1
|
Singh S, Singh J, Varshney U. Lamotrigine-mediated rescue of RsgA-deficient Escherichia coli reveals another role of IF2 in ribosome biogenesis. J Bacteriol 2024; 206:e0011924. [PMID: 38837341 PMCID: PMC11270870 DOI: 10.1128/jb.00119-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/10/2024] [Indexed: 06/07/2024] Open
Abstract
RsgA (small ribosomal subunit, 30S, GTPase), a late-stage biogenesis factor, releases RbfA from 30S-RbfA complex. Escherichia coli ΔrsgA (deleted for rsgA) shows a slow growth phenotype and an increased accumulation of 17S rRNA (precursor of 16S rRNA) and the ribosomal subunits. Here, we show that the rescue of the ΔrsgA strain by multicopy infB (IF2) is enhanced by simultaneous overexpression of initiator tRNA (i-tRNA), suggesting a role of initiation complex formation in growth rescue. The synergistic effect of IF2/i-tRNA is accompanied by increased processing of 17S rRNA (to 16S), and protection of the 16S rRNA 3'-minor domain. Importantly, we show that an IF2-binding anticonvulsant drug, lamotrigine (Ltg), also rescues the ΔrsgA strain growth. The rescue is accompanied by increased processing of 17S rRNA, protection of the 3'-minor domain of 16S rRNA, and increased 70S ribosomes in polysome profiles. However, Ltg becomes inhibitory to the ΔrsgA strain whose growth was already rescued by an L83R mutation in rbfA. Interestingly, like wild-type infB, overproduction of LtgRinfB alleles (having indel mutations in their domain II) also rescues the ΔrsgA strain (independent of Ltg). Our observations suggest the dual role of IF2 in rescuing the ΔrsgA strain. First, together with i-tRNA, IF2 facilitates the final steps of processing of 17S rRNA. Second, a conformer of IF2 functionally compensates for RsgA, albeit poorly, during 30S biogenesis. IMPORTANCE RsgA is a late-stage ribosome biogenesis factor. Earlier, infB (IF2) was isolated as a multicopy suppressor of the Escherichia coli ΔrsgA strain. How IF2 rescued the strain growth remained unclear. This study reveals that (i) the multicopy infB-mediated growth rescue of E. coli ΔrsgA and the processing of 17S precursor to 16S rRNA in the strain are enhanced upon simultaneous overexpression of initiator tRNA and (ii) a conformer of IF2, whose occurrence increases when IF2 is overproduced or when E. coli ΔrsgA is treated with Ltg (an anticonvulsant drug that binds to domain II of IF2), compensates for the function of RsgA. Thus, this study reveals yet another role of IF2 in ribosome biogenesis.
Collapse
Affiliation(s)
- Sudhir Singh
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Jitendra Singh
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| |
Collapse
|
2
|
Fernández-García L, Tomás M, Wood TK. Ribosome inactivation by Escherichia coli GTPase RsgA inhibits T4 phage. Front Microbiol 2023; 14:1242163. [PMID: 37670987 PMCID: PMC10475562 DOI: 10.3389/fmicb.2023.1242163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/07/2023] [Indexed: 09/07/2023] Open
Abstract
Introduction Bacteria must combat phages, and myriad bacterial anti-phage systems have been discovered that reduce host metabolism, for example, by depleting energetic compounds like ATP and NAD+. Hence, these systems indirectly inhibit protein production. Surprisingly, direct reduction of ribosome activity has not been demonstrated to thwart phage. Methods Here, by producing each of the 4,287 Escherichia coli proteins and selecting for anti-phage activity that leads to enhanced growth, we investigated the role of host proteins in phage inhibition. Results and discussion We identified that E. coli GTPase RsgA inhibits lytic phage T4 by inactivating ribosomes.
Collapse
Affiliation(s)
- Laura Fernández-García
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, United States
- Microbiology Translational and Multidisciplinary (MicroTM)-Research Institute Biomedical A Coruña (INIBIC) and Microbiology Department of Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
| | - María Tomás
- Microbiology Translational and Multidisciplinary (MicroTM)-Research Institute Biomedical A Coruña (INIBIC) and Microbiology Department of Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
| | - Thomas K. Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
3
|
Maksimova E, Kravchenko O, Korepanov A, Stolboushkina E. Protein Assistants of Small Ribosomal Subunit Biogenesis in Bacteria. Microorganisms 2022; 10:microorganisms10040747. [PMID: 35456798 PMCID: PMC9032327 DOI: 10.3390/microorganisms10040747] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/16/2022] [Accepted: 03/26/2022] [Indexed: 01/27/2023] Open
Abstract
Ribosome biogenesis is a fundamental and multistage process. The basic steps of ribosome assembly are the transcription, processing, folding, and modification of rRNA; the translation, folding, and modification of r-proteins; and consecutive binding of ribosomal proteins to rRNAs. Ribosome maturation is facilitated by biogenesis factors that include a broad spectrum of proteins: GTPases, RNA helicases, endonucleases, modification enzymes, molecular chaperones, etc. The ribosome assembly factors assist proper rRNA folding and protein–RNA interactions and may sense the checkpoints during the assembly to ensure correct order of this process. Inactivation of these factors is accompanied by severe growth phenotypes and accumulation of immature ribosomal subunits containing unprocessed rRNA, which reduces overall translation efficiency and causes translational errors. In this review, we focus on the structural and biochemical analysis of the 30S ribosomal subunit assembly factors RbfA, YjeQ (RsgA), Era, KsgA (RsmA), RimJ, RimM, RimP, and Hfq, which take part in the decoding-center folding.
Collapse
Affiliation(s)
| | | | - Alexey Korepanov
- Correspondence: (A.K.); (E.S.); Tel.: +7-925-7180670 (A.K.); +7-915-4791359 (E.S.)
| | - Elena Stolboushkina
- Correspondence: (A.K.); (E.S.); Tel.: +7-925-7180670 (A.K.); +7-915-4791359 (E.S.)
| |
Collapse
|
4
|
How to save a bacterial ribosome in times of stress. Semin Cell Dev Biol 2022; 136:3-12. [PMID: 35331628 DOI: 10.1016/j.semcdb.2022.03.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/01/2022] [Accepted: 03/11/2022] [Indexed: 11/21/2022]
Abstract
Biogenesis of ribosomes is one of the most cost- and resource-intensive processes in all living cells. In bacteria, ribosome biogenesis is rate-limiting for growth and must be tightly coordinated to yield maximum fitness of the cells. Since bacteria are continuously facing environmental changes and stress conditions, they have developed sophisticated systems to sense and regulate their nutritional status. Amino acid starvation leads to the synthesis and accumulation of the nucleotide-based second messengers ppGpp and pppGpp [(p)ppGpp], which in turn function as central players of a pleiotropic metabolic adaptation mechanism named the stringent response. Here, we review our current knowledge on the multiple roles of (p)ppGpp in the stress-related modulation of the prokaryotic protein biosynthesis machinery with the ribosome as its core constituent. The alarmones ppGpp/pppGpp act as competitors of their GDP/GTP counterparts, to affect a multitude of ribosome-associated P-loop GTPases involved in the translation cycle, ribosome biogenesis and hibernation. A similar mode of inhibition has been found for the GTPases of the proteins involved in the SRP-dependent membrane-targeting machinery present in the periphery of the ribosome. In this sense, during stringent conditions, binding of (p)ppGpp restricts the membrane insertion and secretion of proteins. Altogether, we highlight the enormously resource-intensive stages of ribosome biogenesis as a critical regulatory hub of the stringent response that ultimately tunes the protein synthesis capacity and consequently the survival of the cell.
Collapse
|
5
|
The Stringent Response Inhibits 70S Ribosome Formation in Staphylococcus aureus by Impeding GTPase-Ribosome Interactions. mBio 2021; 12:e0267921. [PMID: 34749534 PMCID: PMC8579695 DOI: 10.1128/mbio.02679-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
During nutrient limitation, bacteria produce the alarmones (p)ppGpp as effectors of a stress signaling network termed the stringent response. RsgA, RbgA, Era, and HflX are four ribosome-associated GTPases (RA-GTPases) that bind to (p)ppGpp in Staphylococcus aureus. These enzymes are cofactors in ribosome assembly, where they cycle between the ON (GTP-bound) and OFF (GDP-bound) ribosome-associated states. Entry into the OFF state occurs upon hydrolysis of GTP, with GTPase activity increasing substantially upon ribosome association. When bound to (p)ppGpp, GTPase activity is inhibited, reducing 70S ribosome assembly and growth. Here, we determine how (p)ppGpp impacts RA-GTPase-ribosome interactions. We show that RA-GTPases preferentially bind to 5′-diphosphate-containing nucleotides GDP and ppGpp over GTP, which is likely exploited as a regulatory mechanism within the cell to shut down ribosome biogenesis during stress. Stopped-flow fluorescence and association assays reveal that when bound to (p)ppGpp, the association of RA-GTPases to ribosomal subunits is destabilized, both in vitro and within bacterial cells. Consistently, structural analysis of the ppGpp-bound RA-GTPase RsgA reveals an OFF-state conformation similar to the GDP-bound state, with the G2/switch I loop adopting a conformation incompatible with ribosome association. Altogether, we highlight (p)ppGpp-mediated inhibition of RA-GTPases as a major mechanism of stringent response-mediated ribosome assembly and growth control.
Collapse
|
6
|
Jahagirdar D, Jha V, Basu K, Gomez-Blanco J, Vargas J, Ortega J. Alternative conformations and motions adopted by 30S ribosomal subunits visualized by cryo-electron microscopy. RNA (NEW YORK, N.Y.) 2020; 26:2017-2030. [PMID: 32989043 PMCID: PMC7668263 DOI: 10.1261/rna.075846.120] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 09/22/2020] [Indexed: 05/06/2023]
Abstract
It is only after recent advances in cryo-electron microscopy that it is now possible to describe at high-resolution structures of large macromolecules that do not crystalize. Purified 30S subunits interconvert between an "active" and "inactive" conformation. The active conformation was described by crystallography in the early 2000s, but the structure of the inactive form at high resolution remains unsolved. Here we used cryo-electron microscopy to obtain the structure of the inactive conformation of the 30S subunit to 3.6 Å resolution and study its motions. In the inactive conformation, an alternative base-pairing of three nucleotides causes the region of helix 44, forming the decoding center to adopt an unlatched conformation and the 3' end of the 16S rRNA positions similarly to the mRNA during translation. Incubation of inactive 30S subunits at 42°C reverts these structural changes. The air-water interface to which ribosome subunits are exposed during sample preparation also peel off some ribosomal proteins. Extended exposures to low magnesium concentrations make the ribosomal particles more susceptible to the air-water interface causing the unfolding of large rRNA structural domains. Overall, this study provides new insights about the conformational space explored by the 30S ribosomal subunit when the ribosomal particles are free in solution.
Collapse
Affiliation(s)
- Dushyant Jahagirdar
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
- Centre for Structural Biology, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - Vikash Jha
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
- Centre for Structural Biology, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - Kaustuv Basu
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
- Centre for Structural Biology, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - Josue Gomez-Blanco
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
- Centre for Structural Biology, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - Javier Vargas
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
- Centre for Structural Biology, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - Joaquin Ortega
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
- Centre for Structural Biology, McGill University, Montreal, Quebec H3G 0B1, Canada
| |
Collapse
|
7
|
Li J, Han L, Chen N, Zhu C, Gao Y, Shi X, Xu C, Hikichi Y, Zhang Y, Ohnishi K. Functional Characterization of RsRsgA for Ribosome Biosynthesis and Expression of the Type III Secretion System in Ralstonia solanacearum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:972-981. [PMID: 32240066 DOI: 10.1094/mpmi-10-19-0294-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
RsgA plays an important role in maturation of 30S subunit in many bacteria that assists in the release of RbfA from the 30S subunit during a late stage of ribosome biosynthesis. Here, we genetically characterized functional roles of RsgA in Ralstonia solanacearum, hereafter designated RsRsgA. Deletion of R. solanacearum rsgA or rbfA resulted in distinct deficiency of 16S ribosomal RNA, significantly slowed growth in broth medium, and diminished growth in nutrient-limited medium, which are similar as phenotypes of rsgA mutants and rbfA mutants of Escherichia coli and other bacteria. Our gene-expression studies revealed that RsRsgA is important for expression of genes encoding the type III secretion system (T3SS) (a pathogenicity determinant of R. solanacearum) both in vitro and in planta. Compared with the wild-type R. solanacearum strain, proliferation of the rsgA and rbfA mutants in tobacco leaves was significantly impaired, while they failed to migrate into tobacco xylem vessels from infiltrated leaves, and hence, these two mutants failed to cause any bacterial wilt disease in tobacco plants. It was further revealed that rsgA expression was highly enhanced under nutrient-limited conditions compared with that in broth medium and RsRsgA affects T3SS expression through the PrhN-PrhG-HrpB pathway. Moreover, expression of a subset of type III effectors was substantially impaired in the rsgA mutant, some of which are responsible for R. solanacearum GMI1000 elicitation of a hypersensitive response (HR) in tobacco leaves, while RsRsgA is not required for HR elicitation of GMI1000 in tobacco leaves. All these results provide novel insights into understanding various biological functions of RsgA proteins and complex regulation on the T3SS in R. solanacearum.
Collapse
Affiliation(s)
- Jiaman Li
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Liangliang Han
- College of Resources and Environment, Southwest University, Chongqing, China
- Faculty of Agriculture and Marine Science, Kochi University, Kochi, Japan
| | - Nan Chen
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, China
| | - Chao Zhu
- Faculty of Agriculture and Marine Science, Kochi University, Kochi, Japan
| | - Yuwei Gao
- Faculty of Agriculture and Marine Science, Kochi University, Kochi, Japan
| | - Xiaojun Shi
- College of Resources and Environment, Southwest University, Chongqing, China
- Key Laboratory of Efficient Utilization of Soil and Fertilizer Resources, Chongqing, China
| | - Changzheng Xu
- College of Life Science, Southwest University, Chongqing, China
| | - Yasufumi Hikichi
- Faculty of Agriculture and Marine Science, Kochi University, Kochi, Japan
| | - Yong Zhang
- College of Resources and Environment, Southwest University, Chongqing, China
- Key Laboratory of Efficient Utilization of Soil and Fertilizer Resources, Chongqing, China
| | - Kouhei Ohnishi
- Faculty of Agriculture and Marine Science, Kochi University, Kochi, Japan
| |
Collapse
|
8
|
Bennison DJ, Irving SE, Corrigan RM. The Impact of the Stringent Response on TRAFAC GTPases and Prokaryotic Ribosome Assembly. Cells 2019; 8:cells8111313. [PMID: 31653044 PMCID: PMC6912228 DOI: 10.3390/cells8111313] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/17/2019] [Accepted: 10/23/2019] [Indexed: 12/24/2022] Open
Abstract
Many facets of ribosome biogenesis and function, including ribosomal RNA (rRNA) transcription, 70S assembly and protein translation, are negatively impacted upon induction of a nutrient stress-sensing signalling pathway termed the stringent response. This stress response is mediated by the alarmones guanosine tetra- and penta-phosphate ((p)ppGpp), the accumulation of which leads to a massive cellular response that slows growth and aids survival. The 70S bacterial ribosome is an intricate structure, with assembly both complex and highly modular. Presiding over the assembly process is a group of P-loop GTPases within the TRAFAC (Translation Factor Association) superclass that are crucial for correct positioning of both early and late stage ribosomal proteins (r-proteins) onto the rRNA. Often described as 'molecular switches', members of this GTPase superfamily readily bind and hydrolyse GTP to GDP in a cyclic manner that alters the propensity of the GTPase to carry out a function. TRAFAC GTPases are considered to act as checkpoints to ribosome assembly, involved in binding to immature sections in the GTP-bound state, preventing further r-protein association until maturation is complete. Here we review our current understanding of the impact of the stringent response and (p)ppGpp production on ribosome maturation in prokaryotic cells, focusing on the inhibition of (p)ppGpp on GTPase-mediated subunit assembly, but also touching upon the inhibition of rRNA transcription and protein translation.
Collapse
Affiliation(s)
- Daniel J Bennison
- The Florey Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK.
| | - Sophie E Irving
- The Florey Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK.
| | - Rebecca M Corrigan
- The Florey Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK.
| |
Collapse
|
9
|
Wood A, Irving SE, Bennison DJ, Corrigan RM. The (p)ppGpp-binding GTPase Era promotes rRNA processing and cold adaptation in Staphylococcus aureus. PLoS Genet 2019; 15:e1008346. [PMID: 31465450 PMCID: PMC6738653 DOI: 10.1371/journal.pgen.1008346] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 09/11/2019] [Accepted: 08/05/2019] [Indexed: 12/15/2022] Open
Abstract
Ribosome assembly cofactors are widely conserved across all domains of life. One such group, the ribosome-associated GTPases (RA-GTPase), act as molecular switches to coordinate ribosome assembly. We previously identified the Staphylococcus aureus RA-GTPase Era as a target for the stringent response alarmone (p)ppGpp, with binding leading to inhibition of GTPase activity. Era is highly conserved throughout the bacterial kingdom and is essential in many species, although the function of Era in ribosome assembly is unclear. Here we show that Era is not essential in S. aureus but is important for 30S ribosomal subunit assembly. Protein interaction studies reveal that Era interacts with the 16S rRNA endonuclease YbeY and the DEAD-box RNA helicase CshA. We determine that both Era and CshA are required for growth at suboptimal temperatures and rRNA processing. Era and CshA also form direct interactions with the (p)ppGpp synthetase RelSau, with RelSau positively impacting the GTPase activity of Era but negatively affecting the helicase activity of CshA. We propose that in its GTP-bound form, Era acts as a hub protein on the ribosome to direct enzymes involved in rRNA processing/degradation and ribosome subunit assembly to their site of action. This activity is impeded by multiple components of the stringent response, contributing to the slowed growth phenotype synonymous with this stress response pathway. The bacterial ribosome is an essential cellular component and as such is the target for a number of currently used antimicrobials. Correct assembly of this complex macromolecule requires a number of accessory enzymes, the functions of which are poorly characterised. Here we examine the function of Era, a GTPase enzyme involved in 30S ribosomal subunit biogenesis in the important human pathogen S. aureus. We uncover that Era is not an essential enzyme in S. aureus, as it is in many other species, but is important for correct ribosome assembly. In a bid to determine a function for this enzyme in ribosomal assembly, we identify a number of protein interaction partners with roles in ribosomal RNA maturation or degradation, supporting the idea that Era acts as a hub protein facilitating ribosomal biogenesis. We also uncover a link between Era and the (p)ppGpp synthetase RelSau, revealing an additional level of control of rRNA processing by the stringent response. With this study we elaborate on the functions of GTPases in ribosomal assembly, processes that are controlled at multiple points by the stringent response.
Collapse
Affiliation(s)
- Alison Wood
- The Florey Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Sophie E. Irving
- The Florey Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Daniel J. Bennison
- The Florey Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Rebecca M. Corrigan
- The Florey Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- * E-mail:
| |
Collapse
|
10
|
Rocchio S, Santorelli D, Rinaldo S, Franceschini M, Malatesta F, Imperi F, Federici L, Travaglini-Allocatelli C, Di Matteo A. Structural and functional investigation of the Small Ribosomal Subunit Biogenesis GTPase A (RsgA) from Pseudomonas aeruginosa. FEBS J 2019; 286:4245-4260. [PMID: 31199072 DOI: 10.1111/febs.14959] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/03/2019] [Accepted: 06/11/2019] [Indexed: 01/16/2023]
Abstract
The Small Ribosomal Subunit Biogenesis GTPase A (RsgA) is a bacterial assembly factor involved in the late stages of the 30S subunit maturation. It is a multidomain GTPase in which the central circularly permutated GTPase domain is flanked by an OB domain and a Zn-binding domain. All three domains participate in the interaction with the 30S particle thus ensuring an efficient coupling between catalytic activity and biological function. In vivo studies suggested the relevance of rsgA in bacterial growth and cellular viability, but other pleiotropic roles of RsgA are also emerging. Here, we report the 3D structure of RsgA from Pseudomonas aeruginosa (PaRsgA) in the GDP-bound form. We also report a biophysical and biochemical characterization of the protein in both the GDP-bound and its nucleotide-free form. In particular, we report a kinetic analysis of the RsgA binding to GTP and GDP. We found that PaRsgA is able to bind both nucleotides with submicromolar affinity. The higher affinity towards GDP (KD = 0.011 μm) with respect to GTP (KD = 0.16 μm) is mainly ascribed to a smaller GDP dissociation rate. Our results confirm that PaRsgA, like most other GTPases, has a weak intrinsic enzymatic activity (kCAT = 0.058 min-1 ). Finally, the biological role of RsgA in P. aeruginosa was investigated, allowing us to conclude that rsgA is dispensable for P. aeruginosa growth but important for drug resistance and virulence in an animal infection model. DATABASES: Coordinates and structure factors for the protein structure described in this manuscript have been deposited in the Protein Data Bank (https://www.rcsb.org) with the accession code 6H4D.
Collapse
Affiliation(s)
- Serena Rocchio
- Dipartimento di Scienze Biochimiche, "A Rossi Fanelli"- Sapienza Università di Roma, Italy.,Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Roma, Italy
| | - Daniele Santorelli
- Dipartimento di Scienze Biochimiche, "A Rossi Fanelli"- Sapienza Università di Roma, Italy
| | - Serena Rinaldo
- Dipartimento di Scienze Biochimiche, "A Rossi Fanelli"- Sapienza Università di Roma, Italy
| | - Mimma Franceschini
- Ce.S.I.-MeT Centro di Scienze dell'Invecchiamento e Medicina Traslazionale, Università "G. d'Annunzio" di Chieti, Italy.,Dipartimento di Scienze Mediche, Orali e Biotecnologiche - Università "G. d'Annunzio" di Chieti, Italy
| | - Francesco Malatesta
- Dipartimento di Scienze Biochimiche, "A Rossi Fanelli"- Sapienza Università di Roma, Italy
| | - Francesco Imperi
- Dipartimento di Scienze, Università Roma Tre, Italy.,Dipartimento di Biologia e Biotecnologie Charles Darwin, Laboratorio affiliato all'Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza Università di Roma, Italy
| | - Luca Federici
- Ce.S.I.-MeT Centro di Scienze dell'Invecchiamento e Medicina Traslazionale, Università "G. d'Annunzio" di Chieti, Italy.,Dipartimento di Scienze Mediche, Orali e Biotecnologiche - Università "G. d'Annunzio" di Chieti, Italy
| | | | - Adele Di Matteo
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Roma, Italy
| |
Collapse
|
11
|
Mohanty B, Hanson-Manful P, Finn TJ, Chambers CR, McKellar JLO, Macindoe I, Helder S, Setiyaputra S, Zhong Y, Mackay JP, Patrick WM. The uncharacterized bacterial protein YejG has the same architecture as domain III of elongation factor G. Proteins 2019; 87:699-705. [PMID: 30958578 DOI: 10.1002/prot.25687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/23/2019] [Accepted: 04/04/2019] [Indexed: 11/08/2022]
Abstract
InterPro family IPR020489 comprises ~1000 uncharacterized bacterial proteins. Previously we showed that overexpressing the Escherichia coli representative of this family, EcYejG, conferred low-level resistance to aminoglycoside antibiotics. In an attempt to shed light on the biochemical function of EcYejG, we have solved its structure using multinuclear solution NMR spectroscopy. The structure most closely resembles that of domain III from elongation factor G (EF-G). EF-G catalyzes ribosomal translocation and mutations in EF-G have also been associated with aminoglycoside resistance. While we were unable to demonstrate a direct interaction between EcYejG and the ribosome, the protein might play a role in translation.
Collapse
Affiliation(s)
- Biswaranjan Mohanty
- Faculty of Pharmacy and Pharmaceutical Sciences, Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Paulina Hanson-Manful
- Institute of Natural and Mathematical Sciences, Massey University, Auckland, New Zealand
| | - Thomas J Finn
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | | | | | - Ingrid Macindoe
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Stephanie Helder
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Surya Setiyaputra
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Yichen Zhong
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Joel P Mackay
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Wayne M Patrick
- School of Biological Sciences, Victoria University, Wellington, New Zealand
| |
Collapse
|
12
|
Shalaeva DN, Cherepanov DA, Galperin MY, Golovin AV, Mulkidjanian AY. Evolution of cation binding in the active sites of P-loop nucleoside triphosphatases in relation to the basic catalytic mechanism. eLife 2018; 7:e37373. [PMID: 30526846 PMCID: PMC6310460 DOI: 10.7554/elife.37373] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 11/26/2018] [Indexed: 01/01/2023] Open
Abstract
The ubiquitous P-loop fold nucleoside triphosphatases (NTPases) are typically activated by an arginine or lysine 'finger'. Some of the apparently ancestral NTPases are, instead, activated by potassium ions. To clarify the activation mechanism, we combined comparative structure analysis with molecular dynamics (MD) simulations of Mg-ATP and Mg-GTP complexes in water and in the presence of potassium, sodium, or ammonium ions. In all analyzed structures of diverse P-loop NTPases, the conserved P-loop motif keeps the triphosphate chain of bound NTPs (or their analogs) in an extended, catalytically prone conformation, similar to that imposed on NTPs in water by potassium or ammonium ions. MD simulations of potassium-dependent GTPase MnmE showed that linking of alpha- and gamma phosphates by the activating potassium ion led to the rotation of the gamma-phosphate group yielding an almost eclipsed, catalytically productive conformation of the triphosphate chain, which could represent the basic mechanism of hydrolysis by P-loop NTPases.
Collapse
Affiliation(s)
- Daria N Shalaeva
- School of PhysicsUniversity of OsnabrückOsnabrückGermany
- A.N. Belozersky Institute of Physico-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia
- School of Bioengineering and BioinformaticsLomonosov Moscow State UniversityMoscowRussia
| | - Dmitry A Cherepanov
- A.N. Belozersky Institute of Physico-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia
- Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia
| | - Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaUnited States
| | - Andrey V Golovin
- School of Bioengineering and BioinformaticsLomonosov Moscow State UniversityMoscowRussia
| | - Armen Y Mulkidjanian
- School of PhysicsUniversity of OsnabrückOsnabrückGermany
- A.N. Belozersky Institute of Physico-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia
- School of Bioengineering and BioinformaticsLomonosov Moscow State UniversityMoscowRussia
| |
Collapse
|
13
|
Tamaru D, Amikura K, Shimizu Y, Nierhaus KH, Ueda T. Reconstitution of 30S ribosomal subunits in vitro using ribosome biogenesis factors. RNA (NEW YORK, N.Y.) 2018; 24:1512-1519. [PMID: 30076205 PMCID: PMC6191716 DOI: 10.1261/rna.065615.118] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 07/25/2018] [Indexed: 05/20/2023]
Abstract
Reconstitution of ribosomes in vitro from individual ribosomal proteins provides a powerful tool for understanding the ribosome assembly process including the sequential incorporation of ribosomal proteins. However, conventional assembly methods require high-salt conditions for efficient ribosome assembly. In this study, we reconstituted 30S ribosomal subunits from individually purified ribosomal proteins in the presence of ribosome biogenesis factors. In this system, two GTPases (Era and YjeQ) facilitated assembly of a 30S subunit exhibiting poly(U)-directed polyphenylalanine synthesis and native protein synthesis under physiological conditions. This in vitro system permits a study of the assembly process and function of ribosome biogenesis factors, and it will facilitate the generation of ribosomes from DNA without using cells.
Collapse
Affiliation(s)
- Daichi Tamaru
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan
| | - Kazuaki Amikura
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan
| | - Yoshihiro Shimizu
- Laboratory for Cell-Free Protein Synthesis, RIKEN Quantitative Biology Center, Suita, Osaka 565-0874, Japan
| | - Knud H Nierhaus
- Institute for Medical Physics and Biophysics, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Takuya Ueda
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan
| |
Collapse
|
14
|
Kim HJ, Barrientos A. MTG1 couples mitoribosome large subunit assembly with intersubunit bridge formation. Nucleic Acids Res 2018; 46:8435-8453. [PMID: 30085276 PMCID: PMC6144824 DOI: 10.1093/nar/gky672] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/11/2018] [Accepted: 07/13/2018] [Indexed: 02/06/2023] Open
Abstract
Mammalian mitochondrial ribosomes (mitoribosomes) synthesize 13 proteins, essential components of the oxidative phosphorylation system. They are linked to mitochondrial disorders, often involving cardiomyopathy. Mitoribosome biogenesis is assisted by multiple cofactors whose specific functions remain largely uncharacterized. Here, we examined the role of human MTG1, a conserved ribosome assembly guanosine triphosphatase. MTG1-silencing in human cardiomyocytes and developing zebrafish revealed early cardiovascular lesions. A combination of gene-editing and biochemical approaches using HEK293T cells demonstrated that MTG1 binds to the large subunit (mtLSU) 16S ribosomal RNA to facilitate incorporation of late-assembly proteins. Furthermore, MTG1 interacts with mtLSU uL19 protein and mtSSU mS27, a putative guanosine triphosphate-exchange factor (GEF), to enable MTG1 release and the formation of the mB6 intersubunit bridge. In this way, MTG1 establishes a quality control checkpoint in mitoribosome assembly. In conclusion, MTG1 controls mitochondrial translation by coupling mtLSU assembly with intersubunit bridge formation using the intrinsic GEF activity acquired by the mtSSU through mS27, a unique occurrence in translational systems.
Collapse
Affiliation(s)
- Hyun-Jung Kim
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Antoni Barrientos
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
15
|
He H, Yang Q, Shen B, Zhang S, Peng X. OsNOA1 functions in a threshold-dependent manner to regulate chloroplast proteins in rice at lower temperatures. BMC PLANT BIOLOGY 2018; 18:44. [PMID: 29548275 PMCID: PMC5857130 DOI: 10.1186/s12870-018-1258-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 03/01/2018] [Indexed: 05/22/2023]
Abstract
BACKGROUND Although decreased protein expressions have been observed in NOA1 (Nitric Oxide Associated protein 1) deficient plants, the molecular mechanisms of how NOA1 regulates protein metabolism remain poorly understood. In this study, we have used a global comparative proteomic approach for both OsNOA1 suppression and overexpression transgenic lines under two different temperatures, in combination with physiological and biochemical analyses to explore the regulatory mechanisms of OsNOA1 in rice. RESULTS In OsNOA1-silenced or highly overexpressed rice, considerably different expression patterns of both chlorophyll and Rubisco as well as distinct phenotypes were observed between the growth temperatures at 22 °C and 30 °C. These observations led us to hypothesize there appears a narrow abundance threshold for OsNOA1 to function properly at lower temperatures, while higher temperatures seem to partially compensate for the changes of OsNOA1 abundance. Quantitative proteomic analyses revealed higher temperatures could restore 90% of the suppressed proteins to normal levels, whereas almost all of the remaining suppressed proteins were chloroplast ribosomal proteins. Additionally, our data showed 90% of the suppressed proteins in both types of transgenic plants at lower temperatures were located in the chloroplast, suggesting a primary effect of OsNOA1 on chloroplast proteins. Transcript analyses, along with in vitro pull-down experiments further demonstrated OsNOA1 is associated with the function of chloroplast ribosomes. CONCLUSIONS Our results suggest OsNOA1 functions in a threshold-dependent manner for regulation of chloroplast proteins at lower temperatures, which may be mediated by interactions between OsNOA1 and chloroplast ribosomes.
Collapse
Affiliation(s)
- Han He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
| | - Qiaosong Yang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Boran Shen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
| | - Sheng Zhang
- Institute of Biotechnology, Cornell University, Ithaca, USA
| | - Xinxiang Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
| |
Collapse
|
16
|
da Silveira Tomé C, Foucher AE, Jault JM, Housset D. High concentrations of GTP induce conformational changes in the essential bacterial GTPase EngA and enhance its binding to the ribosome. FEBS J 2017; 285:160-177. [PMID: 29148177 DOI: 10.1111/febs.14333] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/28/2017] [Accepted: 11/13/2017] [Indexed: 11/28/2022]
Abstract
EngA is a conserved bacterial GTPase involved in ribosome biogenesis. While essential in bacteria, EngA does not have any human orthologue and can thus be an interesting target for new antibacterial compounds. EngA is the only known GTPase bearing two G domains, making unique its catalytic cycle and the induced modulation of its conformation and interaction with the ribosome. We have investigated nucleotide-induced conformational changes in EngA in order to unveil their role in ribosome binding. SAXS and limited proteolysis were used to probe EngA conformational changes, and revealed a change in protein structure and a distinct rate of proteolysis induced by GTP. Structure analysis showed that the conformation adopted in solution in the presence of GTP does not match any known EngA structure, while the SAXS data measured in the presence of GDP are in perfect agreement with two crystal structures (i.e. 2HGJ and 4DCU). Combination of mass spectrometry and N-terminal sequencing for the analysis of the fragmentation pattern upon proteolytic cleavage gave insights into which regions become more or less accessible in the different nucleotide-bound states. Interactions studies confirmed a stronger binding of EngA to the bacterial ribosome in the presence of GTP and suggest that the induced change in conformation of EngA plays a key role for ribosome binding.
Collapse
Affiliation(s)
| | | | - Jean-Michel Jault
- UMR5086 "Molecular Microbiology and Structural Biochemistry", CNRS, Univ. Lyon 1, France
| | | |
Collapse
|
17
|
López-Alonso JP, Kaminishi T, Kikuchi T, Hirata Y, Iturrioz I, Dhimole N, Schedlbauer A, Hase Y, Goto S, Kurita D, Muto A, Zhou S, Naoe C, Mills DJ, Gil-Carton D, Takemoto C, Himeno H, Fucini P, Connell SR. RsgA couples the maturation state of the 30S ribosomal decoding center to activation of its GTPase pocket. Nucleic Acids Res 2017; 45:6945-6959. [PMID: 28482099 PMCID: PMC5499641 DOI: 10.1093/nar/gkx324] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 04/19/2017] [Indexed: 01/18/2023] Open
Abstract
During 30S ribosomal subunit biogenesis, assembly factors are believed to prevent accumulation of misfolded intermediate states of low free energy that slowly convert into mature 30S subunits, namely, kinetically trapped particles. Among the assembly factors, the circularly permuted GTPase, RsgA, plays a crucial role in the maturation of the 30S decoding center. Here, directed hydroxyl radical probing and single particle cryo-EM are employed to elucidate RsgA΄s mechanism of action. Our results show that RsgA destabilizes the 30S structure, including late binding r-proteins, providing a structural basis for avoiding kinetically trapped assembly intermediates. Moreover, RsgA exploits its distinct GTPase pocket and specific interactions with the 30S to coordinate GTPase activation with the maturation state of the 30S subunit. This coordination validates the architecture of the decoding center and facilitates the timely release of RsgA to control the progression of 30S biogenesis.
Collapse
Affiliation(s)
- Jorge Pedro López-Alonso
- Molecular Recognition and Host-Pathogen Interactions, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain
| | - Tatsuya Kaminishi
- Molecular Recognition and Host-Pathogen Interactions, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain
| | - Takeshi Kikuchi
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Yuya Hirata
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Idoia Iturrioz
- Molecular Recognition and Host-Pathogen Interactions, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain
| | - Neha Dhimole
- Molecular Recognition and Host-Pathogen Interactions, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain
| | - Andreas Schedlbauer
- Molecular Recognition and Host-Pathogen Interactions, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain
| | - Yoichi Hase
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Simon Goto
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Daisuke Kurita
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Akira Muto
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Shu Zhou
- Molecular Recognition and Host-Pathogen Interactions, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain
| | - Chieko Naoe
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technology, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Deryck J Mills
- Max Planck Institute of Biophysics, Department of Structural Biology, Max-von-Laue-Straße 3, D-60438 Frankfurt am Main, Germany
| | - David Gil-Carton
- Molecular Recognition and Host-Pathogen Interactions, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain
| | - Chie Takemoto
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technology, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Hyouta Himeno
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Paola Fucini
- Molecular Recognition and Host-Pathogen Interactions, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain.,IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
| | - Sean R Connell
- Molecular Recognition and Host-Pathogen Interactions, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain.,IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
| |
Collapse
|
18
|
Zhao S, Xia Y, Zhang F, Xiong Z, Li Y, Yan W, Chen X, Wang W, Wang H, Gao E, Lee Y, Li C, Wang S, Zhang L, Tao L. Nucleostemin dysregulation contributes to ischemic vulnerability of diabetic hearts: Role of ribosomal biogenesis. J Mol Cell Cardiol 2017; 108:106-113. [PMID: 28549781 DOI: 10.1016/j.yjmcc.2017.05.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 04/29/2017] [Accepted: 05/22/2017] [Indexed: 01/20/2023]
Abstract
Diabetes is a major health problem worldwide. As well-known, diabetes greatly increases cardiac vulnerability to ischemia/reperfusion (I/R) injury, but the underlying mechanisms remain elusive. Nucleostemin (NS) is a nucleolar protein that controls ribosomal biogenesis and exerts cardioprotective effects against I/R injury. However, whether NS-mediated ribosomal biogenesis regulates ischemic vulnerability of diabetic hearts remains unanswered. Utilizing myocardial I/R mouse models, we found that cardiac NS expression significantly increased in response to I/R in normal diet (ND)-fed mice. Surprisingly, cardiac NS failed to be upregulated in high fat diet (HFD)-induced diabetic mice, accompanied by obvious ribosomal dysfunction. Compared with ND group, cardiac specific overexpression of NS by adenovirus (AV) injection significantly restored I/R-induced ribosomal function enhancement, reduced cardiomyocyte apoptosis, improved cardiac function, and decreased infarct sizes in diabetic mice. Notably, co-treatment of homoharringtonine (HHT), a selective inhibitor of ribosomal function, totally blocked NS-mediated cardioprotective effects against I/R injury. Furthermore, in cultured cardiomyocytes, saturated fatty acids treatment, but not high glucose exposure, significantly inhibited simulated I/R-induced NS upregulation and ribosomal function improvement. In conclusion, these data for the first time demonstrate that NS dysregulation induced by saturated fatty acids exposure might be an important cause of increased ischemic vulnerability to I/R injury in diabetic hearts. Targeting NS dysregulation and subsequent ribosomal dysfunction could be a promising therapeutic strategy for diabetic I/R injury management.
Collapse
Affiliation(s)
- Shihao Zhao
- Department of Cardiology, Xijing Hospital, the Fourth Military Medical University, China
| | - Yunlong Xia
- Department of Cardiology, Xijing Hospital, the Fourth Military Medical University, China
| | - Fuyang Zhang
- Department of Cardiology, Xijing Hospital, the Fourth Military Medical University, China; Department of Physiology, the Fourth Military Medical University, China; Department of Cardiology, the 201st Hospital of People's Liberation Army, China
| | - Zhenyu Xiong
- Department of Cardiology, Xijing Hospital, the Fourth Military Medical University, China
| | - Yueyang Li
- Department of Cardiology, Xijing Hospital, the Fourth Military Medical University, China
| | - Wenjun Yan
- Department of Cardiology, Xijing Hospital, the Fourth Military Medical University, China
| | - Xiyao Chen
- Department of Geriatrics, Xijing Hospital, the Fourth Military Medical University, China
| | - Wei Wang
- Department of Cardiology, Xijing Hospital, the Fourth Military Medical University, China
| | - Helin Wang
- Department of Cardiology, Xijing Hospital, the Fourth Military Medical University, China
| | - Erhe Gao
- Center for Translational Medicine, Temple University, United States
| | - Yan Lee
- Department of Cardiology, Xijing Hospital, the Fourth Military Medical University, China
| | - Congye Li
- Department of Cardiology, Xijing Hospital, the Fourth Military Medical University, China
| | - Shan Wang
- Department of Cardiology, Xijing Hospital, the Fourth Military Medical University, China
| | - Ling Zhang
- Department of Cardiology, Xijing Hospital, the Fourth Military Medical University, China
| | - Ling Tao
- Department of Cardiology, Xijing Hospital, the Fourth Military Medical University, China.
| |
Collapse
|
19
|
The cryo-EM structure of YjeQ bound to the 30S subunit suggests a fidelity checkpoint function for this protein in ribosome assembly. Proc Natl Acad Sci U S A 2017; 114:E3396-E3403. [PMID: 28396444 DOI: 10.1073/pnas.1618016114] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent work suggests that bacterial YjeQ (RsgA) participates in the late stages of assembly of the 30S subunit and aids the assembly of the decoding center but also binds the mature 30S subunit with high affinity. To determine the function and mechanisms of YjeQ in the context of the mature subunit, we determined the cryo-EM structure of the fully assembled 30S subunit in complex with YjeQ at 5.8-Å resolution. We found that binding of YjeQ stabilizes helix 44 into a conformation similar to that adopted by the subunit during proofreading. This finding indicates that, along with acting as an assembly factor, YjeQ has a role as a checkpoint protein, consisting of testing the proofreading ability of the 30S subunit. The structure also informs the mechanism by which YjeQ implements the release from the 30S subunit of a second assembly factor, called RbfA. Finally, it reveals how the 30S subunit stimulates YjeQ GTPase activity and leads to release of the protein. Checkpoint functions have been described for eukaryotic ribosome assembly factors; however, this work describes an example of a bacterial assembly factor that tests a specific translation mechanism of the 30S subunit.
Collapse
|
20
|
Heterologous Expression of Der Homologs in an Escherichia coli der Mutant and Their Functional Complementation. J Bacteriol 2016; 198:2284-96. [PMID: 27297882 DOI: 10.1128/jb.00384-16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/03/2016] [Indexed: 01/07/2023] Open
Abstract
UNLABELLED The unique Escherichia coli GTPase Der (double Era-like GTPase), which contains tandemly repeated GTP-binding domains, has been shown to play an essential role in 50S ribosomal subunit biogenesis. The depletion of Der results in the accumulation of precursors of 50S ribosomal subunits that are structurally unstable at low Mg(2+) concentrations. Der homologs are ubiquitously found in eubacteria. Conversely, very few are conserved in eukaryotes, and none is conserved in archaea. In the present study, to verify their conserved role in bacterial 50S ribosomal subunit biogenesis, we cloned Der homologs from two gammaproteobacteria, Klebsiella pneumoniae and Salmonella enterica serovar Typhimurium; two pathogenic bacteria, Staphylococcus aureus and Neisseria gonorrhoeae; and the extremophile Deinococcus radiodurans and then evaluated whether they could functionally complement the E. coli der-null phenotype. Only K. pneumoniae and S Typhimurium Der proteins enabled the E. coli der-null strain to grow under nonpermissive conditions. Sucrose density gradient experiments revealed that the expression of K. pneumoniae and S Typhimurium Der proteins rescued the structural instability of 50S ribosomal subunits, which was caused by E. coli Der depletion. To determine what allows their complementation, we constructed Der chimeras. We found that only Der chimeras harboring both the linker and long C-terminal regions could reverse the growth defects of the der-null strain. Our findings suggest that ubiquitously conserved essential GTPase Der is involved in 50S ribosomal subunit biosynthesis in various bacteria and that the linker and C-terminal regions may participate in species-specific recognition or interaction with the 50S ribosomal subunit. IMPORTANCE In Escherichia coli, Der (double Era-like GTPase) is an essential GTPase that is important for the production of mature 50S ribosomal subunits. However, to date, its precise role in ribosome biogenesis has not been clarified. In this study, we used five Der homologs from gammaproteobacteria, pathogenic bacteria, and an extremophile to elucidate their conserved function in 50S ribosomal subunit biogenesis. Among them, Klebsiella pneumoniae and Salmonella enterica serovar Typhimurium Der homologs implicated the participation of Der in ribosome assembly in E. coli Our results show that the linker and C-terminal regions of Der homologs are correlated with its functional complementation in E. coli der mutants, suggesting that they are involved in species-specific recognition or interaction with 50S ribosomal subunits.
Collapse
|
21
|
Mycobacteriophage putative GTPase-activating protein can potentiate antibiotics. Appl Microbiol Biotechnol 2016; 100:8169-77. [PMID: 27345061 DOI: 10.1007/s00253-016-7681-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/09/2016] [Accepted: 06/13/2016] [Indexed: 02/07/2023]
Abstract
The soaring incidences of infection by antimicrobial resistant (AR) pathogens and shortage of effective antibiotics with new mechanisms of action have renewed interest in phage therapy. This scenario is exemplified by resistant tuberculosis (TB), caused by resistant Mycobacterium tuberculosis. Mycobacteriophage SWU1 A321_gp67 encodes a putative GTPase-activating protein. Mycobacterium smegmatis with gp67 overexpression showed changed colony formation and biofilm morphology and supports the efficacy of streptomycin and capreomycin against Mycobacterium. gp67 down-regulated the transcription of genes involved in cell wall and biofilm development. To our knowledge, this is the first report to show that phage protein in addition to lysin or recombination components can synergize with existing antibiotics. Phage components might represent a promising new clue for better antibiotic potentiators.
Collapse
|
22
|
ppGpp negatively impacts ribosome assembly affecting growth and antimicrobial tolerance in Gram-positive bacteria. Proc Natl Acad Sci U S A 2016; 113:E1710-9. [PMID: 26951678 DOI: 10.1073/pnas.1522179113] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The stringent response is a survival mechanism used by bacteria to deal with stress. It is coordinated by the nucleotides guanosine tetraphosphate and pentaphosphate [(p)ppGpp], which interact with target proteins to promote bacterial survival. Although this response has been well characterized in proteobacteria, very little is known about the effectors of this signaling system in Gram-positive species. Here, we report on the identification of seven target proteins for the stringent response nucleotides in the Gram-positive bacterium Staphylococcus aureus We demonstrate that the GTP synthesis enzymes HprT and Gmk bind with a high affinity, leading to an inhibition of GTP production. In addition, we identified five putative GTPases--RsgA, RbgA, Era, HflX, and ObgE--as (p)ppGpp target proteins. We show that RsgA, RbgA, Era, and HflX are functional GTPases and that their activity is promoted in the presence of ribosomes but strongly inhibited by the stringent response nucleotides. By characterizing the function of RsgA in vivo, we ascertain that this protein is involved in ribosome assembly, with an rsgA deletion strain, or a strain inactivated for GTPase activity, displaying decreased growth, a decrease in the amount of mature 70S ribosomes, and an increased level of tolerance to antimicrobials. We additionally demonstrate that the interaction of ppGpp with cellular GTPases is not unique to the staphylococci, as homologs from Bacillus subtilis and Enterococcus faecalis retain this ability. Taken together, this study reveals ribosome inactivation as a previously unidentified mechanism through which the stringent response functions in Gram-positive bacteria.
Collapse
|
23
|
Jeganathan A, Razi A, Thurlow B, Ortega J. The C-terminal helix in the YjeQ zinc-finger domain catalyzes the release of RbfA during 30S ribosome subunit assembly. RNA (NEW YORK, N.Y.) 2015; 21:1203-1216. [PMID: 25904134 PMCID: PMC4436671 DOI: 10.1261/rna.049171.114] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 03/22/2015] [Indexed: 06/04/2023]
Abstract
YjeQ (also called RsgA) and RbfA proteins in Escherichia coli bind to immature 30S ribosome subunits at late stages of assembly to assist folding of the decoding center. A key step for the subunit to enter the pool of actively translating ribosomes is the release of these factors. YjeQ promotes dissociation of RbfA during the final stages of maturation; however, the mechanism implementing this functional interplay has not been elucidated. YjeQ features an amino-terminal oligonucleotide/oligosaccharide binding domain, a central GTPase module and a carboxy-terminal zinc-finger domain. We found that the zinc-finger domain is comprised of two functional motifs: the region coordinating the zinc ion and a carboxy-terminal α-helix. The first motif is essential for the anchoring of YjeQ to the 30S subunit and the carboxy-terminal α-helix facilitates the removal of RbfA once the 30S subunit reaches the mature state. Furthermore, the ability of the mature 30S subunit to stimulate YjeQ GTPase activity also depends on the carboxy-terminal α-helix. Our data are consistent with a model in which YjeQ uses this carboxy-terminal α-helix as a sensor to gauge the conformation of helix 44, an essential motif of the decoding center. According to this model, the mature conformation of helix 44 is sensed by the carboxy-terminal α-helix, which in turn stimulates the YjeQ GTPase activity. Hydrolysis of GTP is believed to assist the release of YjeQ from the mature 30S subunit through a still uncharacterized mechanism. These results identify the structural determinants in YjeQ that implement the functional interplay with RbfA.
Collapse
Affiliation(s)
- Ajitha Jeganathan
- Department of Biochemistry and Biomedical Sciences, M.G. DeGroote Institute for Infectious Diseases Research, McMaster University, Hamilton, Ontario, Canada L8S 4K1
| | - Aida Razi
- Department of Biochemistry and Biomedical Sciences, M.G. DeGroote Institute for Infectious Diseases Research, McMaster University, Hamilton, Ontario, Canada L8S 4K1
| | - Brett Thurlow
- Department of Biochemistry and Biomedical Sciences, M.G. DeGroote Institute for Infectious Diseases Research, McMaster University, Hamilton, Ontario, Canada L8S 4K1
| | - Joaquin Ortega
- Department of Biochemistry and Biomedical Sciences, M.G. DeGroote Institute for Infectious Diseases Research, McMaster University, Hamilton, Ontario, Canada L8S 4K1
| |
Collapse
|
24
|
Chatterjee A, Datta PP. Two conserved amino acids of juxtaposed domains of a ribosomal maturation protein CgtA sustain its optimal GTPase activity. Biochem Biophys Res Commun 2015; 461:636-41. [PMID: 25912137 DOI: 10.1016/j.bbrc.2015.04.079] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 04/15/2015] [Indexed: 11/19/2022]
Abstract
CgtA is a highly conserved ribosome binding protein involved in ribosome biogenesis and associated with stringent response. It is a 55 KDa GTPase protein consisting of GTPase, Obg and C-terminal domains. The function of the latter two domains was not clear and despite the importance, the mode of action of CgtA is still largely unknown. Knocking out of CgtA gene is lethal and mutations lead to growth, sporulation and developmental defects in bacteria. It was found that a growth defect and pinhole size colony morphology of Bacillus subtilis was associated with a Gly92Asp point mutation on the Obg domain of its CgtA protein, instead of its GTPase domain. CgtA is an important and essential protein of the deadly diarrhea causing bacteria Vibrio cholerae and in order to investigate the mode of action of the V. cholerae CgtA we have utilized this information. We measured the GTPase activity of V. cholerae CgtA (CgtAvc) protein in the presence of purified ribosome. Our results showed 5-fold increased GTP hydrolysis activity compared to its intrinsic activity. Then we explored the GTPase activity of the mutated CgtAvc (Gly98Asp) located at the Obg domain, which reduced the GTP hydrolysis rate to half. The double point mutations (Gly98Asp, and Tyr194Gly) encompassing another conserved residue, Tyr194, located at the diagonally opposite position in the GTPase domain largely restored (about 82%) the reduced GTPase activity, revealing a fine-tuned inter-domain movement readily associated with the GTPase activity of CgtA and thus maintaining the proper functioning of the CgtA protein.
Collapse
Affiliation(s)
- Ananya Chatterjee
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, Nadia, West Bengal, India
| | - Partha P Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, Nadia, West Bengal, India.
| |
Collapse
|
25
|
Wicker-Planquart C, Jault JM. Interaction between Bacillus subtilis YsxC and ribosomes (or rRNAs). FEBS Lett 2015; 589:1026-32. [PMID: 25771857 DOI: 10.1016/j.febslet.2015.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 03/04/2015] [Indexed: 11/28/2022]
Abstract
YsxC is an essential P-loop GTPase, that binds to the 50S ribosomal subunit, and is required for the proper assembly of the ribosome. The aim of this study was to characterize YsxC ribosome interactions. The stoichiometry of YsxC ribosome subunit complex was evaluated. We showed that YsxC binding to the 50S ribosomal subunit is not affected by GTP, but in the presence of GDP the stoichiometry of YsxC-ribosome is decreased. YsxC GTPase activity was stimulated upon 50S ribosomal subunit binding. In addition, it is shown for the first time that YsxC binds both 16S and 23S ribosomal RNAs.
Collapse
Affiliation(s)
- Catherine Wicker-Planquart
- Université Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38027 Grenoble, France; CNRS, IBS, F-38027 Grenoble, France; CEA, DSV, IBS, F-38027 Grenoble, France.
| | - Jean-Michel Jault
- Université Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38027 Grenoble, France; CNRS, IBS, F-38027 Grenoble, France; CEA, DSV, IBS, F-38027 Grenoble, France.
| |
Collapse
|
26
|
Narayan S, Kombrabail MH, Das S, Singh H, Chary KVR, Rao BJ, Krishnamoorthy G. Site-specific fluorescence dynamics in an RNA 'thermometer' reveals the role of ribosome binding in its temperature-sensitive switch function. Nucleic Acids Res 2014; 43:493-503. [PMID: 25477380 PMCID: PMC4288164 DOI: 10.1093/nar/gku1264] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
RNA thermometers control the translation of several heat shock and virulence genes by their temperature-sensitive structural transitions. Changes in the structure and dynamics of MiniROSE RNA, which regulates translation in the temperature range of 20–45°C, were studied by site specifically replacing seven adenine residues with the fluorescent analog, 2-aminopurine (2-AP), one at a time. Dynamic fluorescence observables of 2-AP-labeled RNAs were compared in their free versus ribosome-bound states for the first time. Noticeably, position dependence of fluorescence observables, which was prominent at 20°C, was persistent even at 45ºC, suggesting the persistence of structural integrity up to 45ºC. Interestingly, position-dependent dispersion of fluorescence lifetime and quenching constant at 45°C was ablated in ribosome-bound state, when compared to those at 20°C, underscoring loss of structural integrity at 45°C, in ribosome-bound RNA. Significant increase in the value of mean lifetime for 2-AP corresponding to Shine–Dalgarno sequences, when the temperature was raised from 20 to 45°C, to values seen in the presence of urea at 45°C was a strong indicator of melting of the 3D structure of MiniROSE RNA at 45°C, only when it was ribosome bound. Taken all together, we propose a model where we invoke that ribosome binding of the RNA thermometer critically regulates temperature sensing functions in MiniROSE RNA.
Collapse
Affiliation(s)
- Satya Narayan
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Mamta H Kombrabail
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Sudipta Das
- Tata Institute of Fundamental Research, Center for Interdisciplinary Sciences, Hyderabad 500075, India
| | - Himanshu Singh
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Kandala V R Chary
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Basuthkar J Rao
- Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India
| | | |
Collapse
|
27
|
Yang Z, Guo Q, Goto S, Chen Y, Li N, Yan K, Zhang Y, Muto A, Deng H, Himeno H, Lei J, Gao N. Structural insights into the assembly of the 30S ribosomal subunit in vivo: functional role of S5 and location of the 17S rRNA precursor sequence. Protein Cell 2014; 5:394-407. [PMID: 24671761 PMCID: PMC3996153 DOI: 10.1007/s13238-014-0044-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 02/26/2014] [Indexed: 12/20/2022] Open
Abstract
The in vivo assembly of ribosomal subunits is a highly complex process, with a tight coordination between protein assembly and rRNA maturation events, such as folding and processing of rRNA precursors, as well as modifications of selected bases. In the cell, a large number of factors are required to ensure the efficiency and fidelity of subunit production. Here we characterize the immature 30S subunits accumulated in a factor-null Escherichia coli strain (∆rsgA∆rbfA). The immature 30S subunits isolated with varying salt concentrations in the buffer system show interesting differences on both protein composition and structure. Specifically, intermediates derived under the two contrasting salt conditions (high and low) likely reflect two distinctive assembly stages, the relatively early and late stages of the 3' domain assembly, respectively. Detailed structural analysis demonstrates a mechanistic coupling between the maturation of the 5' end of the 17S rRNA and the assembly of the 30S head domain, and attributes a unique role of S5 in coordinating these two events. Furthermore, our structural results likely reveal the location of the unprocessed terminal sequences of the 17S rRNA, and suggest that the maturation events of the 17S rRNA could be employed as quality control mechanisms on subunit production and protein translation.
Collapse
Affiliation(s)
- Zhixiu Yang
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Culver GM, Rife JP. Involvement of Ribosome Biogenesis in Antibiotic Function, Acquired Resistance, and Future Opportunities in Drug Discovery. Antibiotics (Basel) 2013. [DOI: 10.1002/9783527659685.ch15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
29
|
Impairment of ribosome maturation or function confers salt resistance on Escherichia coli cells. PLoS One 2013; 8:e65747. [PMID: 23741511 PMCID: PMC3669203 DOI: 10.1371/journal.pone.0065747] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Accepted: 04/26/2013] [Indexed: 11/19/2022] Open
Abstract
We found that loss of integrity of the ribosome by removal of a putative ribosome maturation factor or a ribosomal protein conferred salt tolerance on Escherichia coli cells. Some protein synthesis inhibitors including kasugamycin and chloramphenicol also had a similar effect, although kasugamycin affected neither 16S rRNA maturation nor subunit association into a 70S ribosome. Thus, salt tolerance is a common feature of cells in which maturation or function of the ribosome is impaired. In these cells, premature induction of an alternative sigma factor, σ(E), by salt stress was observed. These results suggest the existence of a yet-unknown stress response pathway mediated by the bacterial ribosome.
Collapse
|
30
|
Abstract
The ribosome is an RNA- and protein-based macromolecule having multiple functional domains to facilitate protein synthesis, and it is synthesized through multiple steps including transcription, stepwise cleavages of the primary transcript, modifications of ribosomal proteins and RNAs and assemblies of ribosomal proteins with rRNAs. This process requires dozens of trans-acting factors including GTP- and ATP-binding proteins to overcome several energy-consuming steps. Despite accumulation of genetic, biochemical and structural data, the entire process of bacterial ribosome synthesis remains elusive. Here, we review GTPases involved in bacterial ribosome maturation.
Collapse
Affiliation(s)
- Simon Goto
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan
| | | | | |
Collapse
|
31
|
Regulation of ribosome biogenesis by nucleostemin 3 promotes local and systemic growth in Drosophila. Genetics 2013; 194:101-15. [PMID: 23436180 DOI: 10.1534/genetics.112.149104] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Nucleostemin 3 (NS3) is an evolutionarily conserved protein with profound roles in cell growth and viability. Here we analyze cell-autonomous and non-cell-autonomous growth control roles of NS3 in Drosophila and demonstrate its GTPase activity using genetic and biochemical assays. Two null alleles of ns3, and RNAi, demonstrate the necessity of NS3 for cell autonomous growth. A hypomorphic allele highlights the hypersensitivity of neurons to lowered NS3 function. We propose that NS3 is the functional ortholog of yeast and human Lsg1, which promotes release of the nuclear export adapter from the large ribosomal subunit. Release of the adapter and its recycling to the nucleus are essential for sustained production of ribosomes. The ribosome biogenesis role of NS3 is essential for proper rates of translation in all tissues and is necessary for functions of growth-promoting neurons.
Collapse
|
32
|
Kim BH, Malec P, Waloszek A, von Arnim AG. Arabidopsis BPG2: a phytochrome-regulated gene whose protein product binds to plastid ribosomal RNAs. PLANTA 2012; 236:677-90. [PMID: 22526496 DOI: 10.1007/s00425-012-1638-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 03/22/2012] [Indexed: 05/08/2023]
Abstract
BPG2 (Brz-insensitive pale green 2) is a dark-repressible and light-inducible gene that is required for the greening process in Arabidopsis. Light pulse experiments suggested that light-regulated gene expression of BPG2 is mediated by phytochrome. The T-DNA insertion mutant bpg2-2 exhibited a reduced level of chlorophyll and carotenoid pigmentation in the plastids. Measurements of time resolved chlorophyll fluorescence and of fluorescence emission at 77 K indicated defective photosystem II and altered photosystem I functions in bpg2 mutants. Kinetic analysis of chlorophyll fluorescence induction suggested that the reduction of the primary acceptor (QA) is impaired in bpg2. The observed alterations resulted in reduced photosynthetic efficiency as measured by the electron transfer rate. BPG2 protein is localized in the plastid stroma fraction. Co-immunoprecipitation of a formaldehyde cross-linked RNA-protein complex indicated that BPG2 protein binds with specificity to chloroplast 16S and 23S ribosomal RNAs. The direct physical interaction with the plastid rRNAs supports an emerging model whereby BPG2 provides light-regulated ribosomal RNA processing functions, which are rate limiting for development of the plastid and its photosynthetic apparatus.
Collapse
Affiliation(s)
- Byung-Hoon Kim
- Department of Natural Sciences, Albany State University, 504 College Drive, Albany, GA 31705, USA.
| | | | | | | |
Collapse
|
33
|
Pompeo F, Freton C, Wicker-Planquart C, Grangeasse C, Jault JM, Galinier A. Phosphorylation of CpgA protein enhances both its GTPase activity and its affinity for ribosome and is crucial for Bacillus subtilis growth and morphology. J Biol Chem 2012; 287:20830-8. [PMID: 22544754 DOI: 10.1074/jbc.m112.340331] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In Bacillus subtilis, the ribosome-associated GTPase CpgA is crucial for growth and proper morphology and was shown to be phosphorylated in vitro by the Ser/Thr protein kinase PrkC. To further understand the function of the Escherichia coli RsgA ortholog, CpgA, we first demonstrated that its GTPase activity is stimulated by its association with the 30 S ribosomal subunit. Then the role of CpgA phosphorylation was analyzed. A single phosphorylated residue, threonine 166, was identified by mass spectrometry. Phosphoablative replacement of this residue in CpgA induces a decrease of both its affinity for the 30 S ribosomal subunit and its GTPase activity, whereas a phosphomimetic replacement has opposite effects. Furthermore, cells expressing a nonphosphorylatable CpgA protein present the morphological and growth defects similar to those of a cpgA-deleted strain. Altogether, our results suggest that CpgA phosphorylation on Thr-166 could modulate its ribosome-induced GTPase activity. Given the role of PrkC in B. subtilis spore germination, we propose that CpgA phosphorylation is a key regulatory process that is essential for B. subtilis development.
Collapse
Affiliation(s)
- Frédérique Pompeo
- Laboratoire de Chimie Bactérienne, FR 3479, CNRS, Aix-Marseille Université, 13402 Marseille Cedex 20, France.
| | | | | | | | | | | |
Collapse
|
34
|
Agarwal N, Pareek M, Thakur P, Pathak V. Functional characterization of EngA(MS), a P-loop GTPase of Mycobacterium smegmatis. PLoS One 2012; 7:e34571. [PMID: 22506030 PMCID: PMC3323550 DOI: 10.1371/journal.pone.0034571] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 03/06/2012] [Indexed: 11/19/2022] Open
Abstract
Bacterial P-loop GTPases belong to a family of proteins that selectively hydrolyze a small molecule guanosine tri-phosphate (GTP) to guanosine di-phosphate (GDP) and inorganic phosphate, and regulate several essential cellular activities such as cell division, chromosomal segregation and ribosomal assembly. A comparative genome sequence analysis of different mycobacterial species indicates the presence of multiple P-loop GTPases that exhibit highly conserved motifs. However, an exact function of most of these GTPases in mycobacteria remains elusive. In the present study we characterized the function of a P-loop GTPase in mycobacteria by employing an EngA homologue from Mycobacterium smegmatis, encoded by an open reading frame, designated as MSMEG_3738. Amino acid sequence alignment and phylogenetic analysis suggest that MSMEG_3738 (termed as EngA(MS)) is highly conserved in mycobacteria. Homology modeling of EngA(MS) reveals a cloverleaf structure comprising of α/β fold typical to EngA family of GTPases. Recombinant EngA(MS) purified from E. coli exhibits a GTP hydrolysis activity which is inhibited by the presence of GDP. Interestingly, the EngA(MS) protein is co-eluted with 16S and 23S ribosomal RNA during purification and exhibits association with 30S, 50S and 70S ribosomal subunits. Further studies demonstrate that GTP is essential for interaction of EngA(MS) with 50S subunit of ribosome and specifically C-terminal domains of EngA(MS) are required to facilitate this interaction. Moreover, EngA(MS) devoid of N-terminal region interacts well with 50S even in the absence of GTP, indicating a regulatory role of the N-terminal domain in EngA(MS)-50S interaction.
Collapse
MESH Headings
- Amino Acid Sequence
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Escherichia coli/genetics
- Escherichia coli/metabolism
- GTP Phosphohydrolases/genetics
- GTP Phosphohydrolases/metabolism
- GTP-Binding Proteins/genetics
- GTP-Binding Proteins/metabolism
- Guanosine Diphosphate/genetics
- Guanosine Diphosphate/metabolism
- Guanosine Triphosphate/genetics
- Guanosine Triphosphate/metabolism
- Hydrolysis
- Molecular Sequence Data
- Mycobacterium smegmatis/genetics
- Mycobacterium smegmatis/metabolism
- Phylogeny
- Protein Structure, Tertiary
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- RNA, Ribosomal, 23S/genetics
- RNA, Ribosomal, 23S/metabolism
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Ribosomal Proteins/genetics
- Ribosomal Proteins/metabolism
- Ribosomes/genetics
- Ribosomes/metabolism
- Sequence Alignment/methods
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Nisheeth Agarwal
- Vaccine and Infectious Disease Research Center, Translational Health Science and Technology Institute, Gurgaon, Haryana, India.
| | | | | | | |
Collapse
|
35
|
Jomaa A, Stewart G, Mears JA, Kireeva I, Brown ED, Ortega J. Cryo-electron microscopy structure of the 30S subunit in complex with the YjeQ biogenesis factor. RNA (NEW YORK, N.Y.) 2011; 17:2026-38. [PMID: 21960487 PMCID: PMC3198595 DOI: 10.1261/rna.2922311] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2011] [Accepted: 08/26/2011] [Indexed: 05/22/2023]
Abstract
YjeQ is a protein broadly conserved in bacteria containing an N-terminal oligonucleotide/oligosaccharide fold (OB-fold) domain, a central GTPase domain, and a C-terminal zinc-finger domain. YjeQ binds tightly and stoichiometrically to the 30S subunit, which stimulates its GTPase activity by 160-fold. Despite growing evidence for the involvement of the YjeQ protein in bacterial 30S subunit assembly, the specific function and mechanism of this protein remain unclear. Here, we report the costructure of YjeQ with the 30S subunit obtained by cryo-electron microscopy. The costructure revealed that YjeQ interacts simultaneously with helix 44, the head and the platform of the 30S subunit. This binding location of YjeQ in the 30S subunit suggests a chaperone role in processing of the 3' end of the rRNA as well as in mediating the correct orientation of the main domains of the 30S subunit. In addition, the YjeQ binding site partially overlaps with the interaction site of initiation factors 2 and 3, and upon binding, YjeQ covers three inter-subunit bridges that are important for the association of the 30S and 50S subunits. Hence, our structure suggests that YjeQ may assist in ribosome maturation by preventing premature formation of the translation initiation complex and association with the 50S subunit. Together, these results support a role for YjeQ in the late stages of 30S maturation.
Collapse
Affiliation(s)
- Ahmad Jomaa
- Department of Biochemistry and Biomedical Sciences and Michael G. DeGroote Institute for Infectious Diseases Research, McMaster University, Hamilton, Ontario, L8N3Z5, Canada
| | - Geordie Stewart
- Department of Biochemistry and Biomedical Sciences and Michael G. DeGroote Institute for Infectious Diseases Research, McMaster University, Hamilton, Ontario, L8N3Z5, Canada
| | - Jason A. Mears
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Inga Kireeva
- Department of Biochemistry and Biomedical Sciences and Michael G. DeGroote Institute for Infectious Diseases Research, McMaster University, Hamilton, Ontario, L8N3Z5, Canada
| | - Eric D. Brown
- Department of Biochemistry and Biomedical Sciences and Michael G. DeGroote Institute for Infectious Diseases Research, McMaster University, Hamilton, Ontario, L8N3Z5, Canada
| | - Joaquin Ortega
- Department of Biochemistry and Biomedical Sciences and Michael G. DeGroote Institute for Infectious Diseases Research, McMaster University, Hamilton, Ontario, L8N3Z5, Canada
- Corresponding author.E-mail .
| |
Collapse
|
36
|
Abstract
The assembly of ribosomes from a discrete set of components is a key aspect of the highly coordinated process of ribosome biogenesis. In this review, we present a brief history of the early work on ribosome assembly in Escherichia coli, including a description of in vivo and in vitro intermediates. The assembly process is believed to progress through an alternating series of RNA conformational changes and protein-binding events; we explore the effects of ribosomal proteins in driving these events. Ribosome assembly in vivo proceeds much faster than in vitro, and we outline the contributions of several of the assembly cofactors involved, including Era, RbfA, RimJ, RimM, RimP, and RsgA, which associate with the 30S subunit, and CsdA, DbpA, Der, and SrmB, which associate with the 50S subunit.
Collapse
Affiliation(s)
- Zahra Shajani
- Departments of Molecular Biology and Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | | | |
Collapse
|
37
|
Structural basis for the function of a small GTPase RsgA on the 30S ribosomal subunit maturation revealed by cryoelectron microscopy. Proc Natl Acad Sci U S A 2011; 108:13100-5. [PMID: 21788480 DOI: 10.1073/pnas.1104645108] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The bacterial RsgA, a circularly permutated GTPase, whose GTPase activity is dependent on the 30S ribosomal subunit, is a late-stage ribosome biogenesis factor involved in the 30S subunit maturation. The role of RsgA is to release another 30S biogenesis factor, RbfA, from the mature 30S subunit in a GTP-dependent manner. Using cryoelectron microscopy, we have determined the structure of the 30S subunit bound with RsgA in the presence of GMPPNP at subnanometer resolution. In the structure, RsgA binds to the central part of the 30S subunit, close to the decoding center, in a position that is incompatible with multiple biogenesis factors, all three translation initiation factors, as well as A-, P-site tRNAs and the 50S subunit. Further structural analysis not only provides a structural model for the RsgA-dependent release of RbfA from the nascent 30S subunit, but also indicates RsgA's role in the ribosomal protein assembly, to promote some tertiary binding protein incorporation. Moreover, together with available biochemical and genetic data, our results suggest that RsgA might be a general checkpoint protein in the late stage of the 30S subunit biogenesis, whose function is not only to release biogenesis factors (e.g., RbfA) from the nascent 30S subunit, but also to block the association of initiation factors to the premature 30S subunit.
Collapse
|
38
|
Understanding ribosome assembly: the structure of in vivo assembled immature 30S subunits revealed by cryo-electron microscopy. RNA 2011; 17:697-709. [PMID: 21303937 PMCID: PMC3062180 DOI: 10.1261/rna.2509811] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Four decades after early in vitro assembly studies demonstrated that ribosome assembly is a controlled process, our understanding of ribosome assembly is still incomplete. Just as structure determination has been so important to understanding ribosome function, so too will it be critical to sorting out the assembly process. Here, we used a viable deletion in the yjeQ gene, a recognized ribosome assembly factor, to isolate and structurally characterize immature 30S subunits assembled in vivo. These small ribosome subunits contained unprocessed 17S rRNA and lacked some late ribosomal proteins. Cryo-electron microscopy reconstructions revealed that the presence of precursor sequences in the rRNA induces a severe distortion in the 3′ minor domain of the subunit involved in the decoding of mRNA and interaction with the large ribosome subunit. These findings suggest that rRNA processing events induce key local conformational changes directing the structure toward the mature assembly. We concluded that rRNA processing, folding, and the entry of tertiary r-proteins are interdependent events in the late stages of 30S subunit assembly. In addition, we demonstrate how studies of emerging assembly factors in ribosome biogenesis can help to elucidate the path of subunit assembly in vivo.
Collapse
|
39
|
Im CH, Hwang SM, Son YS, Heo JB, Bang WY, Suwastika IN, Shiina T, Bahk JD. Nuclear/nucleolar GTPase 2 proteins as a subfamily of YlqF/YawG GTPases function in pre-60S ribosomal subunit maturation of mono- and dicotyledonous plants. J Biol Chem 2011; 286:8620-8632. [PMID: 21205822 DOI: 10.1074/jbc.m110.200816] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The YlqF/YawG families are important GTPases involved in ribosome biogenesis, cell proliferation, or cell growth, however, no plant homologs have yet to be characterized. Here we isolated rice (Oryza sativa) and Arabidopsis nuclear/nucleolar GTPase 2 (OsNug2 and AtNug2, respectively) that belong to the YawG subfamily and characterized them for pre-60S ribosomal subunit maturation. They showed typical intrinsic YlqF/YawG family GTPase activities in bacteria and yeasts with k(cat) values 0.12 ± 0.007 min(-1) (n = 6) and 0.087 ± 0.002 min(-1) (n = 4), respectively, and addition of 60S ribosomal subunits stimulated their activities in vitro. In addition, OsNug2 rescued the lethality of the yeast nug2 null mutant through recovery of 25S pre-rRNA processing. By yeast two-hybrid screening five clones, including a putative one of 60S ribosomal proteins, OsL10a, were isolated. Subcellular localization and pulldown assays resulted in that the N-terminal region of OsNug2 is sufficient for nucleolar/nuclear targeting and association with OsL10a. OsNug2 is physically associated with pre-60S ribosomal complexes highly enriched in the 25S, 5.8S, and 5S rRNA, and its interaction was stimulated by exogenous GTP. Furthermore, the AtNug2 knockdown mutant constructed by the RNAi method showed defective growth on the medium containing cycloheximide. Expression pattern analysis revealed that the distribution of AtNug2 mainly in the meristematic region underlies its potential role in active plant growth. Finally, it is concluded that Nug2/Nog2p GTPase from mono- and didicotyledonous plants is linked to the pre-60S ribosome complex and actively processed 27S into 25S during the ribosomal large subunit maturation process, i.e. prior to export to the cytoplasm.
Collapse
Affiliation(s)
- Chak Han Im
- From the Division of Applied Life Sciences (BK21), Graduate School of Gyeongsang National University, Jinju 660-701, Korea
| | - Sung Min Hwang
- From the Division of Applied Life Sciences (BK21), Graduate School of Gyeongsang National University, Jinju 660-701, Korea
| | - Young Sim Son
- From the Division of Applied Life Sciences (BK21), Graduate School of Gyeongsang National University, Jinju 660-701, Korea
| | - Jae Bok Heo
- From the Division of Applied Life Sciences (BK21), Graduate School of Gyeongsang National University, Jinju 660-701, Korea
| | - Woo Young Bang
- From the Division of Applied Life Sciences (BK21), Graduate School of Gyeongsang National University, Jinju 660-701, Korea
| | - I Nengah Suwastika
- the Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan, and
| | - Takashi Shiina
- the Graduate School of Human and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| | - Jeong Dong Bahk
- From the Division of Applied Life Sciences (BK21), Graduate School of Gyeongsang National University, Jinju 660-701, Korea,.
| |
Collapse
|
40
|
Goto S, Kato S, Kimura T, Muto A, Himeno H. RsgA releases RbfA from 30S ribosome during a late stage of ribosome biosynthesis. EMBO J 2010; 30:104-14. [PMID: 21102555 DOI: 10.1038/emboj.2010.291] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 10/28/2010] [Indexed: 11/09/2022] Open
Abstract
RsgA is a 30S ribosomal subunit-binding GTPase with an unknown function, shortage of which impairs maturation of the 30S subunit. We identified multiple gain-of-function mutants of Escherichia coli rbfA, the gene for a ribosome-binding factor, that suppress defects in growth and maturation of the 30S subunit of an rsgA-null strain. These mutations promote spontaneous release of RbfA from the 30S subunit, indicating that cellular disorders upon depletion of RsgA are due to prolonged retention of RbfA on the 30S subunit. We also found that RsgA enhances release of RbfA from the mature 30S subunit in a GTP-dependent manner but not from a precursor form of the 30S subunit. These findings indicate that the function of RsgA is to release RbfA from the 30S subunit during a late stage of ribosome biosynthesis. This is the first example of the action of a GTPase on the bacterial ribosome assembly described at the molecular level.
Collapse
Affiliation(s)
- Simon Goto
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan
| | | | | | | | | |
Collapse
|
41
|
Proteome evolution and the metabolic origins of translation and cellular life. J Mol Evol 2010; 72:14-33. [PMID: 21082171 DOI: 10.1007/s00239-010-9400-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Accepted: 10/25/2010] [Indexed: 12/27/2022]
Abstract
The origin of life has puzzled molecular scientists for over half a century. Yet fundamental questions remain unanswered, including which came first, the metabolic machinery or the encoding nucleic acids. In this study we take a protein-centric view and explore the ancestral origins of proteins. Protein domain structures in proteomes are highly conserved and embody molecular functions and interactions that are needed for cellular and organismal processes. Here we use domain structure to study the evolution of molecular function in the protein world. Timelines describing the age and function of protein domains at fold, fold superfamily, and fold family levels of structural complexity were derived from a structural phylogenomic census in hundreds of fully sequenced genomes. These timelines unfold congruent hourglass patterns in rates of appearance of domain structures and functions, functional diversity, and hierarchical complexity, and revealed a gradual build up of protein repertoires associated with metabolism, translation and DNA, in that order. The most ancient domain architectures were hydrolase enzymes and the first translation domains had catalytic functions for the aminoacylation and the molecular switch-driven transport of RNA. Remarkably, the most ancient domains had metabolic roles, did not interact with RNA, and preceded the gradual build-up of translation. In fact, the first translation domains had also a metabolic origin and were only later followed by specialized translation machinery. Our results explain how the generation of structure in the protein world and the concurrent crystallization of translation and diversified cellular life created further opportunities for proteomic diversification.
Collapse
|
42
|
Abstract
Several nucleolar proteins, such as ARF, ribosomal protein (RP) L5, L11, L23 and S7, have been shown to induce p53 activation by inhibiting MDM2 E3 ligase activity and consequently to trigger cell cycle arrest and/or apoptosis. Our recent study revealed another nucleolar protein called nucleostemin (NS), a nucleolar GTP binding protein, as a novel regulator of the p53-MDM2 feedback loop. However, unlike other known nucleolar regulators of this loop, NS surprisingly plays a dual role, as both up and downregulations of its levels could turn on p53 activity. Here, we try to offer some prospective views for this unusual phenomenon by reconciling previously and recently published studies in the field in hoping to better depict the role of NS in linking the p53 pathway with ribosomal biogenesis during cell growth and proliferation as well as to propose NS as another potential molecular target for anti-cancer drug development.
Collapse
Affiliation(s)
- Dorothy Lo
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine-Simon Cancer Center, Indianapolis, Indiana, USA
| | | |
Collapse
|
43
|
Hwang J, Inouye M. A Bacterial GAP-Like Protein, YihI, Regulating the GTPase of Der, an Essential GTP-Binding Protein in Escherichia coli. J Mol Biol 2010; 399:759-72. [DOI: 10.1016/j.jmb.2010.04.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 04/21/2010] [Accepted: 04/22/2010] [Indexed: 11/16/2022]
|
44
|
Anand B, Surana P, Prakash B. Deciphering the catalytic machinery in 30S ribosome assembly GTPase YqeH. PLoS One 2010; 5:e9944. [PMID: 20376346 PMCID: PMC2848588 DOI: 10.1371/journal.pone.0009944] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Accepted: 03/04/2010] [Indexed: 11/23/2022] Open
Abstract
Background YqeH, a circularly permuted GTPase (cpGTPase), which is conserved across bacteria and eukaryotes including humans is important for the maturation of small (30S) ribosomal subunit in Bacillus subtilis. Recently, we have shown that it binds 30S in a GTP/GDP dependent fashion. However, the catalytic machinery employed to hydrolyze GTP is not recognized for any of the cpGTPases, including YqeH. This is because they possess a hydrophobic substitution in place of a catalytic glutamine (present in Ras-like GTPases). Such GTPases were categorized as HAS-GTPases and were proposed to follow a catalytic mechanism, different from the Ras-like proteins. Methodology/Principal Findings MnmE, another HAS-GTPase, but not circularly permuted, utilizes a potassium ion and water mediated interactions to drive GTP hydrolysis. Though the G-domain of MnmE and YqeH share only ∼25% sequence identity, the conservation of characteristic sequence motifs between them prompted us to probe GTP hydrolysis machinery in YqeH, by employing homology modeling in conjunction with biochemical experiments. Here, we show that YqeH too, uses a potassium ion to drive GTP hydrolysis and stabilize the transition state. However, unlike MnmE, it does not dimerize in the transition state, suggesting alternative ways to stabilize switches I and II. Furthermore, we identify a potential catalytic residue in Asp-57, whose recognition, in the absence of structural information, was non-trivial due to the circular permutation in YqeH. Interestingly, when compared with MnmE, helix α2 that presents Asp-57 is relocated towards the N-terminus in YqeH. An analysis of the YqeH homology model, suggests that despite such relocation, Asp-57 may facilitate water mediated catalysis, similarly as the catalytic Glu-282 of MnmE. Indeed, an abolished catalysis by D57I mutant supports this inference. Conclusions/Significance An uncommon means to achieve GTP hydrolysis utilizing a K+ ion has so far been demonstrated only for MnmE. Here, we show that YqeH also utilizes a similar mechanism. While the catalytic machinery is similar in both, mechanistic differences may arise based on the way they are deployed. It appears that K+ driven mechanism emerges as an alternative theme to stabilize the transition state and hydrolyze GTP in a subset of GTPases, such as the HAS-GTPases.
Collapse
Affiliation(s)
- Baskaran Anand
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, Uttar Pradesh, India
| | - Parag Surana
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, Uttar Pradesh, India
| | - Balaji Prakash
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, Uttar Pradesh, India
- * E-mail:
| |
Collapse
|
45
|
Moreau M, Lindermayr C, Durner J, Klessig DF. NO synthesis and signaling in plants--where do we stand? PHYSIOLOGIA PLANTARUM 2010; 138:372-83. [PMID: 19912564 DOI: 10.1111/j.1399-3054.2009.01308.x] [Citation(s) in RCA: 171] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Over the past 20 years, nitric oxide (NO) research has generated a lot of interest in various aspects of plant biology. It is now clear that NO plays a role in a wide range of physiological processes in plants. However, in spite of the significant progress that has been made in understanding NO biosynthesis and signaling in planta, several crucial questions remain unanswered. Here we highlight several challenges in NO plant research by summarizing the latest knowledge of NO synthesis and by focusing on the potential NO source(s) and players involved. Our goal is also to provide an overview of how our understanding of NO signaling has been enhanced by the identification of array of genes and proteins regulated by NO.
Collapse
Affiliation(s)
- Magali Moreau
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
46
|
Cooper EL, García-Lara J, Foster SJ. YsxC, an essential protein in Staphylococcus aureus crucial for ribosome assembly/stability. BMC Microbiol 2009; 9:266. [PMID: 20021644 PMCID: PMC2811118 DOI: 10.1186/1471-2180-9-266] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Accepted: 12/18/2009] [Indexed: 12/25/2022] Open
Abstract
Background Bacterial growth and division requires a core set of essential proteins, several of which are still of unknown function. They are also attractive targets for the development of new antibiotics. YsxC is a member of a family of GTPases highly conserved across eubacteria with a possible ribosome associated function. Results Here, we demonstrate by the creation of a conditional lethal mutant that ysxC is apparently essential for growth in S. aureus. To begin to elucidate YsxC function, a translational fusion of YsxC to the CBP-ProteinA tag in the staphylococcal chromosome was made, enabling Tandem Affinity Purification (TAP) of YsxC-interacting partners. These included the ribosomal proteins S2, S10 and L17, as well as the β' subunit of the RNA polymerase. YsxC was then shown to copurify with ribosomes as an accessory protein specifically localizing to the 50 S subunit. YsxC depletion led to a decrease in the presence of mature ribosomes, indicating a role in ribosome assembly and/or stability in S. aureus. Conclusions In this study we demonstrate that YsxC of S. aureus localizes to the ribosomes, is crucial for ribosomal stability and is apparently essential for the life of S. aureus.
Collapse
Affiliation(s)
- Elizabeth L Cooper
- Department of Molecular Biology and Microbiology, University of Sheffield, Sheffield S10 2TN, UK.
| | | | | |
Collapse
|
47
|
deLivron MA, Makanji HS, Lane MC, Robinson VL. A novel domain in translational GTPase BipA mediates interaction with the 70S ribosome and influences GTP hydrolysis. Biochemistry 2009; 48:10533-41. [PMID: 19803466 DOI: 10.1021/bi901026z] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BipA is a universally conserved prokaryotic GTPase that exhibits differential ribosome association in response to stress-related events. It is a member of the translation factor family of GTPases along with EF-G and LepA. BipA has five domains. The N-terminal region of the protein, consisting of GTPase and beta-barrel domains, is common to all translational GTPases. BipA domains III and V have structural counterparts in EF-G and LepA. However, the C-terminal domain (CTD) of the protein is unique to the BipA family. To investigate how the individual domains of BipA contribute to the biological properties of the protein, deletion constructs were designed and their GTP hydrolysis and ribosome binding properties assessed. Data presented show that removal of the CTD abolishes the ability of BipA to bind to the ribosome and that ribosome complex formation requires the surface provided by domains III and V and the CTD. Additional mutational analysis was used to outline the BipA-70S interaction surface extending across these domains. Steady state kinetic analyses revealed that successive truncation of domains from the C-terminus resulted in a significant increase in the intrinsic GTP hydrolysis rate and a loss of ribosome-stimulated GTPase activity. These results indicate that, similar to other translational GTPases, the ribosome binding and GTPase activities of BipA are tightly coupled. Such intermolecular regulation likely plays a role in the differential ribosome binding by the protein.
Collapse
Affiliation(s)
- Megan A deLivron
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269, USA
| | | | | | | |
Collapse
|
48
|
Abstract
The assembly of the ribosome, a complex molecular machine composed of RNA and protein, is a poorly understood process. Recent work has demonstrated that GTPases are likely to play key roles in the assembly of ribosomes in bacteria and eukaryotes. This review highlights several bacterial ribosome assembly GTPases (RA-GTPases) and discusses possible functions for these proteins in the biogenesis of individual ribosomal subunits and subunit joining. RA-GTPases appear to link various aspects of the cell cycle and metabolism with translation. How these RA-GTPases may coordinate these connections are discussed.
Collapse
Affiliation(s)
- Robert A Britton
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824, USA.
| |
Collapse
|
49
|
Hase Y, Yokoyama S, Muto A, Himeno H. Removal of a ribosome small subunit-dependent GTPase confers salt resistance on Escherichia coli cells. RNA (NEW YORK, N.Y.) 2009; 15:1766-1774. [PMID: 19620234 PMCID: PMC2743055 DOI: 10.1261/rna.1687309] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2009] [Accepted: 06/03/2009] [Indexed: 05/28/2023]
Abstract
RsgA is a unique GTP hydrolytic protein in which GTPase activity is significantly enhanced by the small ribosomal subunit. Deletion of RsgA causes slow cell growth as well as defects in subunit assembly of the ribosome and 16S rRNA processing, suggesting its involvement in maturation of the small subunit. In this study, we found that removal of RsgA or inactivation of its ribosome small subunit-dependent GTPase activity provides Escherichia coli cells with resistance to high salt stress. Salt stress suppressed the defects in subunit assembly of the ribosome and processing of 16S rRNA as well as truncation of the 3' end of 16S rRNA in RsgA-deletion cells. In contrast, salt stress transiently impaired subunit assembly of the ribosome and processing of 16S rRNA and induced 3' truncation of 16S rRNA in wild-type cells. These results suggest that the action of RsgA on the ribosome, which usually facilitates maturation of the small subunit, disturbs it under a salt stress condition. Consistently, there was a drastic but transient decrease in the intracellular amount of RsgA after salt shock. Salt shock would make the pathway of maturation of the ribosome small subunit RsgA independent.
Collapse
Affiliation(s)
- Yoichi Hase
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan
| | | | | | | |
Collapse
|
50
|
Rosby R, Cui Z, Rogers E, deLivron MA, Robinson VL, DiMario PJ. Knockdown of the Drosophila GTPase nucleostemin 1 impairs large ribosomal subunit biogenesis, cell growth, and midgut precursor cell maintenance. Mol Biol Cell 2009; 20:4424-34. [PMID: 19710426 DOI: 10.1091/mbc.e08-06-0592] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Mammalian nucleostemin (NS) is a nucleolar guanosine triphosphate-binding protein implicated in cell cycle progression, stem cell proliferation, and ribosome assembly. Drosophila melanogaster contains a four-member nucleostemin family (NS1-4). NS1 is the closest orthologue to human NS; it shares 33% identity and 67% similarity with human NS. We show that NS1 has intrinsic GTPase and ATPase activity and that it is present within nucleoli of most larval and adult cells. Endogenous NS1 and lightly expressed green fluorescent protein (GFP)-NS1 enrich within the nucleolar granular regions as expected, whereas overexpressed GFP-NS1 localized throughout the nucleolus and nucleoplasm, and to several transcriptionally active interbands of polytene chromosomes. Severe overexpression correlated with the appearance of melanotic tumors and larval/pupal lethality. Depletion of 60% of NS1 transcripts also lead to larval and pupal lethality. NS1 protein depletion>95 correlated with the loss of imaginal island (precursor) cells in the larval midgut and to an apparent block in the nucleolar release of large ribosomal subunits in terminally differentiated larval midgut polyploid cells. Ultrastructural examination of larval Malpighian tubule cells depleted for NS1 showed a loss of cytoplasmic ribosomes and a concomitant appearance of cytoplasmic preautophagosomes and lysosomes. We interpret the appearance of these structures as indicators of cell stress response.
Collapse
Affiliation(s)
- Raphyel Rosby
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803-1715, USA
| | | | | | | | | | | |
Collapse
|