1
|
Banerjee S, K MH, Prasad KS, Shastry RP. Evaluation of diagnostic accuracy of the wabG gene based Klebsiella pneumoniae detection by loop-mediated isothermal reaction in neonatal blood sample. Diagn Microbiol Infect Dis 2024; 110:116552. [PMID: 39396482 DOI: 10.1016/j.diagmicrobio.2024.116552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 10/04/2024] [Accepted: 10/04/2024] [Indexed: 10/15/2024]
Abstract
Neonatal sepsis is a significant problem in developing nations, but current gold-standard diagnostic methods, such as blood culture, is slow and time-consuming. Here, we describe the development of a colorimetric loop-mediated isothermal amplification (LAMP) assay that targets the wabG gene in the lipopolysaccharide region of K. pneumoniae, offering a limit of detection (LOD) of 40 CFU/ml with specificity for K. pneumoniae compared to other non-Klebsiella strains. The sensitivity and specificity of the LAMP assay were found to be 90 % and 100 %, respectively, with a positive predictive value of 100 % and a negative predictive value of 96.47 %. The LAMP assay demonstrated a significantly shorter turnaround time of 1 h. The LAMP assay was found to be simpler, quicker, and more sensitive than traditional detection techniques such as PCR and blood culture.
Collapse
Affiliation(s)
- Shukla Banerjee
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018, India
| | - Mithun H K
- Department of Pediatrics, Yenepoya Medical College, Yenepoya (Deemed to be University), Deralakatte, Mangalore, 575018, India
| | - K Sudhakara Prasad
- Nanomaterial Research Laboratory (NMRL), Nano Division, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, 575018, India
| | - Rajesh P Shastry
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018, India.
| |
Collapse
|
2
|
Wusiman M, Zuo J, Yu Y, Lv Z, Wang M, Nie L, Zhang X, Wu J, Wu Z, Jiang W, Pan Z, Zhang W, Yin H, Huang C, Chen Z, Miao J, Chen W, Han X. Molecular characterization of Klebsiella pneumoniae in clinical bovine mastitis in 14 provinces in China. Vet Res Commun 2024; 49:18. [PMID: 39560805 DOI: 10.1007/s11259-024-10598-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 11/08/2024] [Indexed: 11/20/2024]
Abstract
The mastitis caused by Klebsiella pneumoniae (K. pneumoniae) is increasing in the dairy cows. To investigate the epidemic of K. pneumoniae of China, 131 strains were isolated from 495 clinical mastitis milk samples (26.5%) from 14 provinces in China. Among the isolates, K57 was the dominant serotype (45.0%) and 19 (14.5%) isolates were identified as hypervirulent K. pneumoniae (hvKP). The mrkA, entB, wabG and fimH genes were prevalent virulence genes while rmpA, magA, and ycf were not found in K. pneumoniae. Furthermore, K. pneumoniae had serious antibiotic resistance and multiple β-lactamase genes, including blaTEM, blaSHV, blaNDM, blaCTX-M, blaDHA, and blaKPC. Biofilm was an important factor in bacterial resistance and persistent infection, and 77.1% isolates could form biofilm. Although acylated homoserine lactone (AHL, a Gram-negative bacterial quorum sensing signal molecule) was not confirmed among the K. pneumoniae isolates, exogenous AHLs could reduce the biofilm formation ability of the K. pneumoniae strains. Three new ST types (ST6781, ST6782, and ST6783) were first identified in this study. The MLST phylogenetic tree showed the distribution of mastitis associated K. pneumoniae strains had no regular pattern, which confirmed high genomic diversity of mastitis associated K. pneumoniae. In conclusion, the high rate of isolation and serious antibiotic resistance of K. pneumonia were found in this study and indicated a potential threat to public health from the food chain.
Collapse
Affiliation(s)
- Maierhaba Wusiman
- Engineering Research Center for the Prevention and Control of Animal Original Zoonosis, College of Life Science, Longyan University, Longyan, 364012, Fujian Province, China
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, China
- College of Animal Science and Technology, Tarim University, Alar, 843300, Xinjiang, China
| | - Jiakun Zuo
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yong Yu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Zhaoyang Lv
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, China
- College of Animal Science and Technology, Tarim University, Alar, 843300, Xinjiang, China
| | - Mengdi Wang
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, China
| | - Lianhua Nie
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, China
| | - Xiuping Zhang
- College of Animal Science and Technology, Tarim University, Alar, 843300, Xinjiang, China
| | - Jing Wu
- College of Animal Science and Technology, Tarim University, Alar, 843300, Xinjiang, China
| | - Zihao Wu
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, China
- College of Animal Science and Technology, Tarim University, Alar, 843300, Xinjiang, China
| | - Wei Jiang
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, China
| | - Zihao Pan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Wei Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Huifang Yin
- Engineering Research Center for the Prevention and Control of Animal Original Zoonosis, College of Life Science, Longyan University, Longyan, 364012, Fujian Province, China
| | - Cuiqin Huang
- Engineering Research Center for the Prevention and Control of Animal Original Zoonosis, College of Life Science, Longyan University, Longyan, 364012, Fujian Province, China
| | - Zhaoguo Chen
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, China
| | - Jinfeng Miao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Wei Chen
- College of Animal Science and Technology, Tarim University, Alar, 843300, Xinjiang, China.
| | - Xiangan Han
- Engineering Research Center for the Prevention and Control of Animal Original Zoonosis, College of Life Science, Longyan University, Longyan, 364012, Fujian Province, China.
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, China.
| |
Collapse
|
3
|
Elkady FM, Badr BM, Alfeky AAE, Abdulrahman MS, Hashem AH, Al-Askar AA, AbdElgayed G, Hashem HR. Genetic Insights on Meropenem Resistance Concerning Klebsiella pneumoniae Clinical Isolates. Life (Basel) 2024; 14:1408. [PMID: 39598206 PMCID: PMC11595234 DOI: 10.3390/life14111408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/12/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
The transferable genetic elements are associated with the dissemination of virulence determinants amongst Klebsiella pneumoniae. Thus, we assessed the correlated antimicrobial resistance in carbapenem-resistant Klebsiella pneumoniae clinical isolates. Each isolate's ability to biosynthesize biofilm, carbapenemase, and extended-spectrum β-lactamase were examined. Genotypically, the biofilm-, outer membrane porin-, and some plasmid-correlated antimicrobial resistance genes were screened. About 50% of the isolates were multidrug-resistant while 98.4% were extended-spectrum β-lactamase producers and 89.3% were carbapenem-resistant. Unfortunately, 93.1% of the multidrug-resistant isolates produced different biofilm levels. Additionally, fimD and mrkD genes encoding adhesins were detected in 100% and 55.2% of the tested isolates, respectively. Also, the blaKPC, blaOXA-48-like, and blaNDM-encoding carbapenemases were observed in 16.1%, 53.6%, and 55.4% of the tested isolates, respectively. Moreover, the blaSHV and blaCTX-M extended-spectrum β-lactamase-associated genes were detected at 95.2% and 61.3%, respectively. Furthermore, aac(3)IIa, qnrB, and tetB resistance-correlated genes were observed in 38.1%, 46%, and 7.9% of the tested isolates, respectively. Certainly, the tested antimicrobial resistance-encoding genes were concurrently observed in 3.2% of the tested isolates. These findings confirmed the elevated prevalence of various antimicrobial resistance-associated genes in Klebsiella pneumoniae. The concurrent transferring of plasmid-encoding antimicrobial resistance-related genes could be associated with the possible acquisition of multidrug-resistant Klebsiella pneumoniae phenotypes.
Collapse
Affiliation(s)
- Fathy M. Elkady
- Microbiology and Immunology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo P.O. Box 11884, Egypt
| | - Bahaa M. Badr
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa P.O. Box 132222, Jordan
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Al-Azhar University (Assiut Branch), Assiut P.O. Box 71524, Egypt
| | - Abdel-Aty E. Alfeky
- Microbiology and Immunology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo P.O. Box 11884, Egypt
| | - Mohammed S. Abdulrahman
- Microbiology and Immunology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo P.O. Box 11884, Egypt
| | - Amr H. Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo P.O. Box 11884, Egypt
| | - Abdulaziz A. Al-Askar
- Department of Botany and Microbiology, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Gehad AbdElgayed
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, 2020 Antwerp, Belgium
| | - Hany R. Hashem
- Department of Microbiology and Immunology, Faculty of Pharmacy, Fayoum University, Al-Fayoum P.O. Box 53514, Egypt
| |
Collapse
|
4
|
El-Demerdash AS, Alfaraj R, Farid FA, Yassin MH, Saleh AM, Dawwam GE. Essential oils as capsule disruptors: enhancing antibiotic efficacy against multidrug-resistant Klebsiella pneumoniae. Front Microbiol 2024; 15:1467460. [PMID: 39282565 PMCID: PMC11392748 DOI: 10.3389/fmicb.2024.1467460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/13/2024] [Indexed: 09/19/2024] Open
Abstract
Background Multidrug-resistant Klebsiella pneumoniae (MDR-KP) poses a significant global health threat due to its involvement in severe infections and high mortality rates. The emergence of MDR strains necessitates the exploration of alternative therapeutic strategies. Methods K. pneumoniae isolates were obtained from human and animal sources. Antibacterial susceptibility testing was performed, followed by the evaluation of essential oil activity through inhibition zone, MIC, and MBC determinations. Checkerboard assays were conducted to assess synergistic effects with amikacin. Gene expression analysis and transmission electron microscopy were employed to elucidate the mechanisms of action. Molecular docking studies were performed to identify potential binding targets of bioactive compounds. Results Klebsiella pneumoniae was isolated from 25 of the100 samples examined, representing a prevalence rate of 25%. All isolates were found to be multidrug-resistant. Tea tree and thyme essential oils exhibited potent antibacterial activity and synergistic effects with amikacin. Notably, these combinations significantly downregulated the expression of key capsule virulence genes (wcaG, rmpA, magA, uge, and wabG), suggesting a novel mechanism for enhancing amikacin efficacy. Transmission electron microscopy revealed disrupted cell integrity in MDR-KP cells treated with the combinations. Molecular docking analysis identified Terpinen-4-ol, Farnesol, 1,4-Dihydroxy-p-menth-2-ene, and 7-Oxabicyclo [4.1.0] heptane as potential bioactive compounds responsible for the observed effects. Conclusion By effectively combating MDR-KP, this research holds promise for reducing antibiotic resistance, improving treatment outcomes, and ultimately enhancing potential care.
Collapse
Affiliation(s)
- Azza SalahEldin El-Demerdash
- Laboratory of Biotechnology, Department of Microbiology, Agricultural Research Center (ARC), Animal Health Research Institute (AHRI), Zagazig, Egypt
| | - Rihaf Alfaraj
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Faten A Farid
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, Egypt
| | - Mohamed H Yassin
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, Egypt
| | - Abdulrahman M Saleh
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
- Epidemiological Surveillance Unit, Aweash El-Hagar Family Medicine Center, MOHP, Mansoura, Egypt
| | - Ghada E Dawwam
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, Egypt
| |
Collapse
|
5
|
Adams JME, Moulding PB, El-Halfawy OM. Polyamine-Mediated Sensitization of Klebsiella pneumoniae to Macrolides through a Dual Mode of Action. ACS Infect Dis 2024; 10:2183-2195. [PMID: 38695481 DOI: 10.1021/acsinfecdis.4c00157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Chemicals bacteria encounter at the infection site could shape their stress and antibiotic responses; such effects are typically undetected under standard lab conditions. Polyamines are small molecules typically overproduced by the host during infection and have been shown to alter bacterial stress responses. We sought to determine the effect of polyamines on the antibiotic response of Klebsiella pneumoniae, a Gram-negative priority pathogen. Interestingly, putrescine and other natural polyamines sensitized K. pneumoniae to azithromycin, a macrolide protein translation inhibitor typically used for Gram-positive bacteria. This synergy was further potentiated in the physiological buffer, bicarbonate. Chemical genomic screens suggested a dual mechanism, whereby putrescine acts at the membrane and ribosome levels. Putrescine permeabilized the outer membrane of K. pneumoniae (NPN and β-lactamase assays) and the inner membrane (Escherichia coli β-galactosidase assays). Chemically and genetically perturbing membranes led to a loss of putrescine-azithromycin synergy. Putrescine also inhibited protein synthesis in an E. coli-derived cell-free protein expression assay simultaneously monitoring transcription and translation. Profiling the putrescine-azithromycin synergy against a combinatorial array of antibiotics targeting various ribosomal sites suggested that putrescine acts as tetracyclines targeting the 30S ribosomal acceptor site. Next, exploiting the natural polyamine-azithromycin synergy, we screened a polyamine analogue library for azithromycin adjuvants, discovering four azithromycin synergists with activity starting from the low micromolar range and mechanisms similar to putrescine. This work sheds light on the bacterial antibiotic responses under conditions more reflective of those at the infection site and provides a new strategy to extend the macrolide spectrum to drug-resistant K. pneumoniae.
Collapse
Affiliation(s)
- Joshua M E Adams
- Department of Chemistry and Biochemistry, Faculty of Science, University of Regina, Regina, SK S4S 0A2, Canada
| | - Peri B Moulding
- Department of Chemistry and Biochemistry, Faculty of Science, University of Regina, Regina, SK S4S 0A2, Canada
| | - Omar M El-Halfawy
- Department of Chemistry and Biochemistry, Faculty of Science, University of Regina, Regina, SK S4S 0A2, Canada
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| |
Collapse
|
6
|
Marais G, Moodley C, Claassen-Weitz S, Patel F, Prentice E, Tootla H, Nyakutira N, Lennard K, Reddy K, Bamford C, Niehaus A, Whitelaw A, Brink A. Carbapenem-resistant Klebsiella pneumoniae among hospitalized patients in Cape Town, South Africa: molecular epidemiology and characterization. JAC Antimicrob Resist 2024; 6:dlae050. [PMID: 38529003 PMCID: PMC10963078 DOI: 10.1093/jacamr/dlae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/03/2024] [Indexed: 03/27/2024] Open
Abstract
Background The molecular epidemiology of carbapenem-resistant Enterobacterales in Cape Town remains largely unknown. Objectives This study aimed to describe the molecular epidemiology, resistome, virulome and mobilome of carbapenem-resistant Klebsiella pneumoniae (CRKP) within Cape Town to guide therapy, antimicrobial stewardship and infection prevention and control practices. Methods Eighty-five CRKP isolates from hospitalized patients underwent WGS as part of a prospective, multicentre, cross-sectional study, conducted between 1 November 2020 and 30 November 2022, across public-sector and private-sector hospitals in Cape Town, South Africa. Results MLST revealed three novel types, ST6785, ST6786 and ST6787, while the most common were ST219, ST307, ST17, ST13 and ST2497. Different predominant clones were noted in each hospital. The most common carbapenemase gene was blaOXA-48-like, detected in 71% of isolates, with blaNDM detected in 5%. Notably, co-detection of two carbapenemase genes (blaOXA-48-like and blaNDM) occurred in 13% of isolates. The yersiniabactin siderophore was detected in 73% of isolates, and was most commonly associated with the ICEKp5 mobile element. All carbapenemases were located on plasmids. The genes blaOXA-181 and blaOXA-232 colocalized with a ColKP3 replicon type on assembled contigs in 83% and 100% of cases, respectively. Conclusions CRKP epidemiology in Cape Town reflects institutionally dominant, rather than regional, clones. The most prevalent carbapenemase gene was blaOXA-48-like, in keeping with CRKP epidemiology in South Africa in general. Emerging clones harbouring both blaOXA-48-like and blaNDM, such as ST17, ST2497 and the novel ST6787, are a concern due to the limited availability of appropriate antimicrobial agents in South Africa.
Collapse
Affiliation(s)
- Gert Marais
- Division of Medical Microbiology, University of Cape Town, Cape Town, Western Cape, South Africa
- National Health Laboratory Service Laboratory, Groote Schuur Hospital, Cape Town, Western Cape, South Africa
| | - Clinton Moodley
- Division of Medical Microbiology, University of Cape Town, Cape Town, Western Cape, South Africa
- National Health Laboratory Service Laboratory, Groote Schuur Hospital, Cape Town, Western Cape, South Africa
| | - Shantelle Claassen-Weitz
- Division of Medical Microbiology, University of Cape Town, Cape Town, Western Cape, South Africa
| | - Fadheela Patel
- Division of Medical Microbiology, University of Cape Town, Cape Town, Western Cape, South Africa
| | - Elizabeth Prentice
- Division of Medical Microbiology, University of Cape Town, Cape Town, Western Cape, South Africa
- National Health Laboratory Service Laboratory, Groote Schuur Hospital, Cape Town, Western Cape, South Africa
| | - Hafsah Tootla
- Division of Medical Microbiology, University of Cape Town, Cape Town, Western Cape, South Africa
- Medical Microbiology, National Health Laboratory Service, Red Cross War Memorial Children’s Hospital, Cape Town, South Africa
| | - Nyasha Nyakutira
- Division of Medical Microbiology, University of Cape Town, Cape Town, Western Cape, South Africa
| | - Katie Lennard
- Division of Computational Biology, University of Cape Town, Cape Town, Western Cape, South Africa
| | - Kessendri Reddy
- Division of Medical Microbiology, Stellenbosch University, Cape Town, Western Cape, South Africa
- National Health Laboratory Service, Tygerberg Hospital, Cape Town, Western Cape, South Africa
| | - Colleen Bamford
- Division of Medical Microbiology, University of Cape Town, Cape Town, Western Cape, South Africa
- Division of Medical Microbiology, Pathcare, Cape Town, South Africa
| | - Abraham Niehaus
- Division of Medical Microbiology, Ampath, Cape Town, South Africa
| | - Andrew Whitelaw
- Division of Medical Microbiology, Stellenbosch University, Cape Town, Western Cape, South Africa
- National Health Laboratory Service, Tygerberg Hospital, Cape Town, Western Cape, South Africa
| | - Adrian Brink
- Division of Medical Microbiology, University of Cape Town, Cape Town, Western Cape, South Africa
- National Health Laboratory Service Laboratory, Groote Schuur Hospital, Cape Town, Western Cape, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, Western Cape, South Africa
| |
Collapse
|
7
|
Wantuch PL, Rosen DA. Klebsiella pneumoniae: adaptive immune landscapes and vaccine horizons. Trends Immunol 2023; 44:826-844. [PMID: 37704549 DOI: 10.1016/j.it.2023.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 09/15/2023]
Abstract
Klebsiella pneumoniae is among the most common antibiotic-resistant pathogens causing nosocomial infections. Additionally, it is a leading cause of neonatal sepsis and childhood mortality across the globe. Despite its clinical importance, we are only beginning to understand how the mammalian adaptive immune system responds to this pathogen. Further, many studies investigating potential K. pneumoniae vaccine candidates or alternative therapies have been launched in recent years. Here, we review the current state of knowledge on the adaptive immune response to K. pneumoniae infections and progress towards developing vaccines and other therapies to combat these infections.
Collapse
Affiliation(s)
- Paeton L Wantuch
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David A Rosen
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
8
|
Pertics BZ, Kovács T, Schneider G. Characterization of a Lytic Bacteriophage and Demonstration of Its Combined Lytic Effect with a K2 Depolymerase on the Hypervirulent Klebsiella pneumoniae Strain 52145. Microorganisms 2023; 11:microorganisms11030669. [PMID: 36985241 PMCID: PMC10051899 DOI: 10.3390/microorganisms11030669] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Klebsiella pneumoniae is a nosocomial pathogen. Among its virulence factors is the capsule with a prominent role in defense and biofilm formation. Bacteriophages (phages) can evoke the lysis of bacterial cells. Due to the mode of action of their polysaccharide depolymerase enzymes, phages are typically specific for one bacterial strain and its capsule type. In this study, we characterized a bacteriophage against the capsule-defective mutant of the nosocomial K. pneumoniae 52145 strain, which lacks K2 capsule. The phage showed a relatively narrow host range but evoked lysis on a few strains with capsular serotypes K33, K21, and K24. Phylogenetic analysis showed that the newly isolated Klebsiella phage 731 belongs to the Webervirus genus in the Drexlerviridae family; it has a 31.084 MDa double-stranded, linear DNA with a length of 50,306 base pairs and a G + C content of 50.9%. Out of the 79 open reading frames (ORFs), we performed the identification of orf22, coding for a trimeric tail fiber protein with putative capsule depolymerase activity, along with the mapping of other putative depolymerases of phage 731 and homologous phages. Efficacy of a previously described recombinant K2 depolymerase (B1dep) was tested by co-spotting phage 731 on K. pneumoniae strains, and it was demonstrated that the B1dep-phage 731 combination allows the lysis of the wild type 52145 strain, originally resistant to the phage 731. With phage 731, we showed that B1dep is a promising candidate for use as a possible antimicrobial agent, as it renders the virulent strain defenseless against other phages. Phage 731 alone is also important due to its efficacy on K. pneumoniae strains possessing epidemiologically important serotypes.
Collapse
Affiliation(s)
- Botond Zsombor Pertics
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti St. 12., H-7624 Pécs, Hungary
| | - Tamás Kovács
- Department of Biotechnology, Nanophagetherapy Center, Enviroinvest Corporation, Kertváros St. 2., H-7632 Pécs, Hungary
| | - György Schneider
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti St. 12., H-7624 Pécs, Hungary
- Correspondence: ; Tel.: +36-72-536-200 (ext. 1908)
| |
Collapse
|
9
|
Dai P, Hu D. The making of hypervirulent Klebsiella pneumoniae. J Clin Lab Anal 2022; 36:e24743. [PMID: 36347819 PMCID: PMC9757020 DOI: 10.1002/jcla.24743] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/01/2022] [Accepted: 10/09/2022] [Indexed: 10/08/2023] Open
Abstract
Klebsiella pneumoniae is a notorious bacterium in clinical practice. Virulence, carbapenem-resistance and their convergence among K. pneumoniae are extensively discussed in this article. Hypervirulent K. pneumoniae (HvKP) has spread from the Asian Pacific Rim to the world, inducing various invasive infections, such as pyogenic liver abscess, endophthalmitis, and meningitis. Furthermore, HvKP has acquired more and more drug resistance. Among multidrug-resistant HvKP, hypervirulent carbapenem-resistant K. pneumoniae (Hv-CRKP), and carbapenem-resistant hypervirulent K. pneumoniae (CR-HvKP) are both devastating for their extreme drug resistance and virulence. The hypervirulence of HvKP is primarily attributed to hypercapsule, macromolecular exopolysaccharides, or excessive siderophores, although it has many other factors, for example, lipopolysaccharides, fimbriae, and porins. In contrast with classical determination of HvKP, that is, animal lethality test, molecular determination could be an optional and practical method after improvement. HvKP, including Hv-CRKP and CR-HvKP, has been progressing. R-M and CRISPR-Cas systems may play pivotal roles in such evolutions. Hv-CRKP and CR-HvKP, in particular the former, should be of severe concern due to their being more and more prevalent.
Collapse
Affiliation(s)
- Piaopiao Dai
- Department of Laboratory MedicineTaizhou Municipal HospitalTaizhouChina
| | - Dakang Hu
- Department of Laboratory MedicineTaizhou Municipal HospitalTaizhouChina
| |
Collapse
|
10
|
Identification and Characterization of Plasmids and Genes from Carbapenemase-Producing Klebsiella pneumoniae in Makkah Province, Saudi Arabia. Antibiotics (Basel) 2022; 11:antibiotics11111627. [PMID: 36421271 PMCID: PMC9686665 DOI: 10.3390/antibiotics11111627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022] Open
Abstract
Klebsiella pneumoniae (K. pneumoniae) is involved in several hospital and community-acquired infections. The prevalence of K. pneumoniae-producing-carbapenemase (KPC) resistance genes rapidly increases and threatens public health worldwide. This study aimed to assess the antibiotic resistance level of K. pneumoniae isolates from Makkah Province, Saudi Arabia, during the Islamic ‘Umrah’ ritual and to identify the plasmid types, presence of genes associated with carbapenem hydrolyzing enzymes, and virulence factors. The phenotypic and genotypic analyses based on the minimum inhibitory concentration (MIC), biofilm formation, PCR, and characterization of KPC-encoding plasmids based on the replicon typing technique (PBRT) were explored. The results showed that most isolates were resistant to carbapenem antibiotics and other antibiotics classes. This study identified sixteen different replicons of plasmids in the isolates and multiple genes encoding carbapenem factors, with blaVIM and blaOXA-48 being the most prevalent genes identified in the isolates. However, none of the isolates exhibited positivity for the KPC production activity. In addition, this study also identified six virulence-related genes, including kfu, wabG, uge, rmpA, fimH, and a capsular polysaccharide (CPS). Together, the data reported in this study indicate that the isolated K. pneumoniae during the pilgrimage in Makkah were all resistant to carbapenem antibiotics. Although the isolates lacked KPC production activity, they carried multiple carbapenem-resistant genes and virulence factors, which could drive their resistant phenotype. The need for specialized methods for KPC detection, monitoring the possibility of nosocomial transmission, and diverse therapeutic alternatives are necessary for controlling the spreading of KPC. This study can serve as a reference for clinicians and researchers on types of K. pneumoniae commonly found during religious gathering seasons in Saudi Arabia.
Collapse
|
11
|
Healthcare Facilities as Potential Reservoirs of Antimicrobial Resistant Klebsiella pneumoniae: An Emerging Concern to Public Health in Bangladesh. Pharmaceuticals (Basel) 2022; 15:ph15091116. [PMID: 36145337 PMCID: PMC9504507 DOI: 10.3390/ph15091116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
The emergence of virulent extended spectrum β-lactamase producing Klebsiella pneumoniae (ESBL-KP) including carbapenem-resistant Klebsiella pneumoniae (CRKP) in hospital-acquired infections has resulted in significant morbidity and mortality worldwide. We investigated the antibiotic resistance and virulence factors associated with ESBL-KP and CRKP in tertiary care hospitals in Bangladesh and explored their ability to form biofilm. A total of 67 ESBL-KP were isolated from 285 Klebsiella pneumoniae isolates from environmental and patient samples from January 2019 to April 2019. For ESBL-KP isolates, molecular typing was carried out using enterobacterial repetitive intergenic consensus polymerase chain reaction (ERIC-PCR), antibiotic susceptibility testing, PCR for virulence and drug-resistant genes, and biofilm assays were also performed. All 67 isolates were multidrug-resistant (MDR) to different antibiotics at high levels and 42 isolates were also carbapenem-resistant. The most common β-lactam resistance gene was blaCTX-M-1 (91%), followed by blaTEM (76.1%), blaSHV (68.7%), blaOXA-1 (29.9%), blaGES (14.9%), blaCTX-M-9 (11.9%), and blaCTX-M-2 (4.5%). The carbapenemase genes blaKPC (55.2%), blaIMP (28.4%), blaVIM (14.9%), blaNDM-1 (13.4%), and blaOXA-48 (10.4%) and virulence-associated genes such as fimH (71.6%), ugeF (58.2%), wabG (56.7%), ureA (47.8%) and kfuBC (28.4%) were also detected. About 96.2% of the environmental and 100% of the patient isolates were able to form biofilms. ERIC-PCR-based genotyping and hierarchical clustering of K. pneumoniae isolates revealed an association between environmental and patient samples, indicating clonal association with possible transmission of antimicrobial resistance genes. Our findings can help in improving patient care and infection control, and the development of public health policies related to hospital-acquired infections.
Collapse
|
12
|
Presence of Extended Spectrum Beta Lactamase, Virulence Genes and Resistance Determinants in Biofilm Forming Klebsiella pneumoniae Isolated from Food Sources: A Potent Risk to the Consumers. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.3.66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Foodborne diseases and infection caused by associated pathogens is a public health concern. Majority of the investigations focus on common foodborne pathogens like Vibrio parahaemolyticus, Escherichia coli, Listeria monocytogenes, Shigella, Salmonella and Staphylococcus aureus. Limited knowledge has been accounted on Klebsiella pneumoniae. Presence of multidrug-resistant K. pneumoniae in the food supply is disturbing. Hence, this study assessed the presence of K. pneumoniae isolates from food samples (fresh vegetables and chicken), ascertained the presence of drug-resistant phenotypes, extended spectrum beta lactamase production, antibiotic resistance determinants, genes associated with virulence and their ability to form biofilm. Resistance towards ceftazidime and tetracycline was noted among all the isolates in the study, while they exhibited sensitivity to chloramphenicol and co-trimoxazole. All the isolates were potent ESBL producers carrying at least one ESBL encoding genes. Plasmid mediated quinolone resistance gene was detected in one isolate each from onion and chicken respectively. The isolates marked the absence of tetracycline and chloramphenicol resistance genes. Multiple virulence genes (ureA, khe, fimH, mrkD, wabG, uge and elt) were possessed by each of the isolates. K. pneumoniae from chicken and cucumber were moderate biofilm formers and those from tomato exhibited weak biofilm formation. Increased expression of the mrkA gene and reduction in the expression of the biofilm forming gene fimH gene was observed among the biofilm formers. One of the moderate and non-biofilm formers exhibited increased mrkD gene expression. The results from our study stipulate, that raw vegetables and meat serve as dormant source of drug-resistant and virulent K. pneumoniae.
Collapse
|
13
|
Hao Y, Jiang Y, Ishaq HM, Liu W, Zhao H, Wang M, Yang F. Molecular Characterization of Klebsiella pneumoniae Isolated from Sputum in a Tertiary Hospital in Xinxiang, China. Infect Drug Resist 2022; 15:3829-3839. [PMID: 35880230 PMCID: PMC9307913 DOI: 10.2147/idr.s370006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/15/2022] [Indexed: 11/23/2022] Open
Abstract
Background In clinical practice, Klebsiella pneumoniae (K. pneumoniae) is a common opportunistic pathogen responsible for nosocomial infection. This study aimed to analyze the trend of antimicrobial susceptibility and virulent characteristics of K. pneumoniae isolated from sputum. In clinics, data of the current study will help in the clinical treatment of K. pneumoniae infection. Results The current research showed the resistance rates of the 20 K. pneumoniae isolates against 13 antibiotics ranged from 15.0% to 80.0%. The detection rate of extended spectrum β-lactamases (ESBLs) was up to 55%, while blaSHV was the most prevalent ESBLs genes. Four strains (25.0%) of K. pneumoniae presented hypermucoviscous phenotype (HMV). Moreover, 18 strains (90.0%) showed the stronger biofilm-forming ability. wzi, wabG, fimH, mrkD were the most prevalent virulence genes in current research. Ten strains were found capsule typing and the higher genetic diversity of colonizing K. pneumoniae in this region. K19 exhibited a strong positive correlation with imipenem resistance, while K1 showed strong correlations with magA . Furthermore, HMV phenotype showed significantly negative correlations with multidrug-resistant. Conclusion In the hospital, the antibiotic resistance of K. pneumoniae (isolated from sputum samples) has a serious concern. Additionally, strains of K. pneumoniae show the higher genetic diversity.
Collapse
Affiliation(s)
- Yuqi Hao
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Yong'ang Jiang
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Hafiz Muhammad Ishaq
- Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Wenke Liu
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Huajie Zhao
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Mingyong Wang
- Xinxiang Key Laboratory of Immunoregulation and Molecular Diagnostics, School of Laboratory Medicine, Xinxiang Medical University,, Xinxiang, People's Republic of China
| | - Fan Yang
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, People's Republic of China
| |
Collapse
|
14
|
Zhao F, Ding G, Wang Q, Du H, Xiao G, Zhou D. Deletion of the waaf gene affects O antigen synthesis and pathogenicity in Vibrio parahaemolyticus from shellfish. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Antibacterial and Anti-Biofilm Activities of Essential Oil Compounds against New Delhi Metallo-β-Lactamase-1-Producing Uropathogenic Klebsiella pneumoniae Strains. Antibiotics (Basel) 2022; 11:antibiotics11020147. [PMID: 35203751 PMCID: PMC8868355 DOI: 10.3390/antibiotics11020147] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/20/2022] Open
Abstract
The World Health Organization points out that the opportunistic pathogen Klebsiella pneumoniae that causes various infections among others, urinary tract infections (UTIs), is one of the high-priority species due to a global problem of antimicrobial resistance. The aim of this study was to investigate antibacterial and anti-biofilm activities of chosen constituents of essential oils against NDM-1-producing, uropathogenic K. pneumoniae strains. The genes encoding lipopolysaccharide (uge, wabG), adhesin gene fimH (type I fimbriae) and gene encoding carbapenemase (blaNDM-1) for all tested strains were detected by PCR amplification. The K. pneumoniae ATCC BAA-2473 reference strain was uge- and blaNDM-1-positive. The effectiveness of fifteen essential oil compounds (EOCs) (linalool, β-citronellol, linalyl acetate, menthone, (−)-menthol, (+)-menthol, geraniol, eugenol, thymol, trans-anethole, farnesol, β-caryophyllene, (R)-(+)-limonene, 1,8-cineole, and carvacrol) was assessed by determining the MIC, MBC, MBC/MIC ratio against K. pneumoniae strains by the microdilution method. Anti-biofilm properties of these compounds were also investigated. Thymol, carvacrol and geraniol exhibited the best antibacterial and anti-biofilm activities against uropathogenic NDM-1-producing K. pneumoniae isolates. Results of our investigations provide a basis for more detailed studies of these phytochemicals on their application against uropathogenic K. pneumoniae.
Collapse
|
16
|
Zou H, Shen Y, Li C, Li Q. Two Phenotypes of Klebsiella pneumoniae ST147 Outbreak from Neonatal Sepsis with a Slight Increase in Virulence. Infect Drug Resist 2022; 15:1-12. [PMID: 35023933 PMCID: PMC8748007 DOI: 10.2147/idr.s343292] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/09/2021] [Indexed: 01/26/2023] Open
Abstract
Purpose Severe infection has been the leading causes of neonatal death, especially the emergency of multidrug-resistant bacteria such as carbapenem-resistant Enterobacteriaceae. This study aimed to investigate the outbreak of carbapenem-resistant Klebsiella pneumoniae (CR-KP) in neonatal wards and to explore the possible pathogenesis of Klebsiella pneumoniae. Materials and Methods CR-KP were collected from neonatal ward of Chongqing Health Center for Women and Children between 2017 and 2019. Broth microdilution method was used to evaluate the antimicrobial activities in vitro, at the same time, the virulence of the strain was evaluated by in vitro and in vivo experiments. At last, prokaryotic chain specific transcriptome sequencing was conducted to explore the possible pathogenesis of CR-KP. Results In this study, a total of 14 carbapenem-resistant-Klebsiella pneumoniae (CR-KP) strains were isolated from Chongqing Health Center for Women and Children, among which all CR-KP isolates were identified as NDM-1-producers. Molecular epidemiological studies revealed ST147 being the most common sequence type (ST). Moreover, we first found two phenotypes of K. pneumoniae with different virulence from the same specimen. Type I, which was a white and sticky colony had a slight increase in virulence with higher biofilm formation, serum resistance and virulence than Type II with gray colony. Compared with the Type II, 10 pathways were obviously changed in Type I especially amino acid metabolism, such as arginine and proline metabolism. Conclusion Our findings revealed a new potential threat of NDM-1-positive CR-KP with higher virulence in neonatal ICU ward. We found two phenotypes of K. pneumoniae with different virulent, which may be due to the difference expression of arginine and proline metabolism.
Collapse
Affiliation(s)
- Hua Zou
- Department of Laboratory Medicine, Chongqing Health Center for Women and Children, Chongqing, 400016, People's Republic of China
| | - Yan Shen
- Department of Laboratory Medicine, Chongqing Health Center for Women and Children, Chongqing, 400016, People's Republic of China
| | - Chunli Li
- Department of Laboratory Medicine, Chongqing Health Center for Women and Children, Chongqing, 400016, People's Republic of China
| | - Qiuhong Li
- Department of Laboratory Medicine, Chongqing Health Center for Women and Children, Chongqing, 400016, People's Republic of China
| |
Collapse
|
17
|
Gómez M, Valverde A, del Campo R, Rodríguez JM, Maldonado-Barragán A. Phenotypic and Molecular Characterization of Commensal, Community-Acquired and Nosocomial Klebsiella spp. Microorganisms 2021; 9:2344. [PMID: 34835469 PMCID: PMC8625991 DOI: 10.3390/microorganisms9112344] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 11/17/2022] Open
Abstract
Klebsiella spp. is a relevant pathogen that can present acquired resistance to almost all available antibiotics, thus representing a serious threat for public health. While most studies have been focused on isolates causing community-acquired and nosocomial infections, little is known about the commensal isolates colonizing healthy subjects. We describe the molecular identification and the phenotypic characterization of commensal Klebsiella spp. from breast milk of healthy women and faeces from healthy breast-fed infants, which were compared with isolates from community-acquired infections and from a nosocomial NICU outbreak. The phylogenetic analysis of a 454-bp sequence of the rpoB gene was useful for species identification (K. pneumoniae, K. variicola, K. quasipneumoniae, K. oxytoca, K. grimontii, K. michiganensis, Raoultella planticola and R. ornithinolytica), previously misidentified as K. pneumoniae or K. oxytoca by biochemical methods. Globally, we report that commensal strains present virulence traits (virulence genes, siderophores and biofilms) comparable to community-acquired and NICU-infective isolates, thus suggesting that the human microbiota could constitute a reservoir for infection. Isolates causing NICU outbreak were multi-drug resistant (MDR) and ESBLs producers, although an imipenem-resistant commensal MDR K. quasipneumoniae isolate was also found. A commensal K. pneumoniae strain showed a potent bacteriocin-like inhibitory activity against MDR Klebsiella isolates, thus highlighting the potential role of commensal Klebsiella spp. in health and disease.
Collapse
Affiliation(s)
- Marta Gómez
- Department of Nutrition and Food Science, Complutense University of Madrid, 28040 Madrid, Spain; (M.G.); (J.M.R.)
| | - Arancha Valverde
- Department of Microbiology, Hospital Universitario Ramón y Cajal IRYCIS, 28034 Madrid, Spain; (A.V.); (R.d.C.)
| | - Rosa del Campo
- Department of Microbiology, Hospital Universitario Ramón y Cajal IRYCIS, 28034 Madrid, Spain; (A.V.); (R.d.C.)
| | - Juan Miguel Rodríguez
- Department of Nutrition and Food Science, Complutense University of Madrid, 28040 Madrid, Spain; (M.G.); (J.M.R.)
| | - Antonio Maldonado-Barragán
- Department of Nutrition and Food Science, Complutense University of Madrid, 28040 Madrid, Spain; (M.G.); (J.M.R.)
- Infection and Global Health Research Division, School of Medicine, University of St. Andrews, North Haugh, St Andrews KY16 9TF, UK
| |
Collapse
|
18
|
Fursova NK, Astashkin EI, Ershova ON, Aleksandrova IA, Savin IA, Novikova TS, Fedyukina GN, Kislichkina AA, Fursov MV, Kuzina ES, Biketov SF, Dyatlov IA. Multidrug-Resistant Klebsiella pneumoniae Causing Severe Infections in the Neuro-ICU. Antibiotics (Basel) 2021; 10:antibiotics10080979. [PMID: 34439029 PMCID: PMC8389041 DOI: 10.3390/antibiotics10080979] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 11/16/2022] Open
Abstract
The purpose of this study was the identification of genetic lineages and antimicrobial resistance (AMR) and virulence genes in Klebsiella pneumoniae isolates associated with severe infections in the neuro-ICU. Susceptibility to antimicrobials was determined using the Vitek-2 instrument. AMR and virulence genes, sequence types (STs), and capsular types were identified by PCR. Whole-genome sequencing was conducted on the Illumina MiSeq platform. It was shown that K. pneumoniae isolates of ST14K2, ST23K57, ST39K23, ST76K23, ST86K2, ST218K57, ST219KL125/114, ST268K20, and ST2674K47 caused severe systemic infections, including ST14K2, ST39K23, and ST268K20 that were associated with fatal incomes. Moreover, eight isolates of ST395K2 and ST307KL102/149/155 were associated with manifestations of vasculitis and microcirculation disorders. Another 12 K. pneumoniae isolates of ST395K2,KL39, ST307KL102/149/155, and ST147K14/64 were collected from patients without severe systemic infections. Major isolates (n = 38) were XDR and MDR. Beta-lactamase genes were identified: blaSHV (n = 41), blaCTX-M (n = 28), blaTEM (n = 21), blaOXA-48 (n = 21), blaNDM (n = 1), and blaKPC (n = 1). The prevalent virulence genes were wabG (n = 41), fimH (n = 41), allS (n = 41), and uge (n = 34), and rarer, detected only in the genomes of the isolates causing severe systemic infections-rmpA (n = 8), kfu (n = 6), iroN (n = 5), and iroD (n = 5) indicating high potential of the isolates for hypervirulence.
Collapse
Affiliation(s)
- Nadezhda K. Fursova
- Department of Molecular Microbiology, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia; (E.I.A.); (T.S.N.)
- Correspondence:
| | - Evgenii I. Astashkin
- Department of Molecular Microbiology, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia; (E.I.A.); (T.S.N.)
| | - Olga N. Ershova
- Department of Clinical Epidemiology, National Medical Research Center of Neurosurgery Named after Academician N.N. Burdenko, 125047 Moscow, Russia; (O.N.E.); (I.A.A.); (I.A.S.)
| | - Irina A. Aleksandrova
- Department of Clinical Epidemiology, National Medical Research Center of Neurosurgery Named after Academician N.N. Burdenko, 125047 Moscow, Russia; (O.N.E.); (I.A.A.); (I.A.S.)
| | - Ivan A. Savin
- Department of Clinical Epidemiology, National Medical Research Center of Neurosurgery Named after Academician N.N. Burdenko, 125047 Moscow, Russia; (O.N.E.); (I.A.A.); (I.A.S.)
| | - Tatiana S. Novikova
- Department of Molecular Microbiology, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia; (E.I.A.); (T.S.N.)
| | - Galina N. Fedyukina
- Department of Immunobiochemistry of Pathogenic Microorganisms, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia; (G.N.F.); (S.F.B.)
| | - Angelina A. Kislichkina
- Department of Culture Collection, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia;
| | - Mikhail V. Fursov
- Department of Training and Improvement of Specialists, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia; (M.V.F.); (E.S.K.)
| | - Ekaterina S. Kuzina
- Department of Training and Improvement of Specialists, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia; (M.V.F.); (E.S.K.)
| | - Sergei F. Biketov
- Department of Immunobiochemistry of Pathogenic Microorganisms, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia; (G.N.F.); (S.F.B.)
| | - Ivan A. Dyatlov
- Department of Administration, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia;
| |
Collapse
|
19
|
Isolation and Characterization of a Novel Lytic Bacteriophage against the K2 Capsule-Expressing Hypervirulent Klebsiella pneumoniae Strain 52145, and Identification of Its Functional Depolymerase. Microorganisms 2021; 9:microorganisms9030650. [PMID: 33801047 PMCID: PMC8003838 DOI: 10.3390/microorganisms9030650] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 12/30/2022] Open
Abstract
Klebsiella pneumoniae is among the leading bacteria that cause nosocomial infections. The capsule of this Gram-negative bacterium is a dominant virulence factor, with a prominent role in defense and biofilm formation. Bacteriophages, which are specific for one bacterial strain and its capsule type, can evoke the lysis of bacterial cells, aided by polysaccharide depolymerase enzymes. In this study, we isolated and characterized a bacteriophage against the nosocomial K. pneumoniae 52145 strain with K2 capsular serotype. The phage showed a narrow host range and stable lytic activity, even when exposed to different temperatures or detergents. Preventive effect of the phage in a nasal colonization model was investigated in vivo. Phlyogenetic analysis showed that the newly isolated Klebsiella phage B1 belongs to the Webervirus genus in Drexlerviridae family. We identified the location of the capsule depolymerase gene of the new phage, which was amplified, cloned, expressed, and purified. The efficacy of the recombinant B1dep depolymerase was tested by spotting on K. pneumoniae strains and it was confirmed that the extract lowers the thickness of the bacterium lawn as it degrades the protective capsule on bacterial cells. As K. pneumoniae strains possessing the K2 serotype have epidemiological importance, the B1 phage and its depolymerase are promising candidates for use as possible antimicrobial agents.
Collapse
|
20
|
Abstract
The implementation of infection models that approximate human disease is essential to understand infections and for testing new therapies before they enter into clinical stages. Rodents are used in most preclinical studies, although the differences between mice and humans have fueled the conclusion that murine studies are unreliable predictors of human outcomes. In this study, we have developed a whole-lung porcine model of infection using the ex vivo lung perfusion (EVLP) system established to recondition human lungs for transplant. As a proof of principle, we provide evidence demonstrating that infection of the porcine EVLP with the human pathogen Klebsiella pneumoniae recapitulates the known features of Klebsiella-triggered pneumonia. Moreover, our data revealed that the porcine EVLP model is useful to reveal features of the virulence of K. pneumoniae, including the manipulation of immune cells. Together, the findings of this study support the utility of the EVLP model using pig lungs as a surrogate host for assessing respiratory infections. The use of animal infection models is essential to understand microbial pathogenesis and to develop and test treatments. Insects and two-dimensional (2D) and 3D tissue models are increasingly being used as surrogates for mammalian models. However, there are concerns about whether these models recapitulate the complexity of host-pathogen interactions. In this study, we developed the ex vivo lung perfusion (EVLP) model of infection using porcine lungs to investigate Klebsiella pneumoniae-triggered pneumonia as a model of respiratory infections. The porcine EVLP model recapitulates features of K. pneumoniae-induced pneumonia lung injury. This model is also useful to assess the pathogenic potential of K. pneumoniae, as we observed that the attenuated Klebsiella capsule mutant strain caused less pathological tissue damage with a concomitant decrease in the bacterial burden compared to that in lungs infected with the wild type. The porcine EVLP model allows assessment of inflammatory responses following infection; similar to the case with the mouse pneumonia model, we observed an increase of il-10 in the lungs infected with the wild type and an increase of ifn-γ in lungs infected with the capsule mutant. This model also allows monitoring of phenotypes at the single-cell level. Wild-type K. pneumoniae skews macrophages toward an M2-like state. In vitro experiments probing pig bone marrow-derived macrophages uncovered the role for the M2 transcriptional factor STAT6 and that Klebsiella-induced il-10 expression is controlled by p38 and extracellular signal-regulated kinase (ERK). Klebsiella-induced macrophage polarization is dependent on the capsule. Together, the findings of this study support the utility of the EVLP model using pig lungs as a platform to investigate the infection biology of respiratory pathogens.
Collapse
|
21
|
Cai R, Wang G, Le S, Wu M, Cheng M, Guo Z, Ji Y, Xi H, Zhao C, Wang X, Xue Y, Wang Z, Zhang H, Fu Y, Sun C, Feng X, Lei L, Yang Y, Ur Rahman S, Liu X, Han W, Gu J. Three Capsular Polysaccharide Synthesis-Related Glucosyltransferases, GT-1, GT-2 and WcaJ, Are Associated With Virulence and Phage Sensitivity of Klebsiella pneumoniae. Front Microbiol 2019; 10:1189. [PMID: 31191500 PMCID: PMC6546894 DOI: 10.3389/fmicb.2019.01189] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/10/2019] [Indexed: 01/18/2023] Open
Abstract
Klebsiella pneumoniae (K. pneumoniae) spp. are important nosocomial and community-acquired opportunistic pathogens, which cause various infections. We observed that K. pneumoniae strain K7 abruptly mutates to rough-type phage-resistant phenotype upon treatment with phage GH-K3. In the present study, the rough-type phage-resistant mutant named K7RR showed much lower virulence than K7. Liquid chromatography-tandem mass spectrometry (LC-MS-MS) analysis indicated that WcaJ and two undefined glycosyltransferases (GTs)- named GT-1, GT-2- were found to be down-regulated drastically in K7RR as compared to K7 strain. GT-1, GT-2, and wcaJ are all located in the gene cluster of capsular polysaccharide (CPS). Upon deletion, even of single component, of GT-1, GT-2, and wcaJ resulted clearly in significant decline of CPS synthesis with concomitant development of GH-K3 resistance and decline of virulence of K. pneumoniae, indicating that all these three GTs are more likely involved in maintenance of phage sensitivity and bacterial virulence. Additionally, K7RR and GT-deficient strains were found sensitive to endocytosis of macrophages. Mitogen-activated protein kinase (MAPK) signaling pathway of macrophages was significantly activated by K7RR and GT-deficient strains comparing with that of K7. Interestingly, in the presence of macromolecular CPS residues (>250 KD), K7(ΔGT-1) and K7(ΔwcaJ) could still be bounded by GH-K3, though with a modest adsorption efficiency, and showed minor virulence, suggesting that the CPS residues accumulated upon deletion of GT-1 or wcaJ did retain phage binding sites as well maintain mild virulence. In brief, our study defines, for the first time, the potential roles of GT-1, GT-2, and WcaJ in K. pneumoniae in bacterial virulence and generation of rough-type mutation under the pressure of bacteriophage.
Collapse
Affiliation(s)
- Ruopeng Cai
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Gang Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Shuai Le
- Department of Microbiology, Army Medical University, Chongqing, China
| | - Mei Wu
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Mengjun Cheng
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhimin Guo
- Department of Clinical Laboratory, The First Hospital of Jilin University, Changchun, China
| | - Yalu Ji
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Hengyu Xi
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Caijun Zhao
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xinwu Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yibing Xue
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zijing Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Hao Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yunhe Fu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Changjiang Sun
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xin Feng
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Liancheng Lei
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yongjun Yang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Sadeeq Ur Rahman
- College of Veterinary Sciences and Animal Husbandry, Abdul Wali Khan University, Mardan, Pakistan
| | - Xiaoyun Liu
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Wenyu Han
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China
| | - Jingmin Gu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
22
|
Lev AI, Astashkin EI, Kislichkina AA, Solovieva EV, Kombarova TI, Korobova OV, Ershova ON, Alexandrova IA, Malikov VE, Bogun AG, Borzilov AI, Volozhantsev NV, Svetoch EA, Fursova NK. Comparative analysis of Klebsiella pneumoniae strains isolated in 2012-2016 that differ by antibiotic resistance genes and virulence genes profiles. Pathog Glob Health 2018; 112:142-151. [PMID: 29708041 DOI: 10.1080/20477724.2018.1460949] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
The antibacterial resistance and virulence genotypes and phenotypes of 148 non-duplicate Klebsiella pneumoniae strains collected from 112 patients in Moscow hospitals in 2012-2016 including isolates from the respiratory system (57%), urine (30%), wounds (5%), cerebrospinal fluid (4%), blood (3%), and rectal swab (1%) were determined. The majority (98%) were multidrug resistant (MDR) strains carrying blaSHV (91%), blaCTX-M (74%), blaTEM (51%), blaOXA (38%), and blaNDM (1%) beta-lactamase genes, class 1 integrons (38%), and the porin protein gene ompK36 (96%). The beta-lactamase genes blaTEM-1, blaSHV-1, blaSHV-11, blaSHV-110, blaSHV-190, blaCTX-M-15, blaCTX-M-3, blaCTX-M-55, blaOXA-48, blaOXA-244, and blaNDM-1 were detected; class 1 integron gene cassette arrays (aadA1), (dfrA7), (dfrA1-orfC), (aadB-aadA1), (dfrA17-aadA5), and (dfrA12-orfF-aadA2) were identified. Twenty-two (15%) of clinical K. pneumoniae strains had hypermucoviscous (HV) phenotype defined as string test positive. The rmpA gene associated with HV phenotype was detected in 24% of strains. The intrapersonal mutation of rmpA gene (deletion of one nucleotide at the polyG tract) was a reason for negative hypermucoviscosity phenotype and low virulence of rmpA-positive K. pneumoniae strain KPB584. Eighteen virulent for mice strains with LD50 ≤ 104 CFU were attributed to sequence types ST23, ST86, ST218, ST65, ST2174, and ST2280 and to capsular types K1, K2, and K57. This study is the first report about hypervirulent K. pneumoniae strain KPB2580-14 of ST23K1 harboring extended-spectrum beta-lactamase CTX-M-15 and carbapenemase OXA-48 genes located on pCTX-M-15-like and pOXA-48-like plasmids correspondingly.
Collapse
Affiliation(s)
- Anastasia I Lev
- a State Research Center for Applied Microbiology and Biotechnology , Obolensk , Russia
| | - Eugeny I Astashkin
- a State Research Center for Applied Microbiology and Biotechnology , Obolensk , Russia
| | | | - Ekaterina V Solovieva
- a State Research Center for Applied Microbiology and Biotechnology , Obolensk , Russia
| | - Tatiana I Kombarova
- a State Research Center for Applied Microbiology and Biotechnology , Obolensk , Russia
| | - Olga V Korobova
- a State Research Center for Applied Microbiology and Biotechnology , Obolensk , Russia
| | - Olga N Ershova
- b Center for Neurosurgery (Academician Burdenko) , Moscow , Russia
| | | | | | - Alexander G Bogun
- a State Research Center for Applied Microbiology and Biotechnology , Obolensk , Russia
| | - Alexander I Borzilov
- a State Research Center for Applied Microbiology and Biotechnology , Obolensk , Russia
| | | | - Edward A Svetoch
- a State Research Center for Applied Microbiology and Biotechnology , Obolensk , Russia
| | - Nadezhda K Fursova
- a State Research Center for Applied Microbiology and Biotechnology , Obolensk , Russia
| |
Collapse
|
23
|
Zhang X, Wang L, Li R, Hou P, Zhang Y, Fang M, Hu B. Presence and characterization of Klebsiella pneumoniae
from the intestinal tract of diarrhoea patients. Lett Appl Microbiol 2018. [DOI: 10.1111/lam.12877] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- X. Zhang
- Tai'an Center for Disease Control and Prevention; Tai'an Shandong Province China
| | - L. Wang
- Laiwu Center for Disease Control and Prevention; Laiwu Shandong Province China
| | - R. Li
- Shandong Center for Disease Control and Prevention; Jinan Shandong Province China
| | - P. Hou
- Tai'an Center for Disease Control and Prevention; Tai'an Shandong Province China
| | - Y. Zhang
- Shandong Center for Disease Control and Prevention; Jinan Shandong Province China
| | - M. Fang
- Shandong Center for Disease Control and Prevention; Jinan Shandong Province China
| | - B. Hu
- Shandong Center for Disease Control and Prevention; Jinan Shandong Province China
| |
Collapse
|
24
|
Lee JH, Jung MY, Oh MK. High-yield production of 1,3-propanediol from glycerol by metabolically engineered Klebsiella pneumoniae. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:104. [PMID: 29657579 PMCID: PMC5890353 DOI: 10.1186/s13068-018-1100-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 03/30/2018] [Indexed: 05/21/2023]
Abstract
BACKGROUND Glycerol is a major byproduct of the biodiesel industry and can be converted to 1,3-propanediol (1,3-PDO) by microorganisms through a two-step enzymatic reaction. The production of 1,3-PDO from glycerol using microorganisms is accompanied by formation of unwanted byproducts, including lactate and 2,3-butanediol, resulting in a low-conversion yield. RESULTS Klebsiella pneumoniae was metabolically engineered to produce high-molar yield of 1,3-PDO from glycerol. First, the pathway genes for byproduct formation were deleted in K. pneumoniae. Then, glycerol assimilation pathways were eliminated and mannitol was co-fed to the medium. Finally, transcriptional regulation of the dha operon were genetically modified for enhancing 1,3-propanediol production. The batch fermentation of the engineered strain with co-feeding of a small amount of mannitol yielded 0.76 mol 1,3-PDO from 1 mol glycerol. CONCLUSIONS Klebsiella pneumoniae is useful microorganism for producing 1,3-PDO from glycerol. Implemented engineering in this study successfully improved 1,3-PDO production yield, which is significantly higher than those reported in previous studies.
Collapse
Affiliation(s)
- Jung Hun Lee
- Department of Chemical and Biological Engineering, Korea University, Seongbuk-gu, Seoul, 02841 Republic of Korea
| | - Moo-Young Jung
- CJ Research Institute of Biotechnology, Suwon, Gyeonggi 16495 Republic of Korea
| | - Min-Kyu Oh
- Department of Chemical and Biological Engineering, Korea University, Seongbuk-gu, Seoul, 02841 Republic of Korea
| |
Collapse
|
25
|
Kumar V, Park S. Potential and limitations of Klebsiella pneumoniae as a microbial cell factory utilizing glycerol as the carbon source. Biotechnol Adv 2018; 36:150-167. [DOI: 10.1016/j.biotechadv.2017.10.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/15/2017] [Accepted: 10/16/2017] [Indexed: 12/16/2022]
|
26
|
Jian-Li W, Yuan-Yuan S, Shou-Yu G, Fei-Fei D, Jia-Yu Y, Xue-Hua W, Yong-Feng Z, Shi-Jin J, Zhi-Jing X. Serotype and virulence genes of Klebsiella pneumoniae isolated from mink and its pathogenesis in mice and mink. Sci Rep 2017; 7:17291. [PMID: 29230010 PMCID: PMC5725566 DOI: 10.1038/s41598-017-17681-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 11/29/2017] [Indexed: 12/25/2022] Open
Abstract
In the study, 15 K. pneumoniae strains were isolated from the mink experiencing respiratory distress in mideastern Shandong province, China, and the prevalence of K. pneumoniae in the sampled mink was 11.9% (15/126). Fourteen (93.33%) of the 15 K. pneumoniae isolates were identified as serotype K2 and hypermucoviscosity phenotype. The 12 virulence-associated genes of the K. pneumoniae isolates were tested. The prevalence of the wabG gene for the isolates were 100% (15/15), the ureA gene 100% (15/15), the rmpA gene 93.33% (14/15), the aerobactin gene 93.33% (14/15), the uge gene 93.33% (14/15), the IucB gene 80% (12/15) and the ybtA gene 13.33% (2/15). But the other five genes, fim, iroNB, wcaG, alls and kfuBC, gave a negative PCR reaction in the 15 isolates, respectively. The animal experiments using K. pneumoniae-SD-12 and K. pneumoniae-SD-21 demonstrated that the serotype K2 was high virulence for mice and mink. These finding implied there exist potential threat that K. pneumoniae pathogens could transmit to human, especially the fur animal farm workers and residents lived near the fur animal farms. Therefore, the etiology and epidemiological surveillance of K. pneumoniae in mink should be strengthened for people's public health.
Collapse
Affiliation(s)
- Wang Jian-Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, 271018, China.,College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong Province, 271018, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, 271018, China
| | - Shang Yuan-Yuan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, 271018, China.,College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong Province, 271018, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, 271018, China
| | - Guo Shou-Yu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, 271018, China.,College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong Province, 271018, China
| | - Diao Fei-Fei
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, 271018, China.,College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong Province, 271018, China
| | - Yu Jia-Yu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, 271018, China.,College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong Province, 271018, China
| | - Wei Xue-Hua
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, 271018, China.,College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong Province, 271018, China
| | - Zhao Yong-Feng
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, 271018, China.,College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong Province, 271018, China
| | - Jiang Shi-Jin
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, 271018, China.,College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong Province, 271018, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, 271018, China
| | - Xie Zhi-Jing
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, 271018, China. .,College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong Province, 271018, China. .,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, 271018, China.
| |
Collapse
|
27
|
Brhelova E, Antonova M, Pardy F, Kocmanova I, Mayer J, Racil Z, Lengerova M. Investigation of next-generation sequencing data of Klebsiella pneumoniae using web-based tools. J Med Microbiol 2017; 66:1673-1683. [PMID: 29068275 DOI: 10.1099/jmm.0.000624] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
PURPOSE Rapid identification and characterization of multidrug-resistant Klebsiella pneumoniae strains is necessary due to the increasing frequency of severe infections in patients. The decreasing cost of next-generation sequencing enables us to obtain a comprehensive overview of genetic information in one step. The aim of this study is to demonstrate and evaluate the utility and scope of the application of web-based databases to next-generation sequenced (NGS) data. METHODOLOGY The whole genomes of 11 clinical Klebsiella pneumoniae isolates were sequenced using Illumina MiSeq. Selected web-based tools were used to identify a variety of genetic characteristics, such as acquired antimicrobial resistance genes, multilocus sequence types, plasmid replicons, and identify virulence factors, such as virulence genes, cps clusters, urease-nickel clusters and efflux systems. RESULTS Using web-based tools hosted by the Center for Genomic Epidemiology, we detected resistance to 8 main antimicrobial groups with at least 11 acquired resistance genes. The isolates were divided into eight sequence types (ST11, 23, 37, 323, 433, 495 and 562, and a new one, ST1646). All of the isolates carried replicons of large plasmids. Capsular types, virulence factors and genes coding AcrAB and OqxAB efflux pumps were detected using BIGSdb-Kp, whereas the selected virulence genes, identified in almost all of the isolates, were detected using CLC Genomic Workbench software. CONCLUSION Applying appropriate web-based online tools to NGS data enables the rapid extraction of comprehensive information that can be used for more efficient diagnosis and treatment of patients, while data processing is free of charge, easy and time-efficient.
Collapse
Affiliation(s)
- Eva Brhelova
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno, Brno, Czech Republic.,Department of Internal Medicine - Hematology and Oncology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Mariya Antonova
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno, Brno, Czech Republic.,Department of Internal Medicine - Hematology and Oncology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Filip Pardy
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Iva Kocmanova
- Department of Clinical Microbiology, University Hospital Brno, Brno, Czech Republic
| | - Jiri Mayer
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno, Brno, Czech Republic.,Department of Internal Medicine - Hematology and Oncology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Zdenek Racil
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno, Brno, Czech Republic.,Department of Internal Medicine - Hematology and Oncology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Martina Lengerova
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,Department of Internal Medicine - Hematology and Oncology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Department of Internal Medicine - Hematology and Oncology, University Hospital Brno, Brno, Czech Republic
| |
Collapse
|
28
|
Identification and Characterization of Two Klebsiella pneumoniae lpxL Lipid A Late Acyltransferases and Their Role in Virulence. Infect Immun 2017; 85:IAI.00068-17. [PMID: 28652313 DOI: 10.1128/iai.00068-17] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 06/20/2017] [Indexed: 01/18/2023] Open
Abstract
Klebsiella pneumoniae causes a wide range of infections, from urinary tract infections to pneumonia. The lipopolysaccharide is a virulence factor of this pathogen, although there are gaps in our understanding of its biosynthesis. Here we report on the characterization of K. pneumoniaelpxL, which encodes one of the enzymes responsible for the late secondary acylation of immature lipid A molecules. Analysis of the available K. pneumoniae genomes revealed that this pathogen's genome encodes two orthologues of Escherichia coli LpxL. Using genetic methods and mass spectrometry, we demonstrate that LpxL1 catalyzes the addition of laureate and LpxL2 catalyzes the addition of myristate. Both enzymes acylated E. coli lipid A, whereas only LpxL2 mediated K. pneumoniae lipid A acylation. We show that LpxL1 is negatively regulated by the two-component system PhoPQ. The lipid A produced by the lpxL2 mutant lacked the 2-hydroxymyristate, palmitate, and 4-aminoarabinose decorations found in the lipid A synthesized by the wild type. The lack of 2-hydroxymyristate was expected since LpxO modifies the myristate transferred by LpxL2 to the lipid A. The absence of the other two decorations is most likely caused by the downregulation of phoPQ and pmrAB expression. LpxL2-dependent lipid A acylation protects Klebsiella from polymyxins, mediates resistance to phagocytosis, limits the activation of inflammatory responses by macrophages, and is required for pathogen survival in the wax moth (Galleria mellonella). Our findings indicate that the LpxL2 contribution to virulence is dependent on LpxO-mediated hydroxylation of the LpxL2-transferred myristate. Our studies suggest that LpxL2 might be a candidate target in the development of anti-K. pneumoniae drugs.
Collapse
|
29
|
Li Y, Ge XZ, Tian PF. Production of 1,3-propanediol from glycerol using a new isolateKlebsiellasp. AA405 carrying low levels of virulence factors. BIOTECHNOL BIOTEC EQ 2017. [DOI: 10.1080/13102818.2017.1335175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Ying Li
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, People's Republic of China
- College of Biochemical Engineering, Beijing Union University, Beijing, People's Republic of China
| | - Xi-Zhen Ge
- College of Biochemical Engineering, Beijing Union University, Beijing, People's Republic of China
| | - Ping-Fang Tian
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, People's Republic of China
| |
Collapse
|
30
|
Frirdich E, Whitfield C. Review: Lipopolysaccharide inner core oligosaccharide structure and outer membrane stability in human pathogens belonging to the Enterobacteriaceae. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519050110030201] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the Enterobacteriaceae, the outer membrane is primarily comprised of lipopolysaccharides. The lipopolysaccharide molecule is important in mediating interactions between the bacterium and its environment and those regions of the molecule extending further away from the cell surface show a higher amount of structural diversity. The hydrophobic lipid A is highly conserved, due to its important role in the structural integrity of the outer membrane. Attached to the lipid A region is the core oligosaccharide. The inner core oligosaccharide (lipid A proximal) backbone is also well conserved. However, non-stoichiometric substitutions of the basic inner core structure lead to structural variation and microheterogeneity. These include the addition of negatively charged groups (phosphate or galacturonic acid), ethanolamine derivatives, and glycose residues (Kdo, rhamnose, galactose, glucosamine, N-acetylglucosamine, heptose, Ko). The genetics and biosynthesis of these substitutions is beginning to be elucidated. Modification of heptose residues with negatively charged molecules (such as phosphate in Escherichia coli and Salmonella and galacturonic acid in Klebsiella pneumoniae ) has been shown to be involved in maintaining membrane stability. However, the biological role(s) of the remaining substitutions is unknown.
Collapse
Affiliation(s)
- Emilisa Frirdich
- Department of Microbiology, University of Guelph, Guelph, Ontario, Canada
| | - Chris Whitfield
- Department of Microbiology, University of Guelph, Guelph, Ontario, Canada,
| |
Collapse
|
31
|
Merino S, Gonzalez V, Tomás JM. The first sugar of the repeat units is essential for the Wzy polymerase activity and elongation of the O-antigen lipopolysaccharide. Future Microbiol 2016; 11:903-18. [PMID: 27357519 DOI: 10.2217/fmb-2015-0028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In the Wzx/Wzy-dependent assembled pathway, the assembled O-antigen repeat units are translocated from the cytosolic to the periplasmic face of the inner membrane by a Wzx translocase and then polymerized by the integral membrane protein Wzy to form a glycan chain. We demonstrate that the activity of the Escherichia coli O-antigen polymerase (Wzy) is dependent on the first sugar of the O-antigen repeat unit to produce the O-antigen polymerization and therefore, there is a need for a concerted action with the enzyme transferring the initial HexNAc to undecaprenyl phosphate (UDP-HexNAc: polyprenol-P HexNAc-1-P transferase). Furthermore, in the case of Aeromonas hydrophila Wzy-O34 polymerization activity, the enzyme is permissive with the sugar at the nonreducing end of the O-antigen repeat unit.
Collapse
Affiliation(s)
- Susana Merino
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Diagonal 643, 08071 Barcelona, Spain
| | - Victor Gonzalez
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Juan M Tomás
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Diagonal 643, 08071 Barcelona, Spain
| |
Collapse
|
32
|
Abstract
Klebsiella pneumoniae causes a wide range of infections, including pneumonias, urinary tract infections, bacteremias, and liver abscesses. Historically, K. pneumoniae has caused serious infection primarily in immunocompromised individuals, but the recent emergence and spread of hypervirulent strains have broadened the number of people susceptible to infections to include those who are healthy and immunosufficient. Furthermore, K. pneumoniae strains have become increasingly resistant to antibiotics, rendering infection by these strains very challenging to treat. The emergence of hypervirulent and antibiotic-resistant strains has driven a number of recent studies. Work has described the worldwide spread of one drug-resistant strain and a host defense axis, interleukin-17 (IL-17), that is important for controlling infection. Four factors, capsule, lipopolysaccharide, fimbriae, and siderophores, have been well studied and are important for virulence in at least one infection model. Several other factors have been less well characterized but are also important in at least one infection model. However, there is a significant amount of heterogeneity in K. pneumoniae strains, and not every factor plays the same critical role in all virulent Klebsiella strains. Recent studies have identified additional K. pneumoniae virulence factors and led to more insights about factors important for the growth of this pathogen at a variety of tissue sites. Many of these genes encode proteins that function in metabolism and the regulation of transcription. However, much work is left to be done in characterizing these newly discovered factors, understanding how infections differ between healthy and immunocompromised patients, and identifying attractive bacterial or host targets for treating these infections.
Collapse
|
33
|
Ahmed AJA, Alaa HAA. Virulence factors and antibiotic susceptibility patterns of multidrug resistance Klebsiella pneumoniae isolated from different clinical infections. ACTA ACUST UNITED AC 2016. [DOI: 10.5897/ajmr2016.8051] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
34
|
Isolation and Characterization of Aquatic-Borne Klebsiella pneumoniae from Tropical Estuaries in Malaysia. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:426. [PMID: 27092516 PMCID: PMC4847088 DOI: 10.3390/ijerph13040426] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 03/23/2016] [Accepted: 03/31/2016] [Indexed: 11/16/2022]
Abstract
Klebsiella pneumoniae is an opportunistic pathogen that is responsible for causing nosocomial and community-acquired infections. Despite its common presence in soil and aquatic environments, the virulence potential of K. pneumoniae isolates of environmental origin is largely unknown. Hence, in this study, K. pneumoniae isolated from the estuarine waters and sediments of the Matang mangrove estuary were screened for potential virulence characteristics: antibiotic susceptibility, morphotype on Congo red agar, biofilm formation, presence of exopolysaccharide and capsule, possession of virulence genes (fimH, magA, ugE, wabG and rmpA) and their genomic fingerprints. A total of 55 strains of K. pneumoniae were isolated from both human-distributed sites (located along Sangga Besar River) and control sites (located along Selinsing River) where less human activity was observed, indicated that K. pneumoniae is ubiquitous in the environment. However, the detection of potentially virulent strains at the downstream of Kuala Sepetang village has suggested an anthropogenic contamination source. In conclusion, the findings from this study indicate that the Matang mangrove estuary could harbor potentially pathogenic K. pneumoniae with risk to public health. More studies are required to compare the environmental K. pneumoniae strains with the community-acquired K. pneumoniae strains.
Collapse
|
35
|
Martin T, Diaz I, Kilbourne J, Almarza O, Segovia C, Curtiss R, Santander J. Influence of lipopolysaccharide outer-core in the intrinsic resistance to antimicrobial peptides and virulence in Edwardsiella ictaluri. Microb Pathog 2016; 93:204-12. [PMID: 26945561 DOI: 10.1016/j.micpath.2016.02.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/10/2016] [Accepted: 02/29/2016] [Indexed: 02/06/2023]
Abstract
The genus Edwardsiella consists of bacteria with an intrinsic resistance to cyclic cationic antimicrobial peptides (CAMPs). Edwardsiella ictaluri, a pathogen of the catfish (Ictalurus punctatus) and the causative agent of a systemic infection, is highly resistant to CAMPs. Previously, we determined that the oligo-polysaccharide (O-PS) of the lipopolysaccharide (LPS) does not play a role in the E. ictaluri CAMP resistance and an intact core-lipid A structure is necessary for CAMPs resistance. Here, we evaluated the influence of the outer-core in the CAMPs resistance and fish virulence. E. ictaluri wabG, a gene that encodes for the UDP-glucuronic acid transferase that links the lipid A-inner-core to the outer-core-oligopolysaccharides, was deleted. Deletion of ΔwabG caused a pleiotropic effect, influencing LPS synthesis, CAMPs resistance, growth, and biofilm formation. E. ictaluri ΔwabG was attenuated in zebrafish indicating the important role of LPS during fish pathogenesis. Also, we evaluated the inflammatory effects of wabG LPS in catfish ligated loop model, showing a decreased inflammatory effect at the gut level respects to the E. ictaluri wild type. We conclude that E. ictaluri CAMPs resistance is related to the molecules present in the LPS outer-core and that fish gut inflammation triggered by E. ictaluri is LPS dependent, reinforcing the hypothesis that fish gut recognizes LPS in an O-PS dependent fashion.
Collapse
Affiliation(s)
- Taylor Martin
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; School of Life and Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Ignacia Diaz
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; Microbial Pathogenesis and Vaccinology Research Group, Faculty of Sciences, Universidad Mayor, Huechuraba 8580745, Chile
| | - Jacquelyn Kilbourne
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Oscar Almarza
- Microbial Pathogenesis and Vaccinology Research Group, Faculty of Sciences, Universidad Mayor, Huechuraba 8580745, Chile
| | - Cristopher Segovia
- Microbial Pathogenesis and Vaccinology Research Group, Faculty of Sciences, Universidad Mayor, Huechuraba 8580745, Chile; PhD Program in Integrative Genomics, Faculty of Sciences, Universidad Mayor, Huechuraba 8580745, Chile
| | - Roy Curtiss
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; School of Life and Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Javier Santander
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; School of Life and Sciences, Arizona State University, Tempe, AZ 85287, USA; Microbial Pathogenesis and Vaccinology Research Group, Faculty of Sciences, Universidad Mayor, Huechuraba 8580745, Chile.
| |
Collapse
|
36
|
Li B, Zhao Y, Liu C, Chen Z, Zhou D. Molecular pathogenesis of Klebsiella pneumoniae. Future Microbiol 2015; 9:1071-81. [PMID: 25340836 DOI: 10.2217/fmb.14.48] [Citation(s) in RCA: 213] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Typical Klebsiella pneumoniae is an opportunistic pathogen, which mostly affects those with weakened immune systems and tends to cause nosocomial infections. A subset of hypervirulent K. pneumoniae serotypes with elevated production of capsule polysaccharide can affect previously healthy persons and cause life-threatening community-acquired infections, such as pyogenic liver abscess, meningitis, necrotizing fasciitis, endophthalmitis and severe pneumonia. K. pneumoniae utilizes a variety of virulence factors, especially capsule polysaccharide, lipopolysaccharide, fimbriae, outer membrane proteins and determinants for iron acquisition and nitrogen source utilization, for survival and immune evasion during infection. This article aims to present the state-of-the-art understanding of the molecular pathogenesis of K. pneumoniae.
Collapse
Affiliation(s)
- Bei Li
- Department of Dermatology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | | | | | | | | |
Collapse
|
37
|
Tomás A, Lery L, Regueiro V, Pérez-Gutiérrez C, Martínez V, Moranta D, Llobet E, González-Nicolau M, Insua JL, Tomas JM, Sansonetti PJ, Tournebize R, Bengoechea JA. Functional Genomic Screen Identifies Klebsiella pneumoniae Factors Implicated in Blocking Nuclear Factor κB (NF-κB) Signaling. J Biol Chem 2015; 290:16678-97. [PMID: 25971969 PMCID: PMC4505419 DOI: 10.1074/jbc.m114.621292] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Indexed: 01/01/2023] Open
Abstract
Klebsiella pneumoniae is an etiologic agent of community-acquired and nosocomial pneumonia. It has been shown that K. pneumoniae infections are characterized by reduced early inflammatory response. Recently our group has shown that K. pneumoniae dampens the activation of inflammatory responses by antagonizing the activation of the NF-κB canonical pathway. Our results revealed that K. pneumoniae capsule polysaccharide (CPS) was necessary but not sufficient to attenuate inflammation. To identify additional Klebsiella factors required to dampen inflammation, we standardized and applied a high-throughput gain-of-function screen to examine a Klebsiella transposon mutant library. We identified 114 mutants that triggered the activation of NF-κB. Two gene ontology categories accounted for half of the loci identified in the screening: metabolism and transport genes (32% of the mutants) and envelope-related genes (17%). Characterization of the mutants revealed that the lack of the enterobactin siderophore was linked to a reduced CPS expression, which in turn underlined the NF-κB activation induced by the mutant. The lipopolysaccharide (LPS) O-polysaccharide and the pullulanase (PulA) type 2 secretion system (T2SS) are required for full effectiveness of the immune evasion. Importantly, these factors do not play a redundant role. The fact that LPS O-polysaccharide and T2SS mutant-induced responses were dependent on TLR2-TLR4-MyD88 activation suggested that LPS O-polysaccharide and PulA perturbed Toll-like receptor (TLR)-dependent recognition of K. pneumoniae. Finally, we demonstrate that LPS O-polysaccharide and pulA mutants are attenuated in the pneumonia mouse model. We propose that LPS O-polysaccharide and PulA T2SS could be new targets for the design of new antimicrobials. Increasing TLR-governed defense responses might provide also selective alternatives for the management of K. pneumoniae pneumonia.
Collapse
Affiliation(s)
- Anna Tomás
- From the Infection and Immunity Program, Fundación de Investigación Sanitaria de las Islas Baleares (FISIB), 07110 Mallorca, Spain, the Instituto de Investigación Sanitaria de Palma (IdisPa), 07120 Mallorca, Spain, the Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Leticia Lery
- the Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, 75724 Paris, France, INSERM U786, 75724 Paris, France
| | - Verónica Regueiro
- From the Infection and Immunity Program, Fundación de Investigación Sanitaria de las Islas Baleares (FISIB), 07110 Mallorca, Spain, the Instituto de Investigación Sanitaria de Palma (IdisPa), 07120 Mallorca, Spain, the Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Camino Pérez-Gutiérrez
- From the Infection and Immunity Program, Fundación de Investigación Sanitaria de las Islas Baleares (FISIB), 07110 Mallorca, Spain, the Instituto de Investigación Sanitaria de Palma (IdisPa), 07120 Mallorca, Spain, the Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Verónica Martínez
- From the Infection and Immunity Program, Fundación de Investigación Sanitaria de las Islas Baleares (FISIB), 07110 Mallorca, Spain, the Instituto de Investigación Sanitaria de Palma (IdisPa), 07120 Mallorca, Spain, the Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - David Moranta
- From the Infection and Immunity Program, Fundación de Investigación Sanitaria de las Islas Baleares (FISIB), 07110 Mallorca, Spain, the Instituto de Investigación Sanitaria de Palma (IdisPa), 07120 Mallorca, Spain, the Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Enrique Llobet
- From the Infection and Immunity Program, Fundación de Investigación Sanitaria de las Islas Baleares (FISIB), 07110 Mallorca, Spain, the Instituto de Investigación Sanitaria de Palma (IdisPa), 07120 Mallorca, Spain, the Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Mar González-Nicolau
- From the Infection and Immunity Program, Fundación de Investigación Sanitaria de las Islas Baleares (FISIB), 07110 Mallorca, Spain, the Instituto de Investigación Sanitaria de Palma (IdisPa), 07120 Mallorca, Spain, the Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Jose L Insua
- the Centre for Infection and Immunity, Queen's University Belfast, Belfast BT9 7AE, United Kingdom
| | - Juan M Tomas
- the Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, 08028 Barcelona, Spain
| | - Philippe J Sansonetti
- the Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, 75724 Paris, France, INSERM U786, 75724 Paris, France, Chaire de Microbiologie et Maladies Infectieuses, Collège de France, 75231 Paris, France
| | - Régis Tournebize
- the Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, 75724 Paris, France, INSERM U786, 75724 Paris, France, Imagopole, Plateforme d'Imagerie Dynamique, Institut Pasteur, 75724 Paris, France, and
| | - José A Bengoechea
- the Centre for Infection and Immunity, Queen's University Belfast, Belfast BT9 7AE, United Kingdom, the Consejo Superior de Investigaciones Científicas (CSIC), 28008 Madrid, Spain
| |
Collapse
|
38
|
Fodah RA, Scott JB, Tam HH, Yan P, Pfeffer TL, Bundschuh R, Warawa JM. Correlation of Klebsiella pneumoniae comparative genetic analyses with virulence profiles in a murine respiratory disease model. PLoS One 2014; 9:e107394. [PMID: 25203254 PMCID: PMC4159340 DOI: 10.1371/journal.pone.0107394] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 08/17/2014] [Indexed: 12/21/2022] Open
Abstract
Klebsiella pneumoniae is a bacterial pathogen of worldwide importance and a significant contributor to multiple disease presentations associated with both nosocomial and community acquired disease. ATCC 43816 is a well-studied K. pneumoniae strain which is capable of causing an acute respiratory disease in surrogate animal models. In this study, we performed sequencing of the ATCC 43816 genome to support future efforts characterizing genetic elements required for disease. Furthermore, we performed comparative genetic analyses to the previously sequenced genomes from NTUH-K2044 and MGH 78578 to gain an understanding of the conservation of known virulence determinants amongst the three strains. We found that ATCC 43816 and NTUH-K2044 both possess the known virulence determinant for yersiniabactin, as well as a Type 4 secretion system (T4SS), CRISPR system, and an acetonin catabolism locus, all absent from MGH 78578. While both NTUH-K2044 and MGH 78578 are clinical isolates, little is known about the disease potential of these strains in cell culture and animal models. Thus, we also performed functional analyses in the murine macrophage cell lines RAW264.7 and J774A.1 and found that MGH 78578 (K52 serotype) was internalized at higher levels than ATCC 43816 (K2) and NTUH-K2044 (K1), consistent with previous characterization of the antiphagocytic properties of K1 and K2 serotype capsules. We also examined the three K. pneumoniae strains in a novel BALB/c respiratory disease model and found that ATCC 43816 and NTUH-K2044 are highly virulent (LD50<100 CFU) while MGH 78578 is relatively avirulent.
Collapse
Affiliation(s)
- Ramy A. Fodah
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, United States of America
| | - Jacob B. Scott
- Dental School, University of Louisville, Louisville, Kentucky, United States of America
- College of Dentistry, Ohio State University, Columbus, Ohio, United States of America
| | - Hok-Hei Tam
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Pearlly Yan
- The Comprehensive Cancer Center and The James Cancer Hospital and Solove Research Institute, Division of Hematology, Department of Internal Medicine, Ohio State University, Columbus, Ohio, United States of America
- Departments of Physics and Chemistry & Biochemistry and Center for RNA Biology, Ohio State University, Columbus, Ohio, United States of America
| | - Tia L. Pfeffer
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, United States of America
| | - Ralf Bundschuh
- The Comprehensive Cancer Center and The James Cancer Hospital and Solove Research Institute, Division of Hematology, Department of Internal Medicine, Ohio State University, Columbus, Ohio, United States of America
- Departments of Physics and Chemistry & Biochemistry and Center for RNA Biology, Ohio State University, Columbus, Ohio, United States of America
| | - Jonathan M. Warawa
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, United States of America
- Center for Predictive Medicine, University of Louisville, Louisville, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
39
|
Improvement of 2,3-butanediol yield in Klebsiella pneumoniae by deletion of the pyruvate formate-lyase gene. Appl Environ Microbiol 2014; 80:6195-203. [PMID: 25085487 DOI: 10.1128/aem.02069-14] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Klebsiella pneumoniae is considered a good host strain for the production of 2,3-butanediol, which is a promising platform chemical with various industrial applications. In this study, three genes, including those encoding glucosyltransferase (wabG), lactate dehydrogenase (ldhA), and pyruvate formate-lyase (pflB), were disrupted in K. pneumoniae to reduce both its pathogenic characteristics and the production of several by-products. In flask cultivation with minimal medium, the yield of 2,3-butanediol from rationally engineered K. pneumoniae (ΔwabG ΔldhA ΔpflB) reached 0.461 g/g glucose, which was 92.2% of the theoretical maximum, with a significant reduction in by-product formation. However, the growth rate of the pflB mutant was slightly reduced compared to that of its parental strain. Comparison with similar mutants of Escherichia coli suggested that the growth defect of pflB-deficient K. pneumoniae was caused by redox imbalance rather than reduced level of intracellular acetyl coenzyme A (acetyl-CoA). From an analysis of the transcriptome, it was confirmed that the removal of pflB from K. pneumoniae significantly repressed the expression of genes involved in the formate hydrogen lyase (FHL) system.
Collapse
|
40
|
Osman KM, Hassan HM, Orabi A, Abdelhafez AST. Phenotypic, antimicrobial susceptibility profile and virulence factors of Klebsiella pneumoniae isolated from buffalo and cow mastitic milk. Pathog Glob Health 2014; 108:191-9. [PMID: 24915048 DOI: 10.1179/2047773214y.0000000141] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Studies on the prevalence and virulence genes of Klebsiella mastitis pathogens in a buffalo population are undocumented. Also, the association of rmpA kfu, uge, magA, Aerobactin, K1 and K2 virulent factors with K. pneumoniae buffalo, and cow mastitis is unreported. The virulence of K. pneumoniae was evaluated through both phenotypic and molecular assays. In vivo virulence was assessed by the Vero cell cytotoxicity, suckling mouse assay and mice lethality test. Antimicrobial susceptibility was tested by disk diffusion method. The 45 K. pneumoniae isolates from buffalo (n = 10/232) and cow (n = 35/293) milk were isolated (45/525; 8.6%) and screened via PCR for seven virulence genes encoding uridine diphosphate galactose 4 epimerase encoding gene responsible for capsule and smooth lipopolysaccharide synthesis (uge), siderophores (kfu and aerobactin), protectines or invasins (rmpA and magA), and the capsule and hypermucoviscosity (K1 and K2). The most common virulence genes were rmpA, kfu, uge, and magA (77.8% each). Aerobactin and K1 genes were found at medium rates of 66.7% each and K2 (55.6%). The Vero cell cytotoxicity and LD (50) in mice were found in 100% of isolates. A multidrug resistance pattern was observed for 40% of the antimicrobials. The distribution of virulence profiles indicate a role of rmpA, kfu, uge, magA, Aerobactin, and K1 and K2 in pathogenicity of K. pneumoniae in udder infections and invasiveness, and constitutes a threat for vulnerable animals, even more if they are in combination with antibiotic resistance.
Collapse
|
41
|
Lery LMS, Frangeul L, Tomas A, Passet V, Almeida AS, Bialek-Davenet S, Barbe V, Bengoechea JA, Sansonetti P, Brisse S, Tournebize R. Comparative analysis of Klebsiella pneumoniae genomes identifies a phospholipase D family protein as a novel virulence factor. BMC Biol 2014; 12:41. [PMID: 24885329 PMCID: PMC4068068 DOI: 10.1186/1741-7007-12-41] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 05/15/2014] [Indexed: 12/17/2022] Open
Abstract
Background Klebsiella pneumoniae strains are pathogenic to animals and humans, in which they are both a frequent cause of nosocomial infections and a re-emerging cause of severe community-acquired infections. K. pneumoniae isolates of the capsular serotype K2 are among the most virulent. In order to identify novel putative virulence factors that may account for the severity of K2 infections, the genome sequence of the K2 reference strain Kp52.145 was determined and compared to two K1 and K2 strains of low virulence and to the reference strains MGH 78578 and NTUH-K2044. Results In addition to diverse functions related to host colonization and virulence encoded in genomic regions common to the four strains, four genomic islands specific for Kp52.145 were identified. These regions encoded genes for the synthesis of colibactin toxin, a putative cytotoxin outer membrane protein, secretion systems, nucleases and eukaryotic-like proteins. In addition, an insertion within a type VI secretion system locus included sel1 domain containing proteins and a phospholipase D family protein (PLD1). The pld1 mutant was avirulent in a pneumonia model in mouse. The pld1 mRNA was expressed in vivo and the pld1 gene was associated with K. pneumoniae isolates from severe infections. Analysis of lipid composition of a defective E. coli strain complemented with pld1 suggests an involvement of PLD1 in cardiolipin metabolism. Conclusions Determination of the complete genome of the K2 reference strain identified several genomic islands comprising putative elements of pathogenicity. The role of PLD1 in pathogenesis was demonstrated for the first time and suggests that lipid metabolism is a novel virulence mechanism of K. pneumoniae.
Collapse
Affiliation(s)
- Letícia M S Lery
- Institut Pasteur - Pathogénie Microbienne Moléculaire, Paris, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Functional identification of Proteus mirabilis eptC gene encoding a core lipopolysaccharide phosphoethanolamine transferase. Int J Mol Sci 2014; 15:6689-702. [PMID: 24756091 PMCID: PMC4013655 DOI: 10.3390/ijms15046689] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 03/03/2014] [Accepted: 04/09/2014] [Indexed: 12/13/2022] Open
Abstract
By comparison of the Proteus mirabilis HI4320 genome with known lipopolysaccharide (LPS) phosphoethanolamine transferases, three putative candidates (PMI3040, PMI3576, and PMI3104) were identified. One of them, eptC (PMI3104) was able to modify the LPS of two defined non-polar core LPS mutants of Klebsiella pneumoniae that we use as surrogate substrates. Mass spectrometry and nuclear magnetic resonance showed that eptC directs the incorporation of phosphoethanolamine to the O-6 of l-glycero-d-mano-heptose II. The eptC gene is found in all the P. mirabilis strains analyzed in this study. Putative eptC homologues were found for only two additional genera of the Enterobacteriaceae family, Photobacterium and Providencia. The data obtained in this work supports the role of the eptC (PMI3104) product in the transfer of PEtN to the O-6 of l,d-HepII in P. mirabilis strains.
Collapse
|
43
|
Chen Z, Liu M, Cui Y, Wang L, Zhang Y, Qiu J, Yang R, Liu C, Zhou D. A novel PCR-based genotyping scheme for clinical Klebsiella pneumoniae. Future Microbiol 2014; 9:21-32. [DOI: 10.2217/fmb.13.137] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ABSTRACT: Aim: To establish a PCR-based genotyping method for clinical Klebsiella pneumoniae. Materials & methods: The prevalence of six serotype markers, 41 large variably presented gene clusters, and seven additional virulence markers were screened by PCR in 327 clinical K. pneumoniae strains from China. Results: Detection of serotype markers enabled the identification of capsular serotypes K1, K2, K5, K20, K54 and K57. K. pneumoniae isolates of different origins gave distinct profiles of virulence loci, allowing us to gain a full overview of virulence gene distribution of the strains tested. A novel genotyping scheme was established to group clinical K. pneumoniae strains into distinct complexes based on the profiles of large variably presented gene clusters and virulence markers. Conclusion: This PCR-based genotyping method would be useful to not only characterize genetic diversity and virulence gene distribution, but also for genotyping, origin tracing and risk estimation of K. pneumoniae.
Collapse
Affiliation(s)
- Zhenhong Chen
- Nanlou Respiratory Diseases Department, Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| | - Mengying Liu
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Beijing 100071, China
- School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Yujun Cui
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Beijing 100071, China
| | - Li Wang
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Beijing 100071, China
- School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Yiquan Zhang
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Beijing 100071, China
| | - Jingfu Qiu
- School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Beijing 100071, China
- School of Medicine, Tsinghua University, Bejing 100084, China
| | - Changting Liu
- Nanlou Respiratory Diseases Department, Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Beijing 100071, China
| |
Collapse
|
44
|
Lin WH, Tseng CC, Wu AB, Yang DC, Cheng SW, Wang MC, Wu JJ. Clinical and microbiological characteristics of peritoneal dialysis-related peritonitis caused by Klebsiella pneumoniae in southern Taiwan. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2013; 48:276-83. [PMID: 24291619 DOI: 10.1016/j.jmii.2013.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 07/12/2013] [Accepted: 07/25/2013] [Indexed: 11/30/2022]
Abstract
BACKGROUND/PURPOSE(S) Gram-negative peritonitis is a frequent and serious complication of peritoneal dialysis (PD). No previous reports have focused on Klebsiella pneumoniae infection. The aim of this study was to investigate the host and bacterial factors associated with K. pneumoniae PD-related peritonitis. METHODS We retrospectively studied K. pneumoniae PD-peritonitis cases treated at a university hospital in southern Taiwan during 1990-2011, and analyzed the clinical features and outcomes and bacterial characteristics of serotypes, hypermucoviscosity (HV), and virulence-associated genes such as wabG, uge, and rmpA in K. pneumoniae PD-related peritonitis. Fifty-four isolates of K. pneumoniae-related community-acquired urinary tract infection (UTI) and 76 morphologically different nonpathogenic K. pneumoniae isolates from healthy adults were used as controls. RESULTS K. pneumoniae was the second most common monomicrobial pathogen causing Gram-negative PD-related peritonitis (n = 13, 2.7%), and the most common pathogen involved in polymicrobial peritonitis (16/43, 37.2%) and associated with high catheter removal rate (7/16, 43.8%). Compared with Escherichia coli peritonitis cases, patients with monomicrobial K. pneumoniae peritonitis also had insignificantly higher incidence of sepsis/bacteremia [n = 5 (38%), p = 0.11] and a higher mortality rate [n = 3 (23%), p = 0.36]. The prevalence of K1/K2 (n = 1, 7.7%) serotypes was low, but there was a higher prevalence of serotype K20 (n = 3, 23.1%) in K. pneumoniae isolates derived from monomicrobial PD-related peritonitis compared with control groups. HV phenotype (p < 0.001) and rmpA genotype (p = 0.007) were absent in the peritonitis group. CONCLUSION This is the first study focused on clinical and microbiological characteristics of K. pneumoniae PD-related peritonitis. K. pneumoniae was a common Gram-negative pathogen causing monomicrobial and polymicrobial PD-related peritonitis in southern Taiwan. The bacterial characteristics with low percentage of capsular serotype K1/K2, no significant HV, and absence of rmpA suggest a different pathogenesis in K. pneumoniae PD-related peritonitis compared with that in UTI and liver abscess.
Collapse
Affiliation(s)
- Wei-Hung Lin
- Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan; Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chin-Chung Tseng
- Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - An-Bang Wu
- Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Deng-Chi Yang
- Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Shian-Wen Cheng
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ming-Cheng Wang
- Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan; Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Jiunn-Jong Wu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
45
|
Genomic and proteomic studies on Plesiomonas shigelloides lipopolysaccharide core biosynthesis. J Bacteriol 2013; 196:556-67. [PMID: 24244003 DOI: 10.1128/jb.01100-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We report here the identification of waa clusters with the genes required for the biosynthesis of the core lipopolysaccharides (LPS) of two Plesiomonas shigelloides strains. Both P. shigelloides waa clusters shared all of the genes besides the ones flanking waaL. In both strains, all of the genes were found in the waa gene cluster, although one common core biosynthetic gene (wapG) was found in a different chromosome location outside the cluster. Since P. shigelloides and Klebsiella pneumoniae share a core LPS carbohydrate backbone extending up at least to the second outer-core residue, the functions of the common P. shigelloides genes were elucidated by genetic complementation studies using well-defined K. pneumoniae mutants. The function of strain-specific inner- or outer-core genes was identified by using as a surrogate acceptor LPS from three well-defined K. pneumoniae core LPS mutants. Using this strategy, we were able to assign a proteomic function to all of the P. shigelloides waa genes identified in the two strains encoding six new glycosyltransferases (WapA, -B, -C, -D, -F, and -G). P. shigelloides demonstrated an important variety of core LPS structures, despite being a single species of the genus, as well as high homologous recombination in housekeeping genes.
Collapse
|
46
|
The regulation of 2,3-butanediol synthesis in Klebsiella pneumoniae as revealed by gene over-expressions and metabolic flux analysis. Bioprocess Biosyst Eng 2013; 37:343-53. [DOI: 10.1007/s00449-013-0999-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 06/11/2013] [Indexed: 10/26/2022]
|
47
|
Role of bacterial surface structures on the interaction of Klebsiella pneumoniae with phagocytes. PLoS One 2013; 8:e56847. [PMID: 23457627 PMCID: PMC3574025 DOI: 10.1371/journal.pone.0056847] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 01/15/2013] [Indexed: 12/16/2022] Open
Abstract
Phagocytosis is a key process of the immune system. The human pathogen Klebsiella pneumoniae is a well known example of a pathogen highly resistant to phagocytosis. A wealth of evidence demonstrates that the capsule polysaccharide (CPS) plays a crucial role in resistance to phagocytosis. The amoeba Dictyostelium discoideum shares with mammalian macrophages the ability to phagocytose and kill bacteria. The fact that K. pneumoniae is ubiquitous in nature and, therefore, should avoid predation by amoebae, poses the question whether K. pneumoniae employs similar means to counteract amoebae and mammalian phagocytes. Here we developed an assay to evaluate K. pneumoniae-D. discoideum interaction. The richness of the growth medium affected the threshold at which the cps mutant was permissive for Dictyostelium and only at lower nutrient concentrations the cps mutant was susceptible to predation by amoebae. Given the critical role of bacterial surface elements on host-pathogen interactions, we explored the possible contribution of the lipopolysaccharide (LPS) and outer membrane proteins (OMPs) to combat phagoyctosis by D. discoideum. We uncover that, in addition to the CPS, the LPS O-polysaccharide and the first core sugar participate in Klebsiella resistance to predation by D. discoideum. K. pneumoniae LPS lipid A decorations are also necessary to avoid predation by amoebae although PagP-dependent palmitoylation plays a more important role than the lipid A modification with aminoarabinose. Mutants lacking OMPs OmpA or OmpK36 were also permissive for D. discoideium growth. Except the LPS O-polysaccharide mutants, all mutants were more susceptible to phagocytosis by mouse alveolar macrophages. Finally, we found a correlation between virulence, using the pneumonia mouse model, and resistance to phagocytosis. Altogether, this work reveals novel K. pneumoniae determinants involved in resistance to phagocytosis and supports the notion that Dictyostelium amoebae might be useful as host model to measure K. pneumoniae virulence and not only phagocytosis.
Collapse
|
48
|
Experimental identification of Actinobacillus pleuropneumoniae strains L20 and JL03 heptosyltransferases, evidence for a new heptosyltransferase signature sequence. PLoS One 2013; 8:e55546. [PMID: 23383222 PMCID: PMC3559599 DOI: 10.1371/journal.pone.0055546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 12/30/2012] [Indexed: 11/19/2022] Open
Abstract
We experimentally identified the activities of six predicted heptosyltransferases in Actinobacillus pleuropneumoniae genome serotype 5b strain L20 and serotype 3 strain JL03. The initial identification was based on a bioinformatic analysis of the amino acid similarity between these putative heptosyltrasferases with others of known function from enteric bacteria and Aeromonas. The putative functions of all the Actinobacillus pleuropneumoniae heptosyltrasferases were determined by using surrogate LPS acceptor molecules from well-defined A. hydrophyla AH-3 and A. salmonicida A450 mutants. Our results show that heptosyltransferases APL_0981 and APJL_1001 are responsible for the transfer of the terminal outer core D-glycero-D-manno-heptose (D,D-Hep) residue although they are not currently included in the CAZY glycosyltransferase 9 family. The WahF heptosyltransferase group signature sequence [S(T/S)(GA)XXH] differs from the heptosyltransferases consensus signature sequence [D(TS)(GA)XXH], because of the substitution of D(261) for S(261), being unique.
Collapse
|
49
|
Carillo S, Pieretti G, Lindner B, Romano I, Nicolaus B, Lanzetta R, Parrilli M, Corsaro MM. The Lipid A from the haloalkaliphilic bacterium Salinivibrio sharmensis strain BAG(T). Mar Drugs 2013; 11:184-93. [PMID: 23337252 PMCID: PMC3564166 DOI: 10.3390/md11010184] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 01/09/2013] [Accepted: 01/11/2013] [Indexed: 11/16/2022] Open
Abstract
Lipid A is a major constituent of the lipopolysaccharides (or endotoxins), which are complex amphiphilic macromolecules anchored in the outer membrane of Gram-negative bacteria. The glycolipid lipid A is known to possess the minimal chemical structure for LPSs endotoxic activity, able to cause septic shock. Lipid A isolated from extremophiles is interesting, since very few cases of pathogenic bacteria have been found among these microorganisms. In some cases their lipid A has shown to have an antagonist activity, i.e., it is able to interact with the immune system of the host without triggering a proinflammatory response by blocking binding of substances that could elicit such a response. However, the relationship between the structure and the activity of these molecules is far from being completely clear. A deeper knowledge of the lipid A chemical structure can help the understanding of these mechanisms. In this manuscript, we present our work on the complete structural characterization of the lipid A obtained from the lipopolysaccharides (LPS) of the haloalkaliphilic bacterium Salinivibrio sharmensis. Lipid A was obtained from the purified LPS by mild acid hydrolysis. The lipid A, which contains different number of fatty acids residues, and its partially deacylated derivatives were completely characterized by means of electrospray ionization Fourier transform ion cyclotron (ESI FT-ICR) mass spectrometry and chemical analysis.
Collapse
Affiliation(s)
- Sara Carillo
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy; E-Mails: (S.C.); (G.P.); (R.L.); (M.P.)
| | - Giuseppina Pieretti
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy; E-Mails: (S.C.); (G.P.); (R.L.); (M.P.)
| | - Buko Lindner
- Division of Immunochemistry, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Parkallee 10, D-23845 Borstel, Germany; E-Mail:
| | - Ida Romano
- CNR Institute of Biomolecular Chemistry (ICB-CNR), National Research Council (CNR), Via Campi Flegrei 34, 80078 Pozzuoli, Italy; E-Mails: (I.R.); (B.N.)
| | - Barbara Nicolaus
- CNR Institute of Biomolecular Chemistry (ICB-CNR), National Research Council (CNR), Via Campi Flegrei 34, 80078 Pozzuoli, Italy; E-Mails: (I.R.); (B.N.)
| | - Rosa Lanzetta
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy; E-Mails: (S.C.); (G.P.); (R.L.); (M.P.)
| | - Michelangelo Parrilli
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy; E-Mails: (S.C.); (G.P.); (R.L.); (M.P.)
| | - Maria Michela Corsaro
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy; E-Mails: (S.C.); (G.P.); (R.L.); (M.P.)
| |
Collapse
|
50
|
Jung SG, Jang JH, Kim AY, Lim MC, Kim B, Lee J, Kim YR. Removal of pathogenic factors from 2,3-butanediol-producing Klebsiella species by inactivating virulence-related wabG gene. Appl Microbiol Biotechnol 2012; 97:1997-2007. [PMID: 22832986 DOI: 10.1007/s00253-012-4284-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Revised: 07/03/2012] [Accepted: 07/04/2012] [Indexed: 01/11/2023]
Abstract
Klebsiella species are the most extensively studied among a number of 2,3-butanediol (2,3-BDO)-producing microorganisms. The ability to metabolize a wide variety of substrates together with the ease of cultivation made this microorganisms particularly promising for the application in industrial-scale production of 2,3-BDO. However, the pathogenic characteristics of encapsulated Klebsiella species are considered to be an obstacle hindering their industrial applications. Here, we removed the virulence factors from three 2,3-BDO-producing strains, Klebsiella pneumoniae KCTC 2242, Klebsiella oxytoca KCTC1686, and K. oxytoca ATCC 43863 through site-specific recombination technique. We generated deletion mutation in wabG gene encoding glucosyltransferase which plays a key role in the synthesis of outer core lipopolysaccharides (LPS) by attaching the first outer core residue D-GalAp to the O-3 position of the L,D-HeppII residue. The morphologies and adhesion properties against epithelial cells were investigated, and the results indicated that the wabG mutant strains were devoid of the outer core LPS and lost the ability to retain capsular structure. The time profile of growth and 2,3-BDO production from K. pneumoniae KCTC 2242 and K. pneumoniae KCTC 2242 ΔwabG were analyzed in batch culture with initial glucose concentration of 70 g/l. The growth was not affected by disrupting wabG gene, but the production of 2,3-BDO decreased from 31.27 to 22.44 g/l in mutant compared with that of parental strain. However, the productions of acetoin and lactate from wabG mutant strain were negligible, whereas that from parental strain reached to ~5 g/l.
Collapse
Affiliation(s)
- Sung-Geun Jung
- Institute of Life Sciences and Resources & Department of Food Science and Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 446-701, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|