1
|
de Almeida Santos G, Englund ANB, Dalleywater EL, Røhr ÅK. Characterization of two bacterial tyrosinases from the halophilic bacterium Hahella sp. CCB MM4 relevant for phenolic compounds oxidation in wetlands. FEBS Open Bio 2024. [PMID: 39382070 DOI: 10.1002/2211-5463.13906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/04/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024] Open
Abstract
Tyrosinases (TYRs) are type-3 copper proteins that are widely distributed in nature. They can hydroxylate and oxidize phenolic molecules and are mostly known for producing melanins that confer protection against photo induced damage. TYRs are also thought to play an important role in the 'latch mechanism', where high concentrations of phenolic compounds inhibit oxidative decomposition of organic biomass and subsequent CO2 release, especially relevant in wetland environments. In the present study, we describe two TYRs, HcTyr1 and HcTyr2, from halophilic bacterium Hahella sp. CCB MM4 previously isolated at Matang mangrove forest in Perak, Malaysia. The structure of HcTyr1 was determined by X-ray crystallography at a resolution of 1.9 Å and represents an uncharacterized group of prokaryotic TYRs as demonstrated by a sequence similarity network analysis. The genes encoding the enzymes were cloned, expressed, purified and thoroughly characterized by biochemical methods. HcTyr1 was able to self-cleave its lid-domain (LID) in a protease independent manner, whereas the LID of HcTyr2 was essential for activity and stability. Both enzymes showed variable activity in the presence of different metals, surfactants and NaCl, and were able to oxidize lignin constituents. The high salinity tolerance of HcTyr1 indicates that the enzyme can be an efficient catalyst in the habitat of the host.
Collapse
Affiliation(s)
- Gustavo de Almeida Santos
- Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Sciences, Ås, Norway
| | - Andrea N B Englund
- Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Sciences, Ås, Norway
| | - Eirin L Dalleywater
- Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Sciences, Ås, Norway
| | - Åsmund Kjendseth Røhr
- Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
2
|
Liu X, Geng X, Liu W, Lyu Q. Biochemical characterization of an α-fucosidase PsaFuc from the GH29 family. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
3
|
Otsuka FAM, Chagas RS, Almeida VM, Marana SR. Homodimerization of a glycoside hydrolase family GH1 β-glucosidase suggests distinct activity of enzyme different states. Protein Sci 2020; 29:1879-1889. [PMID: 32597558 DOI: 10.1002/pro.3908] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 11/06/2022]
Abstract
In this work, we investigated how activity and oligomeric state are related in a purified GH1 β-glucosidase from Spodoptera frugiperda (Sfβgly). Gel filtration chromatography coupled to a multiple angle light scattering detector allowed separation of the homodimer and monomer states and determination of the dimer dissociation constant (KD ), which was in the micromolar range. Enzyme kinetic parameters showed that the dimer is on average 2.5-fold more active. Later, we evaluated the kinetics of homodimerization, scanning the changes in the Sfβgly intrinsic fluorescence over time when the dimer dissociates into the monomer after a large dilution. We described how the rate constant of monomerization (koff ) is affected by temperature, revealing the enthalpic and entropic contributions to the process. We also evaluated how the rate constant (kobs ) by which equilibrium is reached after dimer dilution behaves when varying the initial Sfβgly concentration. These data indicated that Sfβgly dimerizes through the conformational selection mechanism, in which the monomer undergoes a conformational exchange and then binds to a similar monomer, forming a more active homodimer. Finally, we noted that conformational selection reports and experiments usually rely on a ligand whose concentration is in excess, but for homodimerization, this approach does not hold. Hence, since our approach overcomes this limitation, this study not only is a new contribution to the comprehension of GH1 β-glucosidases, but it can also help to elucidate protein interaction pathways.
Collapse
Affiliation(s)
- Felipe A M Otsuka
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Rafael S Chagas
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Vitor M Almeida
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Sandro R Marana
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
He X, Yu M, Wu Y, Ran L, Liu W, Zhang XH. Two Highly Similar Chitinases from Marine Vibrio Species have Different Enzymatic Properties. Mar Drugs 2020; 18:E139. [PMID: 32120805 PMCID: PMC7143101 DOI: 10.3390/md18030139] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 12/16/2022] Open
Abstract
Chitinase, as one of the most important extracellular enzymes in the marine environment, has great ecological and applied values. In this study, two chitinases (Chi1557 and Chi4668) with 97.33% amino acid sequences identity were individually found in Vibrio rotiferianus and Vibrio harveyi. They both were encoding by 561 amino acids, but differed in 15 amino acids and showed different enzymatic properties. The optimal temperature and pH ranges were 45-50 °C and pH 5.0-7.0 for Chi1557, while ~50 °C and pH 3.0-6.0 for Chi4668. K+, Mg2+, and EDTA increased the enzymatic activity of Chi4668 significantly, yet these factors were inhibitory to Chi1557. Moreover, Chi1557 degraded colloidal chitin to produce (GlcNAc)2 and minor GlcNAc, whereas Chi4668 produce (GlcNAc)2 with minor (GlcNAc)3 and (GlcNAc)4. The Kcat/Km of Chi4668 was ~4.7 times higher than that of Chi1557, indicating that Chi4668 had stronger catalytic activity than Chi1557. Furthermore, site-directed mutagenesis was performed on Chi1557 focusing on seven conserved amino acid residues of family GH18 chitinases. Chi1557 was almost completely inactive after Glu154, Gln219, Tyr221, or Trp312 was individually mutated, retained ~50% activity after Tyr37 was mutated, and increased two times activity after Asp152 was mutated, indicating that these six amino acids were key sites for Chi1557.
Collapse
Affiliation(s)
- Xinxin He
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (X.H.); (M.Y.); (Y.W.); (L.R.); (W.L.)
| | - Min Yu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (X.H.); (M.Y.); (Y.W.); (L.R.); (W.L.)
| | - Yanhong Wu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (X.H.); (M.Y.); (Y.W.); (L.R.); (W.L.)
| | - Lingman Ran
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (X.H.); (M.Y.); (Y.W.); (L.R.); (W.L.)
| | - Weizhi Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (X.H.); (M.Y.); (Y.W.); (L.R.); (W.L.)
| | - Xiao-Hua Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (X.H.); (M.Y.); (Y.W.); (L.R.); (W.L.)
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
5
|
Mafa MS, Dirr HW, Malgas S, Krause RWM, Rashamuse K, Pletschke BI. A Novel Dimeric Exoglucanase (GH5_38): Biochemical and Structural Characterisation towards its Application in Alkyl Cellobioside Synthesis. Molecules 2020; 25:E746. [PMID: 32050450 PMCID: PMC7036808 DOI: 10.3390/molecules25030746] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/14/2020] [Accepted: 01/21/2020] [Indexed: 01/02/2023] Open
Abstract
An exoglucanase (Exg-D) from the glycoside hydrolase family 5 subfamily 38 (GH5_38) was heterologously expressed and structurally and biochemically characterised at a molecular level for its application in alkyl glycoside synthesis. The purified Exg-D existed in both dimeric and monomeric forms in solution, which showed highest activity on mixed-linked β-glucan (88.0 and 86.7 U/mg protein, respectively) and lichenin (24.5 and 23.7 U/mg protein, respectively). They displayed a broad optimum pH range from 5.5 to 7 and a temperature optimum from 40 to 60 °C. Kinetic studies demonstrated that Exg-D had a higher affinity towards β-glucan, with a Km of 7.9 mg/mL and a kcat of 117.2 s-1, compared to lichenin which had a Km of 21.5 mg/mL and a kcat of 70.0 s-1. The circular dichroism profile of Exg-D showed that its secondary structure consisted of 11% α-helices, 36% β-strands and 53% coils. Exg-D performed transglycosylation using p-nitrophenyl cellobioside as a glycosyl donor and several primary alcohols as acceptors to produce methyl-, ethyl- and propyl-cellobiosides. These products were identified and quantified via thin-layer chromatography (TLC) and liquid chromatography-mass spectrometry (LC-MS). We concluded that Exg-D is a novel and promising oligomeric glycoside hydrolase for the one-step synthesis of alkyl glycosides with more than one monosaccharide unit.
Collapse
Affiliation(s)
- Mpho S. Mafa
- Protein Structure-Function Research Unit East Campus, Gate House, School of Molecular and Cell Biology University of the Witwatersrand, Johannesburg 2050, South Africa; (M.S.M.); (H.W.D.)
- Enzyme Science Programme (ESP), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa;
| | - Heinrich W. Dirr
- Protein Structure-Function Research Unit East Campus, Gate House, School of Molecular and Cell Biology University of the Witwatersrand, Johannesburg 2050, South Africa; (M.S.M.); (H.W.D.)
| | - Samkelo Malgas
- Enzyme Science Programme (ESP), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa;
| | - Rui W. M. Krause
- Department of Chemistry, Rhodes University, Grahamstown 6140, South Africa;
| | | | - Brett I. Pletschke
- Enzyme Science Programme (ESP), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa;
| |
Collapse
|
6
|
Schlee S, Straub K, Schwab T, Kinateder T, Merkl R, Sterner R. Prediction of quaternary structure by analysis of hot spot residues in protein-protein interfaces: the case of anthranilate phosphoribosyltransferases. Proteins 2019; 87:815-825. [PMID: 31134642 DOI: 10.1002/prot.25744] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/06/2019] [Accepted: 05/22/2019] [Indexed: 12/13/2022]
Abstract
It is an important goal of computational biology to correctly predict the association state of a protein based on its amino acid sequence and the structures of known homologues. We have pursued this goal on the example of anthranilate phosphoribosyltransferase (AnPRT), an enzyme that is involved in the biosynthesis of the amino acid tryptophan. Firstly, known crystal structures of naturally occurring homodimeric AnPRTs were analyzed using the Protein Interfaces, Surfaces, and Assemblies (PISA) service of the European Bioinformatics Institute (EBI). This led to the identification of two hydrophobic "hot spot" amino acids in the protein-protein interface that were predicted to be essential for self-association. Next, in a comprehensive multiple sequence alignment (MSA), naturally occurring AnPRT variants with hydrophilic or charged amino acids in place of hydrophobic residues in the two hot spot positions were identified. Representative variants were characterized in terms of thermal stability, enzymatic activity, and quaternary structure. We found that AnPRT variants with charged residues in both hot spot positions exist exclusively as monomers in solution. Variants with hydrophilic amino acids in one hot spot position occur in both forms, monomer and dimer. The results of the present study provide a detailed characterization of the determinants of the AnPRT monomer-dimer equilibrium and show that analysis of hot spots in combination with MSAs can be a valuable tool in prediction of protein quaternary structures.
Collapse
Affiliation(s)
- Sandra Schlee
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Regensburg, Germany
| | - Kristina Straub
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Regensburg, Germany
| | - Thomas Schwab
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Regensburg, Germany
| | - Thomas Kinateder
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Regensburg, Germany
| | - Rainer Merkl
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Regensburg, Germany
| | - Reinhard Sterner
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Regensburg, Germany
| |
Collapse
|
7
|
Domain swapping between FabGs deciphers the structural determinant for in-solution oligomerization and substrate binding. Biophys Chem 2018; 237:9-21. [PMID: 29625337 DOI: 10.1016/j.bpc.2018.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/15/2018] [Accepted: 03/19/2018] [Indexed: 01/02/2023]
|
8
|
Julius K, Al-Ayoubi SR, Paulus M, Tolan M, Winter R. The effects of osmolytes and crowding on the pressure-induced dissociation and inactivation of dimeric LADH. Phys Chem Chem Phys 2018; 20:7093-7104. [DOI: 10.1039/c7cp08242h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Compatible osmolytes are able to efficiently modulate the oligomeric state, stability and activity of enzymes at high pressures.
Collapse
Affiliation(s)
- Karin Julius
- Fakultät Physik/DELTA
- TU Dortmund University
- 44221 Dortmund
- Germany
| | - Samy R. Al-Ayoubi
- Physical Chemistry I – Biophysical Chemistry
- Department of Chemistry and Chemical Biology
- TU Dortmund University
- 44227 Dortmund
- Germany
| | - Michael Paulus
- Fakultät Physik/DELTA
- TU Dortmund University
- 44221 Dortmund
- Germany
| | - Metin Tolan
- Fakultät Physik/DELTA
- TU Dortmund University
- 44221 Dortmund
- Germany
| | - Roland Winter
- Physical Chemistry I – Biophysical Chemistry
- Department of Chemistry and Chemical Biology
- TU Dortmund University
- 44227 Dortmund
- Germany
| |
Collapse
|
9
|
Lansky S, Zehavi A, Belrhali H, Shoham Y, Shoham G. Structural basis for enzyme bifunctionality – the case of Gan1D fromGeobacillus stearothermophilus. FEBS J 2017; 284:3931-3953. [DOI: 10.1111/febs.14283] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/31/2017] [Accepted: 09/28/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Shifra Lansky
- Institute of Chemistry The Laboratory for Structural Chemistry and Biology The Hebrew University of Jerusalem Israel
| | - Arie Zehavi
- Department of Biotechnology and Food Engineering Technion ‐ Israel Institute of Technology Haifa Israel
| | | | - Yuval Shoham
- Department of Biotechnology and Food Engineering Technion ‐ Israel Institute of Technology Haifa Israel
| | - Gil Shoham
- Institute of Chemistry The Laboratory for Structural Chemistry and Biology The Hebrew University of Jerusalem Israel
| |
Collapse
|
10
|
Allosteric properties of Geobacillus maltogenic amylase. Enzyme Microb Technol 2017; 96:36-41. [DOI: 10.1016/j.enzmictec.2016.09.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 08/19/2016] [Accepted: 09/20/2016] [Indexed: 11/18/2022]
|
11
|
Solomon HV, Tabachnikov O, Lansky S, Salama R, Feinberg H, Shoham Y, Shoham G. Structure-function relationships in Gan42B, an intracellular GH42 β-galactosidase from Geobacillus stearothermophilus. ACTA ACUST UNITED AC 2015; 71:2433-48. [PMID: 26627651 DOI: 10.1107/s1399004715018672] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 10/05/2015] [Indexed: 01/08/2023]
Abstract
Geobacillus stearothermophilus T-6 is a Gram-positive thermophilic soil bacterium that contains a battery of degrading enzymes for the utilization of plant cell-wall polysaccharides, including xylan, arabinan and galactan. A 9.4 kb gene cluster has recently been characterized in G. stearothermophilus that encodes a number of galactan-utilization elements. A key enzyme of this degradation system is Gan42B, an intracellular GH42 β-galactosidase capable of hydrolyzing short β-1,4-galactosaccharides into galactose units, making it of high potential for various biotechnological applications. The Gan42B monomer is made up of 686 amino acids, and based on sequence homology it was suggested that Glu323 is the catalytic nucleophile and Glu159 is the catalytic acid/base. In the current study, the detailed three-dimensional structure of wild-type Gan42B (at 2.45 Å resolution) and its catalytic mutant E323A (at 2.50 Å resolution), as determined by X-ray crystallography, are reported. These structures demonstrate that the three-dimensional structure of the Gan42B monomer generally correlates with the overall fold observed for GH42 proteins, consisting of three main domains: an N-terminal TIM-barrel domain, a smaller mixed α/β domain, and the smallest all-β domain at the C-terminus. The two catalytic residues are located in the TIM-barrel domain in a pocket-like active site such that their carboxylic functional groups are about 5.3 Å from each other, consistent with a retaining mechanism. The crystal structure demonstrates that Gan42B is a homotrimer, resembling a flowerpot in general shape, in which each monomer interacts with the other two to form a cone-shaped tunnel cavity in the centre. The cavity is ∼35 Å at the wide opening and ∼5 Å at the small opening and ∼40 Å in length. The active sites are situated at the interfaces between the monomers, so that every two neighbouring monomers participate in the formation of each of the three active sites of the trimer. They are located near the small opening of the cone tunnel, all facing the centre of the cavity. The biological relevance of this trimeric structure is supported by independent results obtained from gel-permeation chromatography. These data and their comparison to the structural data of related GH42 enzymes are used for a more general discussion concerning structure-activity aspects in this GH family.
Collapse
Affiliation(s)
- Hodaya V Solomon
- Institute of Chemistry and the Laboratory for Structural Chemistry and Biology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Orly Tabachnikov
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Shifra Lansky
- Institute of Chemistry and the Laboratory for Structural Chemistry and Biology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Rachel Salama
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Hadar Feinberg
- Institute of Chemistry and the Laboratory for Structural Chemistry and Biology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Yuval Shoham
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Gil Shoham
- Institute of Chemistry and the Laboratory for Structural Chemistry and Biology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
12
|
Dunne JC, Kelly WJ, Leahy SC, Li D, Bond JJ, Peng L, Attwood GT, Jordan TW. The Cytosolic Oligosaccharide-Degrading Proteome of Butyrivibrio Proteoclasticus. Proteomes 2015; 3:347-368. [PMID: 28248275 PMCID: PMC5217386 DOI: 10.3390/proteomes3040347] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/15/2015] [Accepted: 10/19/2015] [Indexed: 11/16/2022] Open
Abstract
The growth and productivity of ruminants depends on a complex microbial community found in their fore-stomach (rumen), which is able to breakdown plant polysaccharides and ferment the released sugars. Butyrivibrio proteoclasticus B316T is a Gram-positive polysaccharide-degrading, butyrate-producing bacterium that is present at high numbers in the rumen of animals consuming pasture or grass silage based diets. B316T is one of a small number of rumen fibrolytic microbes capable of efficiently degrading and utilizing xylan, as well as being capable of utilizing arabinose, xylose, pectin and starch. We have therefore carried out a proteomic analysis of B316T to identify intracellular enzymes that are implicated in the metabolism of internalized xylan. Three hundred and ninety four proteins were identified including enzymes that have potential to metabolize assimilated products of extracellular xylan digestion. Identified enzymes included arabinosidases, esterases, an endoxylanase, and β-xylosidase. The presence of intracellular debranching enzymes indicated that some hemicellulosic side-chains may not be removed until oligosaccharides liberated by extracellular digestion have been assimilated by the cells. The results support a model of extracellular digestion of hemicellulose to oligosaccharides that are then transported to the cytoplasm for further digestion by intracellular enzymes.
Collapse
Affiliation(s)
- Jonathan C Dunne
- Rumen Microbiology, Animal Science Group, AgResearch Limited, Grasslands Research Centre, Palmerston North 4442, New Zealand.
- Centre for Biodiscovery and School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand.
- AgResearch Limited/Victoria University of Wellington Proteomics Laboratory, Victoria University of Wellington, Wellington 6140, New Zealand.
| | - William J Kelly
- Rumen Microbiology, Animal Science Group, AgResearch Limited, Grasslands Research Centre, Palmerston North 4442, New Zealand.
| | - Sinead C Leahy
- Rumen Microbiology, Animal Science Group, AgResearch Limited, Grasslands Research Centre, Palmerston North 4442, New Zealand.
| | - Dong Li
- Rumen Microbiology, Animal Science Group, AgResearch Limited, Grasslands Research Centre, Palmerston North 4442, New Zealand.
| | - Judy J Bond
- Rumen Microbiology, Animal Science Group, AgResearch Limited, Grasslands Research Centre, Palmerston North 4442, New Zealand.
- Centre for Biodiscovery and School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand.
- AgResearch Limited/Victoria University of Wellington Proteomics Laboratory, Victoria University of Wellington, Wellington 6140, New Zealand.
| | - Lifeng Peng
- Centre for Biodiscovery and School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand.
| | - Graeme T Attwood
- Rumen Microbiology, Animal Science Group, AgResearch Limited, Grasslands Research Centre, Palmerston North 4442, New Zealand.
| | - T William Jordan
- Centre for Biodiscovery and School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand.
| |
Collapse
|
13
|
Sun Z, Harris HMB, McCann A, Guo C, Argimón S, Zhang W, Yang X, Jeffery IB, Cooney JC, Kagawa TF, Liu W, Song Y, Salvetti E, Wrobel A, Rasinkangas P, Parkhill J, Rea MC, O'Sullivan O, Ritari J, Douillard FP, Paul Ross R, Yang R, Briner AE, Felis GE, de Vos WM, Barrangou R, Klaenhammer TR, Caufield PW, Cui Y, Zhang H, O'Toole PW. Expanding the biotechnology potential of lactobacilli through comparative genomics of 213 strains and associated genera. Nat Commun 2015; 6:8322. [PMID: 26415554 PMCID: PMC4667430 DOI: 10.1038/ncomms9322] [Citation(s) in RCA: 345] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 08/11/2015] [Indexed: 12/20/2022] Open
Abstract
Lactobacilli are a diverse group of species that occupy diverse nutrient-rich niches associated with humans, animals, plants and food. They are used widely in biotechnology and food preservation, and are being explored as therapeutics. Exploiting lactobacilli has been complicated by metabolic diversity, unclear species identity and uncertain relationships between them and other commercially important lactic acid bacteria. The capacity for biotransformations catalysed by lactobacilli is an untapped biotechnology resource. Here we report the genome sequences of 213 Lactobacillus strains and associated genera, and their encoded genetic catalogue for modifying carbohydrates and proteins. In addition, we describe broad and diverse presence of novel CRISPR-Cas immune systems in lactobacilli that may be exploited for genome editing. We rationalize the phylogenomic distribution of host interaction factors and bacteriocins that affect their natural and industrial environments, and mechanisms to withstand stress during technological processes. We present a robust phylogenomic framework of existing species and for classifying new species. Lactobacillus is a lactic acid bacteria and has a wide range of application from use in probiotic food production to biotherapeutics. Here, the authors sequence and compare the genomes of 213 different Lactobacillus strains and related genera, and provide new insight into phylogenomic organization and adaptive immunity elements in this bacteria family.
Collapse
Affiliation(s)
- Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of China, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Hugh M B Harris
- School of Microbiology, Alimentary Pharmabiotic Centre, University College Cork, Cork T12 Y337, Ireland
| | - Angela McCann
- School of Microbiology, Alimentary Pharmabiotic Centre, University College Cork, Cork T12 Y337, Ireland
| | - Chenyi Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Silvia Argimón
- College of Dentistry, New York University, New York City, New York 10010, USA
| | - Wenyi Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of China, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Xianwei Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Ian B Jeffery
- School of Microbiology, Alimentary Pharmabiotic Centre, University College Cork, Cork T12 Y337, Ireland
| | - Jakki C Cooney
- Department Life Sciences &MSSI, University of Limerick, V94 T9PX Limerick, Ireland
| | - Todd F Kagawa
- Department Life Sciences &MSSI, University of Limerick, V94 T9PX Limerick, Ireland
| | - Wenjun Liu
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of China, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Yuqin Song
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of China, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Elisa Salvetti
- Department of Biotechnology, University of Verona, Verona 37134, Italy
| | - Agnieszka Wrobel
- School of Microbiology, Alimentary Pharmabiotic Centre, University College Cork, Cork T12 Y337, Ireland
| | - Pia Rasinkangas
- Department of Veterinary Biosciences, University of Helsinki, Helsinki 00014, Finland
| | | | - Mary C Rea
- Department of Biotechnology, Teagasc, Moorepark, Fermoy Co. Cork P61 C996, Ireland
| | - Orla O'Sullivan
- Department of Biotechnology, Teagasc, Moorepark, Fermoy Co. Cork P61 C996, Ireland
| | - Jarmo Ritari
- Department of Veterinary Biosciences, University of Helsinki, Helsinki 00014, Finland
| | - François P Douillard
- Department of Veterinary Biosciences, University of Helsinki, Helsinki 00014, Finland
| | - R Paul Ross
- Department of Biotechnology, Teagasc, Moorepark, Fermoy Co. Cork P61 C996, Ireland
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Alexandra E Briner
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Giovanna E Felis
- Department of Biotechnology, University of Verona, Verona 37134, Italy
| | - Willem M de Vos
- Department of Veterinary Biosciences, University of Helsinki, Helsinki 00014, Finland.,Laboratory of Microbiology, Wageningen University, Wageningen, 6703HB, The Netherlands
| | - Rodolphe Barrangou
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Todd R Klaenhammer
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Page W Caufield
- College of Dentistry, New York University, New York City, New York 10010, USA
| | - Yujun Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of China, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Paul W O'Toole
- School of Microbiology, Alimentary Pharmabiotic Centre, University College Cork, Cork T12 Y337, Ireland
| |
Collapse
|
14
|
Cobucci-Ponzano B, Strazzulli A, Iacono R, Masturzo G, Giglio R, Rossi M, Moracci M. Novel thermophilic hemicellulases for the conversion of lignocellulose for second generation biorefineries. Enzyme Microb Technol 2015. [PMID: 26215346 DOI: 10.1016/j.enzmictec.2015.06.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The biotransformation of lignocellulose biomasses into fermentable sugars is a very complex procedure including, as one of the most critical steps, the (hemi) cellulose hydrolysis by specific enzymatic cocktails. We explored here, the potential of stable glycoside hydrolases from thermophilic organisms, so far not used in commercial enzymatic preparations, for the conversion of glucuronoxylan, the major hemicellulose of several energy crops. Searches in the genomes of thermophilic bacteria led to the identification, efficient production, and detailed characterization of novel xylanase and α-glucuronidase from Alicyclobacillus acidocaldarius (GH10-XA and GH67-GA, respectively) and a α-glucuronidase from Caldicellulosiruptor saccharolyticus (GH67-GC). Remarkably, GH10-XA, if compared to other thermophilic xylanases from this family, coupled good specificity on beechwood xylan and the best stability at 65 °C (3.5 days). In addition, GH67-GC was the most stable α-glucuronidases from this family and the first able to hydrolyse both aldouronic acid and aryl-α-glucuronic acid substrates. These enzymes, led to the very efficient hydrolysis of beechwood xylan by using 7- to 9-fold less protein (concentrations <0.3 μM) and in much less reaction time (2h vs 12h) if compared to other known biotransformations catalyzed by thermophilic enzymes. In addition, remarkably, together with a thermophilic β-xylosidase, they catalyzed the production of xylose from the smart cooking pre-treated biomass of one of the most promising energy crops for second generation biorefineries. We demonstrated that search by the CAZy Data Bank of currently available genomes and detailed enzymatic characterization of recombinant enzymes allow the identification of glycoside hydrolases with novel and interesting properties and applications.
Collapse
Affiliation(s)
- Beatrice Cobucci-Ponzano
- Institute of Biosciences and Bioresources, National Research Council of Italy, Via P. Castellino 111, 80131 Naples, Italy.
| | - Andrea Strazzulli
- Institute of Biosciences and Bioresources, National Research Council of Italy, Via P. Castellino 111, 80131 Naples, Italy.
| | - Roberta Iacono
- Institute of Biosciences and Bioresources, National Research Council of Italy, Via P. Castellino 111, 80131 Naples, Italy.
| | - Giuseppe Masturzo
- Institute of Biosciences and Bioresources, National Research Council of Italy, Via P. Castellino 111, 80131 Naples, Italy.
| | - Rosa Giglio
- Institute of Biosciences and Bioresources, National Research Council of Italy, Via P. Castellino 111, 80131 Naples, Italy.
| | - Mosè Rossi
- Institute of Biosciences and Bioresources, National Research Council of Italy, Via P. Castellino 111, 80131 Naples, Italy.
| | - Marco Moracci
- Institute of Biosciences and Bioresources, National Research Council of Italy, Via P. Castellino 111, 80131 Naples, Italy.
| |
Collapse
|
15
|
Septiningrum K, Ohi H, Waeonukul R, Pason P, Tachaapaikoon C, Ratanakhanokchai K, Sermsathanaswadi J, Deng L, Prawitwong P, Kosugi A. The GH67 α-glucuronidase of Paenibacillus curdlanolyticus B-6 removes hexenuronic acid groups and facilitates biodegradation of the model xylooligosaccharide hexenuronosyl xylotriose. Enzyme Microb Technol 2015; 71:28-35. [PMID: 25765307 DOI: 10.1016/j.enzmictec.2015.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 11/25/2014] [Accepted: 01/19/2015] [Indexed: 10/24/2022]
Abstract
4-O-Methylglucuronic acid (MeGlcA) side groups attached to the xylan backbone through α-1,2 linkages are converted to hexenuronic acid (HexA) during alkaline pulping. α-Glucuronidase (EC 3.2.1.139) hydrolyzes 1,2-linked MeGlcA from xylooligosaccharides. To determine whether α-glucuronidase can also hydrolyze HexA-decorated xylooligosaccharides, a gene encoding α-glucuronidase (AguA) was cloned from Paenibacillus curdlanolyticus B-6. The purified protein degraded hexenuronosyl xylotriose (ΔX3), a model substrate prepared from kraft pulp. AguA released xylotriose and HexA from ΔX3, but the Vmax and kcat values for ΔX3 were lower than those for MeGlcA, indicating that HexA side groups may affect the hydrolytic activity. To explore the potential for biological bleaching, ΔX3 degradation was performed using intracellular extract from P. curdlanolyticus B-6. The intracellular extract, with synergistic α-glucuronidase and β-xylosidase activities, degraded ΔX3 to xylose and HexA. These results indicate that α-glucuronidase can be used to remove HexA from ΔX3 derived from pulp, reducing the need for chemical treatments in the pulping process.
Collapse
Affiliation(s)
- Krisna Septiningrum
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan; Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), 1-1 Ohwashi, Tsukuba, Ibaraki 305-8686, Japan
| | - Hiroshi Ohi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Rattiya Waeonukul
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkuntien, Bangkok 10150, Thailand
| | - Patthra Pason
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkuntien, Bangkok 10150, Thailand
| | - Chakrit Tachaapaikoon
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkuntien, Bangkok 10150, Thailand
| | - Khanok Ratanakhanokchai
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkuntien, Bangkok 10150, Thailand
| | - Junjarus Sermsathanaswadi
- Department of Chemical Technology, Faculty of Science and Technology, Suan Dusit Rajabhat University, 295 Rajasrima Road, Dusit, Bangkok 10300, Thailand
| | - Lan Deng
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), 1-1 Ohwashi, Tsukuba, Ibaraki 305-8686, Japan
| | - Panida Prawitwong
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), 1-1 Ohwashi, Tsukuba, Ibaraki 305-8686, Japan
| | - Akihiko Kosugi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan; Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), 1-1 Ohwashi, Tsukuba, Ibaraki 305-8686, Japan.
| |
Collapse
|
16
|
Dann R, Lansky S, Lavid N, Zehavi A, Belakhov V, Baasov T, Dvir H, Manjasetty B, Belrhali H, Shoham Y, Shoham G. Preliminary crystallographic analysis of Xyn52B2, a GH52 β-D-xylosidase from Geobacillus stearothermophilus T6. ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS 2014; 70:1675-82. [PMID: 25484225 DOI: 10.1107/s2053230x14023887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 10/29/2014] [Indexed: 11/10/2022]
Abstract
Geobacillus stearothermophilus T6 is a thermophilic bacterium that possesses an extensive hemicellulolytic system, including over 40 specific genes that are dedicated to this purpose. For the utilization of xylan, the bacterium uses an extracellular xylanase which degrades xylan to decorated xylo-oligomers that are imported into the cell. These oligomers are hydrolyzed by side-chain-cleaving enzymes such as arabinofuranosidases, acetylesterases and a glucuronidase, and finally by an intracellular xylanase and a number of β-xylosidases. One of these β-xylosidases is Xyn52B2, a GH52 enzyme that has already proved to be useful for various glycosynthesis applications. In addition to its demonstrated glycosynthase properties, interest in the structural aspects of Xyn52B2 stems from its special glycoside hydrolase family, GH52, the structures and mechanisms of which are only starting to be resolved. Here, the cloning, overexpression, purification and crystallization of Xyn52B2 are reported. The most suitable crystal form that has been obtained belonged to the orthorhombic P212121 space group, with average unit-cell parameters a = 97.7, b = 119.1, c = 242.3 Å. Several X-ray diffraction data sets have been collected from flash-cooled crystals of this form, including the wild-type enzyme (3.70 Å resolution), the E335G catalytic mutant (2.95 Å resolution), a potential mercury derivative (2.15 Å resolution) and a selenomethionine derivative (3.90 Å resolution). These data are currently being used for detailed three-dimensional structure determination of the Xyn52B2 protein.
Collapse
Affiliation(s)
- Roie Dann
- Institute of Chemistry and the Laboratory for Structural Chemistry and Biology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Shifra Lansky
- Institute of Chemistry and the Laboratory for Structural Chemistry and Biology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Noa Lavid
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Arie Zehavi
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Valery Belakhov
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Timor Baasov
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Hay Dvir
- Technion Center for Structural Biology, Lorry I. Lokey Center for Life Sciences and Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Babu Manjasetty
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Hassan Belrhali
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Yuval Shoham
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Gil Shoham
- Institute of Chemistry and the Laboratory for Structural Chemistry and Biology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
17
|
Lansky S, Salama R, Solomon HV, Feinberg H, Belrhali H, Shoham Y, Shoham G. Structure-specificity relationships in Abp, a GH27 β-L-arabinopyranosidase from Geobacillus stearothermophilus T6. ACTA ACUST UNITED AC 2014; 70:2994-3012. [PMID: 25372689 DOI: 10.1107/s139900471401863x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 08/15/2014] [Indexed: 11/10/2022]
Abstract
L-Arabinose sugar residues are relatively abundant in plants and are found mainly in arabinan polysaccharides and in other arabinose-containing polysaccharides such as arabinoxylans and pectic arabinogalactans. The majority of the arabinose units in plants are present in the furanose form and only a small fraction of them are present in the pyranose form. The L-arabinan-utilization system in Geobacillus stearothermophilus T6, a Gram-positive thermophilic soil bacterium, has recently been characterized, and one of the key enzymes was found to be an intracellular β-L-arabinopyranosidase (Abp). Abp, a GH27 enzyme, was shown to remove β-L-arabinopyranose residues from synthetic substrates and from the native substrates sugar beet arabinan and larch arabinogalactan. The Abp monomer is made up of 448 amino acids, and based on sequence homology it was suggested that Asp197 is the catalytic nucleophile and Asp255 is the catalytic acid/base. In the current study, the detailed three-dimensional structure of wild-type Abp (at 2.28 Å resolution) and its catalytic mutant Abp-D197A with (at 2.20 Å resolution) and without (at 2.30 Å resolution) a bound L-arabinose product are reported as determined by X-ray crystallography. These structures demonstrate that the three-dimensional structure of the Abp monomer correlates with the general fold observed for GH27 proteins, consisting of two main domains: an N-terminal TIM-barrel domain and a C-terminal all-β domain. The two catalytic residues are located in the TIM-barrel domain, such that their carboxylic functional groups are about 5.9 Å from each other, consistent with a retaining mechanism. An isoleucine residue (Ile67) located at a key position in the active site is shown to play a critical role in the substrate specificity of Abp, providing a structural basis for the high preference of the enzyme towards arabinopyranoside over galactopyranoside substrates. The crystal structure demonstrates that Abp is a tetramer made up of two `open-pincers' dimers, which clamp around each other to form a central cavity. The four active sites of the Abp tetramer are situated on the inner surface of this cavity, all opening into the central space of the cavity. The biological relevance of this tetrameric structure is supported by independent results obtained from size-exclusion chromatography (SEC), dynamic light-scattering (DLS) and small-angle X-ray scattering (SAXS) experiments. These data and their comparison to the structural data of related GH27 enzymes are used for a more general discussion concerning structure-selectivity aspects in this glycoside hydrolase (GH) family.
Collapse
Affiliation(s)
- Shifra Lansky
- Institute of Chemistry and the Laboratory for Structural Chemistry and Biology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Rachel Salama
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Hodaya V Solomon
- Institute of Chemistry and the Laboratory for Structural Chemistry and Biology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Hadar Feinberg
- Institute of Chemistry and the Laboratory for Structural Chemistry and Biology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Hassan Belrhali
- European Molecular Biology Laboratory, Grenoble Outstation and the Unit for Virus Host-Cell Interactions, Université Grenoble Alpes-EMBL-CNRS, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Yuval Shoham
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Gil Shoham
- Institute of Chemistry and the Laboratory for Structural Chemistry and Biology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
18
|
Lansky S, Salama R, Dann R, Shner I, Manjasetty BA, Belrhali H, Shoham Y, Shoham G. Cloning, purification and preliminary crystallographic analysis of Ara127N, a GH127 β-L-arabinofuranosidase from Geobacillus stearothermophilus T6. Acta Crystallogr F Struct Biol Commun 2014; 70:1038-45. [PMID: 25084377 PMCID: PMC4118799 DOI: 10.1107/s2053230x14012680] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 05/31/2014] [Indexed: 12/27/2022] Open
Abstract
The L-arabinan utilization system of Geobacillus stearothermophilus T6 is composed of five transcriptional units that are clustered within a 38 kb DNA segment. One of the transcriptional units contains 11 genes, the last gene of which (araN) encodes a protein, Ara127N, that belongs to the newly established GH127 family. Ara127N shares 44% sequence identity with the recently characterized HypBA1 protein from Bifidobacterium longum and thus is likely to function similarly as a β-L-arabinofuranosidase. β-L-Arabinofuranosidases are enzymes that hydrolyze β-L-arabinofuranoside linkages, the less common form of such linkages, a unique enzymatic activity that has been identified only recently. The interest in the structure and mode of action of Ara127N therefore stems from its special catalytic activity as well as its membership of the new GH127 family, the structure and mechanism of which are only starting to be resolved. Ara127N has recently been cloned, overexpressed, purified and crystallized. Two suitable crystal forms have been obtained: one (CTP form) belongs to the monoclinic space group P21, with unit-cell parameters a = 104.0, b = 131.2, c = 107.6 Å, β = 112.0°, and the other (RB form) belongs to the orthorhombic space group P212121, with unit-cell parameters a = 65.5, b = 118.1, c = 175.0 Å. A complete X-ray diffraction data set has been collected to 2.3 Å resolution from flash-cooled crystals of the wild-type enzyme (RB form) at -173°C using synchrotron radiation. A selenomethionine derivative of Ara127N has also been prepared and crystallized for multi-wavelength anomalous diffraction (MAD) experiments. Crystals of selenomethionine Ara127N appeared to be isomorphous to those of the wild type (CTP form) and enabled the measurement of a three-wavelength MAD diffraction data set at the selenium absorption edge. These data are currently being used for detailed three-dimensional structure determination of the Ara127N protein.
Collapse
Affiliation(s)
- Shifra Lansky
- Institute of Chemistry and the Laboratory for Structural Chemistry and Biology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Rachel Salama
- Department of Biotechnology and Food Engineering, Technion–Israel Institute of Technology, Haifa 32000, Israel
| | - Roie Dann
- Institute of Chemistry and the Laboratory for Structural Chemistry and Biology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Izhak Shner
- Department of Biotechnology and Food Engineering, Technion–Israel Institute of Technology, Haifa 32000, Israel
| | - Babu A. Manjasetty
- European Molecular Biology Laboratory, Grenoble Outstation, 38000 Grenoble, France
- Unit for Virus Host-Cell Interactions, Université Grenoble Alpes–EMBL–CNRS, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Hassan Belrhali
- European Molecular Biology Laboratory, Grenoble Outstation, 38000 Grenoble, France
- Unit for Virus Host-Cell Interactions, Université Grenoble Alpes–EMBL–CNRS, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Yuval Shoham
- Department of Biotechnology and Food Engineering, Technion–Israel Institute of Technology, Haifa 32000, Israel
| | - Gil Shoham
- Institute of Chemistry and the Laboratory for Structural Chemistry and Biology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
19
|
Lansky S, Alalouf O, Salama R, Dvir H, Shoham Y, Shoham G. Preliminary crystallographic analysis of a double mutant of the acetyl xylo-oligosaccharide esterase Axe2 in its dimeric form. ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS 2014; 70:476-81. [PMID: 24699743 DOI: 10.1107/s2053230x14004129] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 02/22/2014] [Indexed: 11/11/2022]
Abstract
Xylans are polymeric sugars constituting a significant part of the plant cell wall. They are usually substituted with acetyl side groups attached at positions 2 or 3 of the xylose backbone units. Acetylxylan esterases are part of the hemicellulolytic system of many microorganisms which utilize plant biomass for growth. These enzymes hydrolyze the ester linkages of the xylan acetyl groups and thus improve the accessibility of main-chain-hydrolyzing enzymes and their ability to break down the sugar backbone units. The acetylxylan esterases are therefore critically important for those microorganisms and as such could be used for a wide range of biotechnological applications. The structure of an acetylxylan esterase (Axe2) isolated from the thermophilic bacterium Geobacillus stearothermophilus T6 has been determined, and it has been demonstrated that the wild-type enzyme is present as a unique torus-shaped octamer in the crystal and in solution. In order to understand the functional origin of this unique oligomeric structure, a series of rational noncatalytic, site-specific mutations have been made on Axe2. Some of these mutations led to a different dimeric form of the protein, which showed a significant reduction in catalytic activity. One of these double mutants, Axe2-Y184F-W190P, has recently been overexpressed, purified and crystallized. The best crystals obtained belonged to the orthorhombic space group P212121, with unit-cell parameters a = 71.1, b = 106.0, c = 378.6 Å. A full diffraction data set to 2.3 Å resolution has been collected from a flash-cooled crystal of this type at 100 K using synchrotron radiation. This data set is currently being used for the three-dimensional structure analysis of the Axe2-Y184F-W190P mutant in its dimeric form.
Collapse
Affiliation(s)
- Shifra Lansky
- Institute of Chemistry and the Laboratory for Structural Chemistry and Biology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Onit Alalouf
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Rachel Salama
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Hay Dvir
- Technion Center for Structural Biology, Lorry I. Lokey Center for Life Sciences and Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Yuval Shoham
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Gil Shoham
- Institute of Chemistry and the Laboratory for Structural Chemistry and Biology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
20
|
Lansky S, Zehavi A, Dann R, Dvir H, Belrhali H, Shoham Y, Shoham G. Purification, crystallization and preliminary crystallographic analysis of Gan1D, a GH1 6-phospho-β-galactosidase from Geobacillus stearothermophilus T1. Acta Crystallogr F Struct Biol Commun 2014; 70:225-31. [PMID: 24637762 PMCID: PMC3936444 DOI: 10.1107/s2053230x13034778] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 12/28/2013] [Indexed: 11/10/2022] Open
Abstract
Geobacillus stearothermophilus T1 is a Gram-positive thermophilic soil bacterium that contains an extensive system for the utilization of plant cell-wall polysaccharides, including xylan, arabinan and galactan. The bacterium uses a number of extracellular enzymes that break down the high-molecular-weight polysaccharides into short oligosaccharides, which enter the cell and are further hydrolyzed into sugar monomers by dedicated intracellular glycoside hydrolases. The interest in the biochemical characterization and structural analysis of these proteins originates mainly from the wide range of their potential biotechnological applications. Studying the different hemicellulolytic utilization systems in G. stearothermophilus T1, a new galactan-utilization gene cluster was recently identified, which encodes a number of proteins, one of which is a GH1 putative 6-phospho-β-galactosidase (Gan1D). Gan1D has recently been cloned, overexpressed, purified and crystallized as part of its comprehensive structure-function study. The best crystals obtained for this enzyme belonged to the triclinic space group P1, with average crystallographic unit-cell parameters of a = 67.0, b = 78.1, c = 92.1 Å, α = 102.4, β = 93.5, γ = 91.7°. A full diffraction data set to 1.33 Å resolution has been collected for the wild-type enzyme, as measured from flash-cooled crystals at 100 K, using synchrotron radiation. These data are currently being used for the detailed three-dimensional crystal structure analysis of Gan1D.
Collapse
Affiliation(s)
- Shifra Lansky
- Institute of Chemistry and the Laboratory for Structural Chemistry and Biology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Arie Zehavi
- Department of Biotechnology and Food Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
| | - Roie Dann
- Institute of Chemistry and the Laboratory for Structural Chemistry and Biology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Hay Dvir
- Technion Center for Structural Biology, The Lorry I. Lokey Interdisciplinary Center for Life Science and Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
| | - Hassan Belrhali
- European Molecular Biology Laboratory, Grenoble Outstation, and Unit for Virus–Host Cell Interactions, European Synchrotron Radiation Facility, Université Grenoble Alpes–EMBL–CNRS, 6 Rue Jules Horowitz, 38042 Grenoble, France
| | - Yuval Shoham
- Department of Biotechnology and Food Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
| | - Gil Shoham
- Institute of Chemistry and the Laboratory for Structural Chemistry and Biology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
21
|
Lansky S, Alalouf O, Solomon HV, Alhassid A, Govada L, Chayen NE, Belrhali H, Shoham Y, Shoham G. A unique octameric structure of Axe2, an intracellular acetyl-xylooligosaccharide esterase from Geobacillus stearothermophilus. ACTA ACUST UNITED AC 2014; 70:261-78. [PMID: 24531461 DOI: 10.1107/s139900471302840x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 10/15/2013] [Indexed: 08/26/2023]
Abstract
Geobacillus stearothermophilus T6 is a thermophilic, Gram-positive soil bacterium that possesses an extensive and highly regulated hemicellulolytic system, allowing the bacterium to efficiently degrade high-molecular-weight polysaccharides such as xylan, arabinan and galactan. As part of the xylan-degradation system, the bacterium uses a number of side-chain-cleaving enzymes, one of which is Axe2, a 219-amino-acid intracellular serine acetylxylan esterase that removes acetyl side groups from xylooligosaccharides. Bioinformatic analyses suggest that Axe2 belongs to the lipase GDSL family and represents a new family of carbohydrate esterases. In the current study, the detailed three-dimensional structure of Axe2 is reported, as determined by X-ray crystallography. The structure of the selenomethionine derivative Axe2-Se was initially determined by single-wavelength anomalous diffraction techniques at 1.70 Å resolution and was used for the structure determination of wild-type Axe2 (Axe2-WT) and the catalytic mutant Axe2-S15A at 1.85 and 1.90 Å resolution, respectively. These structures demonstrate that the three-dimensional structure of the Axe2 monomer generally corresponds to the SGNH hydrolase fold, consisting of five central parallel β-sheets flanked by two layers of helices (eight α-helices and five 310-helices). The catalytic triad residues, Ser15, His194 and Asp191, are lined up along a substrate channel situated on the concave surface of the monomer. Interestingly, the Axe2 monomers are assembled as a `doughnut-shaped' homo-octamer, presenting a unique quaternary structure built of two staggered tetrameric rings. The eight active sites are organized in four closely situated pairs, which face the relatively wide internal cavity. The biological relevance of this octameric structure is supported by independent results obtained from gel-filtration, TEM and SAXS experiments. These data and their comparison to the structural data of related hydrolases are used for a more general discussion focusing on the structure-function relationships of enzymes of this category.
Collapse
Affiliation(s)
- Shifra Lansky
- Institute of Chemistry and the Laboratory for Structural Chemistry and Biology, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Onit Alalouf
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, 32000 Haifa, Israel
| | - Hodaya Vered Solomon
- Institute of Chemistry and the Laboratory for Structural Chemistry and Biology, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Anat Alhassid
- Institute of Chemistry and the Laboratory for Structural Chemistry and Biology, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Lata Govada
- Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, England
| | - Naomi E Chayen
- Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, England
| | - Hassan Belrhali
- European Synchrotron Radiation Facility, BP 220, 38043 Grenoble, France
| | - Yuval Shoham
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, 32000 Haifa, Israel
| | - Gil Shoham
- Institute of Chemistry and the Laboratory for Structural Chemistry and Biology, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| |
Collapse
|
22
|
Solomon HV, Tabachnikov O, Feinberg H, Govada L, Chayen NE, Shoham Y, Shoham G. Crystallization and preliminary crystallographic analysis of GanB, a GH42 intracellular β-galactosidase from Geobacillus stearothermophilus. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:1114-9. [PMID: 24100561 PMCID: PMC3792669 DOI: 10.1107/s1744309113023609] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 08/21/2013] [Indexed: 11/11/2022]
Abstract
Geobacillus stearothermophilus T-6 is a Gram-positive thermophilic soil bacterium that contains a multi-enzyme system for the utilization of plant cell-wall polysaccharides, including xylan, arabinan and galactan. The bacterium uses a number of endo-acting extracellular enzymes that break down the high-molecular-weight polysaccharides into decorated oligosaccharides. These oligosaccharides enter the cell and are further hydrolyzed into sugar monomers by a set of intracellular glycoside hydrolases. One of these intracellular degrading enzymes is GanB, a glycoside hydrolase family 42 β-galactosidase capable of hydrolyzing short β-1,4-galactosaccharides to galactose. GanB and related enzymes therefore play an important part in the hemicellulolytic utilization system of many microorganisms which use plant biomass for growth. The interest in the biochemical characterization and structural analysis of these enzymes stems from their potential biotechnological applications. GanB from G. stearothermophilus T-6 has recently been cloned, overexpressed, purified, biochemically characterized and crystallized in our laboratory as part of its complete structure-function study. The best crystals obtained for this enzyme belong to the primitive orthorhombic space group P2₁2₁2₁, with average crystallographic unit-cell parameters of a=71.84, b=181.35, c=196.57 Å. Full diffraction data sets to 2.45 and 2.50 Å resolution have been collected for both the wild-type enzyme and its E323A nucleophile catalytic mutant, respectively, as measured from flash-cooled crystals at 100 K using synchrotron radiation. These data are currently being used for the full three-dimensional crystal structure determination of GanB.
Collapse
Affiliation(s)
- Hodaya V. Solomon
- Institute of Chemistry and the Laboratory for Structural Chemistry and Biology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Orly Tabachnikov
- Department of Biotechnology and Food Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
| | - Hadar Feinberg
- Institute of Chemistry and the Laboratory for Structural Chemistry and Biology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Lata Govada
- Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, England
| | - Naomi E. Chayen
- Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, England
| | - Yuval Shoham
- Department of Biotechnology and Food Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
| | - Gil Shoham
- Institute of Chemistry and the Laboratory for Structural Chemistry and Biology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
23
|
Lansky S, Salama R, Solomon VH, Belrhali H, Shoham Y, Shoham G. Crystallization and preliminary crystallographic analysis of Abp, a GH27 β-L-arabinopyranosidase from Geobacillus stearothermophilus. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:695-9. [PMID: 23722857 DOI: 10.1107/s1744309113013705] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 05/17/2013] [Indexed: 11/11/2022]
Abstract
Geobacillus stearothermophilus T-6 is a thermophilic soil bacterium that possesses an extensive system for the utilization of hemicellulose. The bacterium produces a small number of endo-acting extracellular enzymes that cleave high-molecular-weight hemicellulolytic polymers into short decorated oligosaccharides, which are further hydrolysed into the respective sugar monomers by a battery of intracellular glycoside hydrolases. One of these intracellular processing enzymes is β-L-arabinopyranosidase (Abp), which is capable of removing β-L-arabinopyranose residues from naturally occurring arabino-polysaccharides. As arabino-polymers constitute a significant part of the hemicellulolytic content of plant biomass, their efficient enzymatic degradation presents an important challenge for many potential biotechnological applications. This aspect has led to an increasing interest in the biochemical characterization and structural analysis of this and related hemicellulases. Abp from G. stearothermophilus T-6 has recently been cloned, overexpressed, purified, biochemically characterized and crystallized in our laboratory, as part of its complete structure-function study. The best crystals obtained for this enzyme belonged to the primitive orthorhombic space group P2(1)2(1)2(1), with average unit-cell parameters a = 107.7, b = 202.2, c = 287.3 Å. Full diffraction data sets to 2.3 Å resolution have been collected for both the wild-type enzyme and its D197A catalytic mutant from flash-cooled crystals at 100 K, using synchrotron radiation. These data are currently being used for a high-resolution three-dimensional structure determination of Abp.
Collapse
Affiliation(s)
- Shifra Lansky
- Institute of Chemistry and the Laboratory for Structural Chemistry and Biology, Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
24
|
Catalytic activity and thermostability of enzymes immobilized on silanized surface: Influence of the crosslinking agent. Enzyme Microb Technol 2013; 52:336-43. [DOI: 10.1016/j.enzmictec.2013.02.018] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Revised: 02/22/2013] [Accepted: 02/25/2013] [Indexed: 01/17/2023]
|
25
|
Lansky S, Alalouf O, Solomon V, Alhassid A, Govada L, Chayen NE, Chayan NE, Belrhali H, Shoham Y, Shoham G. Crystallization and preliminary crystallographic analysis of Axe2, an acetylxylan esterase from Geobacillus stearothermophilus. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:430-4. [PMID: 23545652 DOI: 10.1107/s1744309113004260] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 02/12/2013] [Indexed: 11/10/2022]
Abstract
Acetylxylan esterases are part of the hemi-cellulolytic system of many microorganisms which utilize plant biomass for growth. Xylans, which are polymeric sugars that constitute a significant part of the plant biomass, are usually substituted with acetyl side groups attached at position 2 or 3 of the xylose backbone units. Acetylxylan esterases hydrolyse the ester linkages of the xylan acetyl groups and thus improve the ability of main-chain hydrolysing enzymes to break down the sugar backbone units. As such, these enzymes play an important part in the hemi-cellulolytic utilization system of many microorganisms that use plant biomass for growth. Interest in the biochemical characterization and structural analysis of these enzymes stems from their numerous potential biotechnological applications. An acetylxylan esterase (Axe2) of this type from Geobacillus stearothermophilus T-6 has recently been cloned, overexpressed, purified, biochemically characterized and crystallized. One of the crystal forms obtained (RB1) belonged to the tetragonal space group I422, with unit-cell parameters a = b = 110.2, c = 213.1 Å. A full diffraction data set was collected to 1.85 Å resolution from flash-cooled crystals of the wild-type enzyme at 100 K using synchrotron radiation. A selenomethionine derivative of Axe2 has also been prepared and crystallized for single-wavelength anomalous diffraction experiments. The crystals of the selenomethionine-derivatized Axe2 appeared to be isomorphous to those of the wild-type enzyme and enabled the measurement of a full 1.85 Å resolution diffraction data set at the selenium absorption edge and a full 1.70 Å resolution data set at a remote wavelength. These data are currently being used for three-dimensional structure determination of the Axe2 protein.
Collapse
Affiliation(s)
- Shifra Lansky
- Institute of Chemistry and the Laboratory for Structural Chemistry and Biology, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Han Y, Agarwal V, Dodd D, Kim J, Bae B, Mackie RI, Nair SK, Cann IKO. Biochemical and structural insights into xylan utilization by the thermophilic bacterium Caldanaerobius polysaccharolyticus. J Biol Chem 2012; 287:34946-34960. [PMID: 22918832 DOI: 10.1074/jbc.m112.391532] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hemicellulose is the next most abundant plant cell wall component after cellulose. The abundance of hemicellulose such as xylan suggests that their hydrolysis and conversion to biofuels can improve the economics of bioenergy production. In an effort to understand xylan hydrolysis at high temperatures, we sequenced the genome of the thermophilic bacterium Caldanaerobius polysaccharolyticus. Analysis of the partial genome sequence revealed a gene cluster that contained both hydrolytic enzymes and also enzymes key to the pentose-phosphate pathway. The hydrolytic enzymes in the gene cluster were demonstrated to convert products from a large endoxylanase (Xyn10A) predicted to anchor to the surface of the bacterium. We further use structural and calorimetric studies to demonstrate that the end products of Xyn10A hydrolysis of xylan are recognized and bound by XBP1, a putative solute-binding protein, likely for transport into the cell. The XBP1 protein showed preference for xylo-oligosaccharides as follows: xylotriose > xylobiose > xylotetraose. To elucidate the structural basis for the oligosaccharide preference, we solved the co-crystal structure of XBP1 complexed with xylotriose to a 1.8-Å resolution. Analysis of the biochemical data in the context of the co-crystal structure reveals the molecular underpinnings of oligosaccharide length specificity.
Collapse
Affiliation(s)
- Yejun Han
- Energy Biosciences Institute, University of Illinois, Urbana, Illinois 61801; Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801
| | - Vinayak Agarwal
- Center for Biophysics and Computational Biology, University of Illinois, Urbana, Illinois 61801; Department of Biochemistry, University of Illinois, Urbana, Illinois 61801
| | - Dylan Dodd
- Energy Biosciences Institute, University of Illinois, Urbana, Illinois 61801; Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801; Department of Microbiology, University of Illinois, Urbana, Illinois 61801
| | - Jason Kim
- Energy Biosciences Institute, University of Illinois, Urbana, Illinois 61801; Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801; Department of Molecular and Cellular Biology, University of Illinois, Urbana, Illinois 61801
| | - Brian Bae
- Department of Biochemistry, University of Illinois, Urbana, Illinois 61801
| | - Roderick I Mackie
- Energy Biosciences Institute, University of Illinois, Urbana, Illinois 61801; Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801; Department of Animal Sciences, University of Illinois, Urbana, Illinois 61801
| | - Satish K Nair
- Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801; Center for Biophysics and Computational Biology, University of Illinois, Urbana, Illinois 61801; Department of Biochemistry, University of Illinois, Urbana, Illinois 61801.
| | - Isaac K O Cann
- Energy Biosciences Institute, University of Illinois, Urbana, Illinois 61801; Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801; Department of Microbiology, University of Illinois, Urbana, Illinois 61801; Department of Molecular and Cellular Biology, University of Illinois, Urbana, Illinois 61801; Department of Animal Sciences, University of Illinois, Urbana, Illinois 61801.
| |
Collapse
|
27
|
Isolation and characterization of a novel GH67 α-glucuronidase from a mixed culture. ACTA ACUST UNITED AC 2012; 39:1245-51. [DOI: 10.1007/s10295-012-1128-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 03/30/2012] [Indexed: 10/28/2022]
Abstract
Abstract
Hemicelluloses represent a large reservoir of carbohydrates that can be utilized for renewable products. Hydrolysis of hemicellulose into simple sugars is inhibited by its various chemical substituents. The glucuronic acid substituent is removed by the enzyme α-glucuronidase. A gene (deg75-AG) encoding a putative α-glucuronidase enzyme was isolated from a culture of mixed compost microorganisms. The gene was subcloned into a prokaryotic vector, and the enzyme was overexpressed and biochemically characterized. The DEG75-AG enzyme had optimum activity at 45 °C. Unlike other α-glucuronidases, the DEG75-AG had a more basic pH optimum of 7–8. When birchwood xylan was used as substrate, the addition of DEG75-AG increased hydrolysis twofold relative to xylanase alone.
Collapse
|
28
|
Alalouf O, Balazs Y, Volkinshtein M, Grimpel Y, Shoham G, Shoham Y. A new family of carbohydrate esterases is represented by a GDSL hydrolase/acetylxylan esterase from Geobacillus stearothermophilus. J Biol Chem 2011; 286:41993-42001. [PMID: 21994937 DOI: 10.1074/jbc.m111.301051] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Acetylxylan esterases hydrolyze the ester linkages of acetyl groups at positions 2 and/or 3 of the xylose moieties in xylan and play an important role in enhancing the accessibility of xylanases to the xylan backbone. The hemicellulolytic system of the thermophilic bacterium Geobacillus stearothermophilus T-6 comprises a putative acetylxylan esterase gene, axe2. The gene product belongs to the GDSL hydrolase family and does not share sequence homology with any of the carbohydrate esterases in the CAZy Database. The axe2 gene is induced by xylose, and the purified gene product completely deacetylates xylobiose peracetate (fully acetylated) and hydrolyzes the synthetic substrates 2-naphthyl acetate, 4-nitrophenyl acetate, 4-methylumbelliferyl acetate, and phenyl acetate. The pH profiles for k(cat) and k(cat)/K(m) suggest the existence of two ionizable groups affecting the binding of the substrate to the enzyme. Using NMR spectroscopy, the regioselectivity of Axe2 was directly determined with the aid of one-dimensional selective total correlation spectroscopy. Methyl 2,3,4-tri-O-acetyl-β-d-xylopyranoside was rapidly deacetylated at position 2 or at positions 3 and 4 to give either diacetyl or monoacetyl intermediates, respectively; methyl 2,3,4,6-tetra-O-acetyl-β-d-glucopyranoside was initially deacetylated at position 6. In both cases, the complete hydrolysis of the intermediates occurred at a much slower rate, suggesting that the preferred substrate is the peracetate sugar form. Site-directed mutagenesis of Ser-15, His-194, and Asp-191 resulted in complete inactivation of the enzyme, consistent with their role as the catalytic triad. Overall, our results show that Axe2 is a serine acetylxylan esterase representing a new carbohydrate esterase family.
Collapse
Affiliation(s)
- Onit Alalouf
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 32000
| | - Yael Balazs
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000
| | - Margarita Volkinshtein
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 32000
| | - Yael Grimpel
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 32000
| | - Gil Shoham
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Yuval Shoham
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 32000.
| |
Collapse
|
29
|
Naumoff DG. Hierarchical classification of glycoside hydrolases. BIOCHEMISTRY (MOSCOW) 2011; 76:622-35. [PMID: 21639842 DOI: 10.1134/s0006297911060022] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This review deals with structural and functional features of glycoside hydrolases, a widespread group of enzymes present in almost all living organisms. Their catalytic domains are grouped into 120 amino acid sequence-based families in the international classification of the carbohydrate-active enzymes (CAZy database). At a higher hierarchical level some of these families are combined in 14 clans. Enzymes of the same clan have common evolutionary origin of their genes and share the most important functional characteristics such as composition of the active center, anomeric configuration of cleaved glycosidic bonds, and molecular mechanism of the catalyzed reaction (either inverting, or retaining). There are now extensive data in the literature concerning the relationship between glycoside hydrolase families belonging to different clans and/or included in none of them, as well as information on phylogenetic protein relationship within particular families. Summarizing these data allows us to propose a multilevel hierarchical classification of glycoside hydrolases and their homologs. It is shown that almost the whole variety of the enzyme catalytic domains can be brought into six main folds, large groups of proteins having the same three-dimensional structure and the supposed common evolutionary origin.
Collapse
Affiliation(s)
- D G Naumoff
- S. N. Winogradsky Institute of Microbiology, Russian Academy of Sciences, Moscow, 117312, Russia.
| |
Collapse
|
30
|
Chaloupkova R, Prokop Z, Sato Y, Nagata Y, Damborsky J. Stereoselectivity and conformational stability of haloalkane dehalogenase DbjA from Bradyrhizobium japonicum USDA110: the effect of pH and temperature. FEBS J 2011; 278:2728-38. [DOI: 10.1111/j.1742-4658.2011.08203.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Jones RT, Sanchez-Contreras M, Vlisidou I, Amos MR, Yang G, Muñoz-Berbel X, Upadhyay A, Potter UJ, Joyce SA, Ciche TA, Jenkins ATA, Bagby S, Ffrench-Constant RH, Waterfield NR. Photorhabdus adhesion modification protein (Pam) binds extracellular polysaccharide and alters bacterial attachment. BMC Microbiol 2010; 10:141. [PMID: 20462430 PMCID: PMC2878306 DOI: 10.1186/1471-2180-10-141] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Accepted: 05/12/2010] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Photorhabdus are Gram-negative nematode-symbiotic and insect-pathogenic bacteria. The species Photorhabdus asymbiotica is able to infect humans as well as insects. We investigated the secreted proteome of a clinical isolate of P. asymbiotica at different temperatures in order to identify proteins relevant to the infection of the two different hosts. RESULTS A comparison of the proteins secreted by a clinical isolate of P. asymbiotica at simulated insect (28 degrees C) and human (37 degrees C) temperatures led to the identification of a small and highly abundant protein, designated Pam, that is only secreted at the lower temperature. The pam gene is present in all Photorhabdus strains tested and shows a high level of conservation across the whole genus, suggesting it is both ancestral to the genus and probably important to the biology of the bacterium. The Pam protein shows limited sequence similarity to the 13.6 kDa component of a binary toxin of Bacillus thuringiensis. Nevertheless, injection or feeding of heterologously produced Pam showed no insecticidal activity to either Galleria mellonella or Manduca sexta larvae. In bacterial colonies, Pam is associated with an extracellular polysaccharide (EPS)-like matrix, and modifies the ability of wild-type cells to attach to an artificial surface. Interestingly, Surface Plasmon Resonance (SPR) binding studies revealed that the Pam protein itself has adhesive properties. Although Pam is produced throughout insect infection, genetic knockout does not affect either insect virulence or the ability of P. luminescens to form a symbiotic association with its host nematode, Heterorhabditis bacteriophora. CONCLUSIONS We studied a highly abundant protein, Pam, which is secreted in a temperature-dependent manner in P. asymbiotica. Our findings indicate that Pam plays an important role in enhancing surface attachment in insect blood. Its association with exopolysaccharide suggests it may exert its effect through mediation of EPS properties. Despite its abundance and conservation in the genus, we find no evidence for a role of Pam in either virulence or symbiosis.
Collapse
Affiliation(s)
- Robert T Jones
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA27AY, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Devenish SRA, Gerrard JA. The role of quaternary structure in (β/α)8-barrel proteins: evolutionary happenstance or a higher level of structure-function relationships? Org Biomol Chem 2009; 7:833-9. [DOI: 10.1039/b818251p] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Schwab T, Skegro D, Mayans O, Sterner R. A Rationally Designed Monomeric Variant of Anthranilate Phosphoribosyltransferase from Sulfolobus solfataricus is as Active as the Dimeric Wild-type Enzyme but Less Thermostable. J Mol Biol 2008; 376:506-16. [DOI: 10.1016/j.jmb.2007.11.078] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Revised: 11/14/2007] [Accepted: 11/23/2007] [Indexed: 11/28/2022]
|
34
|
Shulami S, Zaide G, Zolotnitsky G, Langut Y, Feld G, Sonenshein AL, Shoham Y. A two-component system regulates the expression of an ABC transporter for xylo-oligosaccharides in Geobacillus stearothermophilus. Appl Environ Microbiol 2006; 73:874-84. [PMID: 17142383 PMCID: PMC1800775 DOI: 10.1128/aem.02367-06] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Geobacillus stearothermophilus T-6 utilizes an extensive and highly regulated hemicellulolytic system. The genes comprising the xylanolytic system are clustered in a 39.7-kb chromosomal segment. This segment contains a 6-kb transcriptional unit (xynDCEFG) coding for a potential two-component system (xynDC) and an ATP-binding cassette (ABC) transport system (xynEFG). The xynD promoter region contains a 16-bp inverted repeat resembling the operator site for the xylose repressor, XylR. XylR was found to bind specifically to this sequence, and binding was efficiently prevented in vitro in the presence of xylose. The ABC transport system was shown to comprise an operon of three genes (xynEFG) that is transcribed from its own promoter. The nonphosphorylated fused response regulator, His6-XynC, bound to a 220-bp fragment corresponding to the xynE operator. DNase I footprinting analysis showed four protected zones that cover the -53 and the +34 regions and revealed direct repeat sequences of a GAAA-like motif. In vitro transcriptional assays and quantitative reverse transcription-PCR demonstrated that xynE transcription is activated 140-fold in the presence of 1.5 microM XynC. The His6-tagged sugar-binding lipoprotein (XynE) of the ABC transporter interacted with different xylosaccharides, as demonstrated by isothermal titration calorimetry. The change in the heat capacity of binding (DeltaCp) for XynE with xylotriose suggests a stacking interaction in the binding site that can be provided by a single Trp residue and a sugar moiety. Taken together, our data show that XynEFG constitutes an ABC transport system for xylo-oligosaccharides and that its transcription is negatively regulated by XylR and activated by the response regulator XynC, which is part of a two-component sensing system.
Collapse
Affiliation(s)
- Smadar Shulami
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | | | | | | | | | | | |
Collapse
|
35
|
Brüx C, Ben-David A, Shallom-Shezifi D, Leon M, Niefind K, Shoham G, Shoham Y, Schomburg D. The structure of an inverting GH43 beta-xylosidase from Geobacillus stearothermophilus with its substrate reveals the role of the three catalytic residues. J Mol Biol 2006; 359:97-109. [PMID: 16631196 DOI: 10.1016/j.jmb.2006.03.005] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Revised: 03/01/2006] [Accepted: 03/02/2006] [Indexed: 11/26/2022]
Abstract
beta-D-Xylosidases are glycoside hydrolases that catalyze the release of xylose units from short xylooligosaccharides and are engaged in the final breakdown of plant cell-wall hemicellulose. Here we describe the enzyme-substrate crystal structure of an inverting family 43 beta-xylosidase, from Geobacillus stearothermophilus T-6 (XynB3). Each XynB3 monomeric subunit is organized in two domains: an N-terminal five-bladed beta-propeller catalytic domain, and a beta-sandwich domain. The active site possesses a pocket topology, which is mainly constructed from the beta-propeller domain residues, and is closed on one side by a loop that originates from the beta-sandwich domain. This loop restricts the length of xylose units that can enter the active site, consistent with the exo mode of action of the enzyme. Structures of the enzyme-substrate (xylobiose) complex provide insights into the role of the three catalytic residues. The xylose moiety at the -1 subsite is held by a large number of hydrogen bonds, whereas only one hydroxyl of the xylose unit at the +1 subsite can create hydrogen bonds with the enzyme. The general base, Asp15, is located on the alpha-side of the -1 xylose sugar ring, 5.2 Angstroms from the anomeric carbon. This location enables it to activate a water molecule for a single-displacement attack on the anomeric carbon, resulting in inversion of the anomeric configuration. Glu187, the general acid, is 2.4 Angstroms from the glycosidic oxygen atom and can protonate the leaving aglycon. The third catalytic carboxylic acid, Asp128, is 4 Angstroms from the general acid; modulating its pK(a) and keeping it in the correct orientation relative to the substrate. In addition, Asp128 plays an important role in substrate binding via the 2-O of the glycon, which is important for the transition-state stabilization. Taken together, these key roles explain why Asp128 is an invariant among all five-bladed beta-propeller glycoside hydrolases.
Collapse
Affiliation(s)
- Christian Brüx
- Institute for Biochemistry, University of Cologne, Germany
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Brüx C, Niefind K, Ben-David A, Leon M, Shoham G, Shoham Y, Schomburg D. Crystallization and preliminary crystallographic analysis of a family 43 beta-D-xylosidase from Geobacillus stearothermophilus T-6. Acta Crystallogr Sect F Struct Biol Cryst Commun 2005; 61:1054-7. [PMID: 16511233 PMCID: PMC1978154 DOI: 10.1107/s1744309105036262] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2005] [Accepted: 11/04/2005] [Indexed: 11/10/2022]
Abstract
Beta-D-Xylosidases (EC 3.2.1.37) are hemicellulases that cleave single xylose units from the nonreducing end of xylooligomers. In this study, the crystallization and preliminary X-ray analysis of a beta-D-xylosidase from Geobacillus stearothermophilus T-6 (XynB3), a family 43 glycoside hydrolase, is described. XynB3 is a 535-amino-acid protein with a calculated molecular weight of 61 891 Da. Purified recombinant native and catalytic inactive mutant proteins were crystallized and cocrystallized with xylobiose in two different space groups, P2(1)2(1)2 (unit-cell parameters a = 98.32, b = 99.36, c = 258.64 A) and P4(1)2(1)2 (or the enantiomorphic space group P4(3)2(1)2; unit-cell parameters a = b = 140.15, c = 233.11 A), depending on the detergent. Transferring crystals to cryoconditions required a very careful protocol. Orthorhombic crystals diffract to 2.5 A and tetragonal crystals to 2.2 A.
Collapse
Affiliation(s)
- Christian Brüx
- Institute for Biochemistry, University of Cologne, Germany
| | | | - Alon Ben-David
- Department of Biotechnology and Food Engineering and Institute of Catalysis Science and Technology, Technion–Israel Institute of Technology, Haifa, Israel
| | - Maya Leon
- Department of Biotechnology and Food Engineering and Institute of Catalysis Science and Technology, Technion–Israel Institute of Technology, Haifa, Israel
| | - Gil Shoham
- Department of Inorganic Chemistry and The Laboratory for Structural Chemistry and Biology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yuval Shoham
- Department of Biotechnology and Food Engineering and Institute of Catalysis Science and Technology, Technion–Israel Institute of Technology, Haifa, Israel
| | | |
Collapse
|
37
|
Czjzek M, Ben David A, Bravman T, Shoham G, Henrissat B, Shoham Y. Enzyme–Substrate Complex Structures of a GH39 β-Xylosidase from Geobacillus stearothermophilus. J Mol Biol 2005; 353:838-46. [PMID: 16212978 DOI: 10.1016/j.jmb.2005.09.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Revised: 08/31/2005] [Accepted: 09/01/2005] [Indexed: 10/25/2022]
Abstract
Beta-D-Xylosidases are glycoside hydrolases that catalyse the release of xylose units from short xylooligosaccharides and are engaged in the final breakdown of plant cell-wall hemicelluloses. beta-D-Xylosidases are found in glycoside hydrolase families 3, 39, 43, 52 and 54. The first crystal structure of a GH39 beta-xylosidase revealed a multi-domain organization with the catalytic domain having the canonical (beta/alpha)8 barrel fold. Here, we report the crystal structure of the GH39 Geobacillus stearothermophilus beta-D-xylosidase, inactivated by a point mutation of the general acid-base residue E160A, in complex with the chromogenic substrate molecule 2,5-dinitrophenyl-beta-D-xyloside. Surprisingly, six of the eight active sites present in the crystallographic asymmetric unit contain the trapped covalent glycosyl-enzyme intermediate, while two of them still contain the uncleaved substrate. The structural characterization of these two critical species along the reaction coordinate of this enzyme identifies the residues forming its xyloside-binding pocket as well as those essential for its aglycone recognition.
Collapse
Affiliation(s)
- Mirjam Czjzek
- Station Biologique de Roscoff, Végétaux Marins et Biomolécules, UMR7139-CNRS-UPMC, Place George Teissier, BP74, 29682 Roscoff, France.
| | | | | | | | | | | |
Collapse
|
38
|
Naumoff DG. GH97 is a new family of glycoside hydrolases, which is related to the alpha-galactosidase superfamily. BMC Genomics 2005; 6:112. [PMID: 16131397 PMCID: PMC1249566 DOI: 10.1186/1471-2164-6-112] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2005] [Accepted: 08/30/2005] [Indexed: 11/29/2022] Open
Abstract
Background As a rule, about 1% of genes in a given genome encode glycoside hydrolases and their homologues. On the basis of sequence similarity they have been grouped into more than ninety GH families during the last 15 years. The GH97 family has been established very recently and initially included only 18 bacterial proteins. However, the evolutionary relationship of the genes encoding proteins of this family remains unclear, as well as their distribution among main groups of the living organisms. Results The extensive search of the current databases allowed us to double the number of GH97 family proteins. Five subfamilies were distinguished on the basis of pairwise sequence comparison and phylogenetic analysis. Iterative sequence analysis revealed the relationship of the GH97 family with the GH27, GH31, and GH36 families of glycosidases, which belong to the α-galactosidase superfamily, as well as a more distant relationship with some other glycosidase families (GH13 and GH20). Conclusion The results of this study show an unexpected sequence similarity of GH97 family proteins with glycoside hydrolases from several other families, that have (β/α)8-barrel fold of the catalytic domain and a retaining mechanism of the glycoside bond hydrolysis. These data suggest a common evolutionary origin of glycosidases representing different families and clans.
Collapse
Affiliation(s)
- Daniil G Naumoff
- State Institute for Genetics and Selection of Industrial Microorganisms, I-Dorozhny proezd, 1, Moscow 117545, Russia.
| |
Collapse
|
39
|
Shallom D, Leon M, Bravman T, Ben-David A, Zaide G, Belakhov V, Shoham G, Schomburg D, Baasov T, Shoham Y. Biochemical Characterization and Identification of the Catalytic Residues of a Family 43 β-d-Xylosidase from Geobacillus stearothermophilus T-6. Biochemistry 2004; 44:387-97. [PMID: 15628881 DOI: 10.1021/bi048059w] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Beta-D-xylosidases are hemilcellulases that hydrolyze short xylooligosaccharides into xylose units. Here, we describe the characterization and kinetic analysis of a family 43 beta-xylosidase from Geobacillus stearothermophilus T-6 (XynB3). Enzymes in this family use an inverting single-displacement mechanism with two conserved carboxylic acids, a general acid, and a general base. XynB3 was most active at 65 degrees C and pH 6.5, with clear preference to xylose-based substrates. Products analysis indicated that XynB3 is an exoglycosidase that cleaves single xylose units from the nonreducing end of xylooligomers. On the basis of sequence homology, amino acids Asp15 and Glu187 were suggested to act as the general-base and general-acid catalytic residues, respectively. Kinetic analysis with substrates bearing different leaving groups showed that, for the wild-type enzyme, the k(cat) and k(cat)/K(m) values were only marginally affected by the leaving-group reactivity, whereas for the E187G mutant, both values exhibited significantly greater dependency on the pK(a) of the leaving group. The pH-dependence activity profile of the putative general-acid mutant (E187G) revealed that the protonated catalytic residue was removed. Addition of the exogenous nucleophile azide did not affect the activities of the wild type or the E187G mutant but rescued the activity of the D15G mutant. On the basis of thin-layer chromatography and (1)H NMR analyses, xylose and not xylose azide was the only product of the accelerated reaction, suggesting that the azide ion does not attack the anomeric carbon directly but presumably activates a water molecule. Together, these results confirm the suggested catalytic role of Glu187 and Asp15 in XynB3 and provide the first unequivocal evidence regarding the exact roles of the catalytic residues in an inverting GH43 glycosidase.
Collapse
Affiliation(s)
- Dalia Shallom
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|