1
|
Sher AA, Jerome JP, Bell JA, Yu J, Kim HY, Barrick JE, Mansfield LS. Experimental Evolution of Campylobacter jejuni Leads to Loss of Motility, rpoN (σ54) Deletion and Genome Reduction. Front Microbiol 2020; 11:579989. [PMID: 33240235 PMCID: PMC7677240 DOI: 10.3389/fmicb.2020.579989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/14/2020] [Indexed: 12/18/2022] Open
Abstract
Evolution experiments in the laboratory have focused heavily on model organisms, often to the exclusion of clinically relevant pathogens. The foodborne bacterial pathogen Campylobacter jejuni belongs to a genus whose genomes are small compared to those of its closest genomic relative, the free-living genus Sulfurospirillum, suggesting genome reduction during the course of evolution to host association. In an in vitro experiment, C. jejuni serially passaged in rich medium in the laboratory exhibited loss of flagellar motility-an essential function for host colonization. At early time points the motility defect was often reversible, but after 35 days of serial culture, motility was irreversibly lost in most cells in 5 independently evolved populations. Population re-sequencing revealed disruptive mutations to genes in the flagellar transcriptional cascade, rpoN (σ54)-therefore disrupting the expression of the genes σ54 regulates-coupled with deletion of rpoN in all evolved lines. Additional mutations were detected in virulence-related loci. In separate in vivo experiments, we demonstrate that a phase variable (reversible) motility mutant carrying an adenine deletion within a homopolymeric tract resulting in truncation of the flagellar biosynthesis gene fliR was deficient for colonization in a C57BL/6 IL-10-/- mouse disease model. Re-insertion of an adenine residue partially restored motility and ability to colonize mice. Thus, a pathogenic C. jejuni strain was rapidly attenuated by experimental laboratory evolution and demonstrated genomic instability during this evolutionary process. The changes observed suggest C. jejuni is able to evolve in a novel environment through genome reduction as well as transition, transversion, and slip-strand mutations.
Collapse
Affiliation(s)
- Azam A. Sher
- Comparative Enteric Diseases Laboratory, East Lansing, MI, United States
- Comparative Medicine and Integrative Biology, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, United States
| | - John P. Jerome
- Comparative Enteric Diseases Laboratory, East Lansing, MI, United States
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, United States
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Julia A. Bell
- Comparative Enteric Diseases Laboratory, East Lansing, MI, United States
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Julian Yu
- Comparative Enteric Diseases Laboratory, East Lansing, MI, United States
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, United States
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Hahyung Y. Kim
- Comparative Enteric Diseases Laboratory, East Lansing, MI, United States
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Jeffrey E. Barrick
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, United States
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States
| | - Linda S. Mansfield
- Comparative Enteric Diseases Laboratory, East Lansing, MI, United States
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, United States
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
2
|
Abstract
BACKGROUND Campylobacter species are a leading cause of bacterial foodborne illness worldwide. Despite the global efforts to curb them, Campylobacter infections have increased continuously in both developed and developing countries. The development of effective strategies to control the infection by this pathogen is warranted. The essential genes of bacteria are the most prominent targets for this purpose. In this study, we used transposon sequencing (Tn-seq) of a genome-saturating library of Tn5 insertion mutants to define the essential genome of C. jejuni at a high resolution. RESULT We constructed a Tn5 mutant library of unprecedented complexity in C. jejuni NCTC 11168 with 95,929 unique insertions throughout the genome and used the genomic DNA of the library for the reconstruction of Tn5 libraries in the same (C. jejuni NCTC 11168) and different strain background (C. jejuni 81-176) through natural transformation. We identified 166 essential protein-coding genes and 20 essential transfer RNAs (tRNA) in C. jejuni NCTC 11168 which were intolerant to Tn5 insertions during in vitro growth. The reconstructed C. jejuni 81-176 library had 384 protein coding genes with no Tn5 insertions. Essential genes in both strain backgrounds were highly enriched in the cluster of orthologous group (COG) categories of 'Translation, ribosomal structure and biogenesis (J)', 'Energy production and conversion (C)', and 'Coenzyme transport and metabolism (H)'. CONCLUSION Comparative analysis among this and previous studies identified 50 core essential genes of C. jejuni, which can be further investigated for the development of novel strategies to control the spread of this notorious foodborne bacterial pathogen.
Collapse
Affiliation(s)
- Rabindra K. Mandal
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701 USA
- Present Address: Department of Microbiology and Immunology, Clinical Translational Research Building, University of Louisville, Louisville, KY 40202 USA
| | - Tieshan Jiang
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701 USA
| | - Young Min Kwon
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701 USA
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701 USA
| |
Collapse
|
3
|
Dawoud TM, Jiang T, Mandal RK, Ricke SC, Kwon YM. Improving the efficiency of transposon mutagenesis in Salmonella enteritidis by overcoming host-restriction barriers. Mol Biotechnol 2015; 56:1004-10. [PMID: 24973023 DOI: 10.1007/s12033-014-9779-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Transposon mutagenesis using transposome complex is a powerful method for functional genomics analysis in diverse bacteria by creating a large number of random mutants to prepare a genome-saturating mutant library. However, strong host restriction barriers can lead to limitations with species- or strain-specific restriction-modification systems. The purpose of this study was to enhance the transposon mutagenesis efficiency of Salmonella Enteritidis to generate a larger number of random insertion mutants. Host-adapted Tn5 DNA was used to form a transposome complex, and this simple approach significantly and consistently improved the efficiency of transposon mutagenesis, resulting in a 46-fold increase in the efficiency as compared to non-adapted transposon DNA fragments. Random nature of Tn5 insertions was confirmed by high-throughput sequencing of the Tn5-junction sequences. The result based on S. Enteritidis in this study should find broad applications in preparing a comprehensive mutant library of other species using transposome complex.
Collapse
Affiliation(s)
- Turki M Dawoud
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, 72701, USA,
| | | | | | | | | |
Collapse
|
4
|
Gao B, Lara-Tejero M, Lefebre M, Goodman AL, Galán JE. Novel components of the flagellar system in epsilonproteobacteria. mBio 2014; 5:e01349-14. [PMID: 24961693 PMCID: PMC4073491 DOI: 10.1128/mbio.01349-14] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Accepted: 06/02/2014] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Motility is essential for the pathogenesis of many bacterial species. Most bacteria move using flagella, which are multiprotein filaments that rotate propelled by a cell wall-anchored motor using chemical energy. Although some components of the flagellar apparatus are common to many bacterial species, recent studies have shown significant differences in the flagellar structures of different bacterial species. The molecular bases for these differences, however, are not understood. The flagella from epsilonproteobacteria, which include the bacterial pathogens Campylobacter jejuni and Helicobacter pylori, are among the most divergent. Using next-generation sequencing combined with transposon mutagenesis, we have conducted a comprehensive high-throughput genetic screen in Campylobacter jejuni, which identified several novel components of its flagellar system. Biochemical analyses detected interactions between the identified proteins and known components of the flagellar machinery, and in vivo imaging located them to the bacterial poles, where flagella assemble. Most of the identified new components are conserved within but restricted to epsilonproteobacteria. These studies provide insight into the divergent flagella of this group of bacteria and highlight the complexity of this remarkable structure, which has adapted to carry out its conserved functions in the context of widely diverse bacterial species. IMPORTANCE Motility is essential for the normal physiology and pathogenesis of many bacterial species. Most bacteria move using flagella, which are multiprotein filaments that rotate propelled by a motor that uses chemical energy as fuel. Although some components of the flagellar apparatus are common to many bacterial species, recent studies have shown significant divergence in the flagellar structures across bacterial species. However, the molecular bases for these differences are not understood. The flagella from epsilonproteobacteria, which include the bacterial pathogens Campylobacter jejuni and Helicobacter pylori, are among the most divergent. We conducted a comprehensive genetic screen in Campylobacter jejuni and identified several novel components of the flagellar system. These studies provide important information to understand how flagella have adapted to function in the context of widely diverse sets of bacterial species and bring unique insight into the evolution and function of this remarkable bacterial organelle.
Collapse
Affiliation(s)
- Beile Gao
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Maria Lara-Tejero
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Matthew Lefebre
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | - Jorge E Galán
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
5
|
Cameron A, Gaynor EC. Hygromycin B and apramycin antibiotic resistance cassettes for use in Campylobacter jejuni. PLoS One 2014; 9:e95084. [PMID: 24751825 PMCID: PMC3994027 DOI: 10.1371/journal.pone.0095084] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 03/22/2014] [Indexed: 01/13/2023] Open
Abstract
Campylobacter jejuni genetic manipulation is restricted by the limited number of antibiotic resistance cassettes available for use in this diarrheal pathogen. In this study, two antibiotic resistance cassettes were developed, encoding for hygromycin B and apramycin resistance, for use in mutagenesis or for selection of gene expression and complementation constructs in C. jejuni. First, the marker genes were successfully modified to allow for insertional mutagenesis or deletion of a gene-of-interest, and were bracketed with restriction sites for the facilitation of site-specific cloning. These hygromycin B and apramycin markers are encoded by plasmids pAC1H and pAC1A, respectively. We also modified an insertional gene-delivery vector to create pRRH and pRRA, containing the hygromycin B and apramycin resistance genes, and 3 unique restriction sites for the directional introduction of genes into the conserved multi-copy rRNA gene clusters of the C. jejuni chromosome. We determined the effective antibiotic concentrations required for selection, and established that no harmful effects or fitness costs were associated with carrying hygromycin B or apramycin resistance under standard C. jejuni laboratory conditions. Using these markers, the arylsulfatase reporter gene astA was deleted, and the ability to genetically complement the astA deletion using pRRH and pRRA for astA gene insertion was demonstrated. Furthermore, the relative levels of expression from the endogenous astA promoter were compared to that of polycistronic mRNA expression from the constitutive promoter upstream of the resistance gene. The development of additional antibiotic resistance cassettes for use in Campylobacter will enable multiple gene deletion and expression combinations as well as more in-depth study of multi-gene systems important for the survival and pathogenesis of this important bacterium.
Collapse
Affiliation(s)
- Andrew Cameron
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Erin C. Gaynor
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
6
|
Contribution of amino acid catabolism to the tissue specific persistence of Campylobacter jejuni in a murine colonization model. PLoS One 2012; 7:e50699. [PMID: 23226358 PMCID: PMC3511319 DOI: 10.1371/journal.pone.0050699] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 10/24/2012] [Indexed: 12/21/2022] Open
Abstract
Campylobacter jejuni is a major cause of food-borne disease in industrialized countries. Carbohydrate utilization by C. jejuni is severely restricted, and knowledge about which substrates fuel C. jejuni infection and growth is limited. Some amino acids have been shown to serve as carbon sources both in vitro and in vivo. In the present study we investigated the contribution of serine and proline catabolism to the invitro and invivo growth of C. jejuni 81-176. We confirmed that the serine transporter SdaC and the serine ammonia-lyase SdaA are required for serine utilization, and demonstrated that a predicted proline permease PutP and a bifunctional proline/delta-1-pyrroline-5-carboxylate dehydrogenase PutA are required for proline utilization by C. jejuni 81-176. C. jejuni 81-176 mutants unable to utilize serine were shown to be severely defective for colonization of the intestine and systemic tissues in a mouse model of infection. In contrast, C. jejuni 81-176 mutants unable to utilize proline were only defective for intestinal colonization. These results further emphasize the importance of amino acid utilization in C. jejuni colonization of various tissues.
Collapse
|
7
|
Kienesberger S, Gorkiewicz G, Wolinski H, Zechner EL. New molecular microbiology approaches in the study of Campylobacter fetus. Microb Biotechnol 2012; 4:8-19. [PMID: 21255368 PMCID: PMC3815791 DOI: 10.1111/j.1751-7915.2010.00173.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Campylobacter fetus infection is a substantial problem in herds of domestic cattle worldwide and a rising threat in human disease. Application of comparative and functional genomics approaches will be essential to understand the molecular basis of this pathogen's interactions with various hosts. Here we report recent progress in genome analyses of C. fetus ssp. fetus and C. fetus ssp. venerealis, and the development of molecular tools to determine the genetic basis of niche‐specific adaptations. Campylobacter research has been strengthened by the rapid advancements in imaging technology occurring throughout microbiology. To move forward in understanding the mechanisms underlying C. fetus virulence, current efforts focus on developing suitable in vitro models to reflect host‐ and tissue‐specific aspects of infection.
Collapse
Affiliation(s)
- Sabine Kienesberger
- 1Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/1, A-8010 Graz, Austria
| | | | | | | |
Collapse
|
8
|
Tareen AM, Dasti JI, Zautner AE, Groß U, Lugert R. Sulphite : cytochrome c oxidoreductase deficiency in Campylobacter jejuni reduces motility, host cell adherence and invasion. MICROBIOLOGY-SGM 2011; 157:1776-1785. [PMID: 21372092 DOI: 10.1099/mic.0.045567-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Campylobacter jejuni lacks the enzyme phosphofructokinase and, consequently, is incapable of metabolizing glucose. Instead, the pathogen uses a number of other chemicals to serve as electron donors. Like chemolithotrophic bacteria, C. jejuni is able to respire sulphite in the presence of a sulphite : cytochrome c oxidoreductase (SOR) that is encoded by the genes cj0004c and cj0005c; the former encodes a monohaem cytochrome c oxidoreductase and the latter a molybdopterin oxidoreductase. After screening of a transposon-based mutant library, we identified a mutant with an insertion in gene cj0005c that was strongly reduced in its capacity to infect Caco2 cells. Further characterization of a corresponding non-random knockout mutant together with a complemented mutant and the parental strain showed the cj0005c-deficient mutant to exhibit clearly reduced motility and diminished adherence to host cells. Furthermore, the transcription of genes responsible for the synthesis of, in particular, legionaminic acid was downregulated and the mutant had a reduced capacity to autoagglutinate. In contrast, neither the proliferation of the mutant, nor its intracellular ATP content, was altered compared to the parental strain.
Collapse
Affiliation(s)
- A Malik Tareen
- University Medical Center Göttingen, Institute for Medical Microbiology, Kreuzbergring 57, 37075 Göttingen, Germany
| | - Javid Iqbal Dasti
- University Medical Center Göttingen, Institute for Medical Microbiology, Kreuzbergring 57, 37075 Göttingen, Germany
| | - Andreas E Zautner
- University Medical Center Göttingen, Institute for Medical Microbiology, Kreuzbergring 57, 37075 Göttingen, Germany
| | - Uwe Groß
- University Medical Center Göttingen, Institute for Medical Microbiology, Kreuzbergring 57, 37075 Göttingen, Germany
| | - Raimond Lugert
- University Medical Center Göttingen, Institute for Medical Microbiology, Kreuzbergring 57, 37075 Göttingen, Germany
| |
Collapse
|
9
|
Tareen AM, Dasti JI, Zautner AE, Groß U, Lugert R. Campylobacter jejuni proteins Cj0952c and Cj0951c affect chemotactic behaviour towards formic acid and are important for invasion of host cells. MICROBIOLOGY-SGM 2010; 156:3123-3135. [PMID: 20656782 DOI: 10.1099/mic.0.039438-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Campylobacter jejuni, an important food-borne bacterial pathogen in industrialized countries and in the developing world, is one of the major causes of bacterial diarrhoea. To identify genes which are important for the invasion of host cells by the pathogen, we screened altogether 660 clones of a transposon-generated mutant library based on the clinical C. jejuni isolate B2. Thereby, we identified a clone with a transposon insertion in gene cj0952c. As in the well-characterized C. jejuni strain NCTC 11168, the corresponding protein together with the gene product of the adjacent gene cj0951c consists of two transmembrane domains, a HAMP domain and a putative MCP domain, which together are thought to act as a chemoreceptor, designated Tlp7. In this report we show that genes cj0952c and cj0951c (i) are important for the host cell invasion of the pathogen, (ii) are not translated as one protein in C. jejuni isolate B2, contradicting the idea of a postulated read-through mechanism, (iii) affect the motility of C. jejuni, (iv) alter the chemotactic behaviour of the pathogen towards formic acid, and (v) are not related to the utilization of formic acid by formate dehydrogenase.
Collapse
Affiliation(s)
- A Malik Tareen
- University Medical Center Göttingen, Institute for Medical Microbiology, Kreuzbergring 57, 37075 Göttingen, Germany
| | - Javid Iqbal Dasti
- University Medical Center Göttingen, Institute for Medical Microbiology, Kreuzbergring 57, 37075 Göttingen, Germany
| | - Andreas E Zautner
- University Medical Center Göttingen, Institute for Medical Microbiology, Kreuzbergring 57, 37075 Göttingen, Germany
| | - Uwe Groß
- University Medical Center Göttingen, Institute for Medical Microbiology, Kreuzbergring 57, 37075 Göttingen, Germany
| | - Raimond Lugert
- University Medical Center Göttingen, Institute for Medical Microbiology, Kreuzbergring 57, 37075 Göttingen, Germany
| |
Collapse
|
10
|
Identification of Campylobacter jejuni genes involved in its interaction with epithelial cells. Infect Immun 2010; 78:3540-53. [PMID: 20515930 DOI: 10.1128/iai.00109-10] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Campylobacter jejuni is the leading cause of infectious gastroenteritis in industrialized nations. Its ability to enter and survive within nonphagocytic cells is thought to be very important for pathogenesis. However, little is known about the C. jejuni determinants that mediate these processes. Through an extensive transposon mutagenesis screen, we have identified several loci that are required for C. jejuni efficient entry and survival within epithelial cells. Among these loci, insertional mutations in aspA, aspB, and sodB resulted in drastic reduction in C. jejuni entry and/or survival within host cells and a severe defect in colonization in an animal model. The implications of these findings for the understanding of C. jejuni-host cell interactions are discussed.
Collapse
|
11
|
Gaskin DJH, van Vliet AHM. Random mutagenesis strategies for Campylobacter and Helicobacter species. Methods Mol Biol 2010; 634:37-52. [PMID: 20676974 DOI: 10.1007/978-1-60761-652-8_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Campylobacter and Helicobacter species are important pathogens in man and animals. The study of their virulence and physiology has been difficult due to the lack of tractable genetic tools, since many of the techniques established in Escherichia coli and related species were found to be non-functional in Campylobacter and Helicobacter species. The advent of functional genomics techniques in the last decade has been accompanied by the development of genetic tools, which take advantage of specific features of Campylobacter and Helicobacter, like natural transformation. This has allowed for the construction of random mutant libraries based on in vitro transposition or ligated loops followed by natural transformation and recombination, thus circumventing selection against sequences when cloning or passaging libraries through E. coli. Uses of the techniques have been in the study of motility, gene expression, and gene essentiality. In this chapter, we discuss the approaches and techniques used for the construction of random mutant libraries in both Campylobacter and Helicobacter.
Collapse
|
12
|
Javed MA, Grant AJ, Bagnall MC, Maskell DJ, Newell DG, Manning G. Transposon mutagenesis in a hyper-invasive clinical isolate of Campylobacter jejuni reveals a number of genes with potential roles in invasion. MICROBIOLOGY-SGM 2009; 156:1134-1143. [PMID: 20035004 DOI: 10.1099/mic.0.033399-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Transposon mutagenesis has been applied to a hyper-invasive clinical isolate of Campylobacter jejuni, 01/51. A random transposon mutant library was screened in an in vitro assay of invasion and 26 mutants with a significant reduction in invasion were identified. Given that the invasion potential of C. jejuni is relatively poor compared to other enteric pathogens, the use of a hyper-invasive strain was advantageous as it greatly facilitated the identification of mutants with reduced invasion. The location of the transposon insertion in 23 of these mutants has been determined; all but three of the insertions are in genes also present in the genome-sequenced strain NCTC 11168. Eight of the mutants contain transposon insertions in one region of the genome (approximately 14 kb), which when compared with the genome of NCTC 11168 overlaps with one of the previously reported plasticity regions and is likely to be involved in genomic variation between strains. Further characterization of one of the mutants within this region has identified a gene that might be involved in adhesion to host cells.
Collapse
Affiliation(s)
- Muhammad Afzal Javed
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Andrew J Grant
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Mary C Bagnall
- Veterinary Laboratories Agency (Weybridge), New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Duncan J Maskell
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Diane G Newell
- Veterinary Laboratories Agency (Weybridge), New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Georgina Manning
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| |
Collapse
|
13
|
Lin J, Wang Y, Hoang KV. Systematic identification of genetic loci required for polymyxin resistance in Campylobacter jejuni using an efficient in vivo transposon mutagenesis system. Foodborne Pathog Dis 2009; 6:173-185. [PMID: 19105633 DOI: 10.1089/fpd.2008.0177] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The aim of this study was to identify genetic loci required for polymyxin (PM) resistance in Campylobacter jejuni using an efficient in vivo random mutagenesis system. PM has been widely used as a model peptide to examine mechanisms of bacterial resistance to antimicrobial peptides (AMPs), the major effectors of host innate immunity and also candidates for a new generation of antibiotics. In this study, a commercially available transposon mutagenesis approach (EZ-Tn5 <KAN-2> Transposome; Epicentre, Madison, WI) was evaluated and used to systematically identify Campylobacter mutants with increased susceptibility to PM. This simple, yet efficient, transposon mutagenesis approach identified 12 mutants representing seven different genes of C. jejuni 81-176 involved in acquired PM resistance. Backcrossing of the transposon mutations into the parent strain confirmed that the PM-sensitive phenotype in each mutant was linked to the gene with a specific transposon insertion. The genes are identified as being involved in the synthesis of cell-surface carbohydrates, modification of intracellular targets, signal transduction, and modulation of transmembrane potential. The mutant with the highest susceptibility to PM contains a transposon insertion in a putative galU gene that is essential for production of uridine diphosphate glucose (UDP)-glucose, a precursor required for lipooligosaccharide (LOS) synthesis. LOS analysis by tricine SDSPAGE showed significant truncation of the LOS core structure in the galU mutant. Susceptibility assays also indicated that GalU contributed C. jejuni resistance to some natural AMPs. Complementation of the galU mutant in trans fully restored LOS synthesis and resistance to the levels of the parent strain. Together, these results define seven C. jejuni genetic loci that will be useful for characterizing the molecular basis of Campylobacter resistance to PM and natural AMPs, and also highlight the usefulness of the in vivo mutagenesis approach for systematic characterization of functionally important Campylobacter genes.
Collapse
Affiliation(s)
- Jun Lin
- Department of Animal Science, The University of Tennessee, Knoxville, 37996-4574, USA.
| | | | | |
Collapse
|
14
|
Campylobacter jejuni biofilms up-regulated in the absence of the stringent response utilize a calcofluor white-reactive polysaccharide. J Bacteriol 2007; 190:1097-107. [PMID: 17993532 DOI: 10.1128/jb.00516-07] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The enteric pathogen Campylobacter jejuni is a highly prevalent yet fastidious bacterium. Biofilms and surface polysaccharides participate in stress survival, transmission, and virulence in C. jejuni; thus, the identification and characterization of novel genes involved in each process have important implications for pathogenesis. We found that C. jejuni reacts with calcofluor white (CFW), indicating the presence of surface polysaccharides harboring beta1-3 and/or beta1-4 linkages. CFW reactivity increased with extended growth, under 42 degrees C anaerobic conditions, and in a DeltaspoT mutant defective for the stringent response (SR). Conversely, two newly isolated dim mutants exhibited diminished CFW reactivity as well as growth and serum sensitivity differences from the wild type. Genetic, biochemical, and nuclear magnetic resonance analyses suggested that differences in CFW reactivity between wild-type and DeltaspoT and dim mutant strains were independent of well-characterized lipooligosaccharides, capsular polysaccharides, and N-linked polysaccharides. Targeted deletion of carB downstream of the dim13 mutation also resulted in CFW hyporeactivity, implicating a possible role for carbamoylphosphate synthase in the biosynthesis of this polysaccharide. Correlations between biofilm formation and production of the CFW-reactive polymer were demonstrated by crystal violet staining, scanning electron microscopy, and confocal microscopy, with the C. jejuni DeltaspoT mutant being the first SR mutant in any bacterial species identified as up-regulating biofilms. Together, these results provide new insight into genes and processes important for biofilm formation and polysaccharide production in C. jejuni.
Collapse
|
15
|
Abstract
Campylobacter jejuni is a foodborne bacterial pathogen that is common in the developed world. However, we know less about its biology and pathogenicity than we do about other less prevalent pathogens. Interest in C. jejuni has increased in recent years as a result of the growing appreciation of its importance as a pathogen and the availability of new model systems and genetic and genomic technologies. C. jejuni establishes persistent, benign infections in chickens and is rapidly cleared by many strains of laboratory mouse, but causes significant inflammation and enteritis in humans. Comparing the different host responses to C. jejuni colonization should increase our understanding of this organism.
Collapse
Affiliation(s)
- Kathryn T Young
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
16
|
Dasti JI, Groß U, Pohl S, Lugert R, Weig M, Schmidt-Ott R. Role of the plasmid-encoded tet(O) gene in tetracycline-resistant clinical isolates of Campylobacter jejuni and Campylobacter coli. J Med Microbiol 2007; 56:833-837. [PMID: 17510271 DOI: 10.1099/jmm.0.47103-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The prevalence of tetracycline resistance, tetracycline MICs and tet(O) gene localization were investigated in 83 Campylobacter isolates from patients suffering from acute gastroenteritis in Germany. Combined biochemical and molecular markers identified 74 isolates (89 %) as Campylobacter jejuni, including seven atypical isolates that failed to hydrolyse hippurate, and nine isolates (11 %) as Campylobacter coli. Tetracycline resistance was detected in six out of nine Campylobacter coli isolates (67 %) and 13 out of 74 C. jejuni isolates (18 %). Low-level tetracycline resistance was observed for C. coli (MIC 16 microg ml(-1) for all strains), whereas C. jejuni showed high-level resistance (MIC >256 microg ml(-1) for all strains). Both low- and high-level tetracycline resistance was associated with the presence of the tet(O) gene. In C. jejuni, tet(O) was plasmid-encoded in 54 % of tetracycline-resistant isolates, whereas in C. coli, tet(O) appeared to be located on the chromosome.
Collapse
Affiliation(s)
- Javid Iqbal Dasti
- Institute of Medical Microbiology, University of Göttingen, D-37075 Göttingen, Germany
| | - Uwe Groß
- Institute of Medical Microbiology, University of Göttingen, D-37075 Göttingen, Germany
| | - Sven Pohl
- Institute of Medical Microbiology, University of Göttingen, D-37075 Göttingen, Germany
| | - Raimond Lugert
- Institute of Medical Microbiology, University of Göttingen, D-37075 Göttingen, Germany
| | - Michael Weig
- Institute of Medical Microbiology, University of Göttingen, D-37075 Göttingen, Germany
| | - Ruprecht Schmidt-Ott
- Institute of Medical Microbiology, University of Göttingen, D-37075 Göttingen, Germany
| |
Collapse
|
17
|
Watson RO, Novik V, Hofreuter D, Lara-Tejero M, Galán JE. A MyD88-deficient mouse model reveals a role for Nramp1 in Campylobacter jejuni infection. Infect Immun 2006; 75:1994-2003. [PMID: 17194808 PMCID: PMC1865720 DOI: 10.1128/iai.01216-06] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Campylobacter jejuni is a major worldwide cause of enteric illnesses. Adult immunocompetent mice are not susceptible to C. jejuni infection. However, we show here that mice deficient in the adaptor protein myeloid differentiation factor 88 (MyD88), which is required for signaling through most Toll-like receptors, can be stably colonized by C. jejuni but not by isogenic derivatives carrying mutations in known virulence genes. We also found that Nramp1 deficiency increases the mouse susceptibility to C. jejuni infection when administered systemically. These results indicate that MyD88-deficient mice could be a useful model to study C. jejuni colonization and reveal a potential role for Nramp1 in the control of this bacterial pathogen.
Collapse
Affiliation(s)
- Robert O Watson
- Section of Microbial Pathogenesis, Yale University, School of Medicine, New Haven, CT 06536, USA
| | | | | | | | | |
Collapse
|
18
|
Chang C, Miller JF. Campylobacter jejuni colonization of mice with limited enteric flora. Infect Immun 2006; 74:5261-71. [PMID: 16926420 PMCID: PMC1594848 DOI: 10.1128/iai.01094-05] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have developed experimental murine Campylobacter infection models which demonstrate efficient establishment and reproducible, high-level colonization. Following oral inoculation, wild-type C3H mice with normal enteric flora were colonized inconsistently and inefficiently by C. jejuni strain 81-176. However, C3H mice with a limited gut flora (LF) were efficiently colonized at high levels (10(8) CFU/g of stool or large intestine tissue) followed by clearance after several weeks. Large intestine tissue showed minimal to mild inflammation at days 7 and 28 postinoculation. In striking contrast, C3H SCID mice with the same limited flora remained persistently colonized at a consistently high level until they were euthanized 8 months postinoculation. Lower gastrointestinal tract tissue from LF-SCID mice showed marked to severe inflammation in the colon and cecum at days 7 and 28 and intense inflammation of the stomach at day 28. These findings indicate that although the innate response alone cannot block colonization persistence, it is sufficient to orchestrate marked gut inflammation. Moreover, the adaptive immune response is critical to mediate C. jejuni clearance from the colonized gut. To validate our LF murine model, we verified that motility and chemotaxis are critical for colonization. Insertion-deletion mutations were generated in motB and fliI, which encode products essential for motility and flagellar assembly, and in the presumptive chemotaxis gene cheA (histidine kinase). All mutants failed to establish colonization in LF mice. Our limited flora murine colonization models serve as tractable, reproducible tools to define host responses to C. jejuni infection and to identify and characterize virulence determinants required for colonization.
Collapse
Affiliation(s)
- Christopher Chang
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave., CHS 43-326, Los Angeles, CA 90095-1747, USA.
| | | |
Collapse
|
19
|
Coward C, Grant AJ, Swift C, Philp J, Towler R, Heydarian M, Frost JA, Maskell DJ. Phase-variable surface structures are required for infection of Campylobacter jejuni by bacteriophages. Appl Environ Microbiol 2006; 72:4638-47. [PMID: 16820455 PMCID: PMC1489344 DOI: 10.1128/aem.00184-06] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
This study characterizes the interaction between Campylobacter jejuni and the 16 phages used in the United Kingdom typing scheme by screening spontaneous mutants of the phage-type strains and transposon mutants of the sequenced strain NCTC 11168. We show that the 16 typing phages fall into four groups based on their patterns of activity against spontaneous mutants. Screens of transposon and defined mutants indicate that the phage-bacterium interaction for one of these groups appears to involve the capsular polysaccharide (CPS), while two of the other three groups consist of flagellatropic phages. The expression of CPS and flagella is potentially phase variable in C. jejuni, and the implications of these findings for typing and intervention strategies are discussed.
Collapse
Affiliation(s)
- Chris Coward
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Guerry P, Ewing CP, Schirm M, Lorenzo M, Kelly J, Pattarini D, Majam G, Thibault P, Logan S. Changes in flagellin glycosylation affect Campylobacter autoagglutination and virulence. Mol Microbiol 2006; 60:299-311. [PMID: 16573682 PMCID: PMC1424674 DOI: 10.1111/j.1365-2958.2006.05100.x] [Citation(s) in RCA: 202] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Analysis of the complete flagellin glycosylation locus of Campylobacter jejuni strain 81-176 revealed a less complex genomic organization than the corresponding region in the genome strain, C. jejuni NCTC 11168. Twenty-four of the 45 genes found between Cj1293 and Cj1337 in NCTC 11168 are missing in 81-176. Mutation of six new genes, in addition to three previously reported, resulted in a non-motile phenotype, consistent with a role in synthesis of pseudaminic acid (PseAc) or transfer of PseAc to flagellin. Mutation of Cj1316c or pseA had been shown to result in loss of the acetamidino form of pseudaminic acid (PseAm). Mutation of a second gene also resulted in loss of PseAm, as well as a minor modification that appears to be PseAm extended with N-acetyl-glutamic acid. Previously described mutants in C. jejuni 81-176 and Campylobacter coli VC167 that produced flagella lacking PseAm or PseAc failed to autoagglutinate. This suggests that interactions between modifications on adjacent flagella filaments are required for autoagglutination. Mutants (81-176) defective in autoagglutination showed a modest reduction in adherence and invasion of INT407 cells. However, there was a qualitative difference in binding patterns to INT407 cells using GFP-labelled 81-176 and mutants lacking PseAm. A mutant lacking PseAm was attenuated in the ferret diarrhoeal disease model.
Collapse
Affiliation(s)
- Patricia Guerry
- Enteric Diseases Department, Naval Medical Research Center, 503 Robert Grant Ave, Silver Spring, MD, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Raphael BH, Pereira S, Flom GA, Zhang Q, Ketley JM, Konkel ME. The Campylobacter jejuni response regulator, CbrR, modulates sodium deoxycholate resistance and chicken colonization. J Bacteriol 2005; 187:3662-70. [PMID: 15901688 PMCID: PMC1112060 DOI: 10.1128/jb.187.11.3662-3670.2005] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two-component regulatory systems play a major role in the physiological response of bacteria to environmental stimuli. Such systems are composed of a sensor histidine kinase and a response regulator whose ultimate function is to affect the expression of target genes. Response regulator mutants of Campylobacter jejuni strain F38011 were screened for sensitivity to sodium deoxycholate. A mutation in Cj0643, which encodes a response regulator with no obvious cognate histidine kinase, resulted in an absence of growth on plates containing a subinhibitory concentration of sodium deoxcholate (1%, wt/vol). In broth cultures containing 0.05% (wt/vol) sodium deoxycholate, growth of the mutant was significantly inhibited compared to growth of the C. jejuni F38011 wild-type strain. Complementation of the C. jejuni cbrR mutant in trans restored growth in both broth and plate cultures supplemented with sodium deoxycholate. Based on the phenotype displayed by its mutation, we designated the gene corresponding to Cj0643 as cbrR (Campylobacter bile resistance regulator). While the MICs of a variety of bile salts and other detergents for the C. jejuni cbrR mutant were lower, no difference was noted in its sensitivity to antibiotics or osmolarity. Finally, chicken colonization studies demonstrated that the C. jejuni cbrR mutant had a reduced ability to colonize compared to the wild-type strain. These data support previous findings that bile resistance contributes to colonization of chickens and establish that the response regulator, CbrR, modulates resistance to bile salts in C. jejuni.
Collapse
Affiliation(s)
- Brian H Raphael
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164, USA
| | | | | | | | | | | |
Collapse
|
22
|
Andersen MT, Brøndsted L, Pearson BM, Mulholland F, Parker M, Pin C, Wells JM, Ingmer H. Diverse roles for HspR in Campylobacter jejuni revealed by the proteome, transcriptome and phenotypic characterization of an hspR mutant. MICROBIOLOGY-SGM 2005; 151:905-915. [PMID: 15758235 DOI: 10.1099/mic.0.27513-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Campylobacter jejuni is a leading cause of bacterial gastroenteritis in the developed world. The role of a homologue of the negative transcriptional regulatory protein HspR, which in other organisms participates in the control of the heat-shock response, was investigated. Following inactivation of hspR in C. jejuni, members of the HspR regulon were identified by DNA microarray transcript profiling. In agreement with the predicted role of HspR as a negative regulator of genes involved in the heat-shock response, it was observed that the transcript amounts of 13 genes were increased in the hspR mutant, including the chaperone genes dnaK, grpE and clpB, and a gene encoding the heat-shock regulator HrcA. Proteomic analysis also revealed increased synthesis of the heat-shock proteins DnaK, GrpE, GroEL and GroES in the absence of HspR. The altered expression of chaperones was accompanied by heat sensitivity, as the hspR mutant was unable to form colonies at 44 degrees C. Surprisingly, transcriptome analysis also revealed a group of 17 genes with lower transcript levels in the hspR mutant. Of these, eight were predicted to be involved in the formation of the flagella apparatus, and the decreased expression is likely to be responsible for the reduced motility and ability to autoagglutinate that was observed for hspR mutant cells. Electron micrographs showed that mutant cells were spiral-shaped and carried intact flagella, but were elongated compared to wild-type cells. The inactivation of hspR also reduced the ability of Campylobacter to adhere to and invade human epithelial INT-407 cells in vitro, possibly as a consequence of the reduced motility or lower expression of the flagellar export apparatus in hspR mutant cells. It was concluded that, in C. jejuni, HspR influences the expression of several genes that are likely to have an impact on the ability of the bacterium to successfully survive in food products and subsequently infect the consumer.
Collapse
Affiliation(s)
- Marianne Thorup Andersen
- Department of Veterinary Pathobiology, The Royal Veterinary and Agricultural University, Stigbøjlen 4, DK-1958 Frederiksberg C, Denmark
| | - Lone Brøndsted
- Department of Veterinary Pathobiology, The Royal Veterinary and Agricultural University, Stigbøjlen 4, DK-1958 Frederiksberg C, Denmark
| | | | | | - Mary Parker
- Institute of Food Research, Colney, Norwich NR4 7UA, UK
| | - Carmen Pin
- Institute of Food Research, Colney, Norwich NR4 7UA, UK
| | - Jerry M Wells
- Institute of Food Research, Colney, Norwich NR4 7UA, UK
| | - Hanne Ingmer
- Department of Veterinary Pathobiology, The Royal Veterinary and Agricultural University, Stigbøjlen 4, DK-1958 Frederiksberg C, Denmark
| |
Collapse
|
23
|
Carrillo CD, Taboada E, Nash JHE, Lanthier P, Kelly J, Lau PC, Verhulp R, Mykytczuk O, Sy J, Findlay WA, Amoako K, Gomis S, Willson P, Austin JW, Potter A, Babiuk L, Allan B, Szymanski CM. Genome-wide Expression Analyses of Campylobacter jejuni NCTC11168 Reveals Coordinate Regulation of Motility and Virulence by flhA. J Biol Chem 2004; 279:20327-38. [PMID: 14985343 DOI: 10.1074/jbc.m401134200] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We examined two variants of the genome-sequenced strain, Campylobacter jejuni NCTC11168, which show marked differences in their virulence properties including colonization of poultry, invasion of Caco-2 cells, and motility. Transcript profiles obtained from whole genome DNA microarrays and proteome analyses demonstrated that these differences are reflected in late flagellar structural components and in virulence factors including those involved in flagellar glycosylation and cytolethal distending toxin production. We identified putative sigma(28) and sigma(54) promoters for many of the affected genes and found that greater differences in expression were observed for sigma(28)-controlled genes. Inactivation of the gene encoding sigma(28), fliA, resulted in an unexpected increase in transcripts with sigma(54) promoters, as well as decreased transcription of sigma(28)-regulated genes. This was unlike the transcription profile observed for the attenuated C. jejuni variant, suggesting that the reduced virulence of this organism was not entirely due to impaired function of sigma(28). However, inactivation of flhA, an important component of the flagellar export apparatus, resulted in expression patterns similar to that of the attenuated variant. These findings indicate that the flagellar regulatory system plays an important role in campylobacter pathogenesis and that flhA is a key element involved in the coordinate regulation of late flagellar genes and of virulence factors in C. jejuni.
Collapse
Affiliation(s)
- Catherine D Carrillo
- Institute for Biological Sciences, National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Transposons are mobile genetic elements that can relocate from one genomic location to another. As well as modulating gene expression and contributing to genome plasticity and evolution, transposons are remarkably diverse molecular tools for both whole-genome and single-gene studies in bacteria, yeast, and other microorganisms. Efficient but simple in vitro transposition reactions now allow the mutational analysis of previously recalcitrant microorganisms. Transposon-based signature-tagged mutagenesis and genetic footprinting strategies have pinpointed essential genes and genes that are crucial for the infectivity of a variety of human and other pathogens. Individual proteins and protein complexes can be dissected by transposon-mediated scanning linker mutagenesis. These and other transposon-based approaches have reaffirmed the usefulness of these elements as simple yet highly effective mutagens for both functional genomic and proteomic studies of microorganisms.
Collapse
Affiliation(s)
- Finbarr Hayes
- Department of Biomolecular Sciences, University of Manchester Institute of Science and Technology, PO Box 88, Manchester M60 1QD, England.
| |
Collapse
|
25
|
Abstract
Campylobacterial infections are the most common cause of bacterial enterocolitis in humans. Among children, especially in developing countries, Campylobacter infections can cause severe life-threatening diarrheal disease. Although usually associated with a benign outcome in the developed world, the burden of illness posed by Campylobacter infections is enormous, and serious neurologic sequelae also can occur. For a variety of reasons our understanding of the molecular and cellular pathogenesis of Campylobacter infection has lagged far behind that of other enteric pathogens. However, recent completion of the genome sequence of Campylobacter jejuni promises to open up the Campylobacter research field with the prospect of developing novel therapeutic and preventive strategies.
Collapse
Affiliation(s)
- Ellen Crushell
- FRCPI, Children's Research Centre, Our Lady's Hospital for Sick Children, Crumlin, Dublin 12, Ireland.
| | | | | | | |
Collapse
|
26
|
Matz C, van Vliet AHM, Ketley JM, Penn CW. Mutational and transcriptional analysis of the Campylobacter jejuni flagellar biosynthesis gene flhB. MICROBIOLOGY (READING, ENGLAND) 2002; 148:1679-1685. [PMID: 12055288 DOI: 10.1099/00221287-148-6-1679] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A Campylobacter jejuni gene encoding a homologue of the flagellar biosynthesis gene flhB was identified downstream of the peroxide stress defence gene ahpC. Insertional mutagenesis of the flhB gene rendered C. jejuni non-motile, with most cells aflagellate, although a small number expressed truncated flagella. The absence of FlhB also appeared to affect cell shape, as the majority of cells were straight rather than curved rods. Transcription of the flagellin gene flaA was significantly reduced in the C. jejuni flhB mutants, which also did not express significant amounts of flagellin proteins, indicating that FlhB is an essential protein for subsequent expression of flagellar genes. The transcription start site of the flhB gene, as determined by primer extension, was located 91 bp upstream of the flhB start codon, but no recognizable promoter sequence could be identified immediately upstream of this transcription start site. Transcriptional flhB::lacZ reporter gene fusions confirmed that the flhB gene has its own promoter region, is expressed at very low levels and is transcribed independently of ahpC, and that its transcription is not regulated by iron or growth phase.
Collapse
Affiliation(s)
- Claudia Matz
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK1
| | - Arnoud H M van Vliet
- Department of Genetics, University of Leicester, University Road, Leicester LE1 7RH, UK3
- Department of Gastroenterology and Hepatology, Academic Hospital Dijkzigt, Dr Molewaterplein 40, 3015 GD Rotterdam, The Netherlands2
| | - Julian M Ketley
- Department of Genetics, University of Leicester, University Road, Leicester LE1 7RH, UK3
| | - Charles W Penn
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK1
| |
Collapse
|
27
|
Marchant J, Wren B, Ketley J. Exploiting genome sequence: predictions for mechanisms of Campylobacter chemotaxis. Trends Microbiol 2002; 10:155-9. [PMID: 11912013 DOI: 10.1016/s0966-842x(02)02323-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The genome sequence of Campylobacter jejuni NCTC 11168 reveals the presence of orthologues of the chemotaxis genes cheA, cheW, cheV, cheY, cheR and cheB, ten chemoreceptor genes and two aerotaxis genes. The presence of cheV and a response regulator domain in CheA, combined with the absence of a cheZ gene and the lack of a response regulator domain in CheB, reveals significant differences in the C. jejuni chemotaxis system compared with that found in other bacteria.
Collapse
|
28
|
Golden NJ, Acheson DWK. Identification of motility and autoagglutination Campylobacter jejuni mutants by random transposon mutagenesis. Infect Immun 2002; 70:1761-71. [PMID: 11895937 PMCID: PMC127829 DOI: 10.1128/iai.70.4.1761-1771.2002] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Campylobacter jejuni has been identified as the leading cause of acute bacterial diarrhea in the United States, yet compared with other enteric pathogens, considerably less is understood concerning the virulence factors of this human pathogen. A random in vivo transposon mutagenesis system was recently developed for the purpose of creating a library of C. jejuni transformants. A total of 1,065 C. jejuni transposon mutants were screened for their ability to swarm on motility agar plates and autoagglutinate in liquid cultures; 28 mutants were subsequently identified. The transposon insertion sites were obtained by using random-primed PCR, and the putative genes responsible for these phenotypes were identified. Of these mutants, all 28 were found to have diminished motility (0 to 86% that of the control). Seventeen motility mutants had insertions in genes with strong homology to functionally known motility and chemotaxis genes; however, 11 insertions were in genes of unknown function. Twenty motility mutants were unable to autoagglutinate, suggesting that the expression of flagella is correlated with autoagglutination (AAG). However, four mutants expressed wild-type levels of surface FlaA, as indicated by Western blot analysis, yet were unable to autoagglutinate (Cj1318, Cj1333, Cj1340c, and Cj1062). These results suggest that FlaA is necessary but not sufficient to mediate the AAG phenotype. Furthermore, two of the four AAG mutants (Cj1333 and Cj1062) were unable to invade INT-407 intestinal epithelial cells, as determined by a gentamicin treatment assay. These data identify novel genes important for motility, chemotaxis, and AAG and demonstrate their potential role in virulence.
Collapse
Affiliation(s)
- Neal J Golden
- Department of Epidemiology and Preventative Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | |
Collapse
|
29
|
Lamberg A, Nieminen S, Qiao M, Savilahti H. Efficient insertion mutagenesis strategy for bacterial genomes involving electroporation of in vitro-assembled DNA transposition complexes of bacteriophage mu. Appl Environ Microbiol 2002; 68:705-12. [PMID: 11823210 PMCID: PMC126711 DOI: 10.1128/aem.68.2.705-712.2002] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An efficient insertion mutagenesis strategy for bacterial genomes based on the phage Mu DNA transposition reaction was developed. Incubation of MuA transposase protein with artificial mini-Mu transposon DNA in the absence of divalent cations in vitro resulted in stable but inactive Mu DNA transposition complexes, or transpososomes. Following delivery into bacterial cells by electroporation, the complexes were activated for DNA transposition chemistry after encountering divalent metal ions within the cells. Mini-Mu transposons were integrated into bacterial chromosomes with efficiencies ranging from 10(4) to 10(6) CFU/microg of input transposon DNA in the four species tested, i.e., Escherichia coli, Salmonella enterica serovar Typhimurium, Erwinia carotovora, and Yersinia enterocolitica. Efficiency of integration was influenced mostly by the competence status of a given strain or batch of bacteria. An accurate 5-bp target site duplication flanking the transposon, a hallmark of Mu transposition, was generated upon mini-Mu integration into the genome, indicating that a genuine DNA transposition reaction was reproduced within the cells of the bacteria studied. This insertion mutagenesis strategy for microbial genomes may be applicable to a variety of organisms provided that a means to introduce DNA into their cells is available.
Collapse
Affiliation(s)
- Arja Lamberg
- Program in Cellular Biotechnology, Institute of Biotechnology, Viikki Biocenter, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland
| | | | | | | |
Collapse
|
30
|
Abstract
The important contribution of Campylobacter infections to human enteric disease is well established. Recent completion of the genomic sequence of a Campylobacter jejuni strain has heralded a renaissance in the field of Campylobacter pathogenesis research. With the application of novel, powerful technologies, our understanding of how these organisms mediate disease is set to evolve rapidly from its current, relatively neglected status.
Collapse
Affiliation(s)
- Billy Bourke
- Children's Research Center, Our Lady's Hospital for Sick Children, Department of Pediatrics, Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland.
| |
Collapse
|