1
|
Venkatraman K, Lee CT, Budin I. Setting the curve: the biophysical properties of lipids in mitochondrial form and function. J Lipid Res 2024; 65:100643. [PMID: 39303982 PMCID: PMC11513603 DOI: 10.1016/j.jlr.2024.100643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024] Open
Abstract
Mitochondrial membranes are defined by their diverse functions, complex geometries, and unique lipidomes. In the inner mitochondrial membrane, highly curved membrane folds known as cristae house the electron transport chain and are the primary sites of cellular energy production. The outer mitochondrial membrane is flat by contrast, but is critical for the initiation and mediation of processes key to mitochondrial physiology: mitophagy, interorganelle contacts, fission and fusion dynamics, and metabolite transport. While the lipid composition of both the inner mitochondrial membrane and outer mitochondrial membrane have been characterized across a variety of cell types, a mechanistic understanding for how individual lipid classes contribute to mitochondrial structure and function remains nebulous. In this review, we address the biophysical properties of mitochondrial lipids and their related functional roles. We highlight the intrinsic curvature of the bulk mitochondrial phospholipid pool, with an emphasis on the nuances surrounding the mitochondrially-synthesized cardiolipin. We also outline emerging questions about other lipid classes - ether lipids, and sterols - with potential roles in mitochondrial physiology. We propose that further investigation is warranted to elucidate the specific properties of these lipids and their influence on mitochondrial architecture and function.
Collapse
Affiliation(s)
- Kailash Venkatraman
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Christopher T Lee
- Department of Molecular Biology, University of California San Diego, La Jolla, CA, USA
| | - Itay Budin
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
2
|
Wilburn K, Matrishin CB, Choudhury A, Larsen R, Wildschutte H. Tradeoffs Between Evolved Phage Resistance and Antibiotic Susceptibility in a Highly Drug-Resistant Cystic Fibrosis-Derived Pseudomonas aeruginosa Strain. PHAGE (NEW ROCHELLE, N.Y.) 2024; 5:45-52. [PMID: 39119204 PMCID: PMC11304796 DOI: 10.1089/phage.2023.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Background Multi-drug resistant pathogens pose significant challenges towards the effective resolution of bacterial infections. A promising alternative strategy is phage therapy in which limited applications has afforded lifesaving resolution from drug resistant pathogens. However, adoption of this strategy is hampered by narrow bacteriophage host ranges, and as with antibiotics, bacteria can acquire resistance to phage. Methods To address these issues, we isolated 25 broad-host range phages against multiple cystic fibrosis (CF)-derived P. aeruginosa clinical strains thus promoting their application against conspecific pathogens. To investigate evolved resistance to phage in relation to antibiotic resistance, one CF-derived P. aeruginosa strain was exposed to a lytic phage over a short time scale. Results Trade-offs were observed in which evolved phage resistant P. aeruginosa strains showed decreased resistance to antibiotics. These traits that likely reflect single nucleotide polymorphisms. Conclusion Results suggest phage and antibiotics may be a combined approach to treat bacterial infections.
Collapse
Affiliation(s)
- Kaylee Wilburn
- Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio, USA
| | - Cole B. Matrishin
- Department of Oral Biology, University at Buffalo, Buffalo, New York, USA
| | - Anika Choudhury
- Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio, USA
| | - Ray Larsen
- Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio, USA
| | - Hans Wildschutte
- Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio, USA
| |
Collapse
|
3
|
Monterroso B, Margolin W, Boersma AJ, Rivas G, Poolman B, Zorrilla S. Macromolecular Crowding, Phase Separation, and Homeostasis in the Orchestration of Bacterial Cellular Functions. Chem Rev 2024; 124:1899-1949. [PMID: 38331392 PMCID: PMC10906006 DOI: 10.1021/acs.chemrev.3c00622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/01/2023] [Accepted: 01/10/2024] [Indexed: 02/10/2024]
Abstract
Macromolecular crowding affects the activity of proteins and functional macromolecular complexes in all cells, including bacteria. Crowding, together with physicochemical parameters such as pH, ionic strength, and the energy status, influences the structure of the cytoplasm and thereby indirectly macromolecular function. Notably, crowding also promotes the formation of biomolecular condensates by phase separation, initially identified in eukaryotic cells but more recently discovered to play key functions in bacteria. Bacterial cells require a variety of mechanisms to maintain physicochemical homeostasis, in particular in environments with fluctuating conditions, and the formation of biomolecular condensates is emerging as one such mechanism. In this work, we connect physicochemical homeostasis and macromolecular crowding with the formation and function of biomolecular condensates in the bacterial cell and compare the supramolecular structures found in bacteria with those of eukaryotic cells. We focus on the effects of crowding and phase separation on the control of bacterial chromosome replication, segregation, and cell division, and we discuss the contribution of biomolecular condensates to bacterial cell fitness and adaptation to environmental stress.
Collapse
Affiliation(s)
- Begoña Monterroso
- Department
of Structural and Chemical Biology, Centro de Investigaciones Biológicas
Margarita Salas, Consejo Superior de Investigaciones
Científicas (CSIC), 28040 Madrid, Spain
| | - William Margolin
- Department
of Microbiology and Molecular Genetics, McGovern Medical School, UTHealth-Houston, Houston, Texas 77030, United States
| | - Arnold J. Boersma
- Cellular
Protein Chemistry, Bijvoet Centre for Biomolecular Research, Faculty
of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Germán Rivas
- Department
of Structural and Chemical Biology, Centro de Investigaciones Biológicas
Margarita Salas, Consejo Superior de Investigaciones
Científicas (CSIC), 28040 Madrid, Spain
| | - Bert Poolman
- Department
of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Silvia Zorrilla
- Department
of Structural and Chemical Biology, Centro de Investigaciones Biológicas
Margarita Salas, Consejo Superior de Investigaciones
Científicas (CSIC), 28040 Madrid, Spain
| |
Collapse
|
4
|
Ostroumova OS, Efimova SS. Lipid-Centric Approaches in Combating Infectious Diseases: Antibacterials, Antifungals and Antivirals with Lipid-Associated Mechanisms of Action. Antibiotics (Basel) 2023; 12:1716. [PMID: 38136750 PMCID: PMC10741038 DOI: 10.3390/antibiotics12121716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
One of the global challenges of the 21st century is the increase in mortality from infectious diseases against the backdrop of the spread of antibiotic-resistant pathogenic microorganisms. In this regard, it is worth targeting antibacterials towards the membranes of pathogens that are quite conservative and not amenable to elimination. This review is an attempt to critically analyze the possibilities of targeting antimicrobial agents towards enzymes involved in pathogen lipid biosynthesis or towards bacterial, fungal, and viral lipid membranes, to increase the permeability via pore formation and to modulate the membranes' properties in a manner that makes them incompatible with the pathogen's life cycle. This review discusses the advantages and disadvantages of each approach in the search for highly effective but nontoxic antimicrobial agents. Examples of compounds with a proven molecular mechanism of action are presented, and the types of the most promising pharmacophores for further research and the improvement of the characteristics of antibiotics are discussed. The strategies that pathogens use for survival in terms of modulating the lipid composition and physical properties of the membrane, achieving a balance between resistance to antibiotics and the ability to facilitate all necessary transport and signaling processes, are also considered.
Collapse
Affiliation(s)
- Olga S. Ostroumova
- Laboratory of Membrane and Ion Channel Modeling, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, St. Petersburg 194064, Russia;
| | | |
Collapse
|
5
|
Mitchison-Field LM, Belin BJ. Bacterial lipid biophysics and membrane organization. Curr Opin Microbiol 2023; 74:102315. [PMID: 37058914 PMCID: PMC10523990 DOI: 10.1016/j.mib.2023.102315] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 04/16/2023]
Abstract
The formation of lateral microdomains is emerging as a central organizing principle in bacterial membranes. These microdomains are targets of antibiotic development and have the potential to enhance natural product synthesis, but the rules governing their assembly are unclear. Previous studies have suggested that microdomain formation is promoted by lipid phase separation, particularly by cardiolipin (CL) and isoprenoid lipids, and there is strong evidence that CL biosynthesis is required for recruitment of membrane proteins to cell poles and division sites. New work demonstrates that additional bacterial lipids may mediate membrane protein localization and function, opening the field for mechanistic evaluation of lipid-driven membrane organization in vivo.
Collapse
Affiliation(s)
- Lorna My Mitchison-Field
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA; Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Brittany J Belin
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA; Department of Biology, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
6
|
Pattinson A, Bahia S, Le Gall G, Morris CJ, Harding SV, McArthur M. Using a multi-omic approach to investigate the mechanism of 12-bis-THA activity against Burkholderia thailandensis. Front Microbiol 2023; 13:1092230. [PMID: 37252207 PMCID: PMC10213367 DOI: 10.3389/fmicb.2022.1092230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/28/2022] [Indexed: 05/31/2023] Open
Abstract
Burkholderia pseudomallei is the causative agent of the tropical disease, melioidosis. It is intrinsically resistant to many antimicrobials and treatment requires an onerous regimen of intravenous and orally administered drugs. Relapse of disease and high rates of mortality following treatment are common, demonstrating the need for new anti-Burkholderia agents. The cationic bola-amphiphile, 12,12'-(dodecane-1,12-diyl) bis (9-amino-1,2,3,4-tetrahydroacridinium), referred to as 12-bis-THA, is a molecule with the potential to treat Burkholderia infections. 12-bis-THA spontaneously forms cationic nanoparticles that bind anionic phospholipids in the prokaryotic membrane and are readily internalized. In this study, we examine the antimicrobial activity of 12-bis-THA against strains of Burkholderia thailandensis. As B. pseudomallei produces a polysaccharide capsule we first examined if this extra barrier influenced the activity of 12-bis-THA which is known to act on the bacterial envelope. Therefore two strains of B. thailandensis were selected for further testing, strain E264 which does not produce a capsule and strain E555 which does produce a capsule that is chemically similar to that found in B. pseudomallei. In this study no difference in the minimum inhibitory concentration (MIC) was observed when capsulated (E555) and unencapsulated (E264) strains of B. thailandensis were compared, however time-kill analysis showed that the unencapsulated strain was more susceptible to 12-bis-THA. The presence of the capsule did not affect the membrane permeation of 12-bis-THA at MIC concentrations. Proteomic and metabolomic analyses showed that 12-bis-THA causes a shift in central metabolism away from glycolysis and glyoxylate cycle, and suppressed the production of the F1 domain of ATP synthase. In summary, we provide insight into the molecular mechanisms underpinning the activity of 12-bis-THA against B. thailandensis and discuss its potential for further development.
Collapse
Affiliation(s)
- Adam Pattinson
- Norwich Medical School, Bob Champion Building for Research and Education, University of East Anglia, Norwich, United Kingdom
| | - Sandeep Bahia
- School of Pharmacy, University of East Anglia, Norwich, United Kingdom
| | - Gwénaëlle Le Gall
- Norwich Medical School, Bob Champion Building for Research and Education, University of East Anglia, Norwich, United Kingdom
| | | | - Sarah V. Harding
- CBR Division, Defense Science and Technology Laboratory, Salisbury, United Kingdom
- Department of Respiratory Sciences, University of Leicester, Leicester, United Kingdom
| | - Michael McArthur
- Norwich Medical School, Bob Champion Building for Research and Education, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
7
|
Wu Y, Ma J, Shi J, Cao S, Luo J, Zheng T, Wang M. iTRAQ-Based Quantitative Proteomic Analysis of Arthrobacter simplex in Response to Cortisone Acetate and Its Mutants with Improved Δ 1-Dehydrogenation Efficiency. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6376-6388. [PMID: 37043686 DOI: 10.1021/acs.jafc.3c00417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Arthrobacter simplex is extensively used for cortisone acetate (CA) biotransformation in industry, but the Δ1-dehydrogenation molecular fundamental remains unclear. Herein, the comparative proteome revealed several proteins with the potential role in this reaction, which were mainly involved in lipid or amino acid transport and metabolism, energy production and conversion, steroid degradation, and transporter. The influences of six proteins were further confirmed, where pps, MceGA, yrbE4AA, yrbE4BA, and hyp2 showed positive impacts, while hyp1 exhibited a negative effect. Additionally, KsdD5 behaved as the best catalytic enzyme. By the combined manipulation in multiple genes under the control of a stronger promoter, an optimal strain with better catalytic enzyme activity, substrate transportation, and cell stress tolerance was created. After biotechnology optimization, the production peak and productivity were, respectively, boosted by 4.1- and 4.0-fold relative to the initial level. Our work broadens the understanding of the Δ1-dehydrogenation mechanism, also providing effective strategies for excellent steroid-transforming strains.
Collapse
Affiliation(s)
- Yan Wu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Jianan Ma
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Jinghui Shi
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Shuting Cao
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Jianmei Luo
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Tingting Zheng
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Min Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| |
Collapse
|
8
|
Kinnun JJ, Scott HL, Bolmatov D, Collier CP, Charlton TR, Katsaras J. Biophysical studies of lipid nanodomains using different physical characterization techniques. Biophys J 2023; 122:931-949. [PMID: 36698312 PMCID: PMC10111277 DOI: 10.1016/j.bpj.2023.01.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/12/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
For the past 50 years, evidence for the existence of functional lipid domains has been steadily accumulating. Although the notion of functional lipid domains, also known as "lipid rafts," is now widely accepted, this was not always the case. This ambiguity surrounding lipid domains could be partly attributed to the fact that they are highly dynamic, nanoscopic structures. Since most commonly used techniques are sensitive to microscale structural features, it is therefore, not surprising that it took some time to reach a consensus regarding their existence. In this review article, we will discuss studies that have used techniques that are inherently sensitive to nanoscopic structural features (i.e., neutron scatting, nuclear magnetic resonance, and Förster resonance energy transfer). We will also mention techniques that may be of use in the future (i.e., cryoelectron microscopy, droplet interface bilayers, inelastic x-ray scattering, and neutron reflectometry), which can further our understanding of the different and unique physicochemical properties of nanoscopic lipid domains.
Collapse
Affiliation(s)
- Jacob J Kinnun
- Large Scale Structures Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee; Shull Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
| | - Haden L Scott
- Large Scale Structures Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee; Shull Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Dima Bolmatov
- Shull Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee; Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee
| | - C Patrick Collier
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Timothy R Charlton
- Large Scale Structures Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - John Katsaras
- Shull Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee; Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee; Labs and Soft Matter Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
| |
Collapse
|
9
|
Paracini N, Gutfreund P, Welbourn R, Gonzalez-Martinez JF, Zhu K, Miao Y, Yepuri N, Darwish TA, Garvey C, Waldie S, Larsson J, Wolff M, Cárdenas M. Structural Characterization of Nanoparticle-Supported Lipid Bilayer Arrays by Grazing Incidence X-ray and Neutron Scattering. ACS APPLIED MATERIALS & INTERFACES 2023; 15:3772-3780. [PMID: 36625710 PMCID: PMC9880997 DOI: 10.1021/acsami.2c18956] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Arrays of nanoparticle-supported lipid bilayers (nanoSLB) are lipid-coated nanopatterned interfaces that provide a platform to study curved model biological membranes using surface-sensitive techniques. We combined scattering techniques with direct imaging, to gain access to sub-nanometer scale structural information on stable nanoparticle monolayers assembled on silicon crystals in a noncovalent manner using a Langmuir-Schaefer deposition. The structure of supported lipid bilayers formed on the nanoparticle arrays via vesicle fusion was investigated using a combination of grazing incidence X-ray and neutron scattering techniques complemented by fluorescence microscopy imaging. Ordered nanoparticle assemblies were shown to be suitable and stable substrates for the formation of curved and fluid lipid bilayers that retained lateral mobility, as shown by fluorescence recovery after photobleaching and quartz crystal microbalance measurements. Neutron reflectometry revealed the formation of high-coverage lipid bilayers around the spherical particles together with a flat lipid bilayer on the substrate below the nanoparticles. The presence of coexisting flat and curved supported lipid bilayers on the same substrate, combined with the sub-nanometer accuracy and isotopic sensitivity of grazing incidence neutron scattering, provides a promising novel approach to investigate curvature-dependent membrane phenomena on supported lipid bilayers.
Collapse
Affiliation(s)
- Nicolò Paracini
- Department
for Biomedical Science and Biofilms − Research Center for Biointerfaces,
Faculty of Health and Society, Malmö
University, 205 06Malmö, Sweden
| | | | - Rebecca Welbourn
- ISIS
Neutron & Muon Source, STFC, Rutherford
Appleton Laboratory, Harwell, OxfordshireOX11 0QX, U.K.
| | - Juan Francisco Gonzalez-Martinez
- Department
for Biomedical Science and Biofilms − Research Center for Biointerfaces,
Faculty of Health and Society, Malmö
University, 205 06Malmö, Sweden
| | - Kexin Zhu
- School
of Biological Sciences, Nanyang Technological
University, 639798Singapore
| | - Yansong Miao
- School
of Biological Sciences, Nanyang Technological
University, 639798Singapore
| | - Nageshwar Yepuri
- National
Deuteration Facility, Australian Nuclear
Science and Technology Organization (ANSTO), Lucas Heights, NSW2234, Australia
| | - Tamim A. Darwish
- National
Deuteration Facility, Australian Nuclear
Science and Technology Organization (ANSTO), Lucas Heights, NSW2234, Australia
| | - Christopher Garvey
- Heinz
Maier-Leibnitz
Zentrum (MLZ), Technische Universität
München, Lichtenbergstraβe 1, 85748Garching, Germany
| | - Sarah Waldie
- Department
for Biomedical Science and Biofilms − Research Center for Biointerfaces,
Faculty of Health and Society, Malmö
University, 205 06Malmö, Sweden
| | - Johan Larsson
- Department
for Biomedical Science and Biofilms − Research Center for Biointerfaces,
Faculty of Health and Society, Malmö
University, 205 06Malmö, Sweden
| | - Max Wolff
- Department
of Physics and Astronomy, Uppsala University, Box 516, 751 20Uppsala, Sweden
| | - Marité Cárdenas
- Department
for Biomedical Science and Biofilms − Research Center for Biointerfaces,
Faculty of Health and Society, Malmö
University, 205 06Malmö, Sweden
- School
of Biological Sciences, Nanyang Technological
University, 639798Singapore
| |
Collapse
|
10
|
Humphrey M, Abdelmesseh Nekhala I, Scheinpflug K, Krylova O, Schäfer AB, Buttress JA, Wenzel M, Strahl H. Tracking Global and Local Changes in Membrane Fluidity Through Fluorescence Spectroscopy and Microscopy. Methods Mol Biol 2023; 2601:203-229. [PMID: 36445586 DOI: 10.1007/978-1-0716-2855-3_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Membrane fluidity is a critical parameter of cellular membranes, which cells continuously strive to maintain within a viable range. Interference with the correct membrane fluidity state can strongly inhibit cell function. Triggered changes in membrane fluidity and associated impacts on lipid domains have been postulated to contribute to the mechanism of action of membrane targeting antimicrobials, but the corresponding analyses have been hampered by the absence of readily available analytical tools. Here, we expand upon the protocols outlined in the first edition of this book, providing further and alternative protocols that can be used to measure changes in membrane fluidity. We provide detailed protocols, which allow straightforward in vivo and in vitro measurement of antibiotic compound-triggered changes in membrane fluidity and fluid membrane microdomains. Furthermore, we summarize useful strains constructed by us and others to characterize and confirm lipid specificity of membrane antimicrobials directly in vivo.
Collapse
Affiliation(s)
- Madeleine Humphrey
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Ireny Abdelmesseh Nekhala
- Division of Chemical Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Kathi Scheinpflug
- Department of Chemical Biology, Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Oxana Krylova
- Department of Chemical Biology, Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Ann-Britt Schäfer
- Division of Chemical Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Jessica A Buttress
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Michaela Wenzel
- Division of Chemical Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.
| | - Henrik Strahl
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
11
|
Landajuela A, Braun M, Martínez-Calvo A, Rodrigues CDA, Gomis Perez C, Doan T, Rudner DZ, Wingreen NS, Karatekin E. Membrane fission during bacterial spore development requires cellular inflation driven by DNA translocation. Curr Biol 2022; 32:4186-4200.e8. [PMID: 36041438 PMCID: PMC9730832 DOI: 10.1016/j.cub.2022.08.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 04/26/2022] [Accepted: 08/08/2022] [Indexed: 12/14/2022]
Abstract
Bacteria require membrane fission for both cell division and endospore formation. In Bacillus subtilis, sporulation initiates with an asymmetric division that generates a large mother cell and a smaller forespore that contains only a quarter of its genome. As the mother cell membranes engulf the forespore, a DNA translocase pumps the rest of the chromosome into the small forespore compartment, inflating it due to increased turgor. When the engulfing membrane undergoes fission, the forespore is released into the mother cell cytoplasm. The B. subtilis protein FisB catalyzes membrane fission during sporulation, but the molecular basis is unclear. Here, we show that forespore inflation and FisB accumulation are both required for an efficient membrane fission. Forespore inflation leads to higher membrane tension in the engulfment membrane than in the mother cell membrane, causing the membrane to flow through the neck connecting the two membrane compartments. Thus, the mother cell supplies some of the membrane required for the growth of the membranes surrounding the forespore. The oligomerization of FisB at the membrane neck slows the equilibration of membrane tension by impeding the membrane flow. This leads to a further increase in the tension of the engulfment membrane, promoting its fission through lysis. Collectively, our data indicate that DNA translocation has a previously unappreciated second function in energizing the FisB-mediated membrane fission under energy-limited conditions.
Collapse
Affiliation(s)
- Ane Landajuela
- Cellular and Molecular Physiology, Yale University, New Haven, CT, USA; Nanobiology Institute, Yale University, West Haven, CT, USA.
| | - Martha Braun
- Nanobiology Institute, Yale University, West Haven, CT, USA; Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
| | - Alejandro Martínez-Calvo
- Princeton Center for Theoretical Science, Princeton University, Princeton, NJ 08544, USA; Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | | | - Carolina Gomis Perez
- Cellular and Molecular Physiology, Yale University, New Haven, CT, USA; Nanobiology Institute, Yale University, West Haven, CT, USA
| | - Thierry Doan
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, Aix-Marseille Université-CNRS UMR7255, Marseilles, France
| | - David Z Rudner
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Ned S Wingreen
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Erdem Karatekin
- Cellular and Molecular Physiology, Yale University, New Haven, CT, USA; Nanobiology Institute, Yale University, West Haven, CT, USA; Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA; Université de Paris, Saints-Pères Paris Institute for the Neurosciences (SPPIN), Centre National de la Recherche Scientifique (CNRS), 75006 Paris, France.
| |
Collapse
|
12
|
Watkins DW, Williams SL, Collinson I. A bacterial secretosome for regulated envelope biogenesis and quality control? MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 36260397 DOI: 10.1099/mic.0.001255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The Gram-negative bacterial envelope is the first line of defence against environmental stress and antibiotics. Therefore, its biogenesis is of considerable fundamental interest, as well as a challenge to address the growing problem of antimicrobial resistance. All bacterial proteins are synthesised in the cytosol, so inner- and outer-membrane proteins, and periplasmic residents have to be transported to their final destinations via specialised protein machinery. The Sec translocon, a ubiquitous integral inner-membrane (IM) complex, is key to this process as the major gateway for protein transit from the cytosol to the cell envelope; this can be achieved during their translation, or afterwards. Proteins need to be directed into the inner-membrane (usually co-translational), otherwise SecA utilises ATP and the proton-motive-force (PMF) to drive proteins across the membrane post-translationally. These proteins are then picked up by chaperones for folding in the periplasm, or delivered to the β-barrel assembly machinery (BAM) for incorporation into the outer-membrane. The core hetero-trimeric SecYEG-complex forms the hub for an extensive network of interactions that regulate protein delivery and quality control. Here, we conduct a biochemical exploration of this 'secretosome' -a very large, versatile and inter-changeable assembly with the Sec-translocon at its core; featuring interactions that facilitate secretion (SecDF), inner- and outer-membrane protein insertion (respectively, YidC and BAM), protein folding and quality control (e.g. PpiD, YfgM and FtsH). We propose the dynamic interplay amongst these, and other factors, act to ensure efficient envelope biogenesis, regulated to accommodate the requirements of cell elongation and division. We believe this organisation is critical for cell wall biogenesis and remodelling and thus its perturbation could be a means for the development of anti-microbials.
Collapse
Affiliation(s)
- Daniel W Watkins
- School of Biochemistry, University of Bristol, BS8 1TD, UK.,Present address: CytoSeek, Science Creates Old Market, Midland Road, Bristol, BS20JZ, UK
| | | | - Ian Collinson
- School of Biochemistry, University of Bristol, BS8 1TD, UK
| |
Collapse
|
13
|
Panda G, Dash S, Sahu SK. Harnessing the Role of Bacterial Plasma Membrane Modifications for the Development of Sustainable Membranotropic Phytotherapeutics. MEMBRANES 2022; 12:914. [PMID: 36295673 PMCID: PMC9612325 DOI: 10.3390/membranes12100914] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/08/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Membrane-targeted molecules such as cationic antimicrobial peptides (CAMPs) are amongst the most advanced group of antibiotics used against drug-resistant bacteria due to their conserved and accessible targets. However, multi-drug-resistant bacteria alter their plasma membrane (PM) lipids, such as lipopolysaccharides (LPS) and phospholipids (PLs), to evade membrane-targeted antibiotics. Investigations reveal that in addition to LPS, the varying composition and spatiotemporal organization of PLs in the bacterial PM are currently being explored as novel drug targets. Additionally, PM proteins such as Mla complex, MPRF, Lpts, lipid II flippase, PL synthases, and PL flippases that maintain PM integrity are the most sought-after targets for development of new-generation drugs. However, most of their structural details and mechanism of action remains elusive. Exploration of the role of bacterial membrane lipidome and proteome in addition to their organization is the key to developing novel membrane-targeted antibiotics. In addition, membranotropic phytochemicals and their synthetic derivatives have gained attractiveness as popular herbal alternatives against bacterial multi-drug resistance. This review provides the current understanding on the role of bacterial PM components on multidrug resistance and their targeting with membranotropic phytochemicals.
Collapse
Affiliation(s)
- Gayatree Panda
- Department of Biotechnology, Maharaja Sriram Chandra Bhanjadeo University (Erstwhile: North Orissa University), Baripada 757003, India
| | - Sabyasachi Dash
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Santosh Kumar Sahu
- Department of Biotechnology, Maharaja Sriram Chandra Bhanjadeo University (Erstwhile: North Orissa University), Baripada 757003, India
| |
Collapse
|
14
|
Chautrand T, Depayras S, Souak D, Kondakova T, Barreau M, Kentache T, Hardouin J, Tahrioui A, Thoumire O, Konto-Ghiorghi Y, Barbey C, Ladam G, Chevalier S, Heipieper HJ, Orange N, Duclairoir-Poc C. Gaseous NO 2 induces various envelope alterations in Pseudomonas fluorescens MFAF76a. Sci Rep 2022; 12:8528. [PMID: 35595726 PMCID: PMC9122911 DOI: 10.1038/s41598-022-11606-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/12/2022] [Indexed: 12/20/2022] Open
Abstract
Anthropogenic atmospheric pollution and immune response regularly expose bacteria to toxic nitrogen oxides such as NO• and NO2. These reactive molecules can damage a wide variety of biomolecules such as DNA, proteins and lipids. Several components of the bacterial envelope are susceptible to be damaged by reactive nitrogen species. Furthermore, the hydrophobic core of the membranes favors the reactivity of nitrogen oxides with other molecules, making membranes an important factor in the chemistry of nitrosative stress. Since bacteria are often exposed to endogenous or exogenous nitrogen oxides, they have acquired protection mechanisms against the deleterious effects of these molecules. By exposing bacteria to gaseous NO2, this work aims to analyze the physiological effects of NO2 on the cell envelope of the airborne bacterium Pseudomonas fluorescens MFAF76a and its potential adaptive responses. Electron microscopy showed that exposure to NO2 leads to morphological alterations of the cell envelope. Furthermore, the proteomic profiling data revealed that these cell envelope alterations might be partly explained by modifications of the synthesis pathways of multiple cell envelope components, such as peptidoglycan, lipid A, and phospholipids. Together these results provide important insights into the potential adaptive responses to NO2 exposure in P. fluorescens MFAF76a needing further investigations.
Collapse
Affiliation(s)
- Thibault Chautrand
- Research Unit Bacterial Communication and Anti-Infectious Strategies (UR CBSA), Normandy University, Univeristy of Rouen Normandy, 55 rue Saint-Germain, 27000, Evreux, France
| | - Ségolène Depayras
- Research Unit Bacterial Communication and Anti-Infectious Strategies (UR CBSA), Normandy University, Univeristy of Rouen Normandy, 55 rue Saint-Germain, 27000, Evreux, France
- Praxens, Normandy Health Security Center, 55 rue Saint-Germain, 27000, Evreux, France
| | - Djouhar Souak
- Research Unit Bacterial Communication and Anti-Infectious Strategies (UR CBSA), Normandy University, Univeristy of Rouen Normandy, 55 rue Saint-Germain, 27000, Evreux, France
| | - Tatiana Kondakova
- LPS-BIOSCIENCES SAS, Domaine de l'Université Paris Sud, Bâtiment 430, Université Paris Saclay, 91400, Orsay, France
| | - Magalie Barreau
- Research Unit Bacterial Communication and Anti-Infectious Strategies (UR CBSA), Normandy University, Univeristy of Rouen Normandy, 55 rue Saint-Germain, 27000, Evreux, France
| | - Takfarinas Kentache
- Polymers, Biopolymers, Surface Laboratory, Normandy University, University of Rouen Normandy, INSA Rouen, CNRS, Bâtiment DULONG - Bd Maurice de Broglie, 76821, Mont Saint Aignan Cedex, France
- PISSARO Proteomic Facility, IRIB, 76820, Mont-Saint-Aignan, France
| | - Julie Hardouin
- Polymers, Biopolymers, Surface Laboratory, Normandy University, University of Rouen Normandy, INSA Rouen, CNRS, Bâtiment DULONG - Bd Maurice de Broglie, 76821, Mont Saint Aignan Cedex, France
- PISSARO Proteomic Facility, IRIB, 76820, Mont-Saint-Aignan, France
| | - Ali Tahrioui
- Research Unit Bacterial Communication and Anti-Infectious Strategies (UR CBSA), Normandy University, Univeristy of Rouen Normandy, 55 rue Saint-Germain, 27000, Evreux, France
| | - Olivier Thoumire
- Polymers, Biopolymers, Surface Laboratory, Normandy University, University of Rouen Normandy, INSA Rouen, CNRS, 55 rue Saint-Germain, 27000, Evreux, France
| | - Yoan Konto-Ghiorghi
- Research Unit Bacterial Communication and Anti-Infectious Strategies (UR CBSA), Normandy University, Univeristy of Rouen Normandy, 55 rue Saint-Germain, 27000, Evreux, France
| | - Corinne Barbey
- Research Unit Bacterial Communication and Anti-Infectious Strategies (UR CBSA), Normandy University, Univeristy of Rouen Normandy, 55 rue Saint-Germain, 27000, Evreux, France
| | - Guy Ladam
- Polymers, Biopolymers, Surface Laboratory, Normandy University, University of Rouen Normandy, INSA Rouen, CNRS, 55 rue Saint-Germain, 27000, Evreux, France
| | - Sylvie Chevalier
- Research Unit Bacterial Communication and Anti-Infectious Strategies (UR CBSA), Normandy University, Univeristy of Rouen Normandy, 55 rue Saint-Germain, 27000, Evreux, France
| | - Hermann J Heipieper
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| | - Nicole Orange
- Research Unit Bacterial Communication and Anti-Infectious Strategies (UR CBSA), Normandy University, Univeristy of Rouen Normandy, 55 rue Saint-Germain, 27000, Evreux, France
| | - Cécile Duclairoir-Poc
- Research Unit Bacterial Communication and Anti-Infectious Strategies (UR CBSA), Normandy University, Univeristy of Rouen Normandy, 55 rue Saint-Germain, 27000, Evreux, France.
| |
Collapse
|
15
|
Rykov SV, Battalova IY, Mironov AS. Construction of Recombinant Bacillus subtilis Strains Producing Hyaluronic Acid. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422050088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
van Tilburg AY, Warmer P, van Heel AJ, Sauer U, Kuipers OP. Membrane composition and organization of Bacillus subtilis 168 and its genome-reduced derivative miniBacillus PG10. Microb Biotechnol 2021; 15:1633-1651. [PMID: 34856064 PMCID: PMC9049611 DOI: 10.1111/1751-7915.13978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/13/2021] [Accepted: 11/14/2021] [Indexed: 11/30/2022] Open
Abstract
A form of lateral membrane compartmentalization in bacteria is represented by functional membrane microdomains (FMMs). FMMs are important for various cellular processes and offer application possibilities in microbial biotechnology. We designed a lipidomics method to directly measure relative abundances of lipids in detergent‐resistant and detergent‐sensitive membrane fractions of the model bacterium Bacillus subtilis 168 and the biotechnologically attractive miniBacillus PG10 strain. Our study supports previous work suggesting that cardiolipin and prenol lipids are enriched in FMMs of B. subtilis. Additionally, structural analysis of acyl chains of major phospholipids indicated that FMMs display increased order and thickness compared with the surrounding bilayer. Despite the 36% genome reduction, membrane and FMM integrity are largely preserved in miniBacillus PG10, as supported by analysis of membrane fluidity, flotillin distribution and gene expression data. The novel insights in FMM architecture reported here will contribute to further explore the biological significance of FMMs and the means by which FMMs can be exploited as heterologous production platforms. Moreover, our lipidomics method enables comparative FMM lipid profiling between different bacteria.
Collapse
Affiliation(s)
- Amanda Y van Tilburg
- Department of Molecular Genetics, University of Groningen, Groningen, The Netherlands
| | - Philipp Warmer
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland.,Life Science Zürich PhD Program on Systems Biology, Zürich, Switzerland
| | - Auke J van Heel
- Department of Molecular Genetics, University of Groningen, Groningen, The Netherlands
| | - Uwe Sauer
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
| | - Oscar P Kuipers
- Department of Molecular Genetics, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
17
|
Abstract
Mitochondria are complex organelles with two membranes. Their architecture is determined by characteristic folds of the inner membrane, termed cristae. Recent studies in yeast and other organisms led to the identification of four major pathways that cooperate to shape cristae membranes. These include dimer formation of the mitochondrial ATP synthase, assembly of the mitochondrial contact site and cristae organizing system (MICOS), inner membrane remodelling by a dynamin-related GTPase (Mgm1/OPA1), and modulation of the mitochondrial lipid composition. In this review, we describe the function of the evolutionarily conserved machineries involved in mitochondrial cristae biogenesis with a focus on yeast and present current models to explain how their coordinated activities establish mitochondrial membrane architecture.
Collapse
Affiliation(s)
- Till Klecker
- Institut für Zellbiologie, Universität Bayreuth, 95440 Bayreuth, Germany
| | | |
Collapse
|
18
|
Sakihara T, Takiguchi N, Uzawa H, Serizawa R, Kobayashi T. Erylysin A inhibits cytokinesis in Escherichia coli by binding with cardiolipin. J Biochem 2021; 170:369-377. [PMID: 34424293 DOI: 10.1093/jb/mvab052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/20/2021] [Indexed: 11/12/2022] Open
Abstract
Cardiolipin (CL) localizes to curved membranes such as cristae in mitochondria as well as cell poles and division sites in rod-shaped bacteria. CL is believed to stabilize the membrane curvature by localizing to sites of negative curvature. However, this hypothesis has not been tested because of a lack of appropriate tools to distinguish CL inside and outside lipid bilayers. In this study, we provided the first evidence that CL localized to regions of negative curvature in Escherichia coli using the novel CL probe erylysin A-EGFP (EryA-EGFP). Staining in E.coli illustrated that CL localized to the inner leaflets at cell poles and the outer leaflets at division sites. Furthermore, we revealed that EryA-EGFP inhibited cytokinesis. We propose that cytokinesis completes after CL in the outer leaflets transfers to the inner leaflets at division sites by inspecting the mechanism of inhibition of cytokinesis. Moreover, the cytoskeletal protein RodZ was abnormally distributed when cytokinesis was inhibited by EryA-EGFP, suggesting that RodZ participates in cytokinesis. In summary, we revealed the detailed distribution of CL and proposed a new model of cytokinesis.
Collapse
Affiliation(s)
- Tomoko Sakihara
- Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| | - Naoko Takiguchi
- Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| | - Hikari Uzawa
- Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| | - Rika Serizawa
- Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| | | |
Collapse
|
19
|
Nirody JA, Budin I, Rangamani P. ATP synthase: Evolution, energetics, and membrane interactions. J Gen Physiol 2021; 152:152111. [PMID: 32966553 PMCID: PMC7594442 DOI: 10.1085/jgp.201912475] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/24/2020] [Indexed: 12/24/2022] Open
Abstract
The synthesis of ATP, life’s “universal energy currency,” is the most prevalent chemical reaction in biological systems and is responsible for fueling nearly all cellular processes, from nerve impulse propagation to DNA synthesis. ATP synthases, the family of enzymes that carry out this endless task, are nearly as ubiquitous as the energy-laden molecule they are responsible for making. The F-type ATP synthase (F-ATPase) is found in every domain of life and has facilitated the survival of organisms in a wide range of habitats, ranging from the deep-sea thermal vents to the human intestine. Accordingly, there has been a large amount of work dedicated toward understanding the structural and functional details of ATP synthases in a wide range of species. Less attention, however, has been paid toward integrating these advances in ATP synthase molecular biology within the context of its evolutionary history. In this review, we present an overview of several structural and functional features of the F-type ATPases that vary across taxa and are purported to be adaptive or otherwise evolutionarily significant: ion channel selectivity, rotor ring size and stoichiometry, ATPase dimeric structure and localization in the mitochondrial inner membrane, and interactions with membrane lipids. We emphasize the importance of studying these features within the context of the enzyme’s particular lipid environment. Just as the interactions between an organism and its physical environment shape its evolutionary trajectory, ATPases are impacted by the membranes within which they reside. We argue that a comprehensive understanding of the structure, function, and evolution of membrane proteins—including ATP synthase—requires such an integrative approach.
Collapse
Affiliation(s)
- Jasmine A Nirody
- Center for Studies in Physics and Biology, The Rockefeller University, New York, NY.,All Souls College, University of Oxford, Oxford, UK
| | - Itay Budin
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA
| |
Collapse
|
20
|
Cardiolipin-Containing Lipid Membranes Attract the Bacterial Cell Division Protein DivIVA. Int J Mol Sci 2021; 22:ijms22158350. [PMID: 34361115 PMCID: PMC8348161 DOI: 10.3390/ijms22158350] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/28/2021] [Accepted: 08/01/2021] [Indexed: 02/04/2023] Open
Abstract
DivIVA is a protein initially identified as a spatial regulator of cell division in the model organism Bacillus subtilis, but its homologues are present in many other Gram-positive bacteria, including Clostridia species. Besides its role as topological regulator of the Min system during bacterial cell division, DivIVA is involved in chromosome segregation during sporulation, genetic competence, and cell wall synthesis. DivIVA localizes to regions of high membrane curvature, such as the cell poles and cell division site, where it recruits distinct binding partners. Previously, it was suggested that negative curvature sensing is the main mechanism by which DivIVA binds to these specific regions. Here, we show that Clostridioides difficile DivIVA binds preferably to membranes containing negatively charged phospholipids, especially cardiolipin. Strikingly, we observed that upon binding, DivIVA modifies the lipid distribution and induces changes to lipid bilayers containing cardiolipin. Our observations indicate that DivIVA might play a more complex and so far unknown active role during the formation of the cell division septal membrane.
Collapse
|
21
|
Joubert F, Puff N. Mitochondrial Cristae Architecture and Functions: Lessons from Minimal Model Systems. MEMBRANES 2021; 11:membranes11070465. [PMID: 34201754 PMCID: PMC8306996 DOI: 10.3390/membranes11070465] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 12/23/2022]
Abstract
Mitochondria are known as the powerhouse of eukaryotic cells. Energy production occurs in specific dynamic membrane invaginations in the inner mitochondrial membrane called cristae. Although the integrity of these structures is recognized as a key point for proper mitochondrial function, less is known about the mechanisms at the origin of their plasticity and organization, and how they can influence mitochondria function. Here, we review the studies which question the role of lipid membrane composition based mainly on minimal model systems.
Collapse
Affiliation(s)
- Frédéric Joubert
- Laboratoire Jean Perrin, CNRS, Sorbonne Université, UMR 8237, 75005 Paris, France;
| | - Nicolas Puff
- Faculté des Sciences et Ingénierie, Sorbonne Université, UFR 925 Physique, 75005 Paris, France
- Laboratoire Matière et Systèmes Complexes (MSC), Université Paris Diderot-Paris 7, UMR 7057 CNRS, 75013 Paris, France
- Correspondence:
| |
Collapse
|
22
|
Landajuela A, Braun M, Rodrigues CDA, Martínez-Calvo A, Doan T, Horenkamp F, Andronicos A, Shteyn V, Williams ND, Lin C, Wingreen NS, Rudner DZ, Karatekin E. FisB relies on homo-oligomerization and lipid binding to catalyze membrane fission in bacteria. PLoS Biol 2021; 19:e3001314. [PMID: 34185788 PMCID: PMC8274934 DOI: 10.1371/journal.pbio.3001314] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 07/12/2021] [Accepted: 06/07/2021] [Indexed: 11/18/2022] Open
Abstract
Little is known about mechanisms of membrane fission in bacteria despite their requirement for cytokinesis. The only known dedicated membrane fission machinery in bacteria, fission protein B (FisB), is expressed during sporulation in Bacillus subtilis and is required to release the developing spore into the mother cell cytoplasm. Here, we characterized the requirements for FisB-mediated membrane fission. FisB forms mobile clusters of approximately 12 molecules that give way to an immobile cluster at the engulfment pole containing approximately 40 proteins at the time of membrane fission. Analysis of FisB mutants revealed that binding to acidic lipids and homo-oligomerization are both critical for targeting FisB to the engulfment pole and membrane fission. Experiments using artificial membranes and filamentous cells suggest that FisB does not have an intrinsic ability to sense or induce membrane curvature but can bridge membranes. Finally, modeling suggests that homo-oligomerization and trans-interactions with membranes are sufficient to explain FisB accumulation at the membrane neck that connects the engulfment membrane to the rest of the mother cell membrane during late stages of engulfment. Together, our results show that FisB is a robust and unusual membrane fission protein that relies on homo-oligomerization, lipid binding, and the unique membrane topology generated during engulfment for localization and membrane scission, but surprisingly, not on lipid microdomains, negative-curvature lipids, or curvature sensing.
Collapse
Affiliation(s)
- Ane Landajuela
- Cellular and Molecular Physiology, Yale University, New Haven, Connecticut, United States of America
- Nanobiology Institute, Yale University, West Haven, Connecticut, United States of America
| | - Martha Braun
- Nanobiology Institute, Yale University, West Haven, Connecticut, United States of America
- Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America
| | | | | | - Thierry Doan
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, Aix-Marseille Université, Marseilles, France
| | - Florian Horenkamp
- Cell Biology, Yale University, New Haven, Connecticut, United States of America
| | - Anna Andronicos
- Cellular and Molecular Physiology, Yale University, New Haven, Connecticut, United States of America
| | - Vladimir Shteyn
- Cellular and Molecular Physiology, Yale University, New Haven, Connecticut, United States of America
- Nanobiology Institute, Yale University, West Haven, Connecticut, United States of America
| | - Nathan D Williams
- Nanobiology Institute, Yale University, West Haven, Connecticut, United States of America
- Cell Biology, Yale University, New Haven, Connecticut, United States of America
| | - Chenxiang Lin
- Nanobiology Institute, Yale University, West Haven, Connecticut, United States of America
- Cell Biology, Yale University, New Haven, Connecticut, United States of America
| | - Ned S Wingreen
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - David Z Rudner
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Erdem Karatekin
- Cellular and Molecular Physiology, Yale University, New Haven, Connecticut, United States of America
- Nanobiology Institute, Yale University, West Haven, Connecticut, United States of America
- Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America
- Université de Paris, SPPIN-Saints-Pères Paris Institute for the Neurosciences, Centre National de la Recherche Scientifique (CNRS), Paris, France
| |
Collapse
|
23
|
Intracellular localization of the mycobacterial stressosome complex. Sci Rep 2021; 11:10060. [PMID: 33980893 PMCID: PMC8115616 DOI: 10.1038/s41598-021-89069-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/19/2021] [Indexed: 11/09/2022] Open
Abstract
Microorganisms survive stresses by alternating the expression of genes suitable for surviving the immediate and present danger and eventually adapt to new conditions. Many bacteria have evolved a multiprotein "molecular machinery" designated the "Stressosome" that integrates different stress signals and activates alternative sigma factors for appropriate downstream responses. We and others have identified orthologs of some of the Bacillus subtilis stressosome components, RsbR, RsbS, RsbT and RsbUVW in several mycobacteria and we have previously reported mutual interactions among the stressosome components RsbR, RsbS, RsbT and RsbUVW from Mycobacterium marinum. Here we provide evidence that "STAS" domains of both RsbR and RsbS are important for establishing the interaction and thus critical for stressosome assembly. Fluorescence microscopy further suggested co-localization of RsbR and RsbS in multiprotein complexes visible as co-localized fluorescent foci distributed at scattered locations in the M. marinum cytoplasm; the number, intensity and distribution of such foci changed in cells under stressed conditions. Finally, we provide bioinformatics data that 17 (of 244) mycobacteria, which lack the RsbRST genes, carry homologs of Bacillus cereus genes rsbK and rsbM indicating the existence of alternative σF activation pathways among mycobacteria.
Collapse
|
24
|
Exterkate M, de Kok NAW, Andringa RLH, Wolbert NHJ, Minnaard AJ, Driessen AJM. A promiscuous archaeal cardiolipin synthase enables construction of diverse natural and unnatural phospholipids. J Biol Chem 2021; 296:100691. [PMID: 33894204 PMCID: PMC8141893 DOI: 10.1016/j.jbc.2021.100691] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/07/2021] [Accepted: 04/20/2021] [Indexed: 11/30/2022] Open
Abstract
Cardiolipins (CL) are a class of lipids involved in the structural organization of membranes, enzyme functioning, and osmoregulation. Biosynthesis of CLs has been studied in eukaryotes and bacteria, but has been barely explored in archaea. Unlike the common fatty acyl chain–based ester phospholipids, archaeal membranes are made up of the structurally different isoprenoid-based ether phospholipids, possibly involving a different cardiolipin biosynthesis mechanism. Here, we identified a phospholipase D motif–containing cardiolipin synthase (MhCls) from the methanogen Methanospirillum hungatei. The enzyme was overexpressed in Escherichia coli, purified, and its activity was characterized by LC-MS analysis of substrates/products. MhCls utilizes two archaetidylglycerol (AG) molecules in a transesterification reaction to synthesize glycerol-di-archaetidyl-cardiolipin (Gro-DACL) and glycerol. The enzyme is nonselective to the stereochemistry of the glycerol backbone and the nature of the lipid tail, as it also accepts phosphatidylglycerol (PG) to generate glycerol-di-phosphatidyl-cardiolipin (Gro-DPCL). Remarkably, in the presence of AG and PG, MhCls formed glycerol-archaetidyl-phosphatidyl-cardiolipin (Gro-APCL), an archaeal-bacterial hybrid cardiolipin species that so far has not been observed in nature. Due to the reversibility of the transesterification, in the presence of glycerol, Gro-DPCL can be converted back into two PG molecules. In the presence of other compounds that contain primary hydroxyl groups (e.g., alcohols, water, sugars), various natural and unique unnatural phospholipid species could be synthesized, including multiple di-phosphatidyl-cardiolipin species. Moreover, MhCls can utilize a glycolipid in the presence of phosphatidylglycerol to form a glycosyl-mono-phosphatidyl-cardiolipin species, emphasizing the promiscuity of this cardiolipin synthase that could be of interest for bio-catalytic purposes.
Collapse
Affiliation(s)
- Marten Exterkate
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Niels A W de Kok
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Ruben L H Andringa
- Department of Chemical Biology, Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands
| | - Niels H J Wolbert
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Adriaan J Minnaard
- Department of Chemical Biology, Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands
| | - Arnold J M Driessen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
25
|
Chaudhary R, Mishra S, Kota S, Misra H. Molecular interactions and their predictive roles in cell pole determination in bacteria. Crit Rev Microbiol 2021; 47:141-161. [PMID: 33423591 DOI: 10.1080/1040841x.2020.1857686] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Bacterial cell cycle is divided into well-coordinated phases; chromosome duplication and segregation, cell elongation, septum formation, and cytokinesis. The temporal separation of these phases depends upon the growth rates and doubling time in different bacteria. The entire process of cell division starts with the assembly of divisome complex at mid-cell position followed by constriction of the cell wall and septum formation. In the mapping of mid-cell position for septum formation, the gradient of oscillating Min proteins across the poles plays a pivotal role in several bacteria genus. The cues in the cell that defines the poles and plane of cell division are not fully characterized in cocci. Recent studies have shed some lights on molecular interactions at the poles and the underlying mechanisms involved in pole determination in non-cocci. In this review, we have brought forth recent findings on these aspects together, which would suggest a model to explain the mechanisms of pole determination in rod shaped bacteria and could be extrapolated as a working model in cocci.
Collapse
Affiliation(s)
- Reema Chaudhary
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Life Sciences, Homi Bhabha National Institute, Mumbai, India
| | - Shruti Mishra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Life Sciences, Homi Bhabha National Institute, Mumbai, India
| | - Swathi Kota
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Life Sciences, Homi Bhabha National Institute, Mumbai, India
| | - Hari Misra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Life Sciences, Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
26
|
Flores‐Romero H, Ros U, Garcia‐Saez AJ. Pore formation in regulated cell death. EMBO J 2020; 39:e105753. [PMID: 33124082 PMCID: PMC7705454 DOI: 10.15252/embj.2020105753] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/13/2020] [Accepted: 10/06/2020] [Indexed: 12/21/2022] Open
Abstract
The discovery of alternative signaling pathways that regulate cell death has revealed multiple strategies for promoting cell death with diverse consequences at the tissue and organism level. Despite the divergence in the molecular components involved, membrane permeabilization is a common theme in the execution of regulated cell death. In apoptosis, the permeabilization of the outer mitochondrial membrane by BAX and BAK releases apoptotic factors that initiate the caspase cascade and is considered the point of no return in cell death commitment. Pyroptosis and necroptosis also require the perforation of the plasma membrane at the execution step, which involves Gasdermins in pyroptosis, and MLKL in the case of necroptosis. Although BAX/BAK, Gasdermins and MLKL share certain molecular features like oligomerization, they form pores in different cellular membranes via distinct mechanisms. Here, we compare and contrast how BAX/BAK, Gasdermins, and MLKL alter membrane permeability from a structural and biophysical perspective and discuss the general principles of membrane permeabilization in the execution of regulated cell death.
Collapse
Affiliation(s)
- Hector Flores‐Romero
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
| | - Uris Ros
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
| | - Ana J Garcia‐Saez
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
| |
Collapse
|
27
|
Tsai YT, Moore W, Kim H, Budin I. Bringing rafts to life: Lessons learned from lipid organization across diverse biological membranes. Chem Phys Lipids 2020; 233:104984. [PMID: 33203526 DOI: 10.1016/j.chemphyslip.2020.104984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/13/2020] [Accepted: 09/28/2020] [Indexed: 10/23/2022]
Abstract
The ability of lipids to drive lateral organization is a remarkable feature of membranes and has been hypothesized to underlie the architecture of cells. Models for lipid rafts and related domains were originally based on the mammalian plasma membrane, but the nature of heterogeneity in this system is still not fully resolved. However, the concept of lipid-driven organization has been highly influential across biology, and has led to discoveries in organisms that feature a diversity of lipid chemistries and physiological needs. Here we review several emerging and instructive cases of membrane organization in non-mammalian systems. In bacteria, several types of membrane domains that act in metabolism and signaling have been elucidated. These widen our view of what constitutes a raft, but also introduce new questions about the relationship between organization and function. In yeast, observable membrane organization is found in both the plasma membrane and the vacuole. The latter serves as the best example of classic membrane phase partitioning in a living system to date, suggesting that internal organelles are important membranes to investigate across eukaryotes. Finally, we highlight plants as powerful model systems for complex membrane interactions in multicellular organisms. Plant membranes are organized by unique glycosphingolipids, supporting the importance of carbohydrate interactions in organizing lateral domains. These examples demonstrate that membrane organization is a potentially universal phenonenon in biology and argue for the continued broadening of lipid physical chemistry research into a wide range of systems.
Collapse
Affiliation(s)
- Yi-Ting Tsai
- Department of Chemistry & Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States
| | - William Moore
- Department of Chemistry & Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States
| | - Hyesoo Kim
- Department of Chemistry & Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States
| | - Itay Budin
- Department of Chemistry & Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States.
| |
Collapse
|
28
|
Pinkas D, Fišer R, Kozlík P, Dolejšová T, Hryzáková K, Konopásek I, Mikušová G. Bacillus subtilis cardiolipin protects its own membrane against surfactin-induced permeabilization. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183405. [DOI: 10.1016/j.bbamem.2020.183405] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/15/2020] [Accepted: 06/19/2020] [Indexed: 11/16/2022]
|
29
|
ExPortal and the LiaFSR Regulatory System Coordinate the Response to Cell Membrane Stress in Streptococcus pyogenes. mBio 2020; 11:mBio.01804-20. [PMID: 32934083 PMCID: PMC7492735 DOI: 10.1128/mbio.01804-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Bacterial two-component systems sense and induce transcriptional changes in response to environmental stressors, including antimicrobials and human antimicrobial peptides. Since the stresses imposed by the host’s defensive responses may act as markers of specific temporal stages of disease progression or host compartments, pathogens often coordinately regulate stress response programs with virulence factor expression. The mechanism by which bacteria recognize these stresses and subsequently induce transcriptional responses remains not well understood. In this study, we showed that LiaFSR senses cell envelope stress through colocalization of LiaF and LiaS with the group A Streptococcus (GAS) ExPortal and is activated in direct response to ExPortal disruption by antimicrobials or human antimicrobial peptides. Our studies shed new light on the sensing of cell envelope stress in Gram-positive bacteria and may contribute to the development of therapies targeting these processes. LiaFSR is a gene regulatory system important for response to cell membrane stress in Gram-positive bacteria but is minimally studied in the important human pathogen group A Streptococcus (GAS). Using immunofluorescence and immunogold electron microscopy, we discovered that LiaF (a membrane-bound repressor protein) and LiaS (a sensor kinase) reside within the GAS membrane microdomain (ExPortal). Cell envelope stress induced by antimicrobials resulted in ExPortal disruption and activation of the LiaFSR system. The only human antimicrobial peptide whose presence resulted in ExPortal disruption and LiaFSR activation was the alpha-defensin human neutrophil peptide 1 (hNP-1). Elimination of membrane cardiolipin through targeted gene deletion resulted in loss of LiaS colocalization with the GAS ExPortal and activation of LiaFSR, whereas LiaF membrane localization was unaffected. Isogenic mutants lacking either LiaF or LiaS revealed a critical role of LiaF in ExPortal integrity. Thus, LiaF and LiaS colocalize with the GAS ExPortal by distinct mechanisms, further supporting codependence. These are the first data identifying a multicomponent signal system within the ExPortal, thereby providing new insight into bacterial intramembrane signaling in GAS that may serve as a paradigm for Gram-positive bacteria.
Collapse
|
30
|
Khanna K, Lopez-Garrido J, Pogliano K. Shaping an Endospore: Architectural Transformations During Bacillus subtilis Sporulation. Annu Rev Microbiol 2020; 74:361-386. [PMID: 32660383 PMCID: PMC7610358 DOI: 10.1146/annurev-micro-022520-074650] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Endospore formation in Bacillus subtilis provides an ideal model system for studying development in bacteria. Sporulation studies have contributed a wealth of information about the mechanisms of cell-specific gene expression, chromosome dynamics, protein localization, and membrane remodeling, while helping to dispel the early view that bacteria lack internal organization and interesting cell biological phenomena. In this review, we focus on the architectural transformations that lead to a profound reorganization of the cellular landscape during sporulation, from two cells that lie side by side to the endospore, the unique cell within a cell structure that is a hallmark of sporulation in B. subtilis and other spore-forming Firmicutes. We discuss new insights into the mechanisms that drive morphogenesis, with special emphasis on polar septation, chromosome translocation, and the phagocytosis-like process of engulfment, and also the key experimental advances that have proven valuable in revealing the inner workings of bacterial cells.
Collapse
Affiliation(s)
- Kanika Khanna
- Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, USA; ,
| | | | - Kit Pogliano
- Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, USA; ,
| |
Collapse
|
31
|
Royes J, Biou V, Dautin N, Tribet C, Miroux B. Inducible intracellular membranes: molecular aspects and emerging applications. Microb Cell Fact 2020; 19:176. [PMID: 32887610 PMCID: PMC7650269 DOI: 10.1186/s12934-020-01433-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/27/2020] [Indexed: 02/08/2023] Open
Abstract
Membrane remodeling and phospholipid biosynthesis are normally tightly regulated to maintain the shape and function of cells. Indeed, different physiological mechanisms ensure a precise coordination between de novo phospholipid biosynthesis and modulation of membrane morphology. Interestingly, the overproduction of certain membrane proteins hijack these regulation networks, leading to the formation of impressive intracellular membrane structures in both prokaryotic and eukaryotic cells. The proteins triggering an abnormal accumulation of membrane structures inside the cells (or membrane proliferation) share two major common features: (1) they promote the formation of highly curved membrane domains and (2) they lead to an enrichment in anionic, cone-shaped phospholipids (cardiolipin or phosphatidic acid) in the newly formed membranes. Taking into account the available examples of membrane proliferation upon protein overproduction, together with the latest biochemical, biophysical and structural data, we explore the relationship between protein synthesis and membrane biogenesis. We propose a mechanism for the formation of these non-physiological intracellular membranes that shares similarities with natural inner membrane structures found in α-proteobacteria, mitochondria and some viruses-infected cells, pointing towards a conserved feature through evolution. We hope that the information discussed in this review will give a better grasp of the biophysical mechanisms behind physiological and induced intracellular membrane proliferation, and inspire new applications, either for academia (high-yield membrane protein production and nanovesicle production) or industry (biofuel production and vaccine preparation).
Collapse
Affiliation(s)
- Jorge Royes
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, Université de Paris, LBPC-PM, CNRS, UMR7099, 75005, Paris, France. .,Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild pour le Développement de la Recherche Scientifique, 75005, Paris, France. .,Département de Chimie, École Normale Supérieure, PASTEUR, PSL University, CNRS, Sorbonne Université, 24 Rue Lhomond, 75005, Paris, France.
| | - Valérie Biou
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, Université de Paris, LBPC-PM, CNRS, UMR7099, 75005, Paris, France.,Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild pour le Développement de la Recherche Scientifique, 75005, Paris, France
| | - Nathalie Dautin
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, Université de Paris, LBPC-PM, CNRS, UMR7099, 75005, Paris, France.,Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild pour le Développement de la Recherche Scientifique, 75005, Paris, France
| | - Christophe Tribet
- Département de Chimie, École Normale Supérieure, PASTEUR, PSL University, CNRS, Sorbonne Université, 24 Rue Lhomond, 75005, Paris, France
| | - Bruno Miroux
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, Université de Paris, LBPC-PM, CNRS, UMR7099, 75005, Paris, France. .,Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild pour le Développement de la Recherche Scientifique, 75005, Paris, France.
| |
Collapse
|
32
|
Nickels JD, Poudel S, Chatterjee S, Farmer A, Cordner D, Campagna SR, Giannone RJ, Hettich RL, Myles DAA, Standaert RF, Katsaras J, Elkins JG. Impact of Fatty-Acid Labeling of Bacillus subtilis Membranes on the Cellular Lipidome and Proteome. Front Microbiol 2020; 11:914. [PMID: 32499768 PMCID: PMC7243436 DOI: 10.3389/fmicb.2020.00914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/17/2020] [Indexed: 12/22/2022] Open
Abstract
Developing cultivation methods that yield chemically and isotopically defined fatty acid (FA) compositions within bacterial cytoplasmic membranes establishes an in vivo experimental platform to study membrane biophysics and cell membrane regulation using novel approaches. Yet before fully realizing the potential of this method, it is prudent to understand the systemic changes in cells induced by the labeling procedure itself. In this work, analysis of cellular membrane compositions was paired with proteomics to assess how the proteome changes in response to the directed incorporation of exogenous FAs into the membrane of Bacillus subtilis. Key findings from this analysis include an alteration in lipid headgroup distribution, with an increase in phosphatidylglycerol lipids and decrease in phosphatidylethanolamine lipids, possibly providing a fluidizing effect on the cell membrane in response to the induced change in membrane composition. Changes in the abundance of enzymes involved in FA biosynthesis and degradation are observed; along with changes in abundance of cell wall enzymes and isoprenoid lipid production. The observed changes may influence membrane organization, and indeed the well-known lipid raft-associated protein flotillin was found to be substantially down-regulated in the labeled cells – as was the actin-like protein MreB. Taken as a whole, this study provides a greater depth of understanding for this important cell membrane experimental platform and presents a number of new connections to be explored in regard to modulating cell membrane FA composition and its effects on lipid headgroup and raft/cytoskeletal associated proteins.
Collapse
Affiliation(s)
- Jonathan D Nickels
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, United States
| | - Suresh Poudel
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Sneha Chatterjee
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Abigail Farmer
- Department of Chemistry, The University of Tennessee, Knoxville, Knoxville, TN, United States.,Biological and Small Molecule Mass Spectrometry Core, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Destini Cordner
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, United States
| | - Shawn R Campagna
- Department of Chemistry, The University of Tennessee, Knoxville, Knoxville, TN, United States.,Biological and Small Molecule Mass Spectrometry Core, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Richard J Giannone
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Robert L Hettich
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Dean A A Myles
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Robert F Standaert
- Department of Chemistry, East Tennessee State University, Johnson City, TN, United States
| | - John Katsaras
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States.,Shull Wollan Center - a Joint Institute for Neutron Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, United States.,Department of Physics and Astronomy, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - James G Elkins
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States.,Department of Microbiology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| |
Collapse
|
33
|
Laut CL, Perry WJ, Metzger AL, Weiss A, Stauff DL, Walker S, Caprioli RM, Skaar EP. Bacillus anthracis Responds to Targocil-Induced Envelope Damage through EdsRS Activation of Cardiolipin Synthesis. mBio 2020; 11:e03375-19. [PMID: 32234818 PMCID: PMC7157781 DOI: 10.1128/mbio.03375-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/27/2020] [Indexed: 01/08/2023] Open
Abstract
Bacillus anthracis is a spore-forming bacterium that causes devastating infections and has been used as a bioterror agent. This pathogen can survive hostile environments through the signaling activity of two-component systems, which couple environmental sensing with transcriptional activation to initiate a coordinated response to stress. In this work, we describe the identification of a two-component system, EdsRS, which mediates the B. anthracis response to the antimicrobial compound targocil. Targocil is a cell envelope-targeting compound that is toxic to B. anthracis at high concentrations. Exposure to targocil causes damage to the cellular barrier and activates EdsRS to induce expression of a previously uncharacterized cardiolipin synthase, which we have named ClsT. Both EdsRS and ClsT are required for protection against targocil-dependent damage. Induction of clsT by EdsRS during targocil treatment results in an increase in cardiolipin levels, which protects B. anthracis from envelope damage. Together, these results reveal that a two-component system signaling response to an envelope-targeting antimicrobial induces production of a phospholipid associated with stabilization of the membrane. Cardiolipin is then used to repair envelope damage and promote B. anthracis viability.IMPORTANCE Compromising the integrity of the bacterial cell barrier is a common action of antimicrobials. Targocil is an antimicrobial that is active against the bacterial envelope. We hypothesized that Bacillus anthracis, a potential weapon of bioterror, senses and responds to targocil to alleviate targocil-dependent cell damage. Here, we show that targocil treatment increases the permeability of the cellular envelope and is particularly toxic to B. anthracis spores during outgrowth. In vegetative cells, two-component system signaling through EdsRS is activated by targocil. This results in an increase in the production of cardiolipin via a cardiolipin synthase, ClsT, which restores the loss of barrier function, thereby reducing the effectiveness of targocil. By elucidating the B. anthracis response to targocil, we have uncovered an intrinsic mechanism that this pathogen employs to resist toxicity and have revealed therapeutic targets that are important for bacterial defense against structural damage.
Collapse
Affiliation(s)
- Clare L Laut
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - William J Perry
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee, USA
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
| | | | - Andy Weiss
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Devin L Stauff
- Department of Biology, Grove City College, Grove City, Pennsylvania, USA
| | - Suzanne Walker
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Richard M Caprioli
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee, USA
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
34
|
Chu J, Liu J, Hoover TR. Phylogenetic Distribution, Ultrastructure, and Function of Bacterial Flagellar Sheaths. Biomolecules 2020; 10:biom10030363. [PMID: 32120823 PMCID: PMC7175336 DOI: 10.3390/biom10030363] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 02/06/2023] Open
Abstract
A number of Gram-negative bacteria have a membrane surrounding their flagella, referred to as the flagellar sheath, which is continuous with the outer membrane. The flagellar sheath was initially described in Vibrio metschnikovii in the early 1950s as an extension of the outer cell wall layer that completely surrounded the flagellar filament. Subsequent studies identified other bacteria that possess flagellar sheaths, most of which are restricted to a few genera of the phylum Proteobacteria. Biochemical analysis of the flagellar sheaths from a few bacterial species revealed the presence of lipopolysaccharide, phospholipids, and outer membrane proteins in the sheath. Some proteins localize preferentially to the flagellar sheath, indicating mechanisms exist for protein partitioning to the sheath. Recent cryo-electron tomography studies have yielded high resolution images of the flagellar sheath and other structures closely associated with the sheath, which has generated insights and new hypotheses for how the flagellar sheath is synthesized. Various functions have been proposed for the flagellar sheath, including preventing disassociation of the flagellin subunits in the presence of gastric acid, avoiding activation of the host innate immune response by flagellin, activating the host immune response, adherence to host cells, and protecting the bacterium from bacteriophages.
Collapse
Affiliation(s)
- Joshua Chu
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA;
| | - Jun Liu
- Microbial Sciences Institute, Department of Microbial Pathogenesis, Yale University, West Haven, CT 06516, USA;
| | - Timothy R. Hoover
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
- Correspondence: ; Tel.: +1-706-542-2675
| |
Collapse
|
35
|
Yokoyama H, Matsui I. The lipid raft markers stomatin, prohibitin, flotillin, and HflK/C (SPFH)-domain proteins form an operon with NfeD proteins and function with apolar polyisoprenoid lipids. Crit Rev Microbiol 2020; 46:38-48. [PMID: 31983249 DOI: 10.1080/1040841x.2020.1716682] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SPFH-domain proteins are found in almost all organisms across three domains: archaea, bacteria, and eukaryotes. In eukaryotic organelles, their subfamilies exhibit overlapping distribution and functions; thus, the rationality of annotation to discriminate these subfamilies remains unclear. In this review, the binding ability of prokaryotic SPFH-domain proteins towards nonpolar polyisoprenoides such as squalene and lycopene, rather than cholesterol, is discussed. The hydrophobic region at the C-terminus of SPFH-domain proteins constitutes the main region that binds apolar polyisoprenoid lipids as well as cholesterol and substantively contributes towards lipid raft formation as these regions are self-assembled together with specific lipids. Because the scaffolding proteins caveolins show common topological properties with SPFH-domain proteins such as stomatin and flotillin, the α-helical segments of stomatin proteins can flexibly move along with the membrane surface, with such movement potentially leading to membrane bending via lipid raft clustering through the formation of high order homo-oligomeric complexes of SPFH-domain proteins. We also discuss the functional significance and ancient origin of SPFH-domain proteins and the NfeD protein (STOPP) operon, which can be traced back to the ancient living cells that diverged and evolved to archaea and bacteria. Based on the molecular mechanism whereby the STOPP-protease degrades the C-terminal hydrophobic clusters of SPFH-domain proteins, it is conceivable that STOPP-protease might control the physicochemical properties of lipid rafts.
Collapse
Affiliation(s)
- Hideshi Yokoyama
- Department of Medical and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Ikuo Matsui
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| |
Collapse
|
36
|
Flores-Romero H, Ros U, García-Sáez AJ. A lipid perspective on regulated cell death. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 351:197-236. [PMID: 32247580 DOI: 10.1016/bs.ircmb.2019.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lipids are fundamental to life as structural components of cellular membranes and for signaling. They are also key regulators of different cellular processes such as cell division, proliferation, and death. Regulated cell death (RCD) requires the engagement of lipids and lipid metabolism for the initiation and execution of its killing machinery. The permeabilization of lipid membranes is a hallmark of RCD that involves, for each kind of cell death, a unique lipid profile. While the permeabilization of the mitochondrial outer membrane allows the release of apoptotic factors to the cytosol during apoptosis, permeabilization of the plasma membrane facilitates the release of intracellular content in other nonapoptotic types of RCD like necroptosis and ferroptosis. Lipids and lipid membranes are important accessory molecules required for the activation of protein executors of cell death such as BAX in apoptosis and MLKL in necroptosis. Peroxidation of membrane phospholipids and the subsequent membrane destabilization is a prerequisite to ferroptosis. Here, we discuss how lipids are essential players in apoptosis, the most common form of RCD, and also their role in necroptosis and ferroptosis. Altogether, we aim to highlight the contribution of lipids and membrane dynamics in cell death regulation.
Collapse
Affiliation(s)
- Hector Flores-Romero
- Interfaculty Institute of Biochemistry, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| | - Uris Ros
- Interfaculty Institute of Biochemistry, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| | - Ana J García-Sáez
- Interfaculty Institute of Biochemistry, Eberhard-Karls-Universität Tübingen, Tübingen, Germany.
| |
Collapse
|
37
|
Mo F, Cai D, He P, Yang F, Chen Y, Ma X, Chen S. Enhanced production of heterologous proteins via engineering the cell surface of Bacillus licheniformis. ACTA ACUST UNITED AC 2019; 46:1745-1755. [DOI: 10.1007/s10295-019-02229-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 08/12/2019] [Indexed: 10/26/2022]
Abstract
Abstract
Cell surface engineering was proven as the efficient strategy for enhanced production of target metabolites. In this study, we want to improve the yield of target protein by engineering cell surface in Bacillus licheniformis. First, our results confirmed that deletions of d-alanyl-lipoteichoic acid synthetase gene dltD, cardiolipin synthase gene clsA and CDP-diacylglycerol-serine O-phosphatidyltransferase gene pssA were not conducive to cell growth, and the biomass of gene deletion strains were, respectively, decreased by 10.54 ± 1.43%, 14.17 ± 1.51%, and 17.55 ± 1.28%, while the concentrations of total extracellular proteins were improved, due to the increases of cell surface net negative charge and cell membrane permeability. In addition, the activities of target proteins, nattokinase, and α-amylase were also improved significantly in gene deletion strains. Furthermore, the triplicate gene (dltD, clsA, and pssA) deletion strain was constructed, which further led to the 45.71 ± 2.43% increase of cell surface net negative charge and 26.45 ± 2.31% increase of cell membrane permeability, and the activities of nattokinase and α-amylase reached 37.15 ± 0.89 FU/mL and 305.3 ± 8.4 U/mL, increased by 46.09 ± 3.51% and 96.34 ± 7.24%, respectively. Taken together, our results confirmed that cell surface engineering via deleting dltD, clsA, and pssA is an efficient strategy for enhanced production of target proteins, and this research provided a promising host strain of B. licheniformis for efficient protein expression.
Collapse
Affiliation(s)
- Fei Mo
- grid.34418.3a 0000 0001 0727 9022 State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences Hubei University 368 Youyi Avenue, Wuchang District 430062 Wuhan Hubei People’s Republic of China
| | - Dongbo Cai
- grid.34418.3a 0000 0001 0727 9022 State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences Hubei University 368 Youyi Avenue, Wuchang District 430062 Wuhan Hubei People’s Republic of China
| | - Penghui He
- grid.34418.3a 0000 0001 0727 9022 State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences Hubei University 368 Youyi Avenue, Wuchang District 430062 Wuhan Hubei People’s Republic of China
| | - Fan Yang
- grid.34418.3a 0000 0001 0727 9022 State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences Hubei University 368 Youyi Avenue, Wuchang District 430062 Wuhan Hubei People’s Republic of China
| | - Yaozhong Chen
- grid.34418.3a 0000 0001 0727 9022 State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences Hubei University 368 Youyi Avenue, Wuchang District 430062 Wuhan Hubei People’s Republic of China
| | - Xin Ma
- grid.34418.3a 0000 0001 0727 9022 State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences Hubei University 368 Youyi Avenue, Wuchang District 430062 Wuhan Hubei People’s Republic of China
| | - Shouwen Chen
- grid.34418.3a 0000 0001 0727 9022 State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences Hubei University 368 Youyi Avenue, Wuchang District 430062 Wuhan Hubei People’s Republic of China
| |
Collapse
|
38
|
Loss of a Cardiolipin Synthase in Helicobacter pylori G27 Blocks Flagellum Assembly. J Bacteriol 2019; 201:JB.00372-19. [PMID: 31427391 DOI: 10.1128/jb.00372-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/28/2019] [Indexed: 12/30/2022] Open
Abstract
Helicobacter pylori uses a cluster of polar, sheathed flagella for motility, which it requires for colonization of the gastric epithelium in humans. As part of a study to identify factors that contribute to localization of the flagella to the cell pole, we disrupted a gene encoding a cardiolipin synthase (clsC) in H. pylori strains G27 and B128. Flagellum biosynthesis was abolished in the H. pylori G27 clsC mutant but not in the B128 clsC mutant. Transcriptome sequencing analysis showed that flagellar genes encoding proteins needed early in flagellum assembly were expressed at wild-type levels in the G27 clsC mutant. Examination of the G27 clsC mutant by cryo-electron tomography indicated the mutant assembled nascent flagella that contained the MS ring, C ring, flagellar protein export apparatus, and proximal rod. Motile variants of the G27 clsC mutant were isolated after allelic exchange mutagenesis using genomic DNA from the B128 clsC mutant as the donor. Genome resequencing of seven motile G27 clsC recipients revealed that each isolate contained the flgI (encodes the P-ring protein) allele from B128. Replacing the flgI allele in the G27 clsC mutant with the B128 flgI allele rescued flagellum biosynthesis. We postulate that H. pylori G27 FlgI fails to form the P ring when cardiolipin levels in the cell envelope are low, which blocks flagellum assembly at this point. In contrast, H. pylori B128 FlgI can form the P ring when cardiolipin levels are low and allows for the biosynthesis of mature flagella.IMPORTANCE H. pylori colonizes the epithelial layer of the human stomach, where it can cause a variety of diseases, including chronic gastritis, peptic ulcer disease, and gastric cancer. To colonize the stomach, H. pylori must penetrate the viscous mucous layer lining the stomach, which it accomplishes using its flagella. The significance of our research is identifying factors that affect the biosynthesis and assembly of the H. pylori flagellum, which will contribute to our understanding of motility in H. pylori, as well as other bacterial pathogens that use their flagella for host colonization.
Collapse
|
39
|
Swain J, El Khoury M, Flament A, Dezanet C, Briée F, Van Der Smissen P, Décout JL, Mingeot-Leclercq MP. Antimicrobial activity of amphiphilic neamine derivatives: Understanding the mechanism of action on Gram-positive bacteria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:182998. [DOI: 10.1016/j.bbamem.2019.05.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 05/22/2019] [Accepted: 05/28/2019] [Indexed: 01/06/2023]
|
40
|
The Incomplete Puzzle of the BCL2 Proteins. Cells 2019; 8:cells8101176. [PMID: 31569576 PMCID: PMC6830314 DOI: 10.3390/cells8101176] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 02/07/2023] Open
Abstract
The proteins of the BCL2 family are key players in multiple cellular processes, chief amongst them being the regulation of mitochondrial integrity and apoptotic cell death. These proteins establish an intricate interaction network that expands both the cytosol and the surface of organelles to dictate the cell fate. The complexity and unpredictability of the BCL2 interactome resides in the large number of family members and of interaction surfaces, as well as on their different behaviours in solution and in the membrane. Although our current structural knowledge of the BCL2 proteins has been proven therapeutically relevant, the precise structure of membrane-bound complexes and the regulatory effect that membrane lipids exert over these proteins remain key questions in the field. Here, we discuss the complexity of BCL2 interactome, the new insights, and the black matter in the field.
Collapse
|
41
|
Conrard L, Tyteca D. Regulation of Membrane Calcium Transport Proteins by the Surrounding Lipid Environment. Biomolecules 2019; 9:E513. [PMID: 31547139 PMCID: PMC6843150 DOI: 10.3390/biom9100513] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 12/11/2022] Open
Abstract
Calcium ions (Ca2+) are major messengers in cell signaling, impacting nearly every aspect of cellular life. Those signals are generated within a wide spatial and temporal range through a large variety of Ca2+ channels, pumps, and exchangers. More and more evidences suggest that Ca2+ exchanges are regulated by their surrounding lipid environment. In this review, we point out the technical challenges that are currently being overcome and those that still need to be defeated to analyze the Ca2+ transport protein-lipid interactions. We then provide evidences for the modulation of Ca2+ transport proteins by lipids, including cholesterol, acidic phospholipids, sphingolipids, and their metabolites. We also integrate documented mechanisms involved in the regulation of Ca2+ transport proteins by the lipid environment. Those include: (i) Direct interaction inside the protein with non-annular lipids; (ii) close interaction with the first shell of annular lipids; (iii) regulation of membrane biophysical properties (e.g., membrane lipid packing, thickness, and curvature) directly around the protein through annular lipids; and (iv) gathering and downstream signaling of several proteins inside lipid domains. We finally discuss recent reports supporting the related alteration of Ca2+ and lipids in different pathophysiological events and the possibility to target lipids in Ca2+-related diseases.
Collapse
Affiliation(s)
- Louise Conrard
- CELL Unit, de Duve Institute and Université catholique de Louvain, UCL B1.75.05, avenue Hippocrate, 75, B-1200 Brussels, Belgium
| | - Donatienne Tyteca
- CELL Unit, de Duve Institute and Université catholique de Louvain, UCL B1.75.05, avenue Hippocrate, 75, B-1200 Brussels, Belgium.
| |
Collapse
|
42
|
Helicobacter pylori lipids can form ordered membrane domains (rafts). BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:183050. [PMID: 31449801 DOI: 10.1016/j.bbamem.2019.183050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/09/2019] [Accepted: 08/21/2019] [Indexed: 02/07/2023]
Abstract
Ordered lipid domains (rafts) are generally considered to be features of eukaryotic cells, but ordered lipid domains formed by cholesterol lipids have been identified in bacteria from the genus Borrelia, and similar cholesterol lipids exist in the bacterium Helicobacter pylori. To determine whether H. pylori lipids could form ordered membrane domains, we investigated domain formation in aqueous dispersions of H. pylori whole lipid extracts, individual H. pylori lipids, or defined mixtures of H. pylori lipids and other membrane-forming lipids. DPH (1,6-diphenyl-1,3,5-hexatriene) anisotropy measurements were used to assay membrane order and FRET (Förster resonance energy transfer) was used to detect the presence of co-existing ordered and disordered domains. We found that H. pylori membrane lipid extracts spontaneously formed lipid domains. Domain formation was more stable when lipids were extracted from H. pylori cells grown in the presence of cholesterol. Certain isolated H. pylori lipids (by themselves or when mixed with other lipids) also had the ability to form ordered domains. To be specific, H. pylori cholesteryl-6-O-tetradecanoyl-α-D-glucopyranoside (CAG) and cholesterol-6-O-phosphatidyl-α-D-glucopyranoside (CPG) had the ability to form and/or stabilize ordered domain formation, while H. pylori phosphatidylethanolamine did not, behaving similarly to unsaturated phosphatidylethanolamines. We conclude that specific H. pylori cholesterol lipids have a marked ability to form ordered lipid domains.
Collapse
|
43
|
Fonseca F, Pénicaud C, Tymczyszyn EE, Gómez-Zavaglia A, Passot S. Factors influencing the membrane fluidity and the impact on production of lactic acid bacteria starters. Appl Microbiol Biotechnol 2019; 103:6867-6883. [DOI: 10.1007/s00253-019-10002-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/25/2019] [Accepted: 06/27/2019] [Indexed: 01/09/2023]
|
44
|
Beltrán-Heredia E, Tsai FC, Salinas-Almaguer S, Cao FJ, Bassereau P, Monroy F. Membrane curvature induces cardiolipin sorting. Commun Biol 2019; 2:225. [PMID: 31240263 PMCID: PMC6586900 DOI: 10.1038/s42003-019-0471-x] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 05/23/2019] [Indexed: 11/17/2022] Open
Abstract
Cardiolipin is a cone-shaped lipid predominantly localized in curved membrane sites of bacteria and in the mitochondrial cristae. This specific localization has been argued to be geometry-driven, since the CL's conical shape relaxes curvature frustration. Although previous evidence suggests a coupling between CL concentration and membrane shape in vivo, no precise experimental data are available for curvature-based CL sorting in vitro. Here, we test this hypothesis in experiments that isolate the effects of membrane curvature in lipid-bilayer nanotubes. CL sorting is observed with increasing tube curvature, reaching a maximum at optimal CL concentrations, a fact compatible with self-associative clustering. Observations are compatible with a model of membrane elasticity including van der Waals entropy, from which a negative intrinsic curvature of -1.1 nm-1 is predicted for CL. The results contribute to understanding the physicochemical interplay between membrane curvature and composition, providing key insights into mitochondrial and bacterial membrane organization and dynamics.
Collapse
Affiliation(s)
- Elena Beltrán-Heredia
- Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, Plaza de Ciencias, 1, 28040 Madrid, Spain
- Departamento de Química Física, Universidad Complutense de Madrid, Avda. Complutense, s/n, 28040 Madrid, Spain
| | - Feng-Ching Tsai
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005 Paris, France
| | - Samuel Salinas-Almaguer
- Departamento de Química Física, Universidad Complutense de Madrid, Avda. Complutense, s/n, 28040 Madrid, Spain
| | - Francisco J. Cao
- Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, Plaza de Ciencias, 1, 28040 Madrid, Spain
- Instituto Madrileño de Estudios Avanzados en Nanociencia, IMDEA Nanociencia, Calle Faraday, 9, 28049 Madrid, Spain
| | - Patricia Bassereau
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005 Paris, France
- Sorbonne Université, UPMC Univ Paris 06, 75005 Paris, France
| | - Francisco Monroy
- Departamento de Química Física, Universidad Complutense de Madrid, Avda. Complutense, s/n, 28040 Madrid, Spain
- Unit of Translational Biophysics, Instituto de Investigación Sanitaria Hospital Doce de Octubre (imas12), Avda. de Córdoba, s/n, 28041 Madrid, Spain
- Institute for Quantitative Biosciences-QB3, University of California at Berkeley, Berkeley, CA 94720 USA
| |
Collapse
|
45
|
Mostofian B, Zhuang T, Cheng X, Nickels JD. Branched-Chain Fatty Acid Content Modulates Structure, Fluidity, and Phase in Model Microbial Cell Membranes. J Phys Chem B 2019; 123:5814-5821. [DOI: 10.1021/acs.jpcb.9b04326] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Barmak Mostofian
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Tony Zhuang
- College of Medicine, University of Tennessee, Memphis, Tennessee 38163, United States
| | - Xiaolin Cheng
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jonathan D. Nickels
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, Ohio 45221, United States
| |
Collapse
|
46
|
Boyd KJ, Alder NN, May ER. Molecular Dynamics Analysis of Cardiolipin and Monolysocardiolipin on Bilayer Properties. Biophys J 2019; 114:2116-2127. [PMID: 29742405 DOI: 10.1016/j.bpj.2018.04.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 03/04/2018] [Accepted: 04/02/2018] [Indexed: 11/29/2022] Open
Abstract
The mitochondrial lipid cardiolipin (CL) contributes to the spatial protein organization and morphological character of the inner mitochondrial membrane. Monolysocardiolipin (MLCL), an intermediate species in the CL remodeling pathway, is enriched in the multisystem disease Barth syndrome. Despite the medical relevance of MLCL, a detailed molecular description that elucidates the structural and dynamic differences between CL and MLCL has not been conducted. To this end, we performed comparative atomistic molecular dynamics studies on bilayers consisting of pure CL or MLCL to elucidate similarities and differences in their molecular and bulk bilayer properties. We describe differential headgroup dynamics and hydrogen bonding patterns between the CL variants and show an increased cohesiveness of MLCL's solvent interfacial region, which may have implications for protein interactions. Finally, using the coarse-grained Martini model, we show that substitution of MLCL for CL in bilayers mimicking mitochondrial composition induces drastic differences in bilayer mechanical properties and curvature-dependent partitioning behavior. Together, the results of this work reveal differences between CL and MLCL at the molecular and mesoscopic levels that may underpin the pathomechanisms of defects in cardiolipin remodeling.
Collapse
Affiliation(s)
- Kevin J Boyd
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut
| | - Nathan N Alder
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut
| | - Eric R May
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut.
| |
Collapse
|
47
|
Qi Q, Chi W, Li Y, Qiao Q, Chen J, Miao L, Zhang Y, Li J, Ji W, Xu T, Liu X, Yoon J, Xu Z. A H-bond strategy to develop acid-resistant photoswitchable rhodamine spirolactams for super-resolution single-molecule localization microscopy. Chem Sci 2019; 10:4914-4922. [PMID: 31160962 PMCID: PMC6510312 DOI: 10.1039/c9sc01284b] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 04/04/2019] [Indexed: 01/04/2023] Open
Abstract
Rhodamine spirolactam based photoswitches have been extensively applied in super-resolution single-molecule localization microscopy (SMLM). However, the ring-opening reactions of spirolactams are cross-sensitive to acid, limiting their photoswitch use to neutral pH conditions. In addition, the ring-closing reactions of spirolactams are environment-sensitive and slow (up to hours), virtually making rhodamine spirolactams caged fluorescent dyes instead of reversible photoswitches in SMLM. Herein, by introducing hydrogen bonds to stabilize spirolactams, we report a series of acid-resistant rhodamine spirolactams with accelerated ring-closing reactions from fluorescent xanthyliums to non-fluorescent spirolactams, endowing them with good photoswitchable properties even in acidic environments. By further substitution of 6-phenylethynyl naphthalimide on the spirolactam, we shifted the photoactivation wavelength into the visible region (>400 nm). Subsequently, we have successfully applied these dyes in labeling and imaging the cell surface of Bacillus subtilis at pH 4.5 using SMLM.
Collapse
Affiliation(s)
- Qingkai Qi
- CAS Key Laboratory of Separation Science for Analytical Chemistry , Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian 116023 , China .
| | - Weijie Chi
- Singapore University of Technology and Design , 8 Somapah Road , Singapore 487372 , Singapore .
| | - Yuanyuan Li
- National Laboratory of Biomacromolecules , Institute of Biophysics , Chinese Academy of Sciences , Beijing 100101 , China .
| | - Qinglong Qiao
- CAS Key Laboratory of Separation Science for Analytical Chemistry , Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian 116023 , China .
| | - Jie Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry , Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian 116023 , China .
| | - Lu Miao
- CAS Key Laboratory of Separation Science for Analytical Chemistry , Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian 116023 , China .
| | - Yi Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry , Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian 116023 , China .
| | - Jin Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry , Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian 116023 , China .
| | - Wei Ji
- National Laboratory of Biomacromolecules , Institute of Biophysics , Chinese Academy of Sciences , Beijing 100101 , China .
| | - Tao Xu
- National Laboratory of Biomacromolecules , Institute of Biophysics , Chinese Academy of Sciences , Beijing 100101 , China .
| | - Xiaogang Liu
- Singapore University of Technology and Design , 8 Somapah Road , Singapore 487372 , Singapore .
| | - Juyoung Yoon
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 120-750 , Korea .
| | - Zhaochao Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry , Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian 116023 , China .
| |
Collapse
|
48
|
Seki T, Furumi T, Hashimoto M, Hara H, Matsuoka S. Activation of extracytoplasmic function sigma factors upon removal of glucolipids and reduction of phosphatidylglycerol content in Bacillus subtilis cells lacking lipoteichoic acid. Genes Genet Syst 2019; 94:71-80. [PMID: 30971625 DOI: 10.1266/ggs.18-00046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In Bacillus subtilis, extracytoplasmic function (ECF) sigma factors are activated by reduction of phosphatidylglycerol (PG) content, absence of glucolipids, or absence of lipoteichoic acid (LTA). LTA is synthesized by polymerization of the glycerophosphate moiety of PG onto diglucosyldiacylglycerol (DGlcDG), a major glucolipid in B. subtilis, in the plasma membrane. Thus, reduction of PG content or absence of glucolipids might cause some changes in LTA, and hence we investigated whether reduction of PG content or absence of glucolipids induces the activation of ECF sigma factors independently from an ensuing change in LTA. Disruption of ugtP, responsible for glucolipid synthesis, in cells lacking LTA caused an additive increase of activation levels of σM, σX, σV and σY (3.1-, 2.2-, 2.1- and 1.4-fold, respectively), relative to their activation levels in cells lacking LTA alone. Reduction of PG content (by repressing Pspac-pgsA) in the cells lacking LTA caused an additive increase of activation levels of σM, σW and σV (2.3-, 1.9- and 2.2-fold, respectively). These results suggested that absence of glucolipids or reduction of PG alone, not the possible secondary alteration in LTA, leads to changes that affect the regulation systems of some ECF sigma factors in the plasma membrane.
Collapse
Affiliation(s)
- Takahiro Seki
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University
| | - Takuya Furumi
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University
| | - Michihiro Hashimoto
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University
| | - Hiroshi Hara
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University
| | - Satoshi Matsuoka
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University
| |
Collapse
|
49
|
Calvez P, Jouhet J, Vié V, Durmort C, Zapun A. Lipid Phases and Cell Geometry During the Cell Cycle of Streptococcus pneumoniae. Front Microbiol 2019; 10:351. [PMID: 30936851 PMCID: PMC6432855 DOI: 10.3389/fmicb.2019.00351] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 02/11/2019] [Indexed: 01/31/2023] Open
Abstract
The coexistence of different lipid phases is well-known in vitro, but evidence for their presence and function in cellular membranes remains scarce. Using a combination of fluorescent lipid probes, we observe segregation of domains that suggests the coexistence of liquid and gel phases in the membrane of Streptococcus pneumoniae, where they are localized to minimize bending stress in the ellipsoid geometry defined by the cell wall. Gel phase lipids with high bending rigidity would be spontaneously organized at the equator where curvature is minimal, thus marking the future division site, while liquid phase membrane maps onto the oblong hemispheres. In addition, the membrane-bound cell wall precursor with its particular dynamic acyl chain localizes at the division site where the membrane is highly curved. We propose a complete “chicken-and-egg” model where cell geometry determines the localization of lipid phases that positions the cell division machinery, which in turn alters the localization of lamellar phases by assembling the cell wall with a specific geometry.
Collapse
Affiliation(s)
| | - Juliette Jouhet
- UMR 5168 CNRS, CEA, INRA, CEA Grenoble, Laboratoire de Physiologie Cellulaire Végétale, Bioscience and Biotechnologies Institute of Grenoble, Université Grenoble Alpes, Grenoble, France
| | - Véronique Vié
- Univ Rennes, CNRS, IPR-UMR 6251, ScanMat-UMS2001, Rennes, France
| | | | - André Zapun
- Univ. Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| |
Collapse
|
50
|
Cardiolipin Alters Rhodobacter sphaeroides Cell Shape by Affecting Peptidoglycan Precursor Biosynthesis. mBio 2019; 10:mBio.02401-18. [PMID: 30782656 PMCID: PMC6381277 DOI: 10.1128/mbio.02401-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The phospholipid composition of the cell membrane influences the spatial and temporal biochemistry of cells. We studied molecular mechanisms connecting membrane composition to cell morphology in the model bacterium Rhodobacter sphaeroides. The peptidoglycan (PG) layer of the cell wall is a dominant component of cell mechanical properties; consequently, it has been an important antibiotic target. We found that the anionic phospholipid cardiolipin (CL) plays a role in determination of the shape of R. sphaeroides cells by affecting PG precursor biosynthesis. Removing CL in R. sphaeroides alters cell morphology and increases its sensitivity to antibiotics targeting proteins synthesizing PG. These studies provide a connection to spatial biochemical control in mitochondria, which contain an inner membrane with topological features in common with R. sphaeroides. Cardiolipin (CL) is an anionic phospholipid that plays an important role in regulating protein biochemistry in bacteria and mitochondria. Deleting the CL synthase gene (Δcls) in Rhodobacter sphaeroides depletes CL and decreases cell length by 20%. Using a chemical biology approach, we found that a CL deficiency does not impair the function of the cell wall elongasome in R. sphaeroides; instead, biosynthesis of the peptidoglycan (PG) precursor lipid II is decreased. Treating R. sphaeroides cells with fosfomycin and d-cycloserine inhibits lipid II biosynthesis and creates phenotypes in cell shape, PG composition, and spatial PG assembly that are strikingly similar to those seen with R. sphaeroides Δcls cells, suggesting that CL deficiency alters the elongation of R. sphaeroides cells by reducing lipid II biosynthesis. We found that MurG—a glycosyltransferase that performs the last step of lipid II biosynthesis—interacts with anionic phospholipids in native (i.e., R. sphaeroides) and artificial membranes. Lipid II production decreases 25% in R. sphaeroides Δcls cells compared to wild-type cells, and overexpression of MurG in R. sphaeroides Δcls cells restores their rod shape, indicating that CL deficiency decreases MurG activity and alters cell shape. The R. sphaeroides Δcls mutant is more sensitive than the wild-type strain to antibiotics targeting PG synthesis, including fosfomycin, d-cycloserine, S-(3,4-dichlorobenzyl)isothiourea (A22), mecillinam, and ampicillin, suggesting that CL biosynthesis may be a potential target for combination chemotherapies that block the bacterial cell wall.
Collapse
|