMPH). The simulations indicated that in dry conditions, both PYO and PYOH+ were well-ordered in the midplane of the interlayer of montmorillonite, with the three aromatic rings almost parallel to the basal surface and sandwiched in-between basal surface-adsorbed Na+ planes. In humid conditions, the pyocyanin and Na+ were solvated in the interlayer space and the pyocyanin was less ordered compared to dehydrated models. Ion-dipole interaction (Na-O) was the dominant interaction for the dehydrated complexes DMPH and DMP but the interaction was stronger in the latter. The Na-O ion-dipole interaction remained the dominant interaction in hydrated HMP while in HMPH, water outcompeted PYOH+ for Na+ resulting in water-Na interaction being the dominant interaction. These results revealed the arrangement of the two species of pyocyanin in the interlayer spaces of montmorillonite and the mechanism of interaction between the pyocyanin and montmorillonite.
Collapse
Affiliation(s)
- Bidemi Fashina
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843-2474, USA.
- Geochemistry Department, Sandia National Laboratories, P. O. Box 5800-0754, Albuquerque, New Mexico 87123, USA
| | - Youjun Deng
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843-2474, USA.
| | - Tahir Cagin
- Materials Science and Engineering, Chemical Engineering, Texas A&M University, TX 77843-2474, USA
| | - Randall Cygan
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843-2474, USA.
| |
Collapse
|
22
|
Soto-Aceves MP, Smalley NE, Schaefer AL, Greenberg EP. The Relationship of pqs Gene Expression to Acylhomoserine Lactone Signaling in Pseudomonas aeruginosa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.22.586172. [PMID: 38562759 PMCID: PMC10983942 DOI: 10.1101/2024.03.22.586172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The opportunistic pathogen Pseudomonas aeruginosa has complex quorum sensing (QS) circuitry, which involves two acylhomoserine lactone (AHL) systems, the LasI AHL synthase and LasR AHL-dependent transcriptional activator system and the RhlI AHL synthase-RhlR AHL-responsive transcriptional activator. There is also a quinoline signaling system (the Pseudomonas quinolone signal, PQS, system). Although there is a core set of genes regulated by the AHL circuits, there is substantial strain-to-strain variation in the non-core QS regulated genes. Reductive evolution of the QS regulon, and variation in specific genes activated by QS, occurs in laboratory evolution experiments with the model strain PAO1. We used a transcriptomics approach to test the hypothesis that reductive evolution in the PAO1 QS regulon can in large part be explained by a simple null mutation in pqsR , the gene encoding the transcriptional activator of the pqs operon. We found that PqsR had very little influence on the AHL QS regulon. This was a surprising finding because the last gene in the PqsR-dependent pqs operon, pqsE , codes for a protein, which physically interacts with RhlR and this interaction is required for RhlR-dependent activation of some genes. We used comparative transcriptomics to examine the influence of a pqsE mutation on the QS regulon and identified only three transcripts, which were strictly dependent on PqsE. By using reporter constructs we showed that the PqsE influence on other genes was dependent on experimental conditions and we have gained some insight about those conditions. This work adds to our understanding of the plasticity of the P. aeruginosa QS regulon and to the role PqsE plays in RhlR-dependent gene activation.
Collapse
|
23
|
Zhang J, Ma Q, Wang C, Meng N. Unraveling the signaling roles of indole in an opportunistic pathogen Pseudomonas aeruginosa strain Jade-X. CHEMOSPHERE 2024; 352:141482. [PMID: 38387666 DOI: 10.1016/j.chemosphere.2024.141482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/29/2023] [Accepted: 02/15/2024] [Indexed: 02/24/2024]
Abstract
Pseudomonas aeruginosa, which can produce several toxins and form biofilm, is listed among the priority pathogens. Indole is a ubiquitous aromatic pollutant and signaling molecule produced by tryptophanase in bacteria. Herein, the impacts of indole on a newly isolated P. aeruginosa strain Jade-X were systematically investigated. Indole (0.5-2.0 mM) enhanced the biofilm production by 1.33-2.31-fold after 24 h incubation at 30 °C. However, the effects indole on biofilm formation were intricate and closely intertwined with factors such as incubation temperature, bacterial growth stage, and indole concentration. The twitching motility was enhanced by 1.15-1.99-fold by indole, potentially facilitating surface exploration and biofilm development. Indole reduced the production of virulence factors (pyocyanin and pyoverdine) as well as altered the surface properties (zeta potential and hydrophobicity). Transcriptional analysis revealed that indole (1.0 mM) significantly downregulated mexGHI-opmD efflux genes (4.73-6.91-fold) and virulence-related genes (pqs, pch, and pvd clusters, and flagella-related genes), while upregulating pili-related genes in strain Jade-X. The quorum sensing related signal regulators, including RhlR, LasR, and MvfR (PqsR), were not altered by indole, while other six transcriptional regulators (AmrZ, BfmR, PchR, QscR, SoxR, and SphR) were significantly affected, implying that indole effects might be regulated in a complex and delicate manner. This study should provide new insights into our understanding of indole signaling roles.
Collapse
Affiliation(s)
- Jiaxin Zhang
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Qiao Ma
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China.
| | - Caihong Wang
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Nan Meng
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| |
Collapse
|
24
|
Cheng T, Cheang QW, Xu L, Sheng S, Li Z, Shi Y, Zhang H, Pang LM, Liu DX, Yang L, Liang ZX, Wang J. A PilZ domain protein interacts with the transcriptional regulator HinK to regulate type VI secretion system in Pseudomonas aeruginosa. J Biol Chem 2024; 300:105741. [PMID: 38340793 PMCID: PMC10912698 DOI: 10.1016/j.jbc.2024.105741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/29/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024] Open
Abstract
Type VI secretion systems (T6SS) are bacterial macromolecular complexes that secrete effectors into target cells or the extracellular environment, leading to the demise of adjacent cells and providing a survival advantage. Although studies have shown that the T6SS in Pseudomonas aeruginosa is regulated by the Quorum Sensing system and second messenger c-di-GMP, the underlying molecular mechanism remains largely unknown. In this study, we discovered that the c-di-GMP-binding adaptor protein PA0012 has a repressive effect on the expression of the T6SS HSI-I genes in P. aeruginosa PAO1. To probe the mechanism by which PA0012 (renamed TssZ, Type Six Secretion System -associated PilZ protein) regulates the expression of HSI-I genes, we conducted yeast two-hybrid screening and identified HinK, a LasR-type transcriptional regulator, as the binding partner of TssZ. The protein-protein interaction between HinK and TssZ was confirmed through co-immunoprecipitation assays. Further analysis suggested that the HinK-TssZ interaction was weakened at high c-di-GMP concentrations, contrary to the current paradigm wherein c-di-GMP enhances the interaction between PilZ proteins and their partners. Electrophoretic mobility shift assays revealed that the non-c-di-GMP-binding mutant TssZR5A/R9A interacts directly with HinK and prevents it from binding to the promoter of the quorum-sensing regulator pqsR. The functional connection between TssZ and HinK is further supported by observations that TssZ and HinK impact the swarming motility, pyocyanin production, and T6SS-mediated bacterial killing activity of P. aeruginosa in a PqsR-dependent manner. Together, these results unveil a novel regulatory mechanism wherein TssZ functions as an inhibitor that interacts with HinK to control gene expression.
Collapse
Affiliation(s)
- Tianfang Cheng
- Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Qing Wei Cheang
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Linghui Xu
- Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Shuo Sheng
- Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China; Key Laboratory of Basic Pharmacology of the Ministry of Education, Joint International Research Laboratory of Ethnomedicine of the Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China
| | - Zhaoting Li
- Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Yu Shi
- Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Huiyan Zhang
- Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Li Mei Pang
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Ding Xiang Liu
- Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Liang Yang
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Zhao-Xun Liang
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| | - Junxia Wang
- Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
25
|
Qiu H, Li Y, Yuan M, Chen H, Dandekar AA, Dai W. Uncovering a hidden functional role of the XRE-cupin protein PsdR as a novel quorum-sensing regulator in Pseudomonas aeruginosa. PLoS Pathog 2024; 20:e1012078. [PMID: 38484003 DOI: 10.1371/journal.ppat.1012078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/26/2024] [Accepted: 02/28/2024] [Indexed: 03/27/2024] Open
Abstract
XRE-cupin family proteins containing an DNA-binding domain and a cupin signal-sensing domain are widely distributed in bacteria. In Pseudomonas aeruginosa, XRE-cupin transcription factors have long been recognized as regulators exclusively controlling cellular metabolism pathways. However, their potential functional roles beyond metabolism regulation remain unknown. PsdR, a typical XRE-cupin transcriptional regulator, was previously characterized as a local repressor involved solely in dipeptide metabolism. Here, by measuring quorum-sensing (QS) activities and QS-controlled metabolites, we uncover that PsdR is a new QS regulator in P. aeruginosa. Our RNA-seq analysis showed that rather than a local regulator, PsdR controls a large regulon, including genes associated with both the QS circuit and non-QS pathways. To unveil the underlying mechanism of PsdR in modulating QS, we developed a comparative transcriptome approach named "transcriptome profile similarity analysis" (TPSA). Using this TPSA method, we revealed that PsdR expression causes a QS-null-like transcriptome profile, resulting in QS-inactive phenotypes. Based on the results of TPSA, we further demonstrate that PsdR directly binds to the promoter for the gene encoding the QS master transcription factor LasR, thereby negatively regulating its expression and influencing QS activation. Moreover, our results showed that PsdR functions as a negative virulence regulator, as inactivation of PsdR enhanced bacterial cytotoxicity on host cells. In conclusion, we report on a new QS regulation role for PsdR, providing insights into its role in manipulating QS-controlled virulence. Most importantly, our findings open the door for a further discovery of untapped functions for other XRE-Cupin family proteins.
Collapse
Affiliation(s)
- Huifang Qiu
- Integrative Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Yuanhao Li
- Integrative Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Min Yuan
- Integrative Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Huali Chen
- Integrative Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Ajai A Dandekar
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Weijun Dai
- Integrative Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou, China
| |
Collapse
|
26
|
Panahi Z, Owrang M, Goli HR. Significant role of pyocyanin and exotoxin A in the pathogenesis of Pseudomonas aeruginosa isolated from hospitalized patients. Folia Med (Plovdiv) 2024; 66:88-96. [PMID: 38426470 DOI: 10.3897/folmed.66.e111038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/27/2023] [Indexed: 03/02/2024] Open
Abstract
AIM Due to the importance of exotoxin A and pyocyanin in the pathogenicity of this bacterium, we decided to evaluate the prevalence of genes encoding these virulence factors in clinical isolates of P.aeruginosa.
Collapse
|
27
|
Carpenter JM, Hynds HM, Bimpeh K, Hines KM. HILIC-IM-MS for Simultaneous Lipid and Metabolite Profiling of Bacteria. ACS MEASUREMENT SCIENCE AU 2024; 4:104-116. [PMID: 38404491 PMCID: PMC10885331 DOI: 10.1021/acsmeasuresciau.3c00051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 02/27/2024]
Abstract
Although MALDI-ToF platforms for microbial identifications have found great success in clinical microbiology, the sole use of protein fingerprints for the discrimination of closely related species, strain-level identifications, and detection of antimicrobial resistance remains a challenge for the technology. Several alternative mass spectrometry-based methods have been proposed to address the shortcomings of the protein-centric approach, including MALDI-ToF methods for fatty acid/lipid profiling and LC-MS profiling of metabolites. However, the molecular diversity of microbial pathogens suggests that no single "ome" will be sufficient for the accurate and sensitive identification of strain- and susceptibility-level profiling of bacteria. Here, we describe the development of an alternative approach to microorganism profiling that relies upon both metabolites and lipids rather than a single class of biomolecule. Single-phase extractions based on butanol, acetonitrile, and water (the BAW method) were evaluated for the recovery of lipids and metabolites from Gram-positive and -negative microorganisms. We found that BAW extraction solutions containing 45% butanol provided optimal recovery of both molecular classes in a single extraction. The single-phase extraction method was coupled to hydrophilic interaction liquid chromatography (HILIC) and ion mobility-mass spectrometry (IM-MS) to resolve similar-mass metabolites and lipids in three dimensions and provide multiple points of evidence for feature annotation in the absence of tandem mass spectrometry. We demonstrate that the combined use of metabolites and lipids can be used to differentiate microorganisms to the species- and strain-level for four of the ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Acinetobacter baumannii, and Pseudomonas aeruginosa) using data from a single ionization mode. These results present promising, early stage evidence for the use of multiomic signatures for the identification of microorganisms by liquid chromatography, ion mobility, and mass spectrometry that, upon further development, may improve upon the level of identification provided by current methods.
Collapse
Affiliation(s)
- Jana M. Carpenter
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Hannah M. Hynds
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Kingsley Bimpeh
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Kelly M. Hines
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
28
|
Mudaliar SB, Bharath Prasad AS. A biomedical perspective of pyocyanin from Pseudomonas aeruginosa: its applications and challenges. World J Microbiol Biotechnol 2024; 40:90. [PMID: 38341389 PMCID: PMC10858844 DOI: 10.1007/s11274-024-03889-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/08/2024] [Indexed: 02/12/2024]
Abstract
Pyocyanin is a bioactive pigment produced by Pseudomonas aeruginosa. It is an important virulence factor that plays a critical role in P. aeruginosa infections as a redox-active secondary metabolite and a quorum sensing (QS) signaling molecule. Pyocyanin production from chorismic acid requires the involvement of two homologous operons, phz1 and phz2, which are activated by QS regulatory proteins. Pyocyanin inhibits the proliferation of bacterial, fungal, and mammalian cells by inducing oxidative stress due to which it acts as a potent antibacterial, antifungal, and anticancer agent. Its potential role as a neuroprotectant needs further exploration. However, pyocyanin exacerbates the damaging effects of nosocomial infections caused by P. aeruginosa in immunocompromised individuals. Further, cystic fibrosis (CF) patients are highly susceptible to persistent P. aeruginosa infections in the respiratory system. The bacterial cells form colonies and three interconnected QS networks-pqs, las, and rhl-get activated, thus stimulating the cells to produce pyocyanin which exacerbates pulmonary complications. As an opportunistic pathogen, P. aeruginosa produces pyocyanin to impede the recovery of injuries like burn wounds through its anti-proliferative activity. Moreover, pyocyanin plays a vital role in compounding P. aeruginosa infections by promoting biofilm formation. This review begins with a brief description of the characteristics of pyocyanin, its activity, and the different aspects of its production including its biosynthesis, the role of QS, and the effect of environmental factors. It then goes on to explore the potential applications of pyocyanin as a biotherapeutic molecule while also highlighting the biomedical challenges and limitations that it presents.
Collapse
Affiliation(s)
- Samriti Balaji Mudaliar
- Department of Public Health & Genomics, Manipal School of Life Sciences (MSLS), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Alevoor Srinivas Bharath Prasad
- Department of Public Health & Genomics, Manipal School of Life Sciences (MSLS), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India.
| |
Collapse
|
29
|
Truong-Bolduc QC, Yonker LM, Wang Y, Lawton BG, Hooper DC. NorA efflux pump mediates Staphylococcus aureus response to Pseudomonas aeruginosa pyocyanin toxicity. Antimicrob Agents Chemother 2024; 68:e0100123. [PMID: 38231535 PMCID: PMC10848749 DOI: 10.1128/aac.01001-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/03/2023] [Indexed: 01/18/2024] Open
Abstract
Endogenous transporters protect Staphylococcus aureus against antibiotics and also contribute to bacterial defense from environmental toxins. We evaluated the effect of overexpression of four efflux pumps, NorA, NorB, NorC, and Tet38, on S. aureus survival following exposure to pyocyanin (PYO) of Pseudomonas aeruginosa, using a well diffusion assay. We measured the PYO-created inhibition zone and found that only an overexpression of NorA reduced S. aureus susceptibility to pyocyanin killing. The MICPYO of the NorA overexpressor increased threefold compared to that of wild-type RN6390 and was reduced 2.5-fold with reserpine, suggesting that increased NorA efflux caused PYO resistance. The PYO-created inhibition zone of a ΔnorA mutant was consistently larger than that of a plasmid-borne NorA overexpressor. PYO also produced a modest increase in norA expression (1.8-fold at 0.25 µg/mL PYO) that gradually decreased with increasing PYO concentrations. Well diffusion assays carried out using P. aeruginosa showed that ΔnorA mutant was less susceptible to killing by PYO-deficient mutants PA14phzM and PA14phzS than to killing by PA14. NorA overexpression led to reduced killing by all tested P. aeruginosa. We evaluated the NorA-PYO interaction using a collection of 22 clinical isolates from adult and pediatric cystic fibrosis (CF) patients, which included both S. aureus (CF-SA) and P. aeruginosa (CF-PA). We found that when isolated alone, CF-PA and CF-SA expressed varying levels of PYO and norA transcripts, but all four CF-PA/CF-SA pairs isolated concurrently from CF patients produced a low level of PYO and low norA transcript levels, respectively, suggesting a partial adaptation of the two bacteria in circumstances of persistent co-colonization.
Collapse
Affiliation(s)
- Q. C. Truong-Bolduc
- Infectious Diseases Division and Medical Services, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - L. M. Yonker
- Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Y. Wang
- Infectious Diseases Division and Medical Services, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - B. G. Lawton
- Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - D. C. Hooper
- Infectious Diseases Division and Medical Services, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
30
|
Barone S, Mateu B, Turco L, Pelliccia S, Lembo F, Summa V, Buommino E, Brindisi M. Unveiling the modulation of Pseudomonas aeruginosa virulence and biofilm formation by selective histone deacetylase 6 inhibitors. Front Microbiol 2024; 15:1340585. [PMID: 38371939 PMCID: PMC10869609 DOI: 10.3389/fmicb.2024.1340585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 01/10/2024] [Indexed: 02/20/2024] Open
Abstract
Bacterial infections represent a key public health issue due to the occurrence of multidrug-resistant bacteria. Recently, the amount of data supporting the dynamic control of epigenetic pathways by environmental cues has triggered research efforts toward the clarification of their role in microbial infections. Among protein post-translational modifications, reversible acetylation is the most implicated in the feedback to environmental stimuli and in cellular homeostasis. Accordingly, the latest studies identified the histone deacetylase 6 (HDAC6) enzyme as a crucial player in the complex molecular machinery underlying bacterial clearance or killing. A very important milestone for the elucidation of the consequence of HDAC6 activity in bacterial infections is herein described, unveiling for the first time the role of a potent HDAC6 inhibitor in interfering with biofilm formation and modulating virulence factors of P. aeruginosa. We demonstrated that compound F2F-2020202 affected the production of some important virulence factors in P. aeruginosa, namely pyocyanin and rhamnolipids, clearly impairing its ability to form biofilm. Furthermore, evidence of possible QS involvement is supported by differential regulation of specific genes, namely RhlI, phAz1, and qsrO. The data herein obtained also complement and in part explain our previous results with selective HDAC6 inhibitors able to reduce inflammation and bacterial load in chronic infection models recapitulating the cystic fibrosis (CF) phenotype. This study fosters future in-depth investigation to allow the complete elucidation of the molecular mechanisms underlying HDAC6's role in bacterial infections.
Collapse
Affiliation(s)
- Simona Barone
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Baptiste Mateu
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Luigia Turco
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Sveva Pelliccia
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Francesca Lembo
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Vincenzo Summa
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | | |
Collapse
|
31
|
Muriel-Millán LF, Montelongo-Martínez LF, González-Valdez A, Bedoya-Pérez LP, Cocotl-Yañez M, Soberón-Chávez G. The alternative sigma factor RpoS regulates Pseudomonas aeruginosa quorum sensing response by repressing the pqsABCDE operon and activating vfr. Mol Microbiol 2024; 121:291-303. [PMID: 38169053 DOI: 10.1111/mmi.15224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/02/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024]
Abstract
Pseudomonas aeruginosa is an important opportunistic pathogen. Several of its virulence-related processes, including the synthesis of pyocyanin (PYO) and biofilm formation, are controlled by quorum sensing (QS). It has been shown that the alternative sigma factor RpoS regulates QS through the reduction of lasR and rhlR transcription (encoding QS regulators). However, paradoxically, the absence of RpoS increases PYO production and biofilm development (that are RhlR dependent) by unknown mechanisms. Here, we show that RpoS represses pqsE transcription, which impacts the stability and activity of RhlR. In the absence of RpoS, rhlR transcript levels are reduced but not the RhlR protein concentration, presumably by its stabilization by PqsE, whose expression is increased. We also report that PYO synthesis and the expression of pqsE and phzA1B1C1D1E1F1G1 operon exhibit the same pattern at different RpoS concentrations, suggesting that the RpoS-dependent PYO production is due to its ability to modify PqsE concentration, which in turn modulates the activation of the phzA1 promoter by RhlR. Finally, we demonstrate that RpoS favors the expression of Vfr, which activates the transcription of lasR and rhlR. Our study contributes to the understanding of how RpoS modulates the QS response in P. aeruginosa, exerting both negative and positive regulation.
Collapse
Affiliation(s)
- Luis Felipe Muriel-Millán
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Mexico
| | - Luis Fernando Montelongo-Martínez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Mexico
| | - Abigail González-Valdez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Mexico
| | - Leidy Patricia Bedoya-Pérez
- Programa de Biología Sintética, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Miguel Cocotl-Yañez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Mexico
| | - Gloria Soberón-Chávez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Mexico
| |
Collapse
|
32
|
Iloabuchi K, Spiteller D. Bacillus sp. G2112 Detoxifies Phenazine-1-carboxylic Acid by N5 Glucosylation. Molecules 2024; 29:589. [PMID: 38338334 PMCID: PMC10856480 DOI: 10.3390/molecules29030589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Microbial symbionts of plants constitute promising sources of biocontrol organisms to fight plant pathogens. Bacillus sp. G2112 and Pseudomonas sp. G124 isolated from cucumber (Cucumis sativus) leaves inhibited the plant pathogens Erwinia and Fusarium. When Bacillus sp. G2112 and Pseudomonas sp. G124 were co-cultivated, a red halo appeared around Bacillus sp. G2112 colonies. Metabolite profiling using liquid chromatography coupled to UV and mass spectrometry revealed that the antibiotic phenazine-1-carboxylic acid (PCA) released by Pseudomonas sp. G124 was transformed by Bacillus sp. G2112 to red pigments. In the presence of PCA (>40 µg/mL), Bacillus sp. G2112 could not grow. However, already-grown Bacillus sp. G2112 (OD600 > 1.0) survived PCA treatment, converting it to red pigments. These pigments were purified by reverse-phase chromatography, and identified by high-resolution mass spectrometry, NMR, and chemical degradation as unprecedented 5N-glucosylated phenazine derivatives: 7-imino-5N-(1'β-D-glucopyranosyl)-5,7-dihydrophenazine-1-carboxylic acid and 3-imino-5N-(1'β-D-glucopyranosyl)-3,5-dihydrophenazine-1-carboxylic acid. 3-imino-5N-(1'β-D-glucopyranosyl)-3,5-dihydrophenazine-1-carboxylic acid did not inhibit Bacillus sp. G2112, proving that the observed modification constitutes a resistance mechanism. The coexistence of microorganisms-especially under natural/field conditions-calls for such adaptations, such as PCA inactivation, but these can weaken the potential of the producing organism against pathogens and should be considered during the development of biocontrol strategies.
Collapse
Affiliation(s)
- Kenechukwu Iloabuchi
- Department Chemical Ecology/Biological Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany;
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria Nsukka, Obukpa Road, Nsukka 410105, Nigeria
| | - Dieter Spiteller
- Department Chemical Ecology/Biological Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany;
| |
Collapse
|
33
|
Mendoza AG, Guercio D, Smiley MK, Sharma GK, Withorn JM, Hudson-Smith NV, Ndukwe C, Dietrich LEP, Boon EM. The histidine kinase NahK regulates pyocyanin production through the PQS system. J Bacteriol 2024; 206:e0027623. [PMID: 38169296 PMCID: PMC10809955 DOI: 10.1128/jb.00276-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
Many bacterial histidine kinases work in two-component systems that combine into larger multi-kinase networks. NahK is one of the kinases in the GacS Multi-Kinase Network (MKN), which is the MKN that controls biofilm regulation in the opportunistic pathogen Pseudomonas aeruginosa. This network has also been associated with regulating many virulence factors P. aeruginosa secretes to cause disease. However, the individual role of each kinase is unknown. In this study, we identify NahK as a novel regulator of the phenazine pyocyanin (PYO). Deletion of nahK leads to a fourfold increase in PYO production, almost exclusively through upregulation of phenazine operon two (phz2). We determined that this upregulation is due to mis-regulation of all P. aeruginosa quorum-sensing (QS) systems, with a large upregulation of the Pseudomonas quinolone signal system and a decrease in production of the acyl-homoserine lactone-producing system, las. In addition, we see differences in expression of quorum-sensing inhibitor proteins that align with these changes. Together, these data contribute to understanding how the GacS MKN modulates QS and virulence and suggest a mechanism for cell density-independent regulation of quorum sensing. IMPORTANCE Pseudomonas aeruginosa is a Gram-negative bacterium that establishes biofilms as part of its pathogenicity. P. aeruginosa infections are associated with nosocomial infections. As the prevalence of multi-drug-resistant P. aeruginosa increases, it is essential to understand underlying virulence molecular mechanisms. Histidine kinase NahK is one of several kinases in P. aeruginosa implicated in biofilm formation and dispersal. Previous work has shown that the nitric oxide sensor, NosP, triggers biofilm dispersal by inhibiting NahK. The data presented here demonstrate that NahK plays additional important roles in the P. aeruginosa lifestyle, including regulating bacterial communication mechanisms such as quorum sensing. These effects have larger implications in infection as they affect toxin production and virulence.
Collapse
Affiliation(s)
- Alicia G. Mendoza
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Danielle Guercio
- Department of Molecular and Cellular Biology, Stony Brook University, Stony Brook, New York, USA
| | - Marina K. Smiley
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Gaurav K. Sharma
- Department of Chemistry, Stony Brook University, Stony Brook, New York, USA
| | - Jason M. Withorn
- Department of Chemistry, Stony Brook University, Stony Brook, New York, USA
| | | | - Chika Ndukwe
- Department of Chemistry, Stony Brook University, Stony Brook, New York, USA
| | - Lars E. P. Dietrich
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Elizabeth M. Boon
- Department of Chemistry, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
34
|
Li C, Wu J, Wang P, Zhang D, Zhu L, Gao Y, Wang W. Corrosion of Pseudomonas aeruginosa toward a Cu-Zn-Ni alloy inhibited by the simulative tidal region. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:3628-3640. [PMID: 38085474 DOI: 10.1007/s11356-023-31244-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/21/2023] [Indexed: 01/19/2024]
Abstract
The corrosion of marine engineering equipment not only threatens human security and ecological environment but also increases energy consumption, restricting the sustainable development of marine economies and industries. The tidal region is a complex and challenging environment that can cause severe corrosion of facilities and affect microbial activities. However, the current understanding of the mechanisms underlying microbiologically influenced corrosion (MIC) of tidal region is insufficient. To address this issue, the effect of Pseudomonas aeruginosa on a Cu-Zn-Ni alloy in the simulative tidal region was investigated by chemical and molecular biological analysis in this study. The results demonstrated that P. aeruginosa formed thicker biofilms on the Cu-Zn-Ni alloy samples under the full exposure, accelerating corrosion compared to sterile controls. Interestingly, the corrosion of P. aeruginosa toward the Cu-Zn-Ni alloy was inhibited in the simulative tidal region. This inhibition behavior was relevant to the reduction in the quantity of sessile cells and cell activities. The expression down-regulation of genes encoding phenazines induced the decrease in electron transfer mediators and weakened the MIC of P. aeruginosa on alloy samples in the simulative tidal region. The research sheds light on the characteristics of P. aeruginosa and corrosion products on the Cu-Zn-Ni alloy, as well as their interaction mechanisms underlying corrosion in the simulative tidal region. The study will facilitate the evaluation and control of MIC in the tidal region, contributing to the development of sustainable strategies for preserving the integrity and safety of marine facilities.
Collapse
Affiliation(s)
- Ce Li
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Science, Qingdao, 266071, China
- Laoshan Laboratory, Qingdao, 266237, China
- Center for Ocean Mega-Science, Chinese Academic of Sciences, Qingdao, 266071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiajia Wu
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Science, Qingdao, 266071, China.
- Laoshan Laboratory, Qingdao, 266237, China.
- Center for Ocean Mega-Science, Chinese Academic of Sciences, Qingdao, 266071, China.
| | - Peng Wang
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Science, Qingdao, 266071, China
- Laoshan Laboratory, Qingdao, 266237, China
- Center for Ocean Mega-Science, Chinese Academic of Sciences, Qingdao, 266071, China
| | - Dun Zhang
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Science, Qingdao, 266071, China
- Laoshan Laboratory, Qingdao, 266237, China
- Center for Ocean Mega-Science, Chinese Academic of Sciences, Qingdao, 266071, China
| | - Liyang Zhu
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Science, Qingdao, 266071, China
- Laoshan Laboratory, Qingdao, 266237, China
- Center for Ocean Mega-Science, Chinese Academic of Sciences, Qingdao, 266071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yaohua Gao
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Science, Qingdao, 266071, China
- Laoshan Laboratory, Qingdao, 266237, China
- Center for Ocean Mega-Science, Chinese Academic of Sciences, Qingdao, 266071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenkai Wang
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Science, Qingdao, 266071, China
- Laoshan Laboratory, Qingdao, 266237, China
- Center for Ocean Mega-Science, Chinese Academic of Sciences, Qingdao, 266071, China
| |
Collapse
|
35
|
Qais FA, Khan MS, Ahmad I, Husain FM, Arshad M, Khan A, Adil M. Modulation of quorum sensing and biofilm of Gram-negative bacterial pathogens by Cinnamomum zeylanicum L. Microsc Res Tech 2024; 87:42-52. [PMID: 37660303 DOI: 10.1002/jemt.24410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/24/2023] [Accepted: 08/20/2023] [Indexed: 09/05/2023]
Abstract
The development of antibiotic resistant microbial pathogens has become a global health threat and a major concern in modern medicine. The problem of antimicrobial resistance (AMR) has majorly arisen due to sub-judicious use of antibiotics in health care and livestock industry. A slow progress has been made in last two decades in discovery of new antibiotics. A new strategy in combatting AMR is to modulate or disarm the microbes for their virulence and pathogenicity. Plants are considered as promising source for new drugs against AMR pathogens. In this study, fraction-based screening of the Cinnamomum zeylanicum extract was performed followed by detailed investigation of antiquorum sensing and antibiofilm activities of the most active fraction that is, C. zeylanicum hexane fraction (CZHF). More than 75% reduction in violacein pigment of C. violaceum 12472 was overserved. CZHF successfully modulated the virulence of Pseudomonas aeruginosa PAO1 by 60.46%-78.35%. A similar effect was recorded against Serratia marcescens MTCC 97. A broad-spectrum inhibition of biofilm development was found in presence of sub-MICs of CZHF. The colonization of bacteria onto the glass coverslips was remarkably reduced apart from the reduction in exopolymeric substances. Alkaloids and terpenoids were found in CZHF. GC/MS analysis revealed the presence of cinnamaldehyde dimethyl acetal, 2-propenal, coumarin, and α-copaene as major phytocompounds. This study provides enough evidence to support potency of C. zeylanicum extract in targeting the virulence of Gram -ve pathogenic bacteria. The plant extract or active compounds can be developed as successful drugs after careful in vivo examination to target microbial infections. RESEARCH HIGHLIGHTS: Hexane fraction of Cinnamomum zeylanicum is active against QS and biofilms. The broad-spectrum antibiofilm activity was further confirmed by microscopic analysis. Dimethyl acetal, 2-propenal, coumarin, α-copaene, and so forth are major phytocompounds.
Collapse
Affiliation(s)
- Faizan Abul Qais
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Mohammad Shavez Khan
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Iqbal Ahmad
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Mohammed Arshad
- Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Altaf Khan
- Department of Pharmacology, Central Research Laboratory, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Mohd Adil
- Department of Environmental Sciences, Dalhousie University, Truro, Nova Scotia, Canada
| |
Collapse
|
36
|
Srinivasan A, Sajeevan A, Rajaramon S, David H, Solomon AP. Solving polymicrobial puzzles: evolutionary dynamics and future directions. Front Cell Infect Microbiol 2023; 13:1295063. [PMID: 38145044 PMCID: PMC10748482 DOI: 10.3389/fcimb.2023.1295063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/03/2023] [Indexed: 12/26/2023] Open
Abstract
Polymicrobial infections include various microorganisms, often necessitating different treatment methods than a monomicrobial infection. Scientists have been puzzled by the complex interactions within these communities for generations. The presence of specific microorganisms warrants a chronic infection and impacts crucial factors such as virulence and antibiotic susceptibility. Game theory is valuable for scenarios involving multiple decision-makers, but its relevance to polymicrobial infections is limited. Eco-evolutionary dynamics introduce causation for multiple proteomic interactions like metabolic syntropy and niche segregation. The review culminates both these giants to form evolutionary dynamics (ED). There is a significant amount of literature on inter-bacterial interactions that remain unsynchronised. Such raw data can only be moulded by analysing the ED involved. The review culminates the inter-bacterial interactions in multiple clinically relevant polymicrobial infections like chronic wounds, CAUTI, otitis media and dental carries. The data is further moulded with ED to analyse the niche colonisation of two notoriously competitive bacteria: S.aureus and P.aeruginosa. The review attempts to develop a future trajectory for polymicrobial research by following recent innovative strategies incorporating ED to curb polymicrobial infections.
Collapse
Affiliation(s)
| | | | | | | | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| |
Collapse
|
37
|
Pantelic L, Bogojevic SS, Vojnovic S, Oliveira R, Lazic J, Ilic-Tomic T, Milivojevic D, Nikodinovic-Runic J. Upcycling of food waste streams to valuable biopigments pyocyanin and 1-hydroxyphenazine. Enzyme Microb Technol 2023; 171:110322. [PMID: 37722241 DOI: 10.1016/j.enzmictec.2023.110322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/17/2023] [Accepted: 09/05/2023] [Indexed: 09/20/2023]
Abstract
Phenazines, including pyocyanin (PYO) and 1-hydroxyphenazine (1-HP) are extracellular secondary metabolites and multifunctional pigments of Pseudomonas aeruginosa responsible for its blue-green color. These versatile molecules are electrochemically active, involved in significant biological activities giving fitness to the host, but also recognized as antimicrobial and anticancer agents. Their wider application is still limited partly due to the cost of carbon substrate for production, which can be solved by the utilization of carbon from food waste within the biorefinery concept. In this study, a variety of food waste streams (banana peel, potato peel, potato washing, stale bread, yoghurt, processed meat, boiled eggs and mixed canteen waste) was used as sole nutrient source in submerged cultures of P. aeruginosa BK25H. Stale bread was identified as the most suitable substrate to support phenazine biopigments production and bacterial growth. This was further increased in 5-liter fermenter when on average 5.2 mg L-1 of PYO and 4.4 mg L-1 of 1-HP were purified after 24 h batch cultivations from the fermentation medium consisting of homogenized stale bread in tap water. Purified biopigments showed moderate antimicrobial activity, and showed different toxicity profiles, with PYO not being toxic against Caenorhabditis elegans, a free-living soil nematode up to 300 µg mL-1 and 1-HP showing lethal effects at 75 µg mL-1. Therefore, stale bread waste stream with minimal pretreatment should be considered as suitable biorefinery feedstock, as it can support the production of valuable biopigments such as phenazines.
Collapse
Affiliation(s)
- Lena Pantelic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia
| | - Sanja Skaro Bogojevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia
| | - Sandra Vojnovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia
| | - Rui Oliveira
- LAQV-REQUIMTE, NOVA School of Science and Technology, NOVA University Lisbon, Largo da Torre, 2829-516 Caparica, Portugal
| | - Jelena Lazic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia
| | - Tatjana Ilic-Tomic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia
| | - Dusan Milivojevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia
| | - Jasmina Nikodinovic-Runic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia.
| |
Collapse
|
38
|
Alotaibi HF, Alotaibi H, Darwish KM, Khafagy ES, Abu Lila AS, Ali MAM, Hegazy WAH, Alshawwa SZ. The Anti-Virulence Activities of the Antihypertensive Drug Propranolol in Light of Its Anti-Quorum Sensing Effects against Pseudomonas aeruginosa and Serratia marcescens. Biomedicines 2023; 11:3161. [PMID: 38137382 PMCID: PMC10741015 DOI: 10.3390/biomedicines11123161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/17/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
The development of bacterial resistance is an increasing global concern that requires discovering new antibacterial agents and strategies. Bacterial quorum sensing (QS) systems play important roles in controlling bacterial virulence, and their targeting could lead to diminishing bacterial pathogenesis. In this context, targeting QS systems without significant influence on bacterial growth is assumed as a promising strategy to overcome resistance development. This study aimed at evaluating the anti-QS and anti-virulence activities of the β-adrenoreceptor antagonist propranolol at sub-minimal inhibitory concentrations (sub-MIC) against two Gram-negative bacterial models Pseudomonas aeruginosa and Serratia marcescens. The effect of propranolol on the expression of QS-encoding genes was evaluated. Additionally, the affinity of propranolol to QS receptors was virtually attested. The influence of propranolol at sub-MIC on biofilm formation, motility, and production of virulent factors was conducted. The outcomes of the propranolol combination with different antibiotics were assessed. Finally, the in vivo protection assay in mice was performed to assess propranolol's effect on lessening the bacterial pathogenesis. The current findings emphasized the significant ability of propranolol at sub-MIC to reduce the formation of biofilms, motility, and production of virulence factors. In addition, propranolol at sub-MIC decreased the capacity of tested bacteria to induce pathogenesis in mice. Furthermore, propranolol significantly downregulated the QS-encoding genes and showed significant affinity to QS receptors. Finally, propranolol at sub-MIC synergistically decreased the MICs of different antibiotics against tested bacteria. In conclusion, propranolol might serve as a plausible adjuvant therapy with antibiotics for the treatment of serious bacterial infections after further pharmacological and pharmaceutical studies.
Collapse
Affiliation(s)
- Hadil Faris Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Haifa Alotaibi
- Department of Family Medicine, Prince Sultan Military Medical City, Riyadh 12624, Saudi Arabia
| | - Khaled M. Darwish
- Department of Medicinal Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - El-Sayed Khafagy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Amr S. Abu Lila
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Hail, Hail 81442, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Mohamed A. M. Ali
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
- Department of Biochemistry, Faculty of Science, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Wael A. H. Hegazy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
- Pharmacy Program, Department of Pharmaceutical Sciences, Oman College of Health Sciences, Muscat 113, Oman
| | - Samar Zuhair Alshawwa
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| |
Collapse
|
39
|
de Oliveira Pereira T, Groleau MC, Déziel E. Surface growth of Pseudomonas aeruginosa reveals a regulatory effect of 3-oxo-C 12-homoserine lactone in the absence of its cognate receptor, LasR. mBio 2023; 14:e0092223. [PMID: 37732738 PMCID: PMC10653899 DOI: 10.1128/mbio.00922-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/26/2023] [Indexed: 09/22/2023] Open
Abstract
IMPORTANCE The bacterium Pseudomonas aeruginosa colonizes and thrives in many environments, in which it is typically found in surface-associated polymicrobial communities known as biofilms. Adaptation to this social behavior is aided by quorum sensing (QS), an intercellular communication system pivotal in the expression of social traits. Regardless of its importance in QS regulation, the loss of function of the master regulator LasR is now considered a conserved adaptation of P. aeruginosa, irrespective of the origin of the strains. By investigating the QS circuitry in surface-grown cells, we found an accumulation of QS signal 3-oxo-C12-HSL in the absence of its cognate receptor and activator, LasR. The current understanding of the QS circuit, mostly based on planktonic growing cells, is challenged by investigating the QS circuitry of surface-grown cells. This provides a new perspective on the beneficial aspects that underline the frequency of LasR-deficient isolates.
Collapse
Affiliation(s)
- Thays de Oliveira Pereira
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, Québec, Canada
| | - Marie-Christine Groleau
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, Québec, Canada
| | - Eric Déziel
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, Québec, Canada
| |
Collapse
|
40
|
Evans CR, Smiley MK, Asahara Thio S, Wei M, Florek LC, Dayton H, Price-Whelan A, Min W, Dietrich LEP. Spatial heterogeneity in biofilm metabolism elicited by local control of phenazine methylation. Proc Natl Acad Sci U S A 2023; 120:e2313208120. [PMID: 37847735 PMCID: PMC10614215 DOI: 10.1073/pnas.2313208120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/15/2023] [Indexed: 10/19/2023] Open
Abstract
Within biofilms, gradients of electron acceptors such as oxygen stimulate the formation of physiological subpopulations. This heterogeneity can enable cross-feeding and promote drug resilience, features of the multicellular lifestyle that make biofilm-based infections difficult to treat. The pathogenic bacterium Pseudomonas aeruginosa produces pigments called phenazines that can support metabolic activity in hypoxic/anoxic biofilm subzones, but these compounds also include methylated derivatives that are toxic to their producer under some conditions. In this study, we uncover roles for the global regulators RpoS and Hfq/Crc in controlling the beneficial and detrimental effects of methylated phenazines in biofilms. Our results indicate that RpoS controls phenazine methylation by modulating activity of the carbon catabolite repression pathway, in which the Hfq/Crc complex inhibits translation of the phenazine methyltransferase PhzM. We find that RpoS indirectly inhibits expression of CrcZ, a small RNA that binds to and sequesters Hfq/Crc, specifically in the oxic subzone of P. aeruginosa biofilms. Deletion of rpoS or crc therefore leads to overproduction of methylated phenazines, which we show leads to increased metabolic activity-an apparent beneficial effect-in hypoxic/anoxic subpopulations within biofilms. However, we also find that under specific conditions, biofilms lacking RpoS and/or Crc show increased sensitivity to phenazines indicating that the increased metabolic activity in these mutants comes at a cost. Together, these results suggest that complex regulation of PhzM allows P. aeruginosa to simultaneously exploit the benefits and limit the toxic effects of methylated phenazines.
Collapse
Affiliation(s)
| | - Marina K. Smiley
- Department of Biological Sciences, Columbia University, New York, NY10027
| | - Sean Asahara Thio
- Department of Biological Sciences, Columbia University, New York, NY10027
| | - Mian Wei
- Department of Chemistry, Columbia University, New York, NY10027
| | - Lindsey C. Florek
- Department of Biological Sciences, Columbia University, New York, NY10027
| | - Hannah Dayton
- Department of Biological Sciences, Columbia University, New York, NY10027
| | - Alexa Price-Whelan
- Department of Biological Sciences, Columbia University, New York, NY10027
| | - Wei Min
- Department of Chemistry, Columbia University, New York, NY10027
| | | |
Collapse
|
41
|
Awori RM, Hendre P, Amugune NO. The genome of a steinernematid-associated Pseudomonas piscis bacterium encodes the biosynthesis of insect toxins. Access Microbiol 2023; 5:000659.v3. [PMID: 37970093 PMCID: PMC10634486 DOI: 10.1099/acmi.0.000659.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/15/2023] [Indexed: 11/17/2023] Open
Abstract
Several species of soil-dwelling Steinernema nematodes are used in the biocontrol of crop pests, due to their natural capacity to kill diverse lepidopteran species. Although this insect-killing trait is known to be augmented by the nematodes' Xenorhabdus endosymbionts, the role of other steinernematid-associated bacterial genera in the nematode lifecycle remains unclear. This genomic study aimed to determine the potential of Pseudomonas piscis to contribute to the entomopathogenicity of its Steinernema host. Insect larvae were infected with three separate Steinernema cultures. From each of the three treatments, the prevalent bacteria in the haemocoel of cadavers, four days post-infection, were isolated. These three bacterial isolates were morphologically characterised. DNA was extracted from each of the three bacterial isolates and used for long-read genome sequencing and assembly. Assemblies were used to delineate species and identify genes that encode insect toxins, antimicrobials, and confer antibiotic resistance. We assembled three complete genomes. Through digital DNA-DNA hybridisation analyses, we ascertained that the haemocoels of insect cadavers previously infected with Steinernema sp. Kalro, Steinernema sp. 75, and Steinernema sp. 97 were dominated by Xenorhabdus griffiniae Kalro, Pseudomonas piscis 75, and X. griffiniae 97, respectively. X. griffiniae Kalro and X. griffiniae 97 formed a subspecies with other X. griffiniae symbionts of steinernematids from Kenya. P. piscis 75 phylogenetically clustered with pseudomonads that are characterised by high insecticidal activity. The P. piscis 75 genome encoded the production pathway of insect toxins such as orfamides and rhizoxins, antifungals such as pyrrolnitrin and pyoluteorin, and the broad-spectrum antimicrobial 2,4-diacetylphloroglucinol. The P. piscis 75 genome encoded resistance to over ten classes of antibiotics, including cationic lipopeptides. Steinernematid-associated P. piscis bacteria hence have the biosynthetic potential to contribute to nematode entomopathogenicity.
Collapse
Affiliation(s)
- Ryan Musumba Awori
- Elakistos Biosciences, P. O. Box 19301-00100, Nairobi, Kenya
- International Centre for Research on Agroforestry, P. O. Box 30677-00100, Nairobi, Kenya
| | - Prasad Hendre
- International Centre for Research on Agroforestry, P. O. Box 30677-00100, Nairobi, Kenya
| | - Nelson O. Amugune
- Department of Biology, University of Nairobi, P. O. Box 30197-00100, Nairobi, Kenya
| |
Collapse
|
42
|
Quiroz-Morales SE, Muriel-Millán LF, Ponce-Soto GY, González-Valdez A, Castillo-Juárez I, Servín-González L, Soberón-Chávez G. Pseudomonas aeruginosa strains belonging to phylogroup 3 frequently exhibit an atypical quorum sensing response: the case of MAZ105, a tomato rhizosphere isolate. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001401. [PMID: 37819040 PMCID: PMC10634362 DOI: 10.1099/mic.0.001401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 10/03/2023] [Indexed: 10/13/2023]
Abstract
Pseudomonas aeruginosa is a widespread γ-proteobacterium and an important opportunistic pathogen. The genetically diverse P. aeruginosa phylogroup 3 strains are characterized by producing the pore-forming ExlA toxin and by their lack of a type III secretion system. However, like all strains of this species, they produce several virulence-associated traits, such as elastase, rhamnolipids and pyocyanin, which are regulated by quorum sensing (QS). The P. aeruginosa QS response comprises three systems (Las, Rhl and Pqs, respectively) that hierarchically regulate these virulence factors. The Pqs QS system is composed of the PqsR transcriptional factor, which, coupled with the alkyl-quinolones HHQ or PQS, activates the transcription of the pqsABCDE operon. The products of the first four genes of this operon produce HHQ, which is then converted to PQS by PqsH, while PqsE forms a complex with RhlR and stabilizes it. In this study we report that mutations affecting the Pqs system are particularly common in phylogroup 3 strains. To better understand QS in phylogroup 3 strains we studied strain MAZ105 isolated from tomato rhizosphere and showed that it contains mutations in the central QS transcriptional regulator, LasR, and in the gene encoding the PqsA enzyme involved in the synthesis of PQS. However, it can still produce QS-regulated virulence factors and is virulent in Galleria mellonella and mildly pathogenic in the mouse abscess/necrosis model; our results show that this may be due to the expression of pqsE from a different PqsR-independent promoter than the pqsA promoter. Our results indicate that using anti-virulence therapy based on targeting the PQS system will not be effective against infections by P. aeruginosa phylogroup 3 strains.
Collapse
Affiliation(s)
- Sara E. Quiroz-Morales
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apdo, Postal 70228, C. P. 04510, CDMX, Mexico
| | - Luis Felipe Muriel-Millán
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos CP 62210, Mexico
| | - Gabriel Y. Ponce-Soto
- Microbial Paleogenomics Unit, Department of Genomes and Genetics, Pasteur Institute, 75015 Paris, France
| | - Abigail González-Valdez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apdo, Postal 70228, C. P. 04510, CDMX, Mexico
| | - Israel Castillo-Juárez
- Laboratorio de Investigación y Aplicación de Fitoquímicos Bioactivos, Colegio de Postgraduados, 56230, Campus Montecillo, Texcoco, Mexico
| | - Luis Servín-González
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apdo, Postal 70228, C. P. 04510, CDMX, Mexico
| | - Gloria Soberón-Chávez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apdo, Postal 70228, C. P. 04510, CDMX, Mexico
| |
Collapse
|
43
|
Das T, Das B, Young BC, Aldilla V, Sabir S, Almohaywi B, Willcox M, Manefield M, Kumar N. Ascorbic acid modulates the structure of the Pseudomonas aeruginosa virulence factor pyocyanin and ascorbic acid-furanone-30 combination facilitate biofilm disruption. Front Microbiol 2023; 14:1166607. [PMID: 37520362 PMCID: PMC10381918 DOI: 10.3389/fmicb.2023.1166607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/26/2023] [Indexed: 08/01/2023] Open
Abstract
The production of pyocyanin by Pseudomonas aeruginosa increases its virulence, fitness and biofilm formation. Pyocyanin is also a redox molecule and we hypothesize that ascorbic acid being an antioxidant will interact with pyocyanin. The main objective of this study was to investigate the potential interaction of ascorbic acid with pyocyanin, and also to investigate the impact of ascorbic acid in combination with Furanone-30 on quorum sensing and biofilm formation of P. aeruginosa. When incubated with ascorbic acid, hyperchromic and hypsochromic shifts in pyocyanin absorbance peaks at 385 nm and 695 nm were observed. In the presence of dehydroascorbic acid and citric acid, these shifts were absent, indicating that the intrinsic antioxidant property of ascorbic acid was probably essential in binding to pyocyanin. NMR spectroscopy showed shifts in 1H NMR pyocyanin peaks between 8.2 to 5.8 ppm when incubated in the presence of ascorbic acid. Density Functional Theory (DFT) supported potential interactions between the -CH2OH or -OH moieties of ascorbic acid with the -C=O moiety of pyocyanin. The pyocyanin-ascorbic acid complex impaired pyocyanin binding to DNA. Ascorbic acid combined with furanone-30 elevated quorum-sensing inhibition in P. aeruginosa, which was directly associated with significantly reduced P. aeruginosa virulence, adhesion, aggregation and biofilm formation and enhanced antibiotic-mediated bacterial killing. This study demonstrated that the antioxidant ascorbic acid directly binds to pyocyanin, modulates its structure and results in disruption of biofilm formation and associated tolerance to antibiotics.
Collapse
Affiliation(s)
- Theerthankar Das
- Infection Immunity and Inflammation, Charles Perkins Centre, School of Medical Science, The University of Sydney, Sydney, NSW, Australia
- Sydney Institute for Infectious Diseases, School of Medical Science, The University of Sydney, Sydney, NSW, Australia
| | - Biswanath Das
- Department of Organic Chemistry, Arrhenius Laboratory Stockholm University, Stockholm, Sweden
- School of Chemistry, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Brandon Clark Young
- Infection Immunity and Inflammation, Charles Perkins Centre, School of Medical Science, The University of Sydney, Sydney, NSW, Australia
| | - Vina Aldilla
- School of Chemistry, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Shekh Sabir
- School of Chemistry, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Basmah Almohaywi
- College of Pharmacy, King Khalid University (KKU), Abha, Saudi Arabia
| | - Mark Willcox
- School of Optometry and Vision Science, The University of New South Wales, Sydney, NSW, Australia
| | - Mike Manefield
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Naresh Kumar
- School of Chemistry, University of New South Wales (UNSW), Sydney, NSW, Australia
| |
Collapse
|
44
|
Zhu Q, Pan K, Liu H, Hu J, Li Q, Bai X, Zhang M, Qiu J, Hong Q. Cloning and expression of the phenazine-1-carboxamide hydrolysis gene pzcH and the identification of the key amino acids necessary for its activity. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131924. [PMID: 37379601 DOI: 10.1016/j.jhazmat.2023.131924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/15/2023] [Accepted: 06/22/2023] [Indexed: 06/30/2023]
Abstract
Phenazine-1-carboxamide (PCN), a phenazine derivative, can cause toxicity risks to non target organisms. In this study, the Gram-positive bacteria Rhodococcus equi WH99 was found to have the ability to degrade PCN. PzcH, a novel amidase belonging to amidase signature (AS) family, responsible for hydrolyzing PCN to PCA was identified from strain WH99. PzcH shared no similarity with amidase PcnH which can also hydrolyze PCN and belong to the isochorismatase superfamily from Gram-negative bacteria Sphingomonas histidinilytica DS-9. PzcH also showed low similarity (˂ 39%) with other reported amidases. The optimal catalysis temperature and pH of PzcH was 30 °C and 9.0, respectively. The Km and kcat values of PzcH for PCN were 43.52 ± 4.82 μM and 17.028 ± 0.57 s-1, respectively. The molecular docking and point mutation experiment demonstrated that catalytic triad Lys80-Ser155-Ser179 are essential for PzcH to hydrolyze PCN. Strain WH99 can degrade PCN and PCA to reduce their toxicity against the sensitive organisms. This study enhances our understanding of the molecular mechanism of PCN degradation, presents the first report on the key amino acids in PzcH from the Gram-positive bacteria and provides an effective strain in the bioremediation PCN and PCA contaminated environments.
Collapse
Affiliation(s)
- Qian Zhu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Kaihua Pan
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Hongfei Liu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Junqiang Hu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Qian Li
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Xuekun Bai
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Mingliang Zhang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Jiguo Qiu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Qing Hong
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China.
| |
Collapse
|
45
|
Abstract
We disclose herein electro-oxidative synthesis as the general protocol for procuring phenazines under mild reaction conditions. Using aerial oxygen as an oxidant, inexpensive electrolyte, and electrodes, a diverse range of phenazines have been accessed in good yields via the ring contraction of 10,11-dihydro-5H-dibenzo[b,e][1,4]diazepines. In addition, the syntheses of phenazines and diamino phenazines via direct electro-oxidation of dihydrophenazines and electro-dimerization of o-phenylenediamines, respectively, have also been accomplished.
Collapse
Affiliation(s)
- Deepak Sharma
- Department of Chemistry, Indian Institute of Technology Jammu, NH-44, Nagrota Bypass, Jammu 181221, J & K, India
| | - Namrata Kotwal
- Department of Chemistry, Indian Institute of Technology Jammu, NH-44, Nagrota Bypass, Jammu 181221, J & K, India
| | - Pankaj Chauhan
- Department of Chemistry, Indian Institute of Technology Jammu, NH-44, Nagrota Bypass, Jammu 181221, J & K, India
| |
Collapse
|
46
|
Khayat MT, Abbas HA, Ibrahim TS, Elbaramawi SS, Khayyat AN, Alharbi M, Hegazy WAH, Yehia FAZA. Synergistic Benefits: Exploring the Anti-Virulence Effects of Metformin/Vildagliptin Antidiabetic Combination against Pseudomonas aeruginosa via Controlling Quorum Sensing Systems. Biomedicines 2023; 11:biomedicines11051442. [PMID: 37239113 DOI: 10.3390/biomedicines11051442] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
The repurposing of drugs is one of the most competent strategies for discovering new antimicrobial agents. Vildagliptin is a dipeptidyl peptidase-4 inhibitor (DPI-4) that is used effectively in combination with metformin to control blood glucose levels in diabetic patients. This study was designed to evaluate the anti-virulence activities of this combination against one of the most clinically important pathogens, Pseudomonas aeruginosa. The current findings show a significant ability of the vildagliptin-metformin combination to diminish biofilm formation, bacterial motility, and the production of virulent extracellular enzymes and pyocyanin pigment. Furthermore, this drug combination significantly increased the susceptibility of P. aeruginosa to oxidative stress, indicating immunity enhancement in the eradication of bacterial cells. In compliance with the in vitro findings, the histopathological photomicrographs of mice showed a considerable protective effect of the metformin-vildagliptin combination against P. aeruginosa, revealing relief of inflammation due to P. aeruginosa-induced pathogenesis. P. aeruginosa mainly employs quorum sensing (QS) systems to control the production of its huge arsenal of virulence factors. The anti-virulence activities of the metformin-vildagliptin combination can be interrupted by the anti-QS activities of both metformin and vildagliptin, as both exhibited a considerable affinity to QS receptors. Additionally, the metformin-vildagliptin combination significantly downregulated the expression of the main three QS-encoding genes in P. aeruginosa. These findings show the significant anti-virulence activities of metformin-vildagliptin at very low concentrations (10, 1.25 mg/mL, respectively) compared to the concentrations (850, 50 mg/mL, respectively) used to control diabetes.
Collapse
Affiliation(s)
- Maan T Khayat
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hisham A Abbas
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Tarek S Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Samar S Elbaramawi
- Medicinal Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Ahdab N Khayyat
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Majed Alharbi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Wael A H Hegazy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
- Pharmacy Program, Department of Pharmaceutical Sciences, Oman College of Health Sciences, Muscat 113, Oman
| | - Fatma Al-Zahraa A Yehia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
47
|
Sonnleitner E, Bassani F, Cianciulli Sesso A, Brear P, Lilic B, Davidovski L, Resch A, Luisi BF, Moll I, Bläsi U. Catabolite repression control protein antagonist, a novel player in Pseudomonas aeruginosa carbon catabolite repression control. Front Microbiol 2023; 14:1195558. [PMID: 37250041 PMCID: PMC10213629 DOI: 10.3389/fmicb.2023.1195558] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 04/18/2023] [Indexed: 05/31/2023] Open
Abstract
In the opportunistic human pathogen Pseudomonas aeruginosa (Pae), carbon catabolite repression (CCR) orchestrates the hierarchical utilization of N and C sources, and impacts virulence, antibiotic resistance and biofilm development. During CCR, the RNA chaperone Hfq and the catabolite repression control protein Crc form assemblies on target mRNAs that impede translation of proteins involved in uptake and catabolism of less preferred C sources. After exhaustion of the preferred C-source, translational repression of target genes is relieved by the regulatory RNA CrcZ, which binds to and acts as a decoy for Hfq. Here, we asked whether Crc action can be modulated to relieve CCR after exhaustion of a preferred carbon source. As Crc does not bind to RNA per se, we endeavored to identify an interacting protein. In vivo co-purification studies, co-immunoprecipitation and biophysical assays revealed that Crc binds to Pae strain O1 protein PA1677. Our structural studies support bioinformatics analyzes showing that PA1677 belongs to the isochorismatase-like superfamily. Ectopic expression of PA1677 resulted in de-repression of Hfq/Crc controlled target genes, while in the absence of the protein, an extended lag phase is observed during diauxic growth on a preferred and a non-preferred carbon source. This observations indicate that PA1677 acts as an antagonist of Crc that favors synthesis of proteins required to metabolize non-preferred carbon sources. We present a working model wherein PA1677 diminishes the formation of productive Hfq/Crc repressive complexes on target mRNAs by titrating Crc. Accordingly, we propose the name CrcA (catabolite repression control protein antagonist) for PA1677.
Collapse
Affiliation(s)
- Elisabeth Sonnleitner
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, Center of Molecular Biology, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Flavia Bassani
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, Center of Molecular Biology, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Anastasia Cianciulli Sesso
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, Center of Molecular Biology, Vienna Biocenter, University of Vienna, Vienna, Austria
- Vienna BioCenter PhD Program, a doctoral School of the University of Vienna and Medical University of Vienna, Max Perutz Labs, Center of Molecular Biology, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Paul Brear
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Branislav Lilic
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, Center of Molecular Biology, Vienna Biocenter, University of Vienna, Vienna, Austria
- Vienna BioCenter PhD Program, a doctoral School of the University of Vienna and Medical University of Vienna, Max Perutz Labs, Center of Molecular Biology, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Lovro Davidovski
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, Center of Molecular Biology, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Armin Resch
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, Center of Molecular Biology, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Ben F. Luisi
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Isabella Moll
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, Center of Molecular Biology, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Udo Bläsi
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, Center of Molecular Biology, Vienna Biocenter, University of Vienna, Vienna, Austria
| |
Collapse
|
48
|
Ji H, Zhao L, Lv K, Zhang Y, Gao H, Gong Q, Yu W. Citrinin Is a Potential Quorum Sensing Inhibitor against Pseudomonas aeruginosa. Mar Drugs 2023; 21:md21050296. [PMID: 37233490 DOI: 10.3390/md21050296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/27/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that infects patients by regulating virulence factors and biofilms through a quorum sensing (QS) system to protect itself from antibiotics and environmental stress. Therefore, the development of quorum sensing inhibitors (QSIs) is expected to become a new strategy for studying drug resistance to P. aeruginosa infections. Marine fungi are valuable resources for screening QSIs. A marine fungus, Penicillium sp. JH1, with anti-QS activity was isolated from the offshore waters of Qingdao (China), and citrinin, a novel QSI, was purified from secondary metabolites of this fungus. Citrinin could significantly inhibit the production of violacein in Chromobacterium violaceum CV12472 and the production of three virulence factors (elastase, rhamnolipid and pyocyanin) in P. aeruginosa PAO1. It could also inhibit the biofilm formation and motility of PAO1. In addition, citrinin downregulated the transcript levels of nine genes (lasI, rhlI, pqsA, lasR, rhlR, pqsR, lasB, rhlA and phzH) associated with QS. Molecular docking results showed that citrinin bound to PqsR and LasR with better affinity than the natural ligands. This study laid a foundation for the further study of the structure optimization and structure-activity relationship of citrinin.
Collapse
Affiliation(s)
- Hongrui Ji
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Lu Zhao
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Kaiwen Lv
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Yuzhu Zhang
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Haibo Gao
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Qianhong Gong
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Wengong Yu
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| |
Collapse
|
49
|
You Z, Li J, Wang Y, Wu D, Li F, Song H. Advances in mechanisms and engineering of electroactive biofilms. Biotechnol Adv 2023; 66:108170. [PMID: 37148984 DOI: 10.1016/j.biotechadv.2023.108170] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/22/2023] [Accepted: 05/02/2023] [Indexed: 05/08/2023]
Abstract
Electroactive biofilms (EABs) are electroactive microorganisms (EAMs) encased in conductive polymers that are secreted by EAMs and formed by the accumulation and cross-linking of extracellular polysaccharides, proteins, nucleic acids, lipids, and other components. EABs are present in the form of multicellular aggregates and play a crucial role in bioelectrochemical systems (BESs) for diverse applications, including biosensors, microbial fuel cells for renewable bioelectricity production and remediation of wastewaters, and microbial electrosynthesis of valuable chemicals. However, naturally occurred EABs are severely limited owing to their low electrical conductivity that seriously restrict the electron transfer efficiency and practical applications. In the recent decade, synthetic biology strategies have been adopted to elucidate the regulatory mechanisms of EABs, and to enhance the formation and electrical conductivity of EABs. Based on the formation of EABs and extracellular electron transfer (EET) mechanisms, the synthetic biology-based engineering strategies of EABs are summarized and reviewed as follows: (i) Engineering the structural components of EABs, including strengthening the synthesis and secretion of structural elements such as polysaccharides, eDNA, and structural proteins, to improve the formation of biofilms; (ii) Enhancing the electron transfer efficiency of EAMs, including optimizing the distribution of c-type cytochromes and conducting nanowire assembly to promote contact-based EET, and enhancing electron shuttles' biosynthesis and secretion to promote shuttle-mediated EET; (iii) Incorporating intracellular signaling molecules in EAMs, including quorum sensing systems, secondary messenger systems, and global regulatory systems, to increase the electron transfer flux in EABs. This review lays a foundation for the design and construction of EABs for diverse BES applications.
Collapse
Affiliation(s)
- Zixuan You
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jianxun Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Yuxuan Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Deguang Wu
- Department of Brewing Engineering, Moutai Institute, Luban Ave, Renhuai 564507, Guizhou, PR China
| | - Feng Li
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Hao Song
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
50
|
Ciemniecki JA, Newman DK. NADH dehydrogenases are the predominant phenazine reductases in the electron transport chain of Pseudomonas aeruginosa. Mol Microbiol 2023; 119:560-573. [PMID: 36840394 PMCID: PMC11129870 DOI: 10.1111/mmi.15049] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023]
Abstract
Phenazines are redox-active secondary metabolites produced by diverse bacteria including the opportunistic pathogen Pseudomonas aeruginosa. Extracellular electron transfer via phenazines enhances anaerobic survival by serving as an electron sink for glucose catabolism. However, the specific phenazine reductase(s) used to support this catabolism are unknown. Because electron transport chain components have been previously implicated in phenazine reduction, we sought to determine which of them possess phenazine reductase activity. We show that phenazine-1-carboxamide (PCN) and pyocyanin (PYO) are reduced at the highest rate by cells and are localized to the cell envelope while reduced. Using a coupled genetic and biochemical approach, we show that phenazine reductase activity in membrane fractions is attributable to the three NADH dehydrogenases present in P. aeruginosa and that their order of phenazine reductase activity is Nqr > Nuo > Ndh. In mutants possessing only one functional NADH dehydrogenase, whole cell reduction rates of PCN, but not PYO, recapitulate the pattern of biochemical results, implying that PYO reduction is predominantly occurring in the cytosol. Lastly, we show that ubiquinone rapidly and non-enzymatically oxidizes reduced phenazines, demonstrating that phenazines have the capability to serve in a redox loop between the NADH and ubiquinone pools, a finding that carries bioenergetic implications.
Collapse
Affiliation(s)
- John A Ciemniecki
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Dianne K Newman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|