1
|
Park JY, Lee MG, Charalampopoulos D, Park KM, Chang PS. Geometric isomerization of dietary monounsaturated fatty acids by a cis/trans fatty acid isomerase from Pseudomonas putida KT2440. Int J Biol Macromol 2024; 281:136075. [PMID: 39370082 DOI: 10.1016/j.ijbiomac.2024.136075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/08/2024]
Abstract
Pseudomonas putida KT2440 encodes a defense system that rigidifies membranes by a cytochrome c-type cis/trans fatty acid isomerase (CTI). Despite its potential as an industrial biocatalyst for directly regulating the geometric isomerism of monounsaturated fatty acids, its original catalytic and structural properties have remained elusive. In this study, the catalytic nature of wild-type CTI purified P. putida KT2440 against dietary monounsaturated fatty acids was investigated. It showed substrate preference for palmitoleic acid (C16:1, cis-Δ9), along with substrate promiscuity with chain length and double bond position (palmitoleic acid>cis-vaccenic acid>oleic acid). Under determined optimum reaction conditions, its catalytic efficiency (kcat/Km) was evaluated as 5.13 × 102 M-1·sec-1 against palmitoleic acid. Furthermore, computational predictions of the protein structure revealed its monoheme cytochrome c-type domain and a parasol-like transmembrane domain, suggesting its catalytic mode of action. For effective cis/trans isomerization, the ethylene double bond of monounsaturated fatty acids should be precisely positioned at the heme center of CTI, indicating that its substrate specificity can be determined by the alkyl chain length and the double bond position of the fatty acid substrates. These findings shed light on the potential of CTI as a promising biocatalyst for the food and lipid industry.
Collapse
Affiliation(s)
- Jun-Young Park
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Min-Gyeong Lee
- Department of Food Science and Biotechnology, Wonkwang University, Iksan 54538, Republic of Korea
| | | | - Kyung-Min Park
- Department of Food Science and Biotechnology, Wonkwang University, Iksan 54538, Republic of Korea.
| | - Pahn-Shick Chang
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea; Center for Agricultural Microorganism and Enzyme, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
2
|
Weimer A, Pause L, Ries F, Kohlstedt M, Adrian L, Krömer J, Lai B, Wittmann C. Systems biology of electrogenic Pseudomonas putida - multi-omics insights and metabolic engineering for enhanced 2-ketogluconate production. Microb Cell Fact 2024; 23:246. [PMID: 39261865 PMCID: PMC11389600 DOI: 10.1186/s12934-024-02509-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/10/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Pseudomonas putida KT2440 has emerged as a promising host for industrial bioproduction. However, its strictly aerobic nature limits the scope of applications. Remarkably, this microbe exhibits high bioconversion efficiency when cultured in an anoxic bio-electrochemical system (BES), where the anode serves as the terminal electron acceptor instead of oxygen. This environment facilitates the synthesis of commercially attractive chemicals, including 2-ketogluconate (2KG). To better understand this interesting electrogenic phenotype, we studied the BES-cultured strain on a systems level through multi-omics analysis. Inspired by our findings, we constructed novel mutants aimed at improving 2KG production. RESULTS When incubated on glucose, P. putida KT2440 did not grow but produced significant amounts of 2KG, along with minor amounts of gluconate, acetate, pyruvate, succinate, and lactate. 13C tracer studies demonstrated that these products are partially derived from biomass carbon, involving proteins and lipids. Over time, the cells exhibited global changes on both the transcriptomic and proteomic levels, including the shutdown of translation and cell motility, likely to conserve energy. These adaptations enabled the cells to maintain significant metabolic activity for several weeks. Acetate formation was shown to contribute to energy supply. Mutants deficient in acetate production demonstrated superior 2KG production in terms of titer, yield, and productivity. The ∆aldBI ∆aldBII double deletion mutant performed best, accumulating 2KG at twice the rate of the wild type and with an increased yield (0.96 mol/mol). CONCLUSIONS By integrating transcriptomic, proteomic, and metabolomic analyses, this work provides the first systems biology insight into the electrogenic phenotype of P. putida KT2440. Adaptation to anoxic-electrogenic conditions involved coordinated changes in energy metabolism, enabling cells to sustain metabolic activity for extended periods. The metabolically engineered mutants are promising for enhanced 2KG production under these conditions. The attenuation of acetate synthesis represents the first systems biology-informed metabolic engineering strategy for enhanced 2KG production in P. putida. This non-growth anoxic-electrogenic mode expands our understanding of the interplay between growth, glucose phosphorylation, and glucose oxidation into gluconate and 2KG in P. putida.
Collapse
Affiliation(s)
- Anna Weimer
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Laura Pause
- Systems Biotechnology Group, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Fabian Ries
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Michael Kohlstedt
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Lorenz Adrian
- Department of Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Jens Krömer
- Systems Biotechnology Group, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Bin Lai
- BMBF Junior Research Group Biophotovoltaics, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Christoph Wittmann
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
3
|
Caliskan M, Poschmann G, Gudzuhn M, Waldera-Lupa D, Molitor R, Strunk CH, Streit WR, Jaeger KE, Stühler K, Kovacic F. Pseudomonas aeruginosa responds to altered membrane phospholipid composition by adjusting the production of two-component systems, proteases and iron uptake proteins. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159317. [PMID: 37054907 DOI: 10.1016/j.bbalip.2023.159317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 04/15/2023]
Abstract
Membrane protein and phospholipid (PL) composition changes in response to environmental cues and during infections. To achieve these, bacteria use adaptation mechanisms involving covalent modification and remodelling of the acyl chain length of PLs. However, little is known about bacterial pathways regulated by PLs. Here, we investigated proteomic changes in the biofilm of P. aeruginosa phospholipase mutant (∆plaF) with altered membrane PL composition. The results revealed profound alterations in the abundance of many biofilm-related two-component systems (TCSs), including accumulation of PprAB, a key regulator of the transition to biofilm. Furthermore, a unique phosphorylation pattern of transcriptional regulators, transporters and metabolic enzymes, as well as differential production of several proteases, in ∆plaF, indicate that PlaF-mediated virulence adaptation involves complex transcriptional and posttranscriptional response. Moreover, proteomics and biochemical assays revealed the depletion of pyoverdine-mediated iron uptake pathway proteins in ∆plaF, while proteins from alternative iron-uptake systems were accumulated. These suggest that PlaF may function as a switch between different iron-acquisition pathways. The observation that PL-acyl chain modifying and PL synthesis enzymes were overproduced in ∆plaF reveals the interconnection of degradation, synthesis and modification of PLs for proper membrane homeostasis. Although the precise mechanism by which PlaF simultaneously affects multiple pathways remains to be elucidated, we suggest that alteration of PL composition in ∆plaF plays a role for the global adaptive response in P. aeruginosa mediated by TCSs and proteases. Our study revealed the global regulation of virulence and biofilm by PlaF and suggests that targeting this enzyme may have therapeutic potential.
Collapse
Affiliation(s)
- Muttalip Caliskan
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Jülich, Germany
| | - Gereon Poschmann
- Institute of Molecular Medicine, Proteome Research, University Hospital and Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Mirja Gudzuhn
- Department of Microbiology and Biotechnology, University of Hamburg, Ohnhorststr. 18, 22609 Hamburg, Germany
| | - Daniel Waldera-Lupa
- Institute of Molecular Medicine, Proteome Research, University Hospital and Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Rebecka Molitor
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Jülich, Germany
| | | | - Wolfgang R Streit
- Department of Microbiology and Biotechnology, University of Hamburg, Ohnhorststr. 18, 22609 Hamburg, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Jülich, Germany; Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Kai Stühler
- Institute of Molecular Medicine, Proteome Research, University Hospital and Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Molecular Proteomics Laboratory, Biologisch-Medizinisches Forschungszentrum, Heinrich-Heine-University, Düsseldorf, Düsseldorf, Germany
| | - Filip Kovacic
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Jülich, Germany.
| |
Collapse
|
4
|
An improved method for rapid evaluation of enzymatic cis/trans isomerization of C18:1 monounsaturated fatty acids. Food Chem 2023; 404:134618. [DOI: 10.1016/j.foodchem.2022.134618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022]
|
5
|
Wilms W, Homa J, Woźniak-Karczewska M, Owsianiak M, Chrzanowski Ł. Biodegradation half-lives of biodiesel fuels in aquatic and terrestrial systems: A review. CHEMOSPHERE 2023; 313:137236. [PMID: 36403813 DOI: 10.1016/j.chemosphere.2022.137236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 11/01/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Information on biodegradation kinetics of biodiesel fuels is a key aspect in risk and impact assessment practice and in selection of appropriate remediation strategies. Unfortunately, this information is scattered, while factors influencing variability in biodegradation rates are still not fully understood. Therefore, we systematically reviewed 32 scientific literature sources providing 142 biodegradation and 56 mineralization half-lives of diesel and biodiesel fuels in various experimental systems. The analysis focused on the variability in half-lives across fuels and experimental conditions, reporting sets of averaged half-life values and their statistical uncertainty. Across all data points, biodegradation half-lives ranged from 9 to 62 days, and were 2-5.5 times shorter than mineralization half-lives. Across all fuels, biodegradation and mineralization half-lives were 2.5-8.5 times longer in terrestrial systems when compared to aquatic systems. The half-lives were generally shorter for blends with increasing biodiesel content, although differences in number of data points from various experiments masked differences in half-lives between different fuels. This in most cases resulted in lack of statistically significant effects of the type of blends and experimental system on biodegradation half-lives. Our data can be used for improved characterization of risks and impacts of biodiesel fuels in aerobic aquatic and terrestrial environments, while more experiments are required to quantify biodegradation kinetics in anaerobic conditions. Relatively high biodegradability of biodiesel may suggest that passive approaches to degrade and dissipate contaminants in situ, like monitored natural attenuation, may be appropriate remediation strategies for biodiesel fuels.
Collapse
Affiliation(s)
- Wiktoria Wilms
- Department of Chemical Technology, Poznan University of Technology, 60-965, Poznań, Poland
| | - Jan Homa
- Department of Chemical Technology, Poznan University of Technology, 60-965, Poznań, Poland
| | | | - Mikołaj Owsianiak
- Quantitative Sustainability Assessment, Department of Environmental and Resource Engineering, Technical University of Denmark, Produktionstorvet 424, 2800 Kgs. Lyngby, Denmark.
| | - Łukasz Chrzanowski
- Department of Chemical Technology, Poznan University of Technology, 60-965, Poznań, Poland
| |
Collapse
|
6
|
Du M, Jin Y, Fan J, Zan S, Gu C, Wang J. A new pathway for anaerobic biotransformation of marine toxin domoic acid. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:5150-5160. [PMID: 35974277 DOI: 10.1007/s11356-022-22368-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Domoic acid (DA) is a harmful algal toxin produced by marine diatom Pseudo-nitzschia and seriously threatens ecosystem and human health. However, the current knowledge on its biotransformation behavior in coastal anaerobic environment is lacking. This study investigated the anaerobic biotransformation of DA by a new marine consortium GH1. The results demonstrated that 90% of DA (1 mg L-1) was cometabolically biotransformed under sulfate-reducing condition. A new anaerobic biotransformation pathway involving DA hydration, dehydrogenation, and C-C bond cleavage was proposed, where the conjugated double-bond of DA was interrupted, resulting in the corresponding alcohols and ketones, subsequently cleaved hydrolytically, and yielding the lower molecular weight products. Desulfovibrio and Clostridiales were markedly enriched in the anaerobic biotransformation of DA, which might jointly contribute to the elevated bacterial consortium resistance and degradation to DA. This study could deepen understanding of behavior and fate for DA in marine environments.
Collapse
Affiliation(s)
- Miaomiao Du
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Dalian, 116024, People's Republic of China
| | - Yuan Jin
- Marine Ecology Department, National Marine Environmental Monitoring Center, Dalian, 116023, China
| | - Jingfeng Fan
- Marine Ecology Department, National Marine Environmental Monitoring Center, Dalian, 116023, China
| | - Shuaijun Zan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Dalian, 116024, People's Republic of China
| | - Chen Gu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Dalian, 116024, People's Republic of China
| | - Jing Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Dalian, 116024, People's Republic of China.
| |
Collapse
|
7
|
Muratovska N, Silva P, Pozdniakova T, Pereira H, Grey C, Johansson B, Carlquist M. Towards engineered yeast as production platform for capsaicinoids. Biotechnol Adv 2022; 59:107989. [PMID: 35623491 DOI: 10.1016/j.biotechadv.2022.107989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 12/23/2022]
Abstract
Capsaicinoids are bioactive alkaloids produced by the chili pepper fruit and are known to be the most potent agonists of the human pain receptor TRPV1 (Transient Receptor Potential Cation Channel Subfamily V Member 1). They are currently produced by extraction from chili pepper fruit or by chemical synthesis. Transfer of the biosynthetic route to a microbial host could enable more efficient capsaicinoid production by fermentation and may also enable the use of synthetic biology to create a diversity of new compounds with potentially improved properties. This review summarises the current state of the art on the biosynthesis of capsaicinoid precursors in baker's yeast, Saccharomyces cerevisiae, and discusses bioengineering strategies for achieving total synthesis from sugar.
Collapse
Affiliation(s)
- Nina Muratovska
- Division of Applied Microbiology, Lund University, Box 124, 221 00 Lund, Sweden
| | - Paulo Silva
- CBMA - Center of Molecular and Environmental Biology Engineering, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - Tatiana Pozdniakova
- CBMA - Center of Molecular and Environmental Biology Engineering, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - Humberto Pereira
- CBMA - Center of Molecular and Environmental Biology Engineering, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - Carl Grey
- Division of Biotechnology, Lund University, Box 118, SE-221 00 Lund, Sweden
| | - Björn Johansson
- CBMA - Center of Molecular and Environmental Biology Engineering, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal.
| | - Magnus Carlquist
- Division of Applied Microbiology, Lund University, Box 124, 221 00 Lund, Sweden.
| |
Collapse
|
8
|
Mauger M, Ferreri C, Chatgilialoglu C, Seemann M. The bacterial protective armor against stress: The cis-trans isomerase of unsaturated fatty acids, a cytochrome-c type enzyme. J Inorg Biochem 2021; 224:111564. [PMID: 34418715 DOI: 10.1016/j.jinorgbio.2021.111564] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/07/2021] [Accepted: 08/01/2021] [Indexed: 10/20/2022]
Abstract
Bacteria have evolved several outstanding strategies to resist to compounds or factors that compromise their survival. The first line of defense of the cell against environmental stresses is the membrane with fatty acids as fundamental building blocks of phospholipids. In this review, we focus on a periplasmic heme enzyme that catalyzes the cis-trans isomerization of unsaturated fatty acids to trigger a decrease in the fluidity of the membrane in order to rapidly counteract the danger. We particularly detailed the occurrence of such cis-trans isomerase in Nature, the different stresses that are at the origin of the double bond isomerization, the first steps in the elucidation of the mechanism of this peculiar metalloenzyme and some aspects of its regulation.
Collapse
Affiliation(s)
- Mickaël Mauger
- Equipe Chimie Biologique et Applications Thérapeutiques, Institut de Chimie UMR 7177, Université de Strasbourg/CNRS 4, rue Blaise Pascal, 67070 Strasbourg, France
| | - Carla Ferreri
- Consiglio Nazionale delle Ricerche - ISOF, Via Piero Gobetti 101, 40129 Bologna, Italy
| | | | - Myriam Seemann
- Equipe Chimie Biologique et Applications Thérapeutiques, Institut de Chimie UMR 7177, Université de Strasbourg/CNRS 4, rue Blaise Pascal, 67070 Strasbourg, France.
| |
Collapse
|
9
|
Towards robust Pseudomonas cell factories to harbour novel biosynthetic pathways. Essays Biochem 2021; 65:319-336. [PMID: 34223620 PMCID: PMC8314020 DOI: 10.1042/ebc20200173] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/01/2021] [Accepted: 05/24/2021] [Indexed: 02/07/2023]
Abstract
Biotechnological production in bacteria enables access to numerous valuable chemical compounds. Nowadays, advanced molecular genetic toolsets, enzyme engineering as well as the combinatorial use of biocatalysts, pathways, and circuits even bring new-to-nature compounds within reach. However, the associated substrates and biosynthetic products often cause severe chemical stress to the bacterial hosts. Species of the Pseudomonas clade thus represent especially valuable chassis as they are endowed with multiple stress response mechanisms, which allow them to cope with a variety of harmful chemicals. A built-in cell envelope stress response enables fast adaptations that sustain membrane integrity under adverse conditions. Further, effective export machineries can prevent intracellular accumulation of diverse harmful compounds. Finally, toxic chemicals such as reactive aldehydes can be eliminated by oxidation and stress-induced damage can be recovered. Exploiting and engineering these features will be essential to support an effective production of natural compounds and new chemicals. In this article, we therefore discuss major resistance strategies of Pseudomonads along with approaches pursued for their targeted exploitation and engineering in a biotechnological context. We further highlight strategies for the identification of yet unknown tolerance-associated genes and their utilisation for engineering next-generation chassis and finally discuss effective measures for pathway fine-tuning to establish stable cell factories for the effective production of natural compounds and novel biochemicals.
Collapse
|
10
|
Kondakova T, Kumar S, Cronan JE. A novel synthesis of trans-unsaturated fatty acids by the Gram-positive commensal bacterium Enterococcus faecalis FA2-2. Chem Phys Lipids 2019; 222:23-35. [PMID: 31054954 PMCID: PMC7392533 DOI: 10.1016/j.chemphyslip.2019.04.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/15/2019] [Accepted: 04/29/2019] [Indexed: 11/30/2022]
Abstract
A key mechanism of Pseudomonas spp. adaptation to environmental stressors is their ability to convert the cis-unsaturated fatty acids of the membrane lipids to their trans-isomers to rigidify the membrane and thereby resist stresses. Although this Cti-catalyzed enzymatic isomerization has been well investigated in the P. putida paradigm, several bacterial species have been found to produce trans-unsaturated fatty acids. Although cti orthologs have only been reported in Gram-negative bacteria, we report that E. faecalis FA2-2 cultures synthesize trans-unsaturated fatty acids during growth by a mechanism similar of P. putida. Although the role of trans-unsaturated fatty acids (trans-UFAs) in E. faecalis remains obscure, our results indicate that organic solvents, as well as the membrane altering antibiotic, daptomycin, had no effect on trans-UFA formation in E. faecalis FA2-2. Moreover trans-UFA production in E. faecalis FA2-2 membranes was constant in oxidative stress conditions or when metal chelator EDTA was added, raising the question about the role of heme domain in cis-trans isomerization in E. faecalis FA2-2. Although growth temperature and growth phase had significant effects on cis-trans isomerization, the bulk physical properties of the membranes seems unlikely to be altered by the low levels of trans-UFA. Hence, any effects seems likely to be on membrane proteins and membrane enzyme activities. We also report investigations of cti gene distribution in bacteria was and suggest the distribution to be triggered by habitat population associations. Three major Cti clusters were defined, corresponding to Pseudomonas, Pseudoalteromonas and Vibrio Cti proteins.
Collapse
Affiliation(s)
- Tatiana Kondakova
- Department of Microbiology, University of Illinois, Urbana, IL, 61801, USA
| | - Sneha Kumar
- Department of Microbiology, University of Illinois, Urbana, IL, 61801, USA
| | - John E Cronan
- Department of Microbiology, University of Illinois, Urbana, IL, 61801, USA; Department of Biochemistry, University of Illinois, Urbana, IL, 61801, USA.
| |
Collapse
|
11
|
Kondakova T, Cronan JE. Transcriptional regulation of fatty acid cis-trans isomerization in the solvent-tolerant soil bacterium, Pseudomonas putida F1. Environ Microbiol 2019; 21:1659-1676. [PMID: 30702193 PMCID: PMC7357427 DOI: 10.1111/1462-2920.14546] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 01/21/2019] [Accepted: 01/25/2019] [Indexed: 12/12/2022]
Abstract
One key to the success of Pseudomonas spp. is their ability to reside in hostile environments. Pseudomonas spp. possess a cis-trans isomerase (Cti) an enzyme that converts the cis-unsaturated fatty acids (FAs) of the membrane lipids to their trans-isomers to rigidify the membrane and thereby resist stresses. Whereas the posttranslational Cti regulation has been previously reported, transcriptional cti regulation remains to be studied in more details. Here, we have studied cti transcriptional regulation in the solvent-tolerant strain Pseudomonas putida F1. Two cti transcriptional start sites (cti-279 and cti-77) were identified with cti-279 transcript being dominant. Expression of cti was found to increase with temperature increase, addition of the organic solvent, octanol and in the stationary growth phase. We found that cti expression was repressed by the cyclic-AMP receptor protein (Crp) and repression required the cyclic-AMP ligand of Crp. Production of trans-unsaturated FAs was found to decrease after 24 h of growth. Although this decrease was accompanied by an increase in cyclopropane FA content, this was not at the expense of trans-unsaturated FAs demonstrating the absence of competition between Cti and Cfa in FA modification.
Collapse
Affiliation(s)
- Tatiana Kondakova
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA
| | - John E. Cronan
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
12
|
Ghosh D, Bhadury P, Routh J. Coping with arsenic stress: Adaptations of arsenite-oxidizing bacterial membrane lipids to increasing arsenic levels. Microbiologyopen 2018; 7:e00594. [PMID: 29577673 PMCID: PMC6182550 DOI: 10.1002/mbo3.594] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 01/01/2018] [Accepted: 01/05/2018] [Indexed: 11/29/2022] Open
Abstract
Elevated levels of arsenic (As) in aquifers of South East Asia have caused diverse health problems affecting millions of people who drink As-rich groundwater and consume various contaminated agriculture products. The biogeochemical cycling and mobilization/immobilization of As from its mineral-bound phase is controlled by pH, oxic/anoxic conditions, and different microbial processes. The increased As flux generated from ongoing biogeochemical processes in the subsurface in turn affects the in situ microbial communities. This study analyzes how the indigenous arsenite-oxidizing bacteria combat As stress by various biophysical alterations and self-adaptation mechanisms. Fifteen arsenite-oxidizing bacterial strains were isolated and identified using a polyphasic approach. The bacterial strains isolated from these aquifers belong predominantly to arsenite-oxidizing bacterial groups. Of these, the membrane-bound phospholipid fatty acids (PLFA) were characterized in seven selected bacterial isolates grown at different concentrations of As(III) in the medium. One of the significant findings of this study is how the increase in external stress can induce alteration of membrane PLFAs. The change in fatty acid saturation and alteration of their steric conformation suggests alteration of membrane fluidity due to change in As-related stress. However, different bacterial groups can have different degrees of alteration that can affect sustainability in As-rich aquifers of the Bengal Delta Plain.
Collapse
Affiliation(s)
- Devanita Ghosh
- Integrative Taxonomy and Microbial Ecology Research GroupDepartment of Biological SciencesIndian Institute of Science Education and Research KolkataMohanpurWest BengalIndia
- Department of Thematic StudiesEnvironmental ChangeLinköping UniversityLinköpingSweden
- Present address:
Laboratory of Biogeochem‐mysteryCentre for Earth SciencesIndian Institute of ScienceBangaloreIndia
| | - Punyasloke Bhadury
- Integrative Taxonomy and Microbial Ecology Research GroupDepartment of Biological SciencesIndian Institute of Science Education and Research KolkataMohanpurWest BengalIndia
| | - Joyanto Routh
- Department of Thematic StudiesEnvironmental ChangeLinköping UniversityLinköpingSweden
| |
Collapse
|
13
|
Immediate response mechanisms of Gram-negative solvent-tolerant bacteria to cope with environmental stress: cis-trans isomerization of unsaturated fatty acids and outer membrane vesicle secretion. Appl Microbiol Biotechnol 2018; 102:2583-2593. [PMID: 29450619 PMCID: PMC5847196 DOI: 10.1007/s00253-018-8832-9] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 11/03/2022]
Abstract
Bacteria have evolved an array of adaptive mechanisms enabling them to survive and grow in the presence of different environmental stresses. These mechanisms include either modifications of the membrane or changes in the overall energy status, cell morphology, and cell surface properties. Long-term adaptations are dependent on transcriptional regulation, the induction of anabolic pathways, and cell growth. However, to survive sudden environmental changes, bacterial short-term responses are essential to keep the cells alive after the occurrence of an environmental stress factor such as heat shock or the presence of toxic organic solvents. Thus far, two main short-term responses are known. On the one hand, a fast isomerization of cis into trans unsaturated fatty leads to a quick rigidification of the cell membrane, a mechanism known in some genera of Gram-negative bacteria. On the other hand, a fast, effective, and ubiquitously present countermeasure is the release of outer membrane vesicles (OMVs) from the cell surface leading to a rapid increase in cell surface hydrophobicity and finally to the formation of cell aggregates and biofilms. These immediate response mechanisms just allow the bacteria to stay physiologically active and to employ long-term responses to assure viability upon changing environmental conditions. Here, we provide insight into the two aforementioned rapid adaptive mechanisms affecting ultimately the cell envelope of Gram-negative bacteria.
Collapse
|
14
|
Membrane engineering via trans-unsaturated fatty acids production improves succinic acid production in Mannheimia succiniciproducens. J Ind Microbiol Biotechnol 2018; 45:555-566. [PMID: 29380151 DOI: 10.1007/s10295-018-2016-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 01/23/2018] [Indexed: 12/11/2022]
Abstract
Engineering of microorganisms to produce desired bio-products with high titer, yield, and productivity is often limited by product toxicity. This is also true for succinic acid (SA), a four carbon dicarboxylic acid of industrial importance. Acid products often cause product toxicity to cells through several different factors, membrane damage being one of the primary factors. In this study, cis-trans isomerase from Pseudomonas aeruginosa was expressed in Mannheimia succiniciproducens to produce trans-unsaturated fatty acid (TUFA) and to reinforce the cell membrane of M. succiniciproducens. The engineered strain showed significant decrease in membrane fluidity as production of TUFA enabled tight packing of fatty acids, which made cells to possess more rigid cell membrane. As a result, the membrane-engineered M. succiniciproducens strain showed higher tolerance toward SA and increased production of SA compared with the control strain without membrane engineering. The membrane engineering approach employed in this study will be useful for increasing tolerance to, and consequently enhancing production of acid products.
Collapse
|
15
|
Membrane engineering via trans unsaturated fatty acids production improves Escherichia coli robustness and production of biorenewables. Metab Eng 2016; 35:105-113. [DOI: 10.1016/j.ymben.2016.02.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 02/01/2016] [Accepted: 02/04/2016] [Indexed: 11/23/2022]
|
16
|
Metabolism ofα-linolenic acid during incubations with strained bovine rumen contents: products and mechanisms. Br J Nutr 2016; 115:2093-105. [DOI: 10.1017/s0007114516001446] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
AbstractDescription ofα-linolenic acid (cis-9,cis-12,cis-15-18 : 3, ALA) metabolism in the rumen is incomplete. Ruminal digesta samples were incubated with ALA and buffer containing water or deuterium oxide to investigate the products and mechanisms of ALA biohydrogenation. Geometric Δ9,11,15-18 : 3 isomers were the main intermediates formed from ALA. An increase in then+1 isotopomers of Δ9,11,15-18 : 3 was due to2H labelling at C-13. Isomers of Δ9,11,13-18 : 3,cis-7,cis-12,cis-15-18 : 3 andcis-8,cis-12,cis-15-18 : 3 were also formed. No increase inn+1 isotopomers of Δ7,12,15-18 : 3 or Δ8,12,15-18 : 3 was detected. Enrichment inn+2 isotopomers of 18 : 2 products indicated that ALA metabolism continued via the reduction of 18 : 3 intermediates. Isomers of Δ9,11,15-18 : 3 were reduced to Δ11,15-18 : 2 labelled at C-9 and C-13. ALA resulted in the formation of Δ11,13-18 : 2 and Δ12,14-18 : 2 containing multiple2H labels. Enrichment of then+3 isotopomer of Δ12,15-18 : 2 was also detected. Metabolism of ALA during incubations with rumen contents occurs by one of three distinct pathways. Formation of Δ9,11,15-18 : 3 appears to be initiated by H abstraction on C-13. Octadecatrienoic intermediates containingcis-12 andcis-15 double bonds are formed without an apparent H exchange with water. Labelling of Δ9,11,13-18 : 3 was inconclusive, suggesting formation by an alternative mechanism. These findings explain the appearance of several bioactive fatty acids in muscle and milk that influence the nutritional value of ruminant-derived foods.
Collapse
|
17
|
Sazzad BS, Fazal MA, Haseeb ASMA, Masjuki HH. Retardation of oxidation and material degradation in biodiesel: a review. RSC Adv 2016. [DOI: 10.1039/c6ra10016c] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the automobile sector, biodiesel has received considerable attention as a promising diesel substitute because of its enhanced lubricity and reduced emissions.
Collapse
Affiliation(s)
- B. S. Sazzad
- Department of Mechanical Engineering
- University of Malaya
- 50603 Kuala Lumpur
- Malaysia
| | - M. A. Fazal
- Department of Mechanical Engineering
- University of Malaya
- 50603 Kuala Lumpur
- Malaysia
| | - A. S. M. A. Haseeb
- Department of Mechanical Engineering
- University of Malaya
- 50603 Kuala Lumpur
- Malaysia
| | - H. H. Masjuki
- Department of Mechanical Engineering
- University of Malaya
- 50603 Kuala Lumpur
- Malaysia
| |
Collapse
|
18
|
Janardhan Garikipati SVB, Peeples TL. Solvent resistance pumps of Pseudomonas putida S12: Applications in 1-naphthol production and biocatalyst engineering. J Biotechnol 2015; 210:91-9. [PMID: 26143210 DOI: 10.1016/j.jbiotec.2015.06.419] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 06/24/2015] [Accepted: 06/26/2015] [Indexed: 11/17/2022]
Abstract
The solvent resistance capacity of Pseudomonas putida S12 was applied by using the organism as a host for biocatalysis and through cloning and expressing solvent resistant pump genes into Escherichia coli. P. putida S12 expressing toluene ortho mononooxygenase (TOM-Green) was used for 1-naphthol production in a water-organic solvent biphasic system. Application of P. putida S12 improved 1-naphthol production per gram cell dry weight by approximately 42% compared to E. coli. Moreover, P. putida S12 enabled the use of a less expensive solvent, decanol, for 1-naphthol production. The solvent resistant pump (srpABC) genes of P. putida S12 were cloned into a solvent sensitive E. coli strain to transfer solvent tolerance. Recombinant strains bearing srpABC genes in either a low-copy number or a high-copy number plasmid grew in the presence of saturated concentration of toluene. Both of the recombinant strains were more tolerant to 1% v/v of toxic solvents, decanol and hexane, reaching similar cell density as the no-solvent control. Reverse-transcriptase analysis revealed that the srpABC genes were transcribed in engineered strains. The results demonstrate successful transfer of the proton-dependent solvent resistance mechanism and suggest that the engineered strain could serve as more robust biocatalysts in media with organic solvents.
Collapse
Affiliation(s)
- S V B Janardhan Garikipati
- The Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| | - Tonya L Peeples
- The Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, Iowa 52242, United States.
| |
Collapse
|
19
|
Diomandé SE, Nguyen-the C, Abee T, Tempelaars MH, Broussolle V, Brillard J. Involvement of the CasK/R two-component system in optimal unsaturation of the Bacillus cereus fatty acids during low-temperature growth. Int J Food Microbiol 2015; 213:110-7. [PMID: 25987542 DOI: 10.1016/j.ijfoodmicro.2015.04.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 04/21/2015] [Accepted: 04/25/2015] [Indexed: 11/26/2022]
Abstract
Bacillus cereus sensu lato is composed of a set of ubiquitous strains including human pathogens that can survive a range of food processing conditions, grow in refrigerated food, and sometimes cause food poisoning. We previously identified the two-component system CasK/R that plays a key role in cold adaptation. To better understand the CasK/R-controlled mechanisms that support low-temperature adaptation, we performed a transcriptomic analysis on the ATCC 14579 strain and its isogenic ∆casK/R mutant grown at 12°C. Several genes involved in fatty acid (FA) metabolism were downregulated in the mutant, including desA and desB encoding FA acyl-lipid desaturases that catalyze the formation of a double-bond on the FA chain in positions ∆5 and ∆10, respectively. A lower proportion of FAs presumably unsaturated by DesA was observed in the ΔcasK/R strain compared to the parental strain while no difference was found for FAs presumably unsaturated by DesB. Addition of phospholipids from egg yolk lecithin rich in unsaturated FAs, to growth medium, abolished the cold-growth impairment of ΔcasK/R suggesting that exogenous unsaturated FAs can support membrane-level modifications and thus compensate for the decreased production of these FAs in the B. cereus ∆casK/R mutant during growth at low temperature. Our findings indicate that CasK/R is involved in the regulation of FA metabolism, and is necessary for cold adaptation of B. cereus unless an exogenous source of unsaturated FAs is available.
Collapse
Affiliation(s)
- Sara Esther Diomandé
- INRA, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, 84000 Avignon, France; Université d'Avignon, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, 84000 Avignon, France
| | - Christophe Nguyen-the
- INRA, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, 84000 Avignon, France; Université d'Avignon, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, 84000 Avignon, France
| | - Tjakko Abee
- Top Institute Food and Nutrition, NieuweKanaal 9A, 6709 PA, Wageningen, The Netherlands; Food Microbiology Laboratory, Wageningen University, BornseWeilanden 9, 6708 WG, Wageningen, The Netherlands
| | - Marcel H Tempelaars
- Food Microbiology Laboratory, Wageningen University, BornseWeilanden 9, 6708 WG, Wageningen, The Netherlands
| | - Véronique Broussolle
- INRA, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, 84000 Avignon, France; Université d'Avignon, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, 84000 Avignon, France
| | - Julien Brillard
- INRA, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, 84000 Avignon, France; Université d'Avignon, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, 84000 Avignon, France; INRA, Université Montpellier, UMR1333 Diversité Génomes et Interactions Microorganismes-Insectes (DGIMI), Montpellier, France.
| |
Collapse
|
20
|
Hashimoto M, Orikasa Y, Hayashi H, Watanabe K, Yoshida K, Okuyama H. Occurrence of trans monounsaturated and polyunsaturated fatty acids in Colwellia psychrerythraea strain 34H. J Basic Microbiol 2015; 55:838-45. [PMID: 25707451 DOI: 10.1002/jobm.201400815] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 01/27/2015] [Indexed: 11/08/2022]
Abstract
Colwellia psychrerythraea strain 34H is an obligately psychrophilic bacterium that has been used as a model cold-adapted microorganism because of its psychrophilic growth profile, significant production of cold-active enzymes, and cryoprotectant extracellular polysaccharide substances. However, its fatty acid components, particularly trans unsaturated fatty acids and long-chain polyunsaturated fatty acids (LC-PUFAs), have not been fully investigated. In this study, we biochemically identified Δ9-trans hexadecenoic acid [16:1(9t)] and LC-PUFAs such as docosahexaenoic acid. These results are comparable with the fact that the strain 34H genome sequence includes pfa and cti genes that are responsible for the biosynthesis of LC-PUFAs and trans unsaturated fatty acids, respectively. Strain 34H cells grown under static conditions at 5 °C had higher levels of 16:1(9t) than those grown under shaken conditions, and this change was accompanied by an antiparallel decrease in the levels of Δ9-cis hexadecenoic acid [16:1(9c)], suggesting that the cis-to-trans isomerization reaction of 16:1(9c) is activated under static (microanaerobic) culture conditions, that is, the enzyme could be activated by the decreased dissolved oxygen concentration of cultures. On the other hand, the levels of LC-PUFAs were too low (less than 3% of the total), even for cells grown at 5 °C, to evaluate their cold-adaptive function in this bacterium.
Collapse
Affiliation(s)
- Mikako Hashimoto
- Course in Molecular Biology, Division of Biosphere Science, Graduate School of Environmental Science, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Yoshitake Orikasa
- Department of Food Science, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Japan
| | - Hidenori Hayashi
- Cell-Free Science and Technology Research Center, Ehime University, Bunkyo-cho, Matsuyama, Japan.,Department of Chemistry, Faculty of Science, Ehime University, Bunkyo-cho, Matsuyama, Japan
| | - Kentaro Watanabe
- Bioscience Group, National Institute of Polar Research, Midori-cho, Tachikawa, Tokyo, Japan
| | - Kiyohito Yoshida
- Course in Ecological Genetics, Division of Biosphere Science, Graduate School of Environmental Science, Hokkaido University, Kita-ku, Sapporo, Japan.,Laboratory of Ecological Genetics, Section of Environmental Biology, Faculty of Environmental Earth Science, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Hidetoshi Okuyama
- Course in Molecular Biology, Division of Biosphere Science, Graduate School of Environmental Science, Hokkaido University, Kita-ku, Sapporo, Japan.,Laboratory of Environmental Molecular Biology, Section of Environmental Biology, Faculty of Environmental Earth Science, Hokkaido University, Kita-ku, Sapporo, Japan
| |
Collapse
|
21
|
Abstract
In microaerophilic or anaerobic environments, Pseudomonas aeruginosa utilizes nitrate reduction for energy production, a process dependent on the availability of the oxyanionic form of molybdenum, molybdate (MoO4 (2-)). Here, we show that molybdate acquisition in P. aeruginosa occurs via a high-affinity ATP-binding cassette permease (ModABC). ModA is a cluster D-III solute binding protein capable of interacting with molybdate or tungstate oxyanions. Deletion of the modA gene reduces cellular molybdate concentrations and results in inhibition of anaerobic growth and nitrate reduction. Further, we show that conditions that permit nitrate reduction also cause inhibition of biofilm formation and an alteration in fatty acid composition of P. aeruginosa. Collectively, these data highlight the importance of molybdate for anaerobic growth of P. aeruginosa and reveal novel consequences of nitrate reduction on biofilm formation and cell membrane composition.
Collapse
|
22
|
Murínová S, Dercová K. Response mechanisms of bacterial degraders to environmental contaminants on the level of cell walls and cytoplasmic membrane. Int J Microbiol 2014; 2014:873081. [PMID: 25057269 PMCID: PMC4099092 DOI: 10.1155/2014/873081] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/12/2014] [Accepted: 05/27/2014] [Indexed: 11/18/2022] Open
Abstract
Bacterial strains living in the environment must cope with the toxic compounds originating from humans production. Surface bacterial structures, cell wall and cytoplasmic membrane, surround each bacterial cell and create selective barriers between the cell interior and the outside world. They are a first site of contact between the cell and toxic compounds. Organic pollutants are able to penetrate into cytoplasmic membrane and affect membrane physiological functions. Bacteria had to evolve adaptation mechanisms to counteract the damage originated from toxic contaminants and to prevent their accumulation in cell. This review deals with various adaptation mechanisms of bacterial cell concerning primarily the changes in cytoplasmic membrane and cell wall. Cell adaptation maintains the membrane fluidity status and ratio between bilayer/nonbilayer phospholipids as well as the efflux of toxic compounds, protein repair mechanisms, and degradation of contaminants. Low energy consumption of cell adaptation is required to provide other physiological functions. Bacteria able to survive in toxic environment could help us to clean contaminated areas when they are used in bioremediation technologies.
Collapse
Affiliation(s)
- Slavomíra Murínová
- Department of Biochemical Technology, Faculty of Chemical and Food Technology, Institute of Biotechnology and Food Science, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia
- Water Research Institute, Nábrežie arm. gen. L. Svobodu 5, 812 49 Bratislava, Slovakia
| | - Katarína Dercová
- Department of Biochemical Technology, Faculty of Chemical and Food Technology, Institute of Biotechnology and Food Science, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia
| |
Collapse
|
23
|
Martínez-Martínez M, Lores I, Peña-García C, Bargiela R, Reyes-Duarte D, Guazzaroni ME, Peláez AI, Sánchez J, Ferrer M. Biochemical studies on a versatile esterase that is most catalytically active with polyaromatic esters. Microb Biotechnol 2014; 7:184-91. [PMID: 24418210 PMCID: PMC3937722 DOI: 10.1111/1751-7915.12107] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 11/12/2013] [Accepted: 11/21/2013] [Indexed: 11/30/2022] Open
Abstract
Herein, we applied a community genomic approach using a naphthalene-enriched community (CN1) to isolate a versatile esterase (CN1E1) from the α/β-hydrolase family. The protein shares low-to-medium identity (≤ 57%) with known esterase/lipase-like proteins. The enzyme is most active at 25–30°C and pH 8.5; it retains approximately 55% of its activity at 4°C and less than 8% at ≥ 55°C, which indicates that it is a cold-adapted enzyme. CN1E1 has a distinct substrate preference compared with other α/β-hydrolases because it is catalytically most active for hydrolysing polyaromatic hydrocarbon (phenanthrene, anthracene, naphthalene, benzoyl, protocatechuate and phthalate) esters (7200–21 000 units g−1 protein at 40°C and pH 8.0). The enzyme also accepts 44 structurally different common esters with different levels of enantio-selectivity (1.0–55 000 units g−1 protein), including (±)-menthyl-acetate, (±)-neomenthyl acetate, (±)-pantolactone, (±)-methyl-mandelate, (±)-methyl-lactate and (±)-glycidyl 4-nitrobenzoate (in that order). The results provide the first biochemical evidence suggesting that such broad-spectrum esterases may be an ecological advantage for bacteria that mineralize recalcitrant pollutants (including oil refinery products, plasticizers and pesticides) as carbon sources under pollution pressure. They also offer a new tool for the stereo-assembly (i.e. through ester bonds) of multi-aromatic molecules with benzene rings that are useful for biology, chemistry and materials sciences for cases in which enzyme methods are not yet available.
Collapse
Affiliation(s)
- Mónica Martínez-Martínez
- Department of Applied Biocatalysis, Consejo Superior de Investigaciones Científicas (CSIC), Institute of Catalysis, Marie Curie 2, 28049, Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Chatgilialoglu C, Ferreri C, Melchiorre M, Sansone A, Torreggiani A. Lipid geometrical isomerism: from chemistry to biology and diagnostics. Chem Rev 2013; 114:255-84. [PMID: 24050531 DOI: 10.1021/cr4002287] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
25
|
Nishimura H, Murayama K, Watanabe T, Honda Y, Watanabe T. Diverse rare lipid-related metabolites including ω-7 and ω-9 alkenylitaconic acids (ceriporic acids) secreted by a selective white rot fungus, Ceriporiopsis subvermispora. Chem Phys Lipids 2012; 165:97-104. [DOI: 10.1016/j.chemphyslip.2011.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 10/22/2011] [Accepted: 10/24/2011] [Indexed: 10/15/2022]
|
26
|
Löffler C, Eberlein C, Mäusezahl I, Kappelmeyer U, Heipieper HJ. Physiological evidence for the presence of a cis-trans isomerase of unsaturated fatty acids in Methylococcus capsulatus Bath to adapt to the presence of toxic organic compounds. FEMS Microbiol Lett 2010; 308:68-75. [PMID: 20487020 DOI: 10.1111/j.1574-6968.2010.01993.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The physiology of the response in the methanotrophic bacterium Methylococcus capsulatus Bath towards thermal and solvent stress was studied. A systematic investigation of the toxic effects of organic compounds (chlorinated phenols and alkanols) on the growth of this bacterium was carried out. The sensitivity to the tested alkanols correlated with their chain length and hydrophobicity; methanol was shown to be an exception to which the cells showed a very high tolerance. This can be explained by the adaptation of these bacteria to growth on C1 compounds. On the other hand, M. capsulatus Bath was very sensitive towards the tested chlorinated phenols. The high toxic effect of phenolic compounds on methanotrophic bacteria might be explained by the occurrence of toxic reactive oxygen species. In addition, a physiological proof of the presence of cis-trans isomerization as a membrane-adaptive response mechanism in M. capsulatus was provided. This is the first report on physiological evidence for the presence of the unique postsynthetic membrane-adaptive response mechanism of the cis-trans isomerization of unsaturated fatty acids in a bacterium that does not belong to the genera Pseudomonas and Vibrio where this mechanism was already reported and described extensively.
Collapse
Affiliation(s)
- Claudia Löffler
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | | | | | | | | |
Collapse
|
27
|
The trans/cis ratio of unsaturated fatty acids is not applicable as biomarker for environmental stress in case of long-term contaminated habitats. Appl Microbiol Biotechnol 2010; 87:365-71. [PMID: 20352421 DOI: 10.1007/s00253-010-2544-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 03/05/2010] [Accepted: 03/05/2010] [Indexed: 10/19/2022]
Abstract
Cis-trans isomerization of unsaturated fatty acids is a crucial adaptive reaction of Pseudomonas and Vibrio species to toxic organic compounds or other environmental stress factors. In order to test the long-term performance of this adaptive mechanism as well as to assess its application as biomarker for environmental contamination studies were performed in batch cultures and in continuously running sand columns, simulating long-term contamination with bisphenol A (BPA). In short-term grown batch cultures a high correlation between trans/cis ratio and added BPA concentration and toxicity was observed. In contrary, this did not occur in the case of long-term sand columns. An increase in trans/cis ratio of unsaturated fatty acids only appeared in a limited period of time. Afterwards the trans/cis ratio reached the values measured for non-stressed cultures. Cis-trans isomerization is only an urgent response mechanism that is later substituted by other adaptive mechanisms. Therefore, it can be concluded that the trans/cis ratio of unsaturated fatty acids was shown not to be an appropriate biomarker for durable stress in the environment.
Collapse
|
28
|
Isolation and characterization of a mutant of the marine bacterium Alcanivorax borkumensis SK2 defective in lipid biosynthesis. Appl Environ Microbiol 2010; 76:2884-94. [PMID: 20305021 DOI: 10.1128/aem.02832-09] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In many microorganisms, the key enzyme responsible for catalyzing the last step in triacylglycerol (TAG) and wax ester (WE) biosynthesis is an unspecific acyltransferase which is also referred to as wax ester synthase/acyl coenzyme A (acyl-CoA):diacylglycerol acyltransferase (WS/DGAT; AtfA). The importance and function of two AtfA homologues (AtfA1 and AtfA2) in the biosynthesis of TAGs and WEs in the hydrocarbon-degrading marine bacterium Alcanivorax borkumensis SK2 have been described recently. However, after the disruption of both the AtfA1 and AtfA2 genes, reduced but substantial accumulation of TAGs was still observed, indicating the existence of an alternative TAG biosynthesis pathway. In this study, transposon-induced mutagenesis was applied to an atfA1 atfA2 double mutant to screen for A. borkumensis mutants totally defective in biosynthesis of neutral lipids in order to identify additional enzymes involved in the biosynthesis of these lipids. At the same time, we have searched for a totally TAG-negative mutant in order to study the function of TAGs in A. borkumensis. Thirteen fluorescence-negative mutants were identified on Nile red ONR7a agar plates and analyzed for their abilities to synthesize lipids. Among these, mutant 2 M(131) was no longer able to synthesize and accumulate TAGs if pyruvate was used as the sole carbon source. The transposon insertion was localized in a gene encoding a putative cytochrome c family protein (ABO_1185). Growth and TAG accumulation experiments showed that the disruption of this gene resulted in the absence of TAGs in 2 M(131) but that growth was not affected. In cells of A. borkumensis SK2 grown on pyruvate as the sole carbon source, TAGs represented about 11% of the dry weight of the cells, while in the mutant 2 M(131), TAGs were not detected by thin-layer and gas chromatography analyses. Starvation and lipid mobilization experiments revealed that the lipids play an important role in the survival of the cells. The function of neutral lipids in A. borkumensis SK2 is discussed.
Collapse
|
29
|
Nikodinovic-Runic J, Flanagan M, Hume AR, Cagney G, O'Connor KE. Analysis of the Pseudomonas putida CA-3 proteome during growth on styrene under nitrogen-limiting and non-limiting conditions. Microbiology (Reading) 2009; 155:3348-3361. [DOI: 10.1099/mic.0.031153-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Pseudomonas putida CA-3 is a styrene-degrading bacterium capable of accumulating medium-chain-length polyhydroxyalkanoate (mclPHA) when exposed to limiting concentrations of a nitrogen source in the growth medium. Using shotgun proteomics we analysed global proteome expression in P. putida CA-3 supplied with styrene as the sole carbon and energy source under N-limiting (condition permissive for mclPHA synthesis) and non-limiting (condition non-permissive for mclPHA accumulation) growth conditions in order to provide insight into the molecular response of P. putida CA-3 to limitation of nitrogen when grown on styrene. A total of 1761 proteins were identified with high confidence and the detected proteins could be assigned to functional groups including styrene degradation, energy, nucleotide metabolism, protein synthesis, transport, stress response and motility. Proteins involved in the upper and lower styrene degradation pathway were expressed throughout the 48 h growth period under both nitrogen limitation and excess. Proteins involved in polyhydroxyalkanoate (PHA) biosynthesis, nitrogen assimilation and amino acid transport, and outer membrane proteins were upregulated under nitrogen limitation. PHA accumulation and biosynthesis were only expressed under nitrogen limitation. Nitrogen assimilation proteins were detected on average at twofold higher amounts under nitrogen limitation. Expression of the branched-chain amino acid ABC transporter was up to 16-fold higher under nitrogen-limiting conditions. Branched chain amino acid uptake by nitrogen-limited cultures was also higher than that by non-limited cultures. Outer membrane lipoproteins were expressed at twofold higher levels under nitrogen limitation. This was confirmed by Western blotting (immunochemical detection) of cells grown under nitrogen limitation. Our study provides the first global description of protein expression changes during growth of any organism on styrene and accumulating mclPHA (nitrogen-limited growth).
Collapse
Affiliation(s)
- Jasmina Nikodinovic-Runic
- School of Biomolecular and Biomedical Science, Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Michelle Flanagan
- Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Aisling R. Hume
- School of Biomolecular and Biomedical Science, Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Gerard Cagney
- Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Kevin E. O'Connor
- School of Biomolecular and Biomedical Science, Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
30
|
Pescheck M, Mirata MA, Brauer B, Krings U, Berger RG, Schrader J. Improved monoterpene biotransformation with Penicillium sp. by use of a closed gas loop bioreactor. J Ind Microbiol Biotechnol 2009; 36:827-36. [PMID: 19322596 DOI: 10.1007/s10295-009-0558-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Accepted: 03/06/2009] [Indexed: 11/29/2022]
Abstract
A closed gas loop bioprocess was developed to improve fungal biotransformation of monoterpenes. By circulating monoterpene-saturated process gas, the evaporative loss of the volatile precursor from the medium during the biotransformation was avoided. Penicillium solitum, isolated from kiwi, turned out to be highly tolerant towards monoterpenes and to convert alpha-pinene to a range of products including verbenone, a valuable aroma compound. The gas loop was mandatory to reproduce the production of 35 mg L(-1) verbenone obtained in shake flasks and also in the bioreactor. Penicillium digitatum DSM 62840 regioselectively converted (+)-limonene to the aroma compound alpha-terpineol, but shake flask cultures revealed a pronounced growth inhibition when initial concentrations exceeded 1.9 mM. In the bioreactor, toxic effects on P. digitatum during biotransformation were alleviated by starting a sequential feeding of non-toxic limonene portions after a preceding growth phase. Closing the precursor-saturated gas loop during the biotransformation allowed for an additional replenishment of limonene via the gas phase. The gas loop system led to a maximum alpha-terpineol concentration of 1,009 mg L(-1) and an average productivity of 8-9 mg L(-1) h(-1) which represents a doubling of the respective values previously reported. Furthermore, a molar conversion yield of up to 63% was achieved.
Collapse
Affiliation(s)
- Michael Pescheck
- Biochemical Engineering Group, DECHEMA eV, Karl-Winnacker-Institut, Frankfurt, Germany
| | | | | | | | | | | |
Collapse
|
31
|
Owsianiak M, Chrzanowski Ł, Szulc A, Staniewski J, Olszanowski A, Olejnik-Schmidt AK, Heipieper HJ. Biodegradation of diesel/biodiesel blends by a consortium of hydrocarbon degraders: effect of the type of blend and the addition of biosurfactants. BIORESOURCE TECHNOLOGY 2009; 100:1497-1500. [PMID: 18815027 DOI: 10.1016/j.biortech.2008.08.028] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Revised: 08/09/2008] [Accepted: 08/11/2008] [Indexed: 05/26/2023]
Abstract
Biodegradation experiments for diesel/biodiesel blends in liquid cultures by-petroleum degrading microbial consortium showed that for low amendments of biodiesel (10%) the overall biodegradation efficiency of the mixture after seven days was lower than for petroleum diesel fuel. Preferential usage of methyl esters in the broad biodiesel concentration range and diminished biodegradation of petroleum hydrocarbons for 10% biodiesel blend was confirmed. Rhamnolipids improved biodegradation efficiency only for blends with low content of biodiesel. Emulsion formation experiments showed that biodiesel amendments significantly affected dispersion of fuel mixtures in water. The presence of rhamnolipids biosurfactant affected stability of such emulsions and altered cell surface properties of tested consortium.
Collapse
Affiliation(s)
- Mikołaj Owsianiak
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Poznań, Poland
| | | | | | | | | | | | | |
Collapse
|
32
|
Liavonchanka A, Feussner I. Biochemistry of PUFA double bond isomerases producing conjugated linoleic acid. Chembiochem 2008; 9:1867-72. [PMID: 18655062 DOI: 10.1002/cbic.200800141] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The biotransformation of linoleic acid (LA) into conjugated linoleic acid (CLA) by microorganisms is a potentially useful industrial process. In most cases, however, the identities of proteins involved and the details of enzymatic activity regulation are far from clear. Here we summarize available data on the reaction mechanisms of CLA-producing enzymes characterized until now, from Butyrivibrio fibrisolvens, Lactobacillus acidophilus, Ptilota filicina, and Propionibacterium acnes. A general feature of enzymatic LA isomerization is the protein-assisted abstraction of an aliphatic hydrogen atom from position C-11, while the role of flavin as cofactor for the double bond activation in CLA-producing enzymes is also discussed with regard to the recently published three-dimensional structure of an isomerase from P. acnes. Combined data from structural studies, isotopic labeling experiments, and sequence comparison suggest that at least two different prototypical active site geometries occur among polyunsaturated fatty acid (PUFA) double bond isomerases.
Collapse
Affiliation(s)
- Alena Liavonchanka
- Georg August University, Albrecht von Haller Institute for Plant Sciences, Department of Plant Biochemistry, Justus-von-Liebig Weg 11, 37077 Göttingen, Germany
| | | |
Collapse
|
33
|
Membrane fatty acids adaptive profile in the simultaneous presence of arsenic and toluene in Bacillus sp. ORAs2 and Pseudomonas sp. ORAs5 strains. Extremophiles 2008; 12:343-9. [PMID: 18305894 DOI: 10.1007/s00792-008-0147-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Accepted: 12/17/2007] [Indexed: 10/22/2022]
Abstract
Bacillus sp. ORAs2 and Pseudomonas sp. ORAs5, two arsenic-resistant bacterial strains previously isolated from sediments of the Orbetello Lagoon, Italy, were tested for their adaptation to mixed contaminants on the level of membrane fatty acid composition. The two bacterial strains were characterized by high levels of arsenic resistance, and Pseudomonas sp. ORAs5 was also shown to be solvent-tolerant. The bacterial strains were exposed to mixtures of two toxic compounds: arsenic at fixed concentrations and toluene in variable amounts or, alternatively, toluene at constant values along with arsenic added at variable concentrations. Both strains react to the contaminants by changing the composition of their membrane fatty acids. Bacillus sp. strain ORAs2 showed a correlation between growth rate decreases and fatty acids degree of saturation increases in both cases, although pointedly in the presence of 1, 2, and 3 mM of toluene and different additions of arsenic, counteracting membranes fluidity induced by toxic compounds. In Pseudomonas sp. ORAs5, adaptive changes in membrane composition was observed both in terms of increases in the degree of saturation and in the trans/cis ratio of unsaturated fatty acids in the presence of varying toluene and constant arsenic concentrations, whereas only minor changes occurred with increasing arsenic and constant toluene concentrations. Thus, on the level of membrane composition, Bacillus sp. ORAs2 showed a higher potential for adaptation to the presence of mixed pollutants, suggesting its probable suitability for bioremediation purposes.
Collapse
|
34
|
|
35
|
Ku KL, Chiou JL, Liu FC, Chiou RYY. Advanced gas chromatographic-mass spectrometric studies for identification of the cellular octadecenoate isomers and changes of fatty acid composition induced by ethanol stress in Escherichia coli and Escherichia coli O157: H7. J Food Prot 2007; 70:616-22. [PMID: 17388049 DOI: 10.4315/0362-028x-70.3.616] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Ethanol can be introduced to foods of various origins and is commonly used for surface disinfection. Low concentrations of residual ethanol may provide an opportunity for pathogens to adapt and grow. Change of cellular fatty acid composition is one of adaptation mechanisms enabling bacteria to grow under varied stresses. Since instrumental analyses of bacterial octadecenoate isomers are sophisticated, gas chromatographic analyses of the isomers, namely trans-9-octadecenoate, trans-11-octadecenoate, cis-9-octadecenoate, and cis-11-octadecenoate, and ethanol-induced formation of trans-9-octadecenoate in Escherichia coli and E. coli O157:H7 were intensively investigated. When an HP-1, a nonpolar capillary column, was used for gas chromatographic analyses of 28 authentic bacterial acid methyl esters, resolution was satisfied for all fatty acid components except trans-9-octadecenoate and cis-11-octadecenoate, being overlapped. When the column was replaced by an RTx-2330, a polar capillary column, all of the above-mentioned octadecenoate isomers were resolved. When cells of E. coli and E. coli O157:H7 were harvested after submerged cultivation (30 degrees C, 150 rpm) in tryptic soy broth and tryptic soy broth supplemented with 5% ethanol at early stationary phase and subjected to cellular fatty acid analyses by using an HP-1 and RTx-2330 coupled with a mass detector, 12 fatty acids, i.e., trans-9-octadecenoate, 5 saturated fatty acids, 2 cyclopropane fatty acids and 4 cis-unsaturated fatty acids, were identified. Individual fatty acid contents varied depending on nature of fatty acid, strain of E. coli, and supplement of ethanol. As affected by ethanol stress for both E. coli strains, contents of trans-9-octadecenoate increased, whereas contents of cyc-9,10-methylene octadecanoate (cyc-9,10-19:0) decreased significantly (P < 0.05). Apparently, both E. coli strains have rendered necessary fatty acid adaptation to survive and grow under ethanol stress.
Collapse
Affiliation(s)
- Kuo-Long Ku
- Department of Applied Chemistry, National Chiayi University, 300 University Road, Chiayi 60083, Taiwan
| | | | | | | |
Collapse
|
36
|
Heipieper HJ, Neumann G, Cornelissen S, Meinhardt F. Solvent-tolerant bacteria for biotransformations in two-phase fermentation systems. Appl Microbiol Biotechnol 2007; 74:961-73. [PMID: 17262209 DOI: 10.1007/s00253-006-0833-4] [Citation(s) in RCA: 227] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Revised: 12/22/2006] [Accepted: 12/25/2006] [Indexed: 11/30/2022]
Abstract
Product removal from aqueous media poses a challenge in biotechnological whole-cell biotransformation processes in which substrates and/or products may have toxic effects. The assignment of an additional liquid solvent phase provides a solution, as it facilitates in situ product recovery from aqueous media. In such two-phase systems, toxic substrates and products are present in the aqueous phase in tolerable but still bioavailable amounts. As a matter of course, adequate organic solvents have to possess hydrophobicity properties akin to substrates and products of interest, which in turn involves intrinsic toxicity of the solvents used. The employment of bacteria being able to adapt to otherwise toxic solvents helps to overcome the problem. Adaptive mechanisms enabling such solvent tolerant bacteria to survive and grow in the presence of toxic solvents generally involve either modification of the membrane and cell surface properties, changes in the overall energy status, or the activation and/or induction of active transport systems for extruding solvents from membranes into the environment. It is anticipated that the biotechnological production of a number of important fine chemicals in amounts sufficient to compete economically with chemical syntheses will soon be possible by making use of solvent-tolerant microorganisms.
Collapse
Affiliation(s)
- Hermann J Heipieper
- Department of Bioremediation, UFZ Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany.
| | | | | | | |
Collapse
|
37
|
Abstract
Many biotransformations of mid- to long chain fatty acyl derivatives are intrinsically interesting because of their high selectivity and novel mechanisms. These include one carbon transfer, hydration, isomerization, hydrogenation, ladderane and hydrocarbon formation, thiolation and various oxidative transformations such as epoxidation, hydroxylation and desaturation. In addition, hydroperoxidation of polyunsaturated fatty acids leads to a diverse array of bioactive compounds. The bioorganic aspects of selected reactions will be highlighted in this review; 210 references are cited.
Collapse
Affiliation(s)
- Peter H Buist
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6
| |
Collapse
|
38
|
Domínguez-Cuevas P, González-Pastor JE, Marqués S, Ramos JL, de Lorenzo V. Transcriptional tradeoff between metabolic and stress-response programs in Pseudomonas putida KT2440 cells exposed to toluene. J Biol Chem 2006; 281:11981-91. [PMID: 16495222 DOI: 10.1074/jbc.m509848200] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
When Pseudomonas putida KT2440 cells encounter toluene in the growth medium, they perceive it simultaneously as a potential nutrient to be metabolized, as a membrane-damaging toxic drug to be extruded, and as a macromolecule-disrupting agent from which to protect proteins. Each of these inputs requires a dedicated transcriptional response that involves a large number of genes. We used DNA array technology to decipher the interplay between these responses in P. putida KT2440 subjected to a short challenge (15 min) with toluene. We then compared the results with those in cells exposed to o-xylene (a non-biodegradable toluene counterpart) and 3-methylbenzoate (a specific substrate of the lower TOL pathway of the P. putida pWW0 plasmid). The resulting expression profiles suggest that the bulk of the available transcriptional machinery is reassigned to endure general stress, whereas only a small share of the available machinery is redirected to the degradation of the aromatic compounds. Specifically, both toluene and o-xylene induce the TOL pathways and a dedicated but not always productive metabolic program. Similarly, 3-methylbenzoate induces the expression not only of the lower meta pathway but also of the non-productive and potentially deleterious genes for the metabolism of (nonsubstituted) benzoate. In addition, toluene (and to a lesser extent o-xylene) inhibit motility functions as an unequivocal response to aromatic toxicity. We argue that toluene is sensed by P. putida KT2440 as a stressor rather than as a nutrient and that the inhibition by the aromatic compounds of many functions we tested is the tradeoff for activating stress tolerance genes at a minimal cost in terms of energy.
Collapse
Affiliation(s)
- Patricia Domínguez-Cuevas
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Profesor Albareda, 1, E-18008 Granada, Spain
| | | | | | | | | |
Collapse
|
39
|
Cianciotto NP, Cornelis P, Baysse C. Impact of the bacterial type I cytochromecmaturation system on different biological processes. Mol Microbiol 2005; 56:1408-15. [PMID: 15916594 DOI: 10.1111/j.1365-2958.2005.04650.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the alpha-, beta- and gamma-Proteobacteria, the so-called cytochrome c maturation (Ccm) system is known to promote the covalent attachment of the haem to periplasmic apocytochrome c. However, in species of Pseudomonas, Rhizobium, Paracoccus and Legionella, mutations in ccm genes result in phenotypes that cannot be readily explained by the simple loss of a c-type cytochrome. These phenotypes include loss of siderophore production and utilization, reduced abilities to grow in low-iron conditions and in mammalian and protozoan host cells, and alterations in copper sensitivity and manganese oxidation. These various data suggest that Ccm proteins may perform one or more functions in addition to Ccm, which are critical for bacterial physiology and growth. Novel hypotheses that should be explored include the utilization of Ccm-associated haem for processes besides attachment to apocytochrome c, the export of a non-haem compound through the Ccm system, and the negative effects of protoporphyrin IX accumulation.
Collapse
Affiliation(s)
- Nicholas P Cianciotto
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, IL 60611, USA.
| | | | | |
Collapse
|
40
|
Kiran MD, Annapoorni S, Suzuki I, Murata N, Shivaji S. Cis-trans isomerase gene in psychrophilic Pseudomonas syringae is constitutively expressed during growth and under conditions of temperature and solvent stress. Extremophiles 2005; 9:117-25. [PMID: 15747056 DOI: 10.1007/s00792-005-0435-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2004] [Accepted: 10/08/2004] [Indexed: 11/25/2022]
Abstract
In a recent study, we established that psychrophilic Pseudomonas syringae (Lz4W) requires trans-monounsaturated fatty acid for growth at higher temperatures (Kiran et al. in Extremophiles, 2004). It was also demonstrated that the cti gene was highly conserved and exhibited high sequence identity with cti of other Pseudomonas spp. (Kiran et al. in Extremophiles, 2004). Therefore it would be interesting to understand the expression of the cti gene so as to unravel the molecular basis of adaptation of microorganisms to high temperature. In the present study, the expression of cti was monitored by RT-PCR analysis during different growth stages and under conditions of high temperature and solvent stress in P. syringae. Results indicated that the cti gene is constitutively expressed during different stages of growth and the transcript level is unaltered even under conditions of temperature and solvent stress implying that the observed increase in trans-monounsaturated fatty acids (Kiran et al. in Extremophiles, 2004) is not under transcriptional control. A putative promoter present in the intergenic region of the metH and cti gene has also been characterized. The translation start site ATG, the Shine-Dalgarno sequence AGGA and the transcription start site "C" were also identified. These results provide evidence for the first time that the cti gene is constitutively expressed under normal conditions of growth and under conditions of temperature and solvent stress thus implying that the Cti enzyme is post-transcriptionally regulated.
Collapse
Affiliation(s)
- Madanahally D Kiran
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India
| | | | | | | | | |
Collapse
|
41
|
Los DA, Murata N. Membrane fluidity and its roles in the perception of environmental signals. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004; 1666:142-57. [PMID: 15519313 DOI: 10.1016/j.bbamem.2004.08.002] [Citation(s) in RCA: 527] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2004] [Accepted: 08/06/2004] [Indexed: 10/26/2022]
Abstract
Poikilothermic organisms are exposed to frequent changes in environmental conditions and their survival depends on their ability to acclimate to such changes. Changes in ambient temperature and osmolarity cause fluctuations in the fluidity of cell membranes. Such fluctuations are considered to be critical to the initiation of the regulatory reactions that ultimately lead to acclimation. The mechanisms responsible for the perception of changes in membrane fluidity have not been fully characterized. However, the analysis of genome-wide gene expression using DNA microarrays has provided a powerful new approach to studies of the contribution of membrane fluidity to gene expression and to the identification of environmental sensors. In this review, we focus on the mechanisms that regulate membrane fluidity, on putative sensors that perceive changes in membrane fluidity, and on the subsequent expression of genes that ensures acclimation to a new set of environmental conditions.
Collapse
Affiliation(s)
- Dmitry A Los
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia
| | | |
Collapse
|
42
|
Heipieper HJ, Neumann G, Kabelitz N, Kastner M, Richnow HH. Carbon isotope fractionation during cis?trans isomerization of unsaturated fatty acids in Pseudomonas putida. Appl Microbiol Biotechnol 2004; 66:285-90. [PMID: 15480634 DOI: 10.1007/s00253-004-1734-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The molecular mechanism of the unique cis to trans isomerization of unsaturated fatty acids in the solvent-tolerant bacterium Pseudomonas putida S12 was studied. For this purpose, the carbon isotope fractionation of the cis-trans isomerase was estimated. In resting cell experiments, addition of 3-nitrotoluene for activation of the cis-trans isomerase resulted in the conversion of the cis-unsaturated fatty acids into the corresponding trans isomers. For the conversion of C16:1 cis to its corresponding trans isomer, a significant fractionation was measured. The intensity of this fractionation strongly depended on the rate of cis-trans isomerization and the added concentration of 3-nitrotoluene, respectively. The presence of a significant fractionation provides additional indication for a transition from the sp carbon linkage of the cis-double bond to an intermediate sp3 within an enzyme-substrate complex. The sp2 linkage is reconstituted after rotation to the trans configuration has occurred. As cytochrome c plays a major role in the catabolism of Cti polypeptide, these findings favour a mechanism for the enzyme in which electrophilic iron (Fe(3+)), provided by a heme domain, removes an electron of the cis double bond thereby transferring the sp2 linkage into sp3.
Collapse
Affiliation(s)
- Herman J Heipieper
- Department of Bioremediation, Centre for Environmental Research (UFZ) Leipzig-Halle, Permoserstr. 15, 04318 Leipzig, Germany.
| | | | | | | | | |
Collapse
|
43
|
Chiou RYY, Phillips RD, Zhao P, Doyle MP, Beuchat LR. Ethanol-mediated variations in cellular fatty acid composition and protein profiles of two genotypically different strains of Escherichia coli O157:H7. Appl Environ Microbiol 2004; 70:2204-10. [PMID: 15066814 PMCID: PMC383136 DOI: 10.1128/aem.70.4.2204-2210.2004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two strains of Escherichia coli O157:H7 were grown in tryptic soy broth (TSB, pH 7.1) supplemented with 0, 2.5, 5.0, 7.5, and 10% ethanol at 30 degrees C for up to 54 h. Growth rates in TSB supplemented with 0, 2.5, and 5.0% ethanol decreased with an increase in ethanol concentration. Growth was not observed in TSB supplemented with 7.5 or 10% ethanol. The pH of TSB containing 5.0% ethanol decreased to 5.8 within 12 h and then increased to 7.0 at 54 h. The ethanol content in TSB supplemented with 2.5 or 5.0% ethanol did not change substantially during the first 36 h of incubation but decreased slightly thereafter, indicating utilization or degradation of ethanol by both strains. Glucose was depleted in TSB supplemented with 0, 2.5, or 5.0% ethanol within 12 h. Cells grown under ethanol stress contained a higher amount of fatty acids. With the exceptions of cis-oleic acid and nonadecanoic acid, larger amounts of fatty acid were present in stationary-phase cells of the two strains grown in TSB supplemented with 5.0% ethanol for 30 h than in cells grown in TSB without ethanol for 22 h. The trans-oleic acid content was 10-fold higher in the cells grown in TSB with 5.0% ethanol than those grown in TSB without ethanol. In contrast, cis-oleic acid was not detected in ethanol-stressed cells but was present at concentrations of 0.32 and 0.36 mg/g of cells of the two strains grown in TSB without ethanol. Protein content was higher in ethanol-stressed cells than in nonstressed cells. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis protein profiles varied qualitatively as affected by the strain and the presence of ethanol in TSB. An ethanol-mediated protein (28 kDa) was observed in the ethanol-stressed cells but not in control cells. It is concluded that the two test strains of E. coli O157:H7 underwent phenotypic modifications in cellular fatty acid composition and protein profiles in response to ethanol stress. The potential for cross protection against subsequent stresses applied in food preservation technologies as a result of these changes is under investigation.
Collapse
Affiliation(s)
- R Y-Y Chiou
- Graduate Institute of Biotechnology, National Chiayi University, Chiayi, Taiwan
| | | | | | | | | |
Collapse
|
44
|
Neumann G, Teras R, Monson L, Kivisaar M, Schauer F, Heipieper HJ. Simultaneous degradation of atrazine and phenol by Pseudomonas sp. strain ADP: effects of toxicity and adaptation. Appl Environ Microbiol 2004; 70:1907-12. [PMID: 15066779 PMCID: PMC383114 DOI: 10.1128/aem.70.4.1907-1912.2004] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The strain Pseudomonas sp. strain ADP is able to degrade atrazine as a sole nitrogen source and therefore needs a single source for both carbon and energy for growth. In addition to the typical C source for Pseudomonas, Na(2)-succinate, the strain can also grow with phenol as a carbon source. Phenol is oxidized to catechol by a multicomponent phenol hydroxylase. Catechol is degraded via the ortho pathway using catechol 1,2-dioxygenase. It was possible to stimulate the strain in order to degrade very high concentrations of phenol (1,000 mg/liter) and atrazine (150 mg/liter) simultaneously. With cyanuric acid, the major intermediate of atrazine degradation, as an N source, both the growth rate and the phenol degradation rate were similar to those measured with ammonia as an N source. With atrazine as an N source, the growth rate and the phenol degradation rate were reduced to approximately 35% of those obtained for cyanuric acid. This presents clear evidence that although the first three enzymes of the atrazine degradation pathway are constitutively present, either these enzymes or the uptake of atrazine is the bottleneck that diminishes the growth rate of Pseudomonas sp. strain ADP with atrazine as an N source. Whereas atrazine and cyanuric acid showed no significant toxic effect on the cells, phenol reduces growth and activates or induces typical membrane-adaptive responses known for the genus Pseudomonas. Therefore Pseudomonas sp. strain ADP is an ideal bacterium for the investigation of the regulatory interactions among several catabolic genes and stress response mechanisms during the simultaneous degradation of toxic phenolic compounds and a xenobiotic N source such as atrazine.
Collapse
Affiliation(s)
- Grit Neumann
- Department of Bioremediation, Centre for Environmental Research (UFZ) Leipzig-Halle, 04318 Leipzig, Germany
| | | | | | | | | | | |
Collapse
|
45
|
|
46
|
Kiran MD, Prakash JSS, Annapoorni S, Dube S, Kusano T, Okuyama H, Murata N, Shivaji S. Psychrophilic Pseudomonas syringae requires trans-monounsaturated fatty acid for growth at higher temperature. Extremophiles 2004; 8:401-10. [PMID: 15241658 DOI: 10.1007/s00792-004-0401-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2004] [Accepted: 05/18/2004] [Indexed: 10/26/2022]
Abstract
A psychrophilic bacterium, Pseudomonas syringae (Lz4W) from Antarctica, was used as a model system to establish a correlation, if any, between thermal adaptation, trans-fatty acid content and membrane fluidity. In addition, attempts were made to clone and sequence the cti gene of P. syringae (Lz4W) so as to establish its characteristics with respect to the cti of other Pseudomonas spp. and also to in vitro mutagenize the cti gene so as to generate a cti null mutant. The bacterium showed increased proportion of saturated and trans-monounsaturated fatty acids when grown at 28 degrees C compared to cells grown at 5 degrees C, and the membrane fluidity decreased with growth temperature. In the mutant, the trans-fatty acid was not synthesized, and the membrane fluidity also decreased with growth temperature, but the decrease was not to the extent that was observed in the wild-type cells. Thus, it would appear that synthesis of trans-fatty acid and modulation of membrane fluidity to levels comparable to the wild-type cells is essential for growth at higher temperatures since the mutant exhibits growth arrest at 28 degrees C. In fact, the cti null mutant-complemented strain of P. syringae (Lz4W-C30b) that was capable of synthesizing the trans-fatty acid was indeed capable of growth at 28 degrees C, thus confirming the above contention. The cti gene of P. syringae (Lz4W) that was cloned and sequenced exhibited high sequence identity with the cti of other Pseudomonas spp. and exhibited all the conserved features.
Collapse
Affiliation(s)
- M D Kiran
- Centre for Cellular and Molecular Biology, Uppal Road, 500 007, Hyderabad, India
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Heipieper HJ, Meinhardt F, Segura A. Thecisâtransisomerase of unsaturated fatty acids inPseudomonasandVibrio: biochemistry, molecular biology and physiological function of a unique stress adaptive mechanism. FEMS Microbiol Lett 2003; 229:1-7. [PMID: 14659535 DOI: 10.1016/s0378-1097(03)00792-4] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Isomerization of cis to trans unsaturated fatty acids is a mechanism enabling Gram-negative bacteria belonging to the genera Pseudomonas and Vibrio to adapt to several forms of environmental stress. The extent of the isomerization apparently correlates with the fluidity effects caused, i.e. by an increase in temperature or the accumulation of membrane-toxic organic compounds. Trans fatty acids are generated by direct isomerization of the respective cis configuration of the double bond without a shift of its position. The conversion of cis unsaturated fatty acids to trans is apparently instrumental in the adaptation of membrane fluidity to changing chemical or physical parameters of the cellular environment. Such an adaptive mechanism appears to be an alternative way to regulate membrane fluidity when growth is inhibited, e.g. by high concentrations of toxic substances. The cis-trans isomerase (Cti) activity is constitutively present and is located in the periplasma, it requires neither ATP nor any other cofactor such as NAD(P)H or glutathione, and it operates in the absence of de novo synthesis of lipids. Its independence from ATP is in agreement with the negative free energy of the reaction. cti encodes a polypeptide with an N-terminal hydrophobic signal sequence, which is cleaved off during or shortly after the enzyme is transported across the cytoplasmic membrane to the periplasmic space. A functional heme-binding site of the cytochrome c-type was identified in the predicted Cti polypeptide and very recently, direct evidence was obtained that isomerization does not include a transient saturation of the double bond.
Collapse
Affiliation(s)
- Hermann J Heipieper
- Department of Bioremediation, Centre for Environmental Research (UFZ) Leipzig-Halle, Permoserstr 15, 04318 Leipzig, Germany.
| | | | | |
Collapse
|
48
|
Neumann G, Kabelitz N, Heipieper HJ. The regulation of thecis-trans isomerase of unsaturated fatty acids inPseudomonas putida: correlation between cti activity and K+-uptake systems. EUR J LIPID SCI TECH 2003. [DOI: 10.1002/ejlt.200300803] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|