1
|
Intuy R, Supa-Amornkul S, Jaemsai B, Ruangchai W, Wiriyarat W, Chaturongakul S, Palittapongarnpim P. A novel variant in Salmonella genomic island 1 of multidrug-resistant Salmonella enterica serovar Kentucky ST198. Microbiol Spectr 2024; 12:e0399423. [PMID: 38687075 PMCID: PMC11237444 DOI: 10.1128/spectrum.03994-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/09/2024] [Indexed: 05/02/2024] Open
Abstract
Salmonella enterica serovar Kentucky ST198 is a major health threat due to its resistance to ciprofloxacin and several other drugs, including third-generation cephalosporins. Many drug-resistant genes have been identified in the Salmonella genomic island 1 variant K (SGI1-K). In this study, we investigated the antimicrobial resistance (AMR) profile and genotypic relatedness of two isolates of ciprofloxacin-resistant (CIPR) S. Kentucky ST198 from poultry in Northeastern Thailand. We successfully assembled the complete genomes of both isolates, namely SSSE-01 and SSSE-03, using hybrid de novo assembly of both short- and long-read sequence data. The complete genomes revealed their highly similar genomic structures and a novel variant of SGI1-K underlying multidrug-resistant (MDR) patterns, including the presence of blaTEM-1b, which confers resistance to beta-lactams, including cephalosporins and lnu(F) which confers resistance to lincomycin and other lincosamides. In addition, the chromosomal mutations in the quinolone resistance-determining region (QRDR) were found at positions 83 (Ser83Phe) and 87 (Asp87Asn) of GyrA and at positions 57 (Thr57Ser) and 80 (Ser80Ile) of ParC suggesting high resistance to ciprofloxacin. We also compared SSSE-01 and SSSE-03 with publicly available complete genome data and revealed significant variations in SGI1-K genetic structures and variable relationships to antibiotic resistance. In comparison to the other isolates, SGI1-K of SSSE-01 and SSSE-03 had a relatively large deletion in the backbone, spanning from S011 (traG∆) to S027 (resG), and the inversion of the IS26-S044∆-yidY segment. Their MDR region was characterized by the inversion of a large segment, including the mer operon and the relocation of IntI1 and several resistance genes downstream of the IS26-S044∆-yidY segment. These structural changes were likely mediated by the recombination of IS26. The findings broaden our understanding of the possible evolution pathway of SGI1-K in fostering drug resistance, which may provide opportunities to control these MDR strains.IMPORTANCEThe emergence of ciprofloxacin-resistant (CIPR) Salmonella Kentucky ST198 globally has raised significant concerns. This study focuses on two poultry isolates from Thailand, revealing a distinct Salmonella genomic island 1 variant K (SGI1-K) genetic structure. Remarkably, multiple antibiotic resistance genes (ARGs) were identified within the SGI1-K as well as other locations in the chromosome, but not in plasmids. Comparing the SGI1-K genetic structures among global and even within-country isolates unveiled substantial variations. Intriguingly, certain isolates lacked ARGs within the SGI1-K, while others had ARGs relocated outside. The presence of chromosomal extended-spectrum β-lactamase (ESBL) genes and lincosamide resistance, lnu(F), gene, could potentially inform the choices of the treatment of CIPRS. Kentucky ST198 infections in humans. This study highlights the importance of understanding the diverse genetic structures of SGI1-K and emphasizes the role of animals and humans in the emergence of antimicrobial resistance.
Collapse
Affiliation(s)
- Rattanaporn Intuy
- Professor Pornchai Matangkasombut Center for Microbial Genomics (CENMIG), Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Sirirak Supa-Amornkul
- Professor Pornchai Matangkasombut Center for Microbial Genomics (CENMIG), Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Oral Microbiology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | - Bharkbhoom Jaemsai
- Professor Pornchai Matangkasombut Center for Microbial Genomics (CENMIG), Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Wuthiwat Ruangchai
- Professor Pornchai Matangkasombut Center for Microbial Genomics (CENMIG), Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Witthawat Wiriyarat
- Department of Pre-Clinical and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Bangkok, Thailand
| | - Soraya Chaturongakul
- Professor Pornchai Matangkasombut Center for Microbial Genomics (CENMIG), Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Molecular Medical Biosciences Cluster, Institute of Molecular Biosciences, Mahidol University, Bangkok, Thailand
| | - Prasit Palittapongarnpim
- Professor Pornchai Matangkasombut Center for Microbial Genomics (CENMIG), Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
2
|
Ambrose SJ, Hall RM. Effect of the S008-sgaCD operon on IncC plasmid stability in the presence of SGI1-K or absence of an SGI1 variant. Plasmid 2023; 127:102698. [PMID: 37516393 DOI: 10.1016/j.plasmid.2023.102698] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 07/31/2023]
Abstract
An IncC or IncA plasmid is needed to enable transfer of SGI1 type integrative mobilisable elements but an IncC plasmid does not stably co-exist with SGI1. However, the plasmid is stably maintained with SGI1-K, a natural SGI1 deletion variant that lacks the sgaDC genes (S007 and S006) and the upstream open reading frame (S008) found in the SGI1 backbone. Here, the effect of the sgaDC genes and S008 on the stability of an IncC plasmid in an Escherichia coli strain with or without SGI1-K was examined. Co-transcription of the S008 open reading frame with the downstream sgaDC genes was established. When a strain containing SGI1-K complemented with a pK18 plasmid that included S008-sgaDC or sgaDC expressed from the constitutive pUC promoter was grown without antibiotic selection, the resident IncC plasmid was rapidly lost but loss was slower when S008 was present. In contrast, SGI1-K and the S008-sgaDC or sgaDC plasmid were quite stably maintained for >100 generations. However, the high copy number plasmids carrying the SGI1-derived S008-sgaDC or sgaDC genes constitutively expressed could not be introduced into an E. coli strain carrying the IncC plasmid but without SGI1-K. Using equivalent plasmids with S008-sgaDC or sgaDC genes controlled by an arabinose-inducible promoter, under inducing conditions the IncC plasmid was stable but the plasmid containing the SGI1-derived genes was rapidly lost. This unexpected observation indicates that there are multiple interactions between the IncC plasmid and SGI1 in which the transcriptional activator genes sgaDC play a role. These interactions will require further investigation.
Collapse
Affiliation(s)
- Stephanie J Ambrose
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia.
| | - Ruth M Hall
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
3
|
Cuypers WL, Meysman P, Weill FX, Hendriksen RS, Beyene G, Wain J, Nair S, Chattaway MA, Perez-Sepulveda BM, Ceyssens PJ, de Block T, Lee WWY, Pardos de la Gandara M, Kornschober C, Moran-Gilad J, Veldman KT, Cormican M, Torpdahl M, Fields PI, Černý T, Hardy L, Tack B, Mellor KC, Thomson N, Dougan G, Deborggraeve S, Jacobs J, Laukens K, Van Puyvelde S. A global genomic analysis of Salmonella Concord reveals lineages with high antimicrobial resistance in Ethiopia. Nat Commun 2023; 14:3517. [PMID: 37316492 PMCID: PMC10267216 DOI: 10.1038/s41467-023-38902-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/22/2023] [Indexed: 06/16/2023] Open
Abstract
Antimicrobial resistant Salmonella enterica serovar Concord (S. Concord) is known to cause severe gastrointestinal and bloodstream infections in patients from Ethiopia and Ethiopian adoptees, and occasional records exist of S. Concord linked to other countries. The evolution and geographical distribution of S. Concord remained unclear. Here, we provide a genomic overview of the population structure and antimicrobial resistance (AMR) of S. Concord by analysing genomes from 284 historical and contemporary isolates obtained between 1944 and 2022 across the globe. We demonstrate that S. Concord is a polyphyletic serovar distributed among three Salmonella super-lineages. Super-lineage A is composed of eight S. Concord lineages, of which four are associated with multiple countries and low levels of AMR. Other lineages are restricted to Ethiopia and horizontally acquired resistance to most antimicrobials used for treating invasive Salmonella infections in low- and middle-income countries. By reconstructing complete genomes for 10 representative strains, we demonstrate the presence of AMR markers integrated in structurally diverse IncHI2 and IncA/C2 plasmids, and/or the chromosome. Molecular surveillance of pathogens such as S. Concord supports the understanding of AMR and the multi-sector response to the global AMR threat. This study provides a comprehensive baseline data set essential for future molecular surveillance.
Collapse
Affiliation(s)
- Wim L Cuypers
- Adrem Data Lab, Department of Computer Science, University of Antwerp, Antwerp, Belgium.
- Unit of Tropical Bacteriology, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.
| | - Pieter Meysman
- Adrem Data Lab, Department of Computer Science, University of Antwerp, Antwerp, Belgium
| | - François-Xavier Weill
- Institut Pasteur, Université Paris Cité, Unité des bactéries pathogènes entériques, F-75015, Paris, France
| | - Rene S Hendriksen
- Technical University of Denmark, National Food Institute (DTU-Food), Research Group of Global Capacity Building, Kgs., Lyngby, Denmark
| | - Getenet Beyene
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma, Ethiopia
| | - John Wain
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Satheesh Nair
- Gastrointestinal Bacterial Reference Unit, United Kingdom Health Security Agency, Colindale, London, UK
| | - Marie A Chattaway
- Gastrointestinal Bacterial Reference Unit, United Kingdom Health Security Agency, Colindale, London, UK
| | - Blanca M Perez-Sepulveda
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, UK
| | | | - Tessa de Block
- Clinical Reference Laboratory, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Winnie W Y Lee
- Gastrointestinal Bacterial Reference Unit, United Kingdom Health Security Agency, Colindale, London, UK
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Maria Pardos de la Gandara
- Institut Pasteur, Université Paris Cité, Unité des bactéries pathogènes entériques, F-75015, Paris, France
| | - Christian Kornschober
- Austrian Agency for Health and Food Safety (AGES), Institute for Medical Microbiology and Hygiene, 8010, Graz, Austria
| | - Jacob Moran-Gilad
- Department of Health Policy and Management, School of Public Health, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Kees T Veldman
- Department of Bacteriology, Host Pathogen Interaction & Diagnostics, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Martin Cormican
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland
| | - Mia Torpdahl
- Department of Bacteriology, Mycology & Parasitology, Statens Serum Institut, 5 Artillerivej, DK-2300, Copenhagen S, Denmark
| | - Patricia I Fields
- Division of Foodborne, Waterborne and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Tomáš Černý
- National Reference Laboratory for salmonella, State Veterinary Institute Prague, Prague, Czech Republic
| | - Liselotte Hardy
- Unit of Tropical Bacteriology, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Bieke Tack
- Unit of Tropical Bacteriology, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Kate C Mellor
- London School of Hygiene and Tropical Medicine, Bloomsbury, London, UK
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Nicholas Thomson
- London School of Hygiene and Tropical Medicine, Bloomsbury, London, UK
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Gordon Dougan
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID),Department of Medicine, University of Cambridge, Cambridge, CB2 0SP, United Kingdom
| | - Stijn Deborggraeve
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Jan Jacobs
- Unit of Tropical Bacteriology, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Kris Laukens
- Adrem Data Lab, Department of Computer Science, University of Antwerp, Antwerp, Belgium
| | - Sandra Van Puyvelde
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, United Kingdom.
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID),Department of Medicine, University of Cambridge, Cambridge, CB2 0SP, United Kingdom.
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
4
|
Hong YP, Chen YT, Wang YW, Chen BH, Teng RH, Chen YS, Chiou CS. Integrative and Conjugative Element-Mediated Azithromycin Resistance in Multidrug-Resistant Salmonella enterica serovar Albany. Antimicrob Agents Chemother 2023; 65:AAC.02634-20. [PMID: 33685895 PMCID: PMC8092877 DOI: 10.1128/aac.02634-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/26/2021] [Indexed: 01/11/2023] Open
Abstract
We identified an erm42-carrying integrative and conjugative element, ICE_erm42, in 26.4% of multidrug-resistant Salmonella enterica serovar Albany isolates recovered from human salmonellosis between 2014 and 2019 in Taiwan. ICE_erm42-carrying strains displayed high-level resistance to azithromycin and the element could move into the phylogenetically distant Vibrio cholerae via conjugation.
Collapse
Affiliation(s)
- Yu-Ping Hong
- Centers for Disease Control, Taichung, Taiwan
- National Chung Hsing University, Taichung, Taiwan
| | | | | | - Bo-Han Chen
- Centers for Disease Control, Taichung, Taiwan
| | | | | | | |
Collapse
|
5
|
Quinn MW, Linton NF, Leon-Velarde CG, Chen S. Application of a CRISPR Sequence-Based Method for a Large-Scale Assessment of Salmonella Serovars in Ontario Poultry Production Environments. Appl Environ Microbiol 2023; 89:e0192322. [PMID: 36853053 PMCID: PMC10057875 DOI: 10.1128/aem.01923-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/17/2023] [Indexed: 03/01/2023] Open
Abstract
Accurate detection of all Salmonella serovars present in a sample is important in surveillance programs. Current detection protocols are limited to detection of a predominant serovar, missing identification of less abundant serovars in a sample. An alternative method, called CRISPR-SeroSeq, serotyping by sequencing of amplified CRISPR spacers, was employed to detect multiple serovars in a sample without the need of culture isolation. The CRISPR-SeroSeq method successfully detected 34 most frequently reported Salmonella serovars in pure cultures and target serovars at 104 CFU/mL in 27 Salmonella-negative environmental enrichment samples post-spiked with one of 15 different serovars, plus 2 additional serovars at 1 log CFU/mL higher abundance. When the method was applied to 442 naturally contaminated environmental samples collected from 192 poultry farms, 25 different serovars were detected from 430 of the samples. In 73.1% of the samples, 2 to 7 serovars were detected, with Salmonella Kiambu (55.7%), Salmonella Infantis (48.4%), Salmonella Kentucky (27.1%), Salmonella Livingstone (26.6%), and Salmonella Mbandaka/Montevideo (23.4%) being the most prevalent on the farms. Single isolates from 384 samples were also analyzed using a traditional serotyping method, and the same serovar identified by culture was detected by CRISPR-SeroSeq in 96.1% (369/384) of samples, with the former missing detection of additional and sometimes critical serovars. The surveillance data obtained via CRISPR-SeroSeq revealed a significant emergence of Salmonella Kiambu and Salmonella Rissen on poultry farms in Ontario. The results highlight the effectiveness of the CRISPR-SeroSeq approach in detecting multiple Salmonella serovars in poultry environmental samples under applied conditions, providing updated surveillance information on Salmonella serovars on poultry farms in Ontario. IMPORTANCE The CRISPR-SeroSeq method represents an alternative molecular tool to the traditional culture-based serotyping method that can detect multiple Salmonella serovars in a sample and provide rapid serovar results without the need of selective enrichment and culture isolation. The evaluation results can facilitate implementation of the method in routine Salmonella surveillance on poultry farms and in outbreak investigations. The application of the method can increase the accuracy of current serovar prevalence information. The results highlight the effectiveness of the validated method and the need for monitoring Salmonella serovars in poultry environments to improve current surveillance programs. The updated surveillance data provide timely information on emergence of different Salmonella serovars on poultry farms in Ontario and support on-farm risk assessment and risk management of Salmonella.
Collapse
Affiliation(s)
- Matthew W. Quinn
- Laboratory Services Division, University of Guelph, Guelph, Ontario, Canada
| | - Nicola F. Linton
- Laboratory Services Division, University of Guelph, Guelph, Ontario, Canada
| | | | - Shu Chen
- Laboratory Services Division, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
6
|
The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from humans, animals and food in 2020/2021. EFSA J 2023; 21:e07867. [PMID: 36891283 PMCID: PMC9987209 DOI: 10.2903/j.efsa.2023.7867] [Citation(s) in RCA: 62] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
Antimicrobial resistance (AMR) data on zoonotic and indicator bacteria from humans, animals and food are collected annually by the EU Member States (MSs) and reporting countries, jointly analysed by EFSA and ECDC and presented in a yearly EU Summary Report. This report provides an overview of the main findings of the 2020-2021 harmonised AMR monitoring in Salmonella spp., Campylobacter jejuni and C. coli in humans and food-producing animals (broilers, laying hens and turkeys, fattening pigs and bovines under 1 year of age) and relevant meat thereof. For animals and meat thereof, indicator E. coli data on the occurrence of AMR and presumptive Extended spectrum β-lactamases (ESBL)-/AmpC β-lactamases (AmpC)-/carbapenemases (CP)-producers, as well as the occurrence of methicillin-resistant Staphylococcus aureus are also analysed. In 2021, MSs submitted for the first time AMR data on E. coli isolates from meat sampled at border control posts. Where available, monitoring data from humans, food-producing animals and meat thereof were combined and compared at the EU level, with emphasis on multidrug resistance, complete susceptibility and combined resistance patterns to selected and critically important antimicrobials, as well as Salmonella and E. coli isolates exhibiting ESBL-/AmpC-/carbapenemase phenotypes. Resistance was frequently found to commonly used antimicrobials in Salmonella spp. and Campylobacter isolates from humans and animals. Combined resistance to critically important antimicrobials was mainly observed at low levels except in some Salmonella serotypes and in C. coli in some countries. The reporting of a number of CP-producing E. coli isolates (harbouring bla OXA-48, bla OXA-181, and bla NDM-5 genes) in pigs, bovines and meat thereof by a limited number of MSs (4) in 2021, requests a thorough follow-up. The temporal trend analyses in both key outcome indicators (rate of complete susceptibility and prevalence of ESBL-/AmpC- producers) showed that encouraging progress have been registered in reducing AMR in food-producing animals in several EU MSs over the last years.
Collapse
|
7
|
Gil‐Molino M, Gonçalves P, Risco D, Martín‐Cano FE, García A, Rey J, Fernández‐Llario P, Quesada A. Dissemination of antimicrobial-resistant isolates of Salmonella spp. in wild boars and its relationship with management practices. Transbound Emerg Dis 2022; 69:e1488-e1502. [PMID: 35182450 PMCID: PMC9790216 DOI: 10.1111/tbed.14480] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/30/2022]
Abstract
Antimicrobial resistance (AMR) is a global concern and controlling its spread is critical for the effectiveness of antibiotics. Members of the genus Salmonella are broadly distributed, and wild boar may play an important role in its circulation between peri-urban areas and the environment, due to its frequent interactions both with livestock or human garbage. As the population of these animals is rising due to management on certain hunting estates or the absence of natural predators, the aim of the present work is to identify the mechanisms of AMR present and/or expressed in Salmonella spp. from wild boar populations and to determine the possible role of management-related factors applied to different game estates located in central Spain. The detection of Salmonella spp. was carried out in 121 dead wild boar from 24 game estates, and antimicrobial resistance traits were determined by antibiotic susceptibility testing and screening for their genetic determinants. The effects of feeding supplementation, the proximity of livestock, the existence of a surrounding fence and the density of wild boar on the AMR of the isolates were evaluated. The predominant subspecies and serovar found were S. enterica subsp. enterica (n = 69) and S. choleraesuis (n = 33), respectively. The other subspecies found were S. enterica subsp. diarizonae, S. enterica subsp. salamae and S. enterica subsp. houtenae. AMR was common among isolates (75.2%) and 15.7% showed multi drug resistance (MDR). Resistance to sulphonamides was the most frequent (85.7%), as well as sul1 which was the AMR determinant most commonly found. Plasmids appeared in 38.8% of the isolates, with IncHI1 being the replicon detected with the highest prevalence. The AMR of the isolates increased when the animals were raised with feeding supplementation and enclosed by fences around the estates.
Collapse
Affiliation(s)
- María Gil‐Molino
- Facultad de Veterinaria, Unidad de Patología InfecciosaUniversidad de ExtremaduraCáceresSpain
| | - Pilar Gonçalves
- Innovación en Gestión y Conservación de Ingulados S.L. CáceresCáceresSpain
| | - David Risco
- Innovación en Gestión y Conservación de Ingulados S.L. CáceresCáceresSpain
- Neobeitar S.L. CáceresCáceresSpain
| | | | | | - Joaquín Rey
- Facultad de Veterinaria, Unidad de Patología InfecciosaUniversidad de ExtremaduraCáceresSpain
| | | | - Alberto Quesada
- Facultad de Veterinaria, Departamento de BioquímicaBiología Molecular y Genética, Universidad de ExtremaduraCáceresSpain
- INBIO G+CUniversidad de ExtremaduraCáceresSpain
| |
Collapse
|
8
|
Siebor E, Neuwirth C. Overview of Salmonella Genomic Island 1-Related Elements Among Gamma-Proteobacteria Reveals Their Wide Distribution Among Environmental Species. Front Microbiol 2022; 13:857492. [PMID: 35479618 PMCID: PMC9035990 DOI: 10.3389/fmicb.2022.857492] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/28/2022] [Indexed: 11/29/2022] Open
Abstract
The aim of this study was to perform an in silico analysis of the available whole-genome sequencing data to detect syntenic genomic islands (GIs) having homology to Salmonella genomic island 1 (SGI1), analyze the genetic variations of their backbone, and determine their relatedness. Eighty-nine non-redundant SGI1-related elements (SGI1-REs) were identified among gamma-proteobacteria. With the inclusion of the thirty-seven backbones characterized to date, seven clusters were identified based on integrase homology: SGI1, PGI1, PGI2, AGI1 clusters, and clusters 5, 6, and 7 composed of GIs mainly harbored by waterborne or marine bacteria, such as Vibrio, Shewanella, Halomonas, Idiomarina, Marinobacter, and Pseudohongiella. The integrase genes and the backbones of SGI1-REs from clusters 6 and 7, and from PGI1, PGI2, and AGI1 clusters differed significantly from those of the SGI1 cluster, suggesting a different ancestor. All backbones consisted of two parts: the part from attL to the origin of transfer (oriT) harbored the DNA recombination, transfer, and mobilization genes, and the part from oriT to attR differed among the clusters. The diversity of SGI1-REs resulted from the recombination events between GIs of the same or other families. The oriT appeared to be a high recombination site. The multi-drug resistant (MDR) region was located upstream of the resolvase gene. However, most SGI1-REs in Vibrio, Shewanella, and marine bacteria did not harbor any MDR region. These strains could constitute a reservoir of SGI1-REs that could be potential ancestors of SGI1-REs encountered in pathogenic bacteria. Furthermore, four SGI1-REs did not harbor a resolvase gene and therefore could not acquire an integron. The presence of mobilization genes and AcaCD binding sites indicated that their conjugative transfer could occur with helper plasmids. The plasticity of SGI1-REs contributes to bacterial adaptation and evolution. We propose a more relevant classification to categorize SGI1-REs into different clusters based on their integrase gene similarity.
Collapse
Affiliation(s)
- Eliane Siebor
- Laboratory of Bacteriology, University Hospital of Dijon, Dijon, France
- UMR-CNRS 6249 Chrono-Environnement, University of Burgundy - Franche-Comté, Besançon, France
| | - Catherine Neuwirth
- Laboratory of Bacteriology, University Hospital of Dijon, Dijon, France
- UMR-CNRS 6249 Chrono-Environnement, University of Burgundy - Franche-Comté, Besançon, France
- *Correspondence: Catherine Neuwirth,
| |
Collapse
|
9
|
Algarni S, Ricke SC, Foley SL, Han J. The Dynamics of the Antimicrobial Resistance Mobilome of Salmonella enterica and Related Enteric Bacteria. Front Microbiol 2022; 13:859854. [PMID: 35432284 PMCID: PMC9008345 DOI: 10.3389/fmicb.2022.859854] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/07/2022] [Indexed: 12/31/2022] Open
Abstract
The foodborne pathogen Salmonella enterica is considered a global public health risk. Salmonella enterica isolates can develop resistance to several antimicrobial drugs due to the rapid spread of antimicrobial resistance (AMR) genes, thus increasing the impact on hospitalization and treatment costs, as well as the healthcare system. Mobile genetic elements (MGEs) play key roles in the dissemination of AMR genes in S. enterica isolates. Multiple phenotypic and molecular techniques have been utilized to better understand the biology and epidemiology of plasmids including DNA sequence analyses, whole genome sequencing (WGS), incompatibility typing, and conjugation studies of plasmids from S. enterica and related species. Focusing on the dynamics of AMR genes is critical for identification and verification of emerging multidrug resistance. The aim of this review is to highlight the updated knowledge of AMR genes in the mobilome of Salmonella and related enteric bacteria. The mobilome is a term defined as all MGEs, including plasmids, transposons, insertion sequences (ISs), gene cassettes, integrons, and resistance islands, that contribute to the potential spread of genes in an organism, including S. enterica isolates and related species, which are the focus of this review.
Collapse
Affiliation(s)
- Suad Algarni
- Division of Microbiology, FDA National Center for Toxicological Research, Jefferson, AR, United States
- Cellular and Molecular Biology Graduate Program, University of Arkansas, Fayetteville, AR, United States
| | - Steven C. Ricke
- Meat Science and Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI, United States
| | - Steven L. Foley
- Division of Microbiology, FDA National Center for Toxicological Research, Jefferson, AR, United States
- Cellular and Molecular Biology Graduate Program, University of Arkansas, Fayetteville, AR, United States
| | - Jing Han
- Division of Microbiology, FDA National Center for Toxicological Research, Jefferson, AR, United States
- *Correspondence: Jing Han,
| |
Collapse
|
10
|
The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from humans, animals and food in 2019-2020. EFSA J 2022; 20:e07209. [PMID: 35382452 PMCID: PMC8961508 DOI: 10.2903/j.efsa.2022.7209] [Citation(s) in RCA: 96] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Data on antimicrobial resistance (AMR) in zoonotic and indicator bacteria from humans, animals and food are collected annually by the EU Member States (MSs), jointly analysed by the EFSA and the ECDC and reported in a yearly EU Summary Report. The annual monitoring of AMR in animals and food within the EU is targeted at selected animal species corresponding to the reporting year. The 2020 monitoring specifically focussed on poultry and their derived carcases/meat, while the monitoring performed in 2019 specifically focused on fattening pigs and calves under 1 year of age, as well as their derived carcases/meat. Monitoring and reporting of AMR in 2019-2020 included data regarding Salmonella, Campylobacter and indicator E. coli isolates, as well as data obtained from the specific monitoring of presumptive ESBL-/AmpC-/carbapenemase-producing E. coli isolates. Additionally, some MSs reported voluntary data on the occurrence of methicillin-resistant Staphylococcus aureus in animals and food, with some countries also providing data on antimicrobial susceptibility. This report provides an overview of the main findings of the 2019-2020 harmonised AMR monitoring in the main food-producing animal populations monitored, in carcase/meat samples and in humans. Where available, monitoring data obtained from pigs, calves, broilers, laying hens and turkeys, as well as from carcase/meat samples and humans were combined and compared at the EU level, with particular emphasis on multidrug resistance, complete susceptibility and combined resistance patterns to critically important antimicrobials, as well as Salmonella and E. coli isolates possessing ESBL-/AmpC-/carbapenemase phenotypes. The key outcome indicators for AMR in food-producing animals, such as complete susceptibility to the harmonised panel of antimicrobials in E. coli and the prevalence of ESBL-/AmpC-producing E. coli have been specifically analysed over the period 2014-2020.
Collapse
|
11
|
Namli S, Soyer Y. Investigation of class 1 integrons and virulence genes in the emergent Salmonella serovar Infantis in Turkey. Int Microbiol 2021; 25:259-265. [PMID: 34559352 DOI: 10.1007/s10123-021-00212-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/06/2021] [Accepted: 09/16/2021] [Indexed: 11/25/2022]
Abstract
The emerging situation of Salmonella enterica subsp. enterica serovar Infantis (S. Infantis) in Turkey was investigated in terms of virulence genes and mobile genetic elements such as Salmonella genomic island 1 (SGI1) and class 1 (C1) integron to see whether increased multidrug resistance (MDR) and ability to cause human cases is a consequence of their possession. Screening of SGI1 (and its variants) and C1 integrons was done with conventional PCR, while screening of gene cassettes and virulence genes was conducted with real-time PCR for 70 S. Infantis isolates from poultry products. SGI1 or its variants were not detected in any of the isolates. Sixty-eight of 70 isolates were detected to carry one C1 integron of size 1.0 kb. These integrons were detected to carry ant(3″)-Ia gene cassette explaining the streptomycin/spectinomycin resistance. Sequence analysis of gene cassettes belongs to four representing isolates which showed that, although their difference in isolation date and place, genetically, they are 99.9% similar. Virulence gene screening was introduced as genotypic virulence profiles. The most dominant profile for S. Infantis isolates, among twelve genes, was gatC-tcfA, which are known to be related to colonization at specific hosts. This study revealed the high percentage of C1 integron possession in S. Infantis isolates from poultry products in Turkey. It also showed the potential of S. Infantis strains to be resistant to more antimicrobial drugs. Moreover, a dominant profile of virulence genes that are uncommon for non-typhoidal Salmonella (NTS) serovars was detected, which might explain the enhanced growth at specified hosts.
Collapse
Affiliation(s)
- Sahin Namli
- Department of Food Engineering, Faculty of Engineering, Orta Dogu Teknik Üniversitesi, Ankara, 06800, Turkey
| | - Yesim Soyer
- Department of Food Engineering, Faculty of Engineering, Orta Dogu Teknik Üniversitesi, Ankara, 06800, Turkey.
| |
Collapse
|
12
|
Durand R, Huguet KT, Rivard N, Carraro N, Rodrigue S, Burrus V. Crucial role of Salmonella genomic island 1 master activator in the parasitism of IncC plasmids. Nucleic Acids Res 2021; 49:7807-7824. [PMID: 33834206 PMCID: PMC8373056 DOI: 10.1093/nar/gkab204] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 03/09/2021] [Accepted: 03/15/2021] [Indexed: 12/26/2022] Open
Abstract
IncC conjugative plasmids and the multiple variants of Salmonella Genomic Island 1 (SGI1) are two functionally interacting families of mobile genetic elements commonly associated with multidrug resistance in the Gammaproteobacteria. SGI1 and its siblings are specifically mobilised in trans by IncC conjugative plasmids. Conjugative transfer of IncC plasmids is activated by the plasmid-encoded master activator AcaCD. SGI1 carries five AcaCD-responsive promoters that drive the expression of genes involved in its excision, replication, and mobilisation. SGI1 encodes an AcaCD homologue, the transcriptional activator complex SgaCD (also known as FlhDCSGI1) that seems to recognise and activate the same SGI1 promoters. Here, we investigated the relevance of SgaCD in SGI1's lifecycle. Mating assays revealed the requirement for SgaCD and its IncC-encoded counterpart AcaCD in the mobilisation of SGI1. An integrative approach combining ChIP-exo, Cappable-seq, and RNA-seq confirmed that SgaCD activates each of the 18 AcaCD-responsive promoters driving the expression of the plasmid transfer functions. A comprehensive analysis of the activity of the complete set of AcaCD-responsive promoters of SGI1 and the helper IncC plasmid was performed through reporter assays. qPCR and flow cytometry assays revealed that SgaCD is essential to elicit the excision and replication of SGI1 and destabilise the helper IncC plasmid.
Collapse
Affiliation(s)
- Romain Durand
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Kévin T Huguet
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Nicolas Rivard
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Nicolas Carraro
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Sébastien Rodrigue
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Vincent Burrus
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| |
Collapse
|
13
|
Delgado-Suárez EJ, Palós-Guitérrez T, Ruíz-López FA, Hernández Pérez CF, Ballesteros-Nova NE, Soberanis-Ramos O, Méndez-Medina RD, Allard MW, Rubio-Lozano MS. Genomic surveillance of antimicrobial resistance shows cattle and poultry are a moderate source of multi-drug resistant non-typhoidal Salmonella in Mexico. PLoS One 2021; 16:e0243681. [PMID: 33951039 PMCID: PMC8099073 DOI: 10.1371/journal.pone.0243681] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/15/2021] [Indexed: 12/22/2022] Open
Abstract
Multi-drug resistant (MDR) non-typhoidal Salmonella (NTS) is a public health concern globally. This study reports the phenotypic and genotypic antimicrobial resistance (AMR) profiles of NTS isolates from bovine lymph nodes (n = 48) and ground beef (n = 29). Furthermore, we compared genotypic AMR data of our isolates with those of publicly available NTS genomes from Mexico (n = 2400). The probability of finding MDR isolates was higher in ground beef than in lymph nodes:χ2 = 12.0, P = 0.0005. The most common resistant phenotypes involved tetracycline (40.3%), carbenicillin (26.0%), amoxicillin-clavulanic acid (20.8%), chloramphenicol (19.5%) and trimethoprim-sulfamethoxazole (16.9%), while more than 55% of the isolates showed decreased susceptibility to ciprofloxacin and 26% were MDR. Conversely, resistance to cephalosporins and carbapenems was infrequent (0-9%). MDR phenotypes were strongly associated with NTS serovar (χ2 = 24.5, P<0.0001), with Typhimurium accounting for 40% of MDR strains. Most of these (9/10), carried Salmonella genomic island 1, which harbors a class-1 integron with multiple AMR genes (aadA2, blaCARB-2, floR, sul1, tetG) that confer a penta-resistant phenotype. MDR phenotypes were also associated with mutations in the ramR gene (χ2 = 17.7, P<0.0001). Among public NTS isolates from Mexico, those from cattle and poultry had the highest proportion of MDR genotypes. Our results suggest that attaining significant improvements in AMR meat safety requires the identification and removal (or treatment) of product harboring MDR NTS, instead of screening for Salmonella spp. or for isolates showing resistance to individual antibiotics. In that sense, massive integration of whole genome sequencing (WGS) technologies in AMR surveillance provides the shortest path to accomplish these goals.
Collapse
Affiliation(s)
| | - Tania Palós-Guitérrez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, México
| | | | - Cindy Fabiola Hernández Pérez
- Centro Nacional de Referencia de Plaguicidas y Contaminantes, Dirección General de Inocuidad Agroalimentaria, Acuícola y Pesquera, Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria, Estado de México, México
| | | | - Orbelín Soberanis-Ramos
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Rubén Danilo Méndez-Medina
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Marc W. Allard
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U. S. Food and Drug Administration, College Park, Maryland, United States of America
| | - María Salud Rubio-Lozano
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
14
|
Wang Z, Xu H, Chu C, Tang Y, Li Q, Jiao X. Genomic Identification of Multidrug-Resistant Salmonella Virchow Monophasic Variant Causing Human Septic Arthritis. Pathogens 2021; 10:pathogens10050536. [PMID: 33947106 PMCID: PMC8146543 DOI: 10.3390/pathogens10050536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/25/2021] [Accepted: 04/28/2021] [Indexed: 11/21/2022] Open
Abstract
The monophasic variant of Salmonella Typhimurium has emerged and increased rapidly worldwide during the past two decades. The loss of genes encoding the second-phase flagella and the acquirement of the multi-drug resistance cassette are the main genomic characteristics of the S. Typhimurium monophasic variant. In this study, two Salmonella strains were isolated from the knee effusion and feces of a 4-year-old girl who presented with a case of septic arthritis and fever, respectively. Primary serovar identification did not detect the second-phase flagellar antigens of the strains using the classical slide agglutination test. Whole-genome sequencing analysis was performed to reveal that the replacement of the fljAB operon by a 4.8-kb cassette from E. coli caused the non-expression of phase-2 flagellar antigens of the strains, which were confirmed to be a novel S. Virchow monophasic variant (Salmonella 6,7,14:r:-) by core-genome multi-locus sequence typing (cgMLST). Compared to the 16 published S. Virchow genomes, the two strains shared a unique CRISPR type of VCT12, and showed a close genetic relationship to S. Virchow BCW_2814 and BCW_2815 strains, isolated from Denmark and China, respectively, based on cgMLST and CRISPR typing. Additionally, the acquisition of Salmonella genomic island 2 (SGI2) with an antimicrobial resistance gene cassette enabled the strains to be multidrug-resistant to chloramphenicol, tetracycline, trimethoprim, and sulfamethoxazole. The emergence of the multidrug-resistant S. Virchow monophasic variant revealed that whole-genome sequencing and CRISPR typing could be applied to identify the serovaraints of Salmonella enterica strains in the national Salmonella surveillance system.
Collapse
Affiliation(s)
- Zhenyu Wang
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Wenhui East Road 48, Yangzhou 225009, China; (Z.W.); (C.C.); (Y.T.)
- Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Wenhui East Road 48, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Wenhui East Road 48, Yangzhou 225009, China
| | - Haiyan Xu
- Nantong Center for Disease Control and Prevention, Gongnong South Road 189, Nantong 226007, China;
| | - Chao Chu
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Wenhui East Road 48, Yangzhou 225009, China; (Z.W.); (C.C.); (Y.T.)
- Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Wenhui East Road 48, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Wenhui East Road 48, Yangzhou 225009, China
| | - Yuanyue Tang
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Wenhui East Road 48, Yangzhou 225009, China; (Z.W.); (C.C.); (Y.T.)
- Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Wenhui East Road 48, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Wenhui East Road 48, Yangzhou 225009, China
| | - Qiuchun Li
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Wenhui East Road 48, Yangzhou 225009, China; (Z.W.); (C.C.); (Y.T.)
- Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Wenhui East Road 48, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Wenhui East Road 48, Yangzhou 225009, China
- Correspondence: (Q.L.); (X.J.); Tel.: +86-514-87971136 (Q.L.); +86-514-87971136 (X.J.)
| | - Xinan Jiao
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Wenhui East Road 48, Yangzhou 225009, China; (Z.W.); (C.C.); (Y.T.)
- Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Wenhui East Road 48, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Wenhui East Road 48, Yangzhou 225009, China
- Correspondence: (Q.L.); (X.J.); Tel.: +86-514-87971136 (Q.L.); +86-514-87971136 (X.J.)
| |
Collapse
|
15
|
The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from humans, animals and food in 2018/2019. EFSA J 2021; 19:e06490. [PMID: 33868492 PMCID: PMC8040295 DOI: 10.2903/j.efsa.2021.6490] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Data on antimicrobial resistance (AMR) in zoonotic and indicator bacteria from humans, animals and food are collected annually by the EU Member States (MSs), jointly analysed by the EFSA and the ECDC and reported in a yearly EU Summary Report. The annual monitoring of AMR in animals and food within the EU is targeted at selected animal species corresponding to the reporting year. The 2018 monitoring specifically focussed on poultry and their derived carcases/meat, while the monitoring performed in 2019 specifically focused on pigs and calves under 1 year of age, as well as their derived carcases/meat. Monitoring and reporting of AMR in 2018/2019 included data regarding Salmonella, Campylobacter and indicator Escherichia coli isolates, as well as data obtained from the specific monitoring of presumptive ESBL-/AmpC-/carbapenemase-producing E. coli isolates. Additionally, some MSs reported voluntary data on the occurrence of meticillin-resistant Staphylococcus aureus in animals and food, with some countries also providing data on antimicrobial susceptibility. This report provides an overview of the main findings of the 2018/2019 harmonised AMR monitoring in the main food-producing animal populations monitored, in related carcase/meat samples and in humans. Where available, data monitoring obtained from pigs, calves, broilers, laying hens and turkeys, as well as from carcase/meat samples and humans were combined and compared at the EU level, with particular emphasis on multidrug resistance, complete susceptibility and combined resistance patterns to critically important antimicrobials, as well as Salmonella and E. coli isolates possessing ESBL-/AmpC-/carbapenemase phenotypes. The outcome indicators for AMR in food-producing animals such as complete susceptibility to the harmonised panel of antimicrobials in E. coli and the prevalence of ESBL-/AmpC-producing E. coli have been also specifically analysed over the period 2015-2019.
Collapse
|
16
|
de Curraize C, Siebor E, Neuwirth C. Genomic islands related to Salmonella genomic island 1; integrative mobilisable elements in trmE mobilised in trans by A/C plasmids. Plasmid 2021; 114:102565. [PMID: 33582118 DOI: 10.1016/j.plasmid.2021.102565] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/01/2022]
Abstract
Salmonella genomic island 1 (SGI1), an integrative mobilisable element (IME), was first reported 20 years ago, in the multidrug resistant Salmonella Typhimurium DT104 clone. Since this first report, many variants and relatives have been found in Salmonella enterica and Proteus mirabilis. Thanks to whole genome sequencing, more and more complete sequences of SGI1-related elements (SGI1-REs) have been reported in these last few years among Gammaproteobacteria. Here, the genetic organisation and main features common to SGI1-REs are summarised to help to classify them. Their integrases belong to the tyrosine-recombinase family and target the 3'-end of the trmE gene. They share the same genetic organisation (integrase and excisionase genes, replicase module, SgaCD-like transcriptional activator genes, traN, traG, mpsB/mpsA genes) and they harbour AcaCD binding sites promoting their excision, replication and mobilisation in presence of A/C plasmid. SGI1-REs are mosaic structures suggesting that recombination events occurred between them. Most of them harbour a multiple antibiotic resistance (MAR) region and the plasticity of their MAR region show that SGI1-REs play a key role in antibiotic resistance and might help multiple antibiotic resistant bacteria to adapt to their environment. This might explain the emergence of clones with SGI1-REs.
Collapse
Affiliation(s)
- Claire de Curraize
- Bacteriology Department, University Hospital Dijon, PBHU, BP 37013, 21070 Dijon Cedex, France; UMR 6249, Chrono-Environnement, PBHU, BP 37013, 21070 Dijon Cedex, France.
| | - Eliane Siebor
- Bacteriology Department, University Hospital Dijon, PBHU, BP 37013, 21070 Dijon Cedex, France; UMR 6249, Chrono-Environnement, PBHU, BP 37013, 21070 Dijon Cedex, France.
| | - Catherine Neuwirth
- Bacteriology Department, University Hospital Dijon, PBHU, BP 37013, 21070 Dijon Cedex, France; UMR 6249, Chrono-Environnement, PBHU, BP 37013, 21070 Dijon Cedex, France.
| |
Collapse
|
17
|
Szabó M, Murányi G, Kiss J. IncC helper dependent plasmid-like replication of Salmonella Genomic Island 1. Nucleic Acids Res 2021; 49:832-846. [PMID: 33406256 PMCID: PMC7826253 DOI: 10.1093/nar/gkaa1257] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/24/2020] [Accepted: 12/17/2020] [Indexed: 12/16/2022] Open
Abstract
The Salmonella genomic island 1 (SGI1) and its variants are mobilized by IncA and IncC conjugative plasmids. SGI1-family elements and their helper plasmids are effective transporters of multidrug resistance determinants. SGI1 exploits the transfer apparatus of the helper plasmid and hijacks its activator complex, AcaCD, to trigger the expression of several SGI1 genes. In this way, SGI1 times its excision from the chromosome to the helper entry and expresses mating pore components that enhance SGI1 transfer. The SGI1-encoded T4SS components and the FlhDC-family activator proved to be interchangeable with their IncC-encoded homologs, indicating multiple interactions between SGI1 and its helpers. As a new aspect of this crosstalk, we report here the helper-induced replication of SGI1, which requires both activators, AcaCD and FlhDCSGI1, and significantly increases the stability of SGI1 when coexists with the helper plasmid. We have identified the oriVSGI1 and shown that S004-repA operon encodes for a translationally coupled leader protein and an IncN2/N3-related RepA that are expressed under the control of the AcaCD-responsive promoter PS004. This replicon transiently maintains SGI1 as a 4–8-copy plasmid, not only stabilizing the island but also contributing to the fast displacement of the helper plasmid.
Collapse
Affiliation(s)
- Mónika Szabó
- Agricultural Biotechnology Institute, National Agricultural Research and Innovation Centre, Gödöllő H2100, Hungary
| | - Gábor Murányi
- Agricultural Biotechnology Institute, National Agricultural Research and Innovation Centre, Gödöllő H2100, Hungary
| | - János Kiss
- Agricultural Biotechnology Institute, National Agricultural Research and Innovation Centre, Gödöllő H2100, Hungary
| |
Collapse
|
18
|
Jibril AH, Okeke IN, Dalsgaard A, Menéndez VG, Olsen JE. Genomic Analysis of Antimicrobial Resistance and Resistance Plasmids in Salmonella Serovars from Poultry in Nigeria. Antibiotics (Basel) 2021; 10:99. [PMID: 33498344 PMCID: PMC7909428 DOI: 10.3390/antibiotics10020099] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/06/2021] [Accepted: 01/19/2021] [Indexed: 12/31/2022] Open
Abstract
Antimicrobial resistance is a global public health concern, and resistance genes in Salmonella, especially those located on mobile genetic elements, are part of the problem. This study used phenotypic and genomic methods to identify antimicrobial resistance and resistance genes, as well as the plasmids that bear them, in Salmonella isolates obtained from poultry in Nigeria. Seventy-four isolates were tested for susceptibility to eleven commonly used antimicrobials. Plasmid reconstruction and identification of resistance and virulence genes were performed with a draft genome using in silico approaches in parallel with plasmid extraction. Phenotypic resistance to ciprofloxacin (50.0%), gentamicin (48.6%), nalidixic acid (79.7%), sulphonamides (71.6%) and tetracycline (59.5%) was the most observed. Antibiotic resistance genes (ARGs) detected in genomes corresponded well with these observations. Commonly observed ARGs included sul1, sul2, sul3, tet (A), tet (M), qnrS1, qnrB19 and a variety of aminoglycoside-modifying genes, in addition to point mutations in the gyrA and parC genes. Multiple ARGs were predicted to be located on IncN and IncQ1 plasmids of S. Schwarzengrund and S. Muenster, and most qnrB19 genes were carried by Col (pHAD28) plasmids. Seventy-two percent (19/24) of S. Kentucky strains carried multidrug ARGs located in two distinct variants of Salmonella genomic island I. The majority of strains carried full SPI-1 and SPI-2 islands, suggesting full virulence potential.
Collapse
Affiliation(s)
- Abdurrahman Hassan Jibril
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark; (A.H.J.); (A.D.); (V.G.M.)
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, Usmanu Danfodiyo University Sokoto, Sokoto 234840, Nigeria
| | - Iruka N. Okeke
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan 234200, Nigeria;
| | - Anders Dalsgaard
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark; (A.H.J.); (A.D.); (V.G.M.)
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Vanesa García Menéndez
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark; (A.H.J.); (A.D.); (V.G.M.)
- Laboratorio de Referencia de Escherichia coli (LREC), Departamento de Microbioloxía e Parasitoloxía, Facultade de Veterinaria, Universidade de Santiago de Compostela (USC), 27002 Lugo, Spain
| | - John Elmerdahl Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark; (A.H.J.); (A.D.); (V.G.M.)
| |
Collapse
|
19
|
El Hage R, Losasso C, Longo A, Petrin S, Ricci A, Mathieu F, Abi Khattar Z, El Rayess Y. Whole-genome characterisation of TEM-1 and CMY-2 β-lactamase-producing Salmonella Kentucky ST198 in Lebanese broiler chain. J Glob Antimicrob Resist 2020; 23:408-416. [DOI: 10.1016/j.jgar.2020.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/25/2020] [Accepted: 11/02/2020] [Indexed: 11/30/2022] Open
|
20
|
Whole-Genome Sequence Analysis of an Extensively Drug-Resistant Salmonella enterica Serovar Agona Isolate from an Australian Silver Gull ( Chroicocephalus novaehollandiae) Reveals the Acquisition of Multidrug Resistance Plasmids. mSphere 2020; 5:5/6/e00743-20. [PMID: 33239365 PMCID: PMC7690955 DOI: 10.1128/msphere.00743-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Although most of the approximately 94 million annual human cases of gastroenteritis due to Salmonella enterica resolve without medical intervention, antimicrobial therapy is recommended for patients with severe disease. Wild birds can be natural hosts of Salmonella that pose a threat to human health; however, multiple-drug-resistant serovars of S. enterica have rarely been described. In 2012, silver gull (Chroicocephalus novaehollandiae) chicks at a major breeding colony were shown to host Salmonella, most isolates of which were susceptible to antibiotics. However, multiple-drug-resistant (MDR) Escherichia coli with resistance to carbapenems, ceftazidime, and fluoroquinolones was reported from this breeding colony. In this paper, we describe a novel MDR Salmonella strain subsequently isolated from the same breeding colony. SG17-135, an isolate of S. enterica with phenotypic resistance to 12 individual antibiotics but only nine antibiotic classes including penicillins, cephalosporins, monobactams, macrolides, fluoroquinolones, aminoglycosides, dihydrofolate reductase inhibitors (trimethoprim), sulfonamides, and glycylcyclines was recovered from a gull chick in 2017. Whole-genome sequence (WGS) analysis of SG17-135 identified it as Salmonella enterica serovar Agona (S Agona) with a chromosome comprising 4,813,284 bp, an IncHI2 ST2 plasmid (pSG17-135-HI2) of 311,615 bp, and an IncX1 plasmid (pSG17-135-X) of 27,511 bp. pSG17-135-HI2 housed a complex resistance region comprising 16 antimicrobial resistance genes including bla CTX-M-55 The acquisition of MDR plasmids by S. enterica described here poses a serious threat to human health. Our study highlights the importance of taking a One Health approach to identify environmental reservoirs of drug-resistant pathogens and MDR plasmids.IMPORTANCE Defining environmental reservoirs hosting mobile genetic elements that shuttle critically important antibiotic resistance genes is key to understanding antimicrobial resistance (AMR) from a One Health perspective. Gulls frequent public amenities, parklands, and sewage and other waste disposal sites and carry drug-resistant Escherichia coli Here, we report on SG17-135, a strain of Salmonella enterica serovar Agona isolated from the cloaca of a silver gull chick nesting on an island in geographic proximity to the greater metropolitan area of Sydney, Australia. SG17-135 is closely related to pathogenic strains of S Agona, displays resistance to nine antimicrobial classes, and carries important virulence gene cargo. Most of the antibiotic resistance genes hosted by SG17-135 are clustered on a large IncHI2 plasmid and are flanked by copies of IS26 Wild birds represent an important link in the evolution and transmission of resistance plasmids, and an understanding of their behavior is needed to expose the interplay between clinical and environmental microbial communities.
Collapse
|
21
|
Class 1 integron-borne cassettes harboring blaCARB-2 gene in multidrug-resistant and virulent Salmonella Typhimurium ST19 strains recovered from clinical human stool samples, United States. PLoS One 2020; 15:e0240978. [PMID: 33125394 PMCID: PMC7598458 DOI: 10.1371/journal.pone.0240978] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 10/06/2020] [Indexed: 02/07/2023] Open
Abstract
International lineages, such as Salmonella Typhimurium sequence type (ST) 19, are most often associated with foodborne diseases and deaths in humans. In this study, we compared the whole-genome sequences of five S. Typhimurium strains belonging to ST19 recovered from clinical human stool samples in North Carolina, United States. Overall, S. Typhimurium strains displayed multidrug-resistant profile, being resistance to critically and highly important antimicrobials including ampicillin, ticarcillin/clavulanic acid, streptomycin and sulfisoxazole, chloramphenicol, tetracycline, respectively. Interestingly, all S. Typhimurium strains carried class 1 integron (intl1) and we were able to describe two genomic regions surrounding blaCARB-2 gene, size 4,062 bp and 4,422 bp for S. Typhimurium strains (HS5344, HS5437, and HS5478) and (HS5302 and HS5368), respectively. Genomic analysis for antimicrobial resistome confirmed the presence of clinically important genes, including blaCARB-2, aac(6’)-Iaa, aadA2b, sul1, tetG, floR, and biocide resistance genes (qacEΔ1). S. Typhimurium strains harbored IncFIB plasmid containing spvRABCD operon, as well as rck and pef virulence genes, which constitute an important apparatus for spreading the virulence plasmid. In addition, we identified several virulence genes, chromosomally located, while the phylogenetic analysis revealed clonal relatedness among these strains with S. enterica isolated from human and non-human sources obtained in European and Asian countries. Our results provide new insights into this unusual class 1 integron in virulent S. Typhimurium strains that harbors a pool of genes acting as potential hotspots for horizontal gene transfer providing readily adaptation to new surrounds, as well as being crucially required for virulence in vivo. Therefore, continuous genomic surveillance is an important tool for safeguarding human health.
Collapse
|
22
|
Two New SGI1-LK Variants Found in Proteus mirabilis and Evolution of the SGI1-HKL Group of Salmonella Genomic Islands. mSphere 2020; 5:5/2/e00875-19. [PMID: 32132162 PMCID: PMC7056807 DOI: 10.1128/msphere.00875-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Integrative mobilizable elements belonging to the SGI1-H, -K, and -L Salmonella genomic island 1 (SGI1) variant groups are distinguished by the presence of an alteration in the backbone (IS1359 replaces 2.8 kb of the backbone extending from within traN [S005] to within S009). Members of this SGI1-HKL group have been found in Salmonella enterica serovars and in Proteus mirabilis Two novel variants from this group, designated SGI1-LK1 and SGI1-LK2, were found in the draft genomes of antibiotic-resistant P. mirabilis isolates from two French hospitals. Both variants can be derived from SGI1-PmGUE, a configuration found previously in another P. mirabilis isolate from France. SGI1-LK1 could arise via an IS26-mediated inversion in the complex class 1 integron that duplicated the IS26 element and the target site in IS6100 SGI1-LK1 also has a larger 8.59-kb backbone deletion extending from traN to within S013 and removing traG and traH. However, SGI1-LK1 was mobilized by an IncC plasmid. SGI1-LK2 can be derived from a hypothetical progenitor, SGI1-LK0, that is related to SGI1-PmGUE but lacks the aphA1 gene and one copy of IS26. The integron of SGI1-LK2 could arise via deletion of DNA adjacent to an IS26 and a deletion occurring via homologous recombination between duplicated copies of part of the integron 3'-conserved segment. SGI1-K can also be derived from SGI1-LK0. This would involve an IS26-mediated deletion and an inversion via homologous recombination of a segment between inversely oriented IS26s. Similar events can explain the configuration of the integrons in other SGI1-LK variants.IMPORTANCE Members of the SGI1-HKL subgroup of SGI1-type integrative mobilizable elements have a characteristic alteration in their backbone. They are widely distributed among multiply antibiotic-resistant Salmonella enterica serovars and Proteus mirabilis isolates. The SGI1-K type, found in the globally disseminated multiply antibiotic-resistant Salmonella enterica serovar Kentucky clone ST198 (sequence type 198), and various configurations in the original SGI1-LK group, found in other multiresistant S. enterica serovars and Proteus mirabilis isolates, have complex and highly plastic resistance regions due to the presence of IS26 However, how these complex forms arose and the relationships between them had not been analyzed. Here, a hypothetical progenitor, SGI1-LK0, that can be formed from the simpler SGI1-H is proposed, and the pathways to the formation of new variants, SGI1-LK1 and SGI1-LK2, found in P. mirabilis and other reported configurations via homologous recombination and IS26-mediated events are proposed. This led to a better understanding of the evolution of the SGI1-HKL group.
Collapse
|
23
|
The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from humans, animals and food in 2017/2018. EFSA J 2020; 18:e06007. [PMID: 32874244 PMCID: PMC7448042 DOI: 10.2903/j.efsa.2020.6007] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Data on antimicrobial resistance (AMR) in zoonotic and indicator bacteria from humans, animals and food are collected annually by the EU Member States (MSs), jointly analysed by EFSA and ECDC and reported in a yearly EU Summary Report. The annual monitoring of AMR in animals and food within the EU is targeted at selected animal species corresponding to the reporting year. The 2017 monitoring specifically focussed on pigs and calves under 1 year of age, as well as their derived carcases/meat, while the monitoring performed in 2018 specifically focussed on poultry and their derived carcases/meat. Monitoring and reporting of AMR in 2017/2018 included data regarding Salmonella, Campylobacter and indicator Escherichia coli isolates, as well as data obtained from the specific monitoring of ESBL-/AmpC-/carbapenemase-producing E. coli isolates. Additionally, some MSs reported voluntary data on the occurrence of meticillin-resistant Staphylococcus aureus in animals and food, with some countries also providing data on antimicrobial susceptibility. This report provides, for the first time, an overview of the main findings of the 2017/2018 harmonised AMR monitoring in the main food-producing animal populations monitored, in related carcase/meat samples and in humans. Where available, data monitoring obtained from pigs, calves/cattle, broilers, laying hens and turkeys, as well as from carcase/meat samples and humans were combined and compared at the EU level, with particular emphasis on multiple drug resistance, complete susceptibility and combined resistance patterns to critically important antimicrobials, as well as Salmonella and E. coli isolates exhibiting presumptive ESBL-/AmpC-/carbapenemase-producing phenotypes. The outcome indicators for AMR in food-producing animals, such as complete susceptibility to the harmonised panel of antimicrobials in E. coli and the prevalence of ESBL-/AmpC-producing E. coli have been also specifically analysed over the period 2014-2018.
Collapse
|
24
|
de Curraize C, Siebor E, Neuwirth C, Hall RM. SGI0, a relative of Salmonella genomic islands SGI1 and SGI2, lacking a class 1 integron, found in Proteus mirabilis. Plasmid 2019; 107:102453. [PMID: 31705941 DOI: 10.1016/j.plasmid.2019.102453] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/16/2019] [Accepted: 10/25/2019] [Indexed: 01/26/2023]
Abstract
Several groups of integrative mobilizable elements (IMEs) that harbour a class 1 integron carrying antibiotic resistance genes have been found at the 3'-end of the chromosomal trmE gene. Here, a new IME, designated SGI0, was found in trmE in the sequenced and assembled genome of a French clinical, multiply antibiotic resistant Proteus mirabilis strain, Pm1LENAR. SGI0 shares the same gene content as the backbones of SGI1 and SGI2 (overall 97.6% and 97.7% nucleotide identity, respectively) but it lacks a class 1 integron. However, SGI0 is a mosaic made up of segments with >98.5% identity to SGI1 and SGI2 interspersed with segments sharing 74-95% identity indicating that further diverged backbone types exist and that recombination between them is occurring. The structure of SGI1-V, here re-named SGI-V, which lacks two SGI1 (S023 and S024) backbone genes and includes a group of additional genes in the backbone, was re-examined. In regions shared with SGI1, the backbones shared 97.3% overall identity with the differences distributed in patches with various levels of identity. The class 1 integron is also in a slightly different position with the target site duplication AAATT instead of ACTTG for SGI1 and variants, indicating that it was acquired independently. The Pm1LENAR resistance genes are in the chromosome, in Tn7 and an ISEcp1-mobilised segment.
Collapse
Affiliation(s)
- Claire de Curraize
- Bacteriology Department, University Hospital Dijon, PTB, BP, 37013, 21070, Dijon Cedex, France; UMR 6249, Chrono-Environnement, PTB, BP 37013, 21070, Dijon Cedex, France; School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia.
| | - Eliane Siebor
- Bacteriology Department, University Hospital Dijon, PTB, BP, 37013, 21070, Dijon Cedex, France; UMR 6249, Chrono-Environnement, PTB, BP 37013, 21070, Dijon Cedex, France
| | - Catherine Neuwirth
- Bacteriology Department, University Hospital Dijon, PTB, BP, 37013, 21070, Dijon Cedex, France; UMR 6249, Chrono-Environnement, PTB, BP 37013, 21070, Dijon Cedex, France
| | - Ruth M Hall
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia.
| |
Collapse
|
25
|
Zhu D, Yang Z, Xu J, Wang M, Jia R, Chen S, Liu M, Zhao X, Yang Q, Wu Y, Zhang S, Liu Y, Zhang L, Yu Y, Chen X, Cheng A. Pan-genome analysis of Riemerella anatipestifer reveals its genomic diversity and acquired antibiotic resistance associated with genomic islands. Funct Integr Genomics 2019; 20:307-320. [PMID: 31654228 DOI: 10.1007/s10142-019-00715-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 07/20/2019] [Accepted: 09/09/2019] [Indexed: 01/09/2023]
Abstract
Riemerella anatipestifer is a gram-negative bacterium that leads to severe contagious septicemia in ducks, turkeys, chickens, and wild waterfowl. Here, a pan-genome with 32 R. anatipestifer genomes is re-established, and the mathematical model is calculated to evaluate the expansion of R. anatipestifer genomes, which were determined to be open. Average nucleotide identity (ANI) and phylogenetic analysis preliminarily clarify intraspecies variation and distance. Comparative genomic analysis of R. anatipestifer found that horizontal gene transfer events, which provide an expressway for the recruitment of novel functionalities and facilitate genetic diversity in microbial genomes, play a key role in the process of acquiring and transmitting antibiotic-resistance genes in R. anatipestifer. Furthermore, a new antibiotic-resistance gene cluster was identified in the same loci in 14 genomes. The uneven distribution of virulence factors was also confirmed by our results. Our study suggests that the ability to acquire foreign genes (such as antibiotic-resistance genes) increases the adaptability of R. anatipestifer, and the virulence genes with little mobility are highly conserved in R. anatipestifer.
Collapse
Affiliation(s)
- Dekang Zhu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
| | - Zhishuang Yang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
| | - Jinge Xu
- Guizhou Animal Husbandry and Veterinary Research Institute, Guiyang, Guizhou, China
| | - Mingshu Wang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Renyong Jia
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shun Chen
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mafeng Liu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xinxin Zhao
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qiao Yang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ying Wu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shaqiu Zhang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yunya Liu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ling Zhang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yanling Yu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiaoyue Chen
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
| | - Anchun Cheng
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China. .,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China.
| |
Collapse
|
26
|
Wang XC, Lei CW, Kang ZZ, Zhang Y, Wang HN. IS 26-Mediated Genetic Rearrangements in Salmonella Genomic Island 1 of Proteus mirabilis. Front Microbiol 2019; 10:2245. [PMID: 31608048 PMCID: PMC6769106 DOI: 10.3389/fmicb.2019.02245] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 09/13/2019] [Indexed: 11/13/2022] Open
Abstract
Salmonella genomic island 1 (SGI1) is an integrative mobilizable element integrated into the chromosome of bacteria, which plays an important role in the dissemination of antimicrobial resistance genes. Lots of SGI1 variants are found mainly in Salmonella enterica and Proteus mirabilis. In this study, a total of 157 S. enterica and 132 P. mirabilis strains were collected from food-producing animals in Sichuan Province of China between December 2016 and November 2017. Detection of the SGI1 integrase gene showed that three S. enterica and five P. mirabilis strains were positive for SGI1, which displayed different multidrug resistance profiles. Five different SGI1 variants, including two novel variants (SGI1-PmBC1123 and SGI1-PmSC1111), were characterized by whole genome sequencing and PCR linkage. In two novel SGI1 variants, IS26-mediated rearrangements resulted in large sequence inversions of the MDR regions extending outside the SGI1 backbone. The sul3-type III class 1 integron (5′CS-sat-psp-aadA2-cmlA1-aadA1-qacH-IS440-sul3) and gene cassettes aac(6′)-Ib-cr-blaOXA–1-catB3-arr-3 are found in SGI1-PmSC1111. Mobilization experiments indicated that three known variants were conjugally mobilized in trans to Escherichia coli with the help of a conjugative IncC plasmid. However, the two novel variants seemed to lose the mobilization, which might result from the sequence inversion of partial SGI1 backbone. The identification of the two novel SGI1 variants in this study suggested that IS26-mediated rearrangements promote the diversity of SGI1.
Collapse
Affiliation(s)
- Xue-Chun Wang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Chang-Wei Lei
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Zhuang-Zhuang Kang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yu Zhang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Hong-Ning Wang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
27
|
Ghoddusi A, Nayeri Fasaei B, Zahraei Salehi T, Akbarein H. Prevalence and characterization of multidrug resistance and variant Salmonella genomic island 1 in Salmonella isolates from cattle, poultry and humans in Iran. Zoonoses Public Health 2019; 66:587-596. [PMID: 31310056 DOI: 10.1111/zph.12608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 11/29/2022]
Abstract
Salmonella enterica is a common food-borne pathogen with occasional multidrug resistance (MDR). Salmonella genomic island (SGI1) is a horizontally transmissible genomic island, containing an MDR gene cluster. All Salmonella serotypes are public health concern, although there is an additional concern associated with those that harbour SGI1. In Iran, there are no data on the presence of SGI1 variants in Salmonella isolates. The present study was conducted to identify MDR- and SGI1-carrying Salmonella strains isolated from various sources and to compare their genetic relatedness between human and animal sources. In total, 242 Salmonella isolates collected from chicken, cattle, and humans from 2008 through 2014 were studied. The isolates were tested for resistance to 14 antimicrobials via the disc diffusion method. They were also tested for the presence of SGI1 variants via PCR, and genetic relatedness was evaluated based on pulsed-field gel electrophoresis (PFGE). Resistance to at least one antimicrobial agent was observed in 132 (54%) Salmonella isolates (n = 242), while more than 40% of the isolates showed MDR. Based on PCR analysis, eight variants of SGI1, including SGI1, SGI1-B, SGI1-C, SGI1-D, SGI1-F, SGI1-I, SGI1-J and SGI1-O, were found in both human and animal isolates. Statistical analysis revealed no significant difference in the prevalence of SGI1 variants between human and animal isolates (p > 0.05). Macrorestriction PFGE analysis of the isolates with the same SGI1 variant and resistance patterns revealed genetic relatedness ranging from 70% to 100% among human and animal isolates. According to our review, this is the first documentation of SGI1 in Salmonella isolates in Iran. The presence of similar SGI1 variants in both humans and animals, along with their related PFGE patterns, suggests that food-producing animals may be a source of MDR Salmonella isolates in Iran.
Collapse
Affiliation(s)
- Arefeh Ghoddusi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Bahar Nayeri Fasaei
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Taghi Zahraei Salehi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Hesameddin Akbarein
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
28
|
Cummins ML, Roy Chowdhury P, Marenda MS, Browning GF, Djordjevic SP. Salmonella Genomic Island 1B Variant Found in a Sequence Type 117 Avian Pathogenic Escherichia coli Isolate. mSphere 2019; 4:e00169-19. [PMID: 31118300 PMCID: PMC6531882 DOI: 10.1128/msphere.00169-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/05/2019] [Indexed: 12/24/2022] Open
Abstract
Salmonella genomic island 1 (SGI1) is an integrative genetic island first described in Salmonella enterica serovars Typhimurium DT104 and Agona in 2000. Variants of it have since been described in multiple serovars of S. enterica, as well as in Proteus mirabilis, Acinetobacter baumannii, Morganella morganii, and several other genera. The island typically confers resistance to older, first-generation antimicrobials; however, some variants carry blaNDM-1, blaVEB-6, and blaCTX-M15 genes that encode resistance to frontline, clinically important antibiotics, including third-generation cephalosporins. Genome sequencing studies of avian pathogenic Escherichia coli (APEC) identified a sequence type 117 (ST117) isolate (AVC96) with genetic features found in SGI1. The complete genome sequence of AVC96 was assembled from a combination of Illumina and single-molecule real-time (SMRT) sequence data. Analysis of the AVC96 chromosome identified a variant of SGI1-B located 18 bp from the 3' end of trmE, also known as the attB site, a known hot spot for the integration of genomic islands. This is the first report of SGI1 in wild-type E. coli The variant, here named SGI1-B-Ec1, was otherwise unremarkable, apart from the identification of ISEc43 in open reading frame (ORF) S023.IMPORTANCE SGI1 and variants of it carry a variety of antimicrobial resistance genes, including those conferring resistance to extended-spectrum β-lactams and carbapenems, and have been found in diverse S. enterica serovars, Acinetobacter baumannii, and other members of the Enterobacteriaceae SGI1 integrates into Gram-negative pathogenic bacteria by targeting a conserved site 18 bp from the 3' end of trmE For the first time, we describe a novel variant of SGI1 in an avian pathogenic Escherichia coli isolate. The presence of SGI1 in E. coli is significant because it represents yet another lateral gene transfer mechanism to enhancing the capacity of E. coli to acquire and propagate antimicrobial resistance and putative virulence genes. This finding underscores the importance of whole-genome sequencing (WGS) to microbial genomic epidemiology, particularly within a One Health context. Further studies are needed to determine how widespread SGI1 and variants of it may be in Australia.
Collapse
Affiliation(s)
- Max Laurence Cummins
- The ithree institute, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Piklu Roy Chowdhury
- The ithree institute, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Marc Serge Marenda
- Asia-Pacific Centre for Animal Health, Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, Victoria, Australia
| | - Glenn Francis Browning
- Asia-Pacific Centre for Animal Health, Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | | |
Collapse
|
29
|
Mohan A, Munusamy C, Tan YC, Muthuvelu S, Hashim R, Chien SL, Wong MK, Khairuddin NA, Podin Y, Lau PST, Ng DCE, Ooi MH. Invasive Salmonella infections among children in Bintulu, Sarawak, Malaysian Borneo: a 6-year retrospective review. BMC Infect Dis 2019; 19:330. [PMID: 30999894 PMCID: PMC6471830 DOI: 10.1186/s12879-019-3963-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 04/08/2019] [Indexed: 11/17/2022] Open
Abstract
Background Invasive Salmonella infections result in significant morbidity and mortality in developing countries. In Asia, typhoid and paratyphoid fever are reported to be the major invasive Salmonella infections, while invasive non-typhoidal Salmonella (iNTS) infections are believed to be uncommon. Data from Sarawak, in Malaysian Borneo, are limited. Methods A retrospective study identifying all children aged < 15 years with invasive Salmonella infections from 2011 to 2016 was conducted in Bintulu Hospital in Sarawak. Population incidences, clinical and bacterial characteristics were examined. Results Forty-four patients were identified during the 6-year study period: 43 had iNTS infection and 1 had typhoid fever. The average annual iNTS incidence was 32.4 per 100,000 children aged < 5 years. None of the children had malaria or HIV infection, and only 7% were severely malnourished. Salmonella Enteritidis and Salmonella Java were the commonest NTS serovars identified. Pneumonia was the most common manifestation of iNTS disease, present in 20 (47%) children. Other manifestations included gastroenteritis, fever without a source, septic arthritis and meningitis. Salmonella Enteritidis was identified in 76% of those with pneumonia, significantly more frequently than in children with other manifestations. Over 25% of children with iNTS developed severe disease and nearly 10% suffered long term morbidity or mortality. While 78% of Salmonella Java isolates were multi-drug resistant, nearly all other isolates were susceptible to most antimicrobials, including ampicillin. Conclusions Bintulu Division in Sarawak observed a very high incidence of childhood iNTS infections. Enteric fever was uncommon. The epidemiology of invasive Salmonella infections in Malaysian Borneo differs considerably from that of neighbouring countries in Asia.
Collapse
Affiliation(s)
- Anand Mohan
- Department of Paediatrics, Bintulu Hospital, Bintulu, Sarawak, Malaysia. .,Institute of Health and Community Medicine, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia.
| | - Chandran Munusamy
- Department of Paediatrics, Bintulu Hospital, Bintulu, Sarawak, Malaysia
| | - Yee-Chin Tan
- Department of Paediatrics, Bintulu Hospital, Bintulu, Sarawak, Malaysia
| | - Sobana Muthuvelu
- Department of Paediatrics, Bintulu Hospital, Bintulu, Sarawak, Malaysia
| | - Rohaidah Hashim
- Bacteriology Unit, Infectious Disease Research Centre, Institute for Medical Research, Kuala Lumpur, Malaysia
| | - Su-Lin Chien
- Department of Pathology, Bintulu Hospital, Bintulu, Sarawak, Malaysia
| | - Ming-Kui Wong
- Department of Pathology, Bintulu Hospital, Bintulu, Sarawak, Malaysia
| | | | - Yuwana Podin
- Institute of Health and Community Medicine, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia
| | | | - David Chun-Ern Ng
- Department of Paediatrics, Bintulu Hospital, Bintulu, Sarawak, Malaysia.,Department of Paediatrics, Hospital Tuanku Ja'afar, Seremban, Negeri Sembilan, Malaysia
| | - Mong-How Ooi
- Institute of Health and Community Medicine, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia.,Department of Paediatrics, Sarawak General Hospital, Kuching, Sarawak, Malaysia
| |
Collapse
|
30
|
Kiss J, Szabó M, Hegyi A, Douard G, Praud K, Nagy I, Olasz F, Cloeckaert A, Doublet B. Identification and Characterization of oriT and Two Mobilization Genes Required for Conjugative Transfer of Salmonella Genomic Island 1. Front Microbiol 2019; 10:457. [PMID: 30894848 PMCID: PMC6414798 DOI: 10.3389/fmicb.2019.00457] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 02/20/2019] [Indexed: 11/13/2022] Open
Abstract
The integrative mobilizable elements of SGI1-family considerably contribute to the spread of resistance to critically important antibiotics among enteric bacteria. Even though many aspects of SGI1 mobilization by IncA and IncC plasmids have been explored, the basic transfer elements such as oriT and self-encoded mobilization proteins remain undiscovered. Here we describe the mobilization region of SGI1 that is well conserved throughout the family and carries the oriT SGI1 and two genes, mpsA and mpsB (originally annotated as S020 and S019, respectively) that are essential for the conjugative transfer of SGI1. OriT SGI1, which is located in the vicinity of the two mobilization genes proved to be a 125-bp GC-rich sequence with several important inverted repeat motifs. The mobilization proteins MpsA and MpsB are expressed from a bicistronic mRNA, although MpsB can be produced from its own mRNA as well. The protein structure predictions imply that MpsA belongs to the lambda tyrosine recombinase family, while MpsB resembles the N-terminal core DNA binding domains of these enzymes. The results suggest that MpsA may act as an atypical relaxase, which needs MpsB for SGI1 transfer. Although the helper plasmid-encoded relaxase proved not to be essential for SGI1 transfer, it appeared to be important to achieve the high transfer rate of the island observed with the IncA/IncC-SGI1 system.
Collapse
Affiliation(s)
- János Kiss
- National Agricultural Research and Innovation Centre, Agricultural Biotechnology Institute, Gödöllõ, Hungary
| | - Mónika Szabó
- National Agricultural Research and Innovation Centre, Agricultural Biotechnology Institute, Gödöllõ, Hungary
| | - Anna Hegyi
- National Agricultural Research and Innovation Centre, Agricultural Biotechnology Institute, Gödöllõ, Hungary.,ISP, Institut National de la Recherche Agronomique, Université de Tours, UMR 1282, Nouzilly, France
| | - Gregory Douard
- ISP, Institut National de la Recherche Agronomique, Université de Tours, UMR 1282, Nouzilly, France
| | - Karine Praud
- ISP, Institut National de la Recherche Agronomique, Université de Tours, UMR 1282, Nouzilly, France
| | - István Nagy
- National Agricultural Research and Innovation Centre, Agricultural Biotechnology Institute, Gödöllõ, Hungary
| | - Ferenc Olasz
- National Agricultural Research and Innovation Centre, Agricultural Biotechnology Institute, Gödöllõ, Hungary
| | - Axel Cloeckaert
- ISP, Institut National de la Recherche Agronomique, Université de Tours, UMR 1282, Nouzilly, France
| | - Benoît Doublet
- ISP, Institut National de la Recherche Agronomique, Université de Tours, UMR 1282, Nouzilly, France
| |
Collapse
|
31
|
The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2017. EFSA J 2019; 17:e05598. [PMID: 32626224 PMCID: PMC7009238 DOI: 10.2903/j.efsa.2019.5598] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The data on antimicrobial resistance in zoonotic and indicator bacteria in 2017, submitted by 28 EU Member States (MSs), were jointly analysed by EFSA and ECDC. Resistance in zoonotic Salmonella and Campylobacter from humans, animals and food, and resistance in indicator Escherichia coli as well as meticillin‐resistant Staphylococcus aureus in animals and food were addressed, and temporal trends assessed. ‘Microbiological’ resistance was assessed using epidemiological cut‐off (ECOFF) values; for some countries, qualitative data on human isolates were interpreted in a way which corresponds closely to the ECOFF‐defined ‘microbiological’ resistance. In Salmonella from humans, as well as in Salmonella and E. coli isolates from fattening pigs and calves of less than 1 year of age, high proportions of isolates were resistant to ampicillin, sulfonamides and tetracyclines, whereas resistance to third‐generation cephalosporins was uncommon. Varying occurrence/prevalence rates of presumptive extended‐spectrum beta‐lactamase (ESBL)/AmpC producers in Salmonella and E. coli monitored in meat (pork and beef), fattening pigs and calves, and Salmonella monitored in humans, were observed between countries. Carbapenemase‐producing E. coli were detected in one single
sample from fattening pigs in one MS. Resistance to colistin was observed at low levels in Salmonella and E. coli from fattening pigs and calves and meat thereof and in Salmonella from humans. In Campylobacter from humans, high to extremely high proportions of isolates were resistant to ciprofloxacin and tetracyclines, particularly in Campylobacter coli. In five countries, high to very high proportions of C. coli from humans were resistant also to erythromycin, leaving few options for treatment of severe Campylobacter infections. High resistance to ciprofloxacin and tetracyclines was observed in C. coli isolates from fattening pigs, whereas much lower levels were recorded for erythromycin. Combined resistance to critically important antimicrobials in both human and animal isolates was generally uncommon but very high to extremely high multidrug resistance levels were observed in S. Typhimurium and its monophasic variant in both humans and animals. S. Kentucky from humans exhibited high‐level resistance to ciprofloxacin, in addition to a high prevalence of ESBL.
Collapse
|
32
|
Xiao T, Dai H, Lu B, Li Z, Cai H, Huang Z, Kan B, Wang D. Distribution and characteristics of SGI1/PGI2 genomic island from Proteus strains in China. INFECTION GENETICS AND EVOLUTION 2019; 70:123-130. [PMID: 30825526 DOI: 10.1016/j.meegid.2019.02.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/29/2018] [Accepted: 02/24/2019] [Indexed: 01/12/2023]
Abstract
The emergence of multidrug-resistant Salmonella genomic island 1 (SGI1) and Proteus genomic island (PGI) bearing P. mirabilis present a serious threat to public health. In this study, we screened 288 Proteus isolates recovered from seven provinces in China. Fourteen strains (4.9%) all belonged to P. mirabilis were positive for SGI1/PGI2, including twelve from clinical samples (5.3%) and two from food (3.3%). A Blastn search against GenBank and phylogenetic analyses identified eight different SGI1 variants and one PGI2 variant from the fourteen SGI1/PGI2 variants. All SGI1 variants shared a common backbone and harbored different resistance gene(s), except the sul1 gene at its multidrug-resistant (MDR) region. Among the variants, three novel SGI1 variants, designated as SGI1-PmCA11, SGI1-PmCA14 and SGI1-PmCA46, contained different gene cassettes, which were similar to sequences in plasmids or class 1 integrons of Klebsiella pneumoniae, P. mirabilis, Escherichia coli and Salmonella. Moreover, one novel PGI2, designated as PGI2-PmCA72, had an identical gene cassette to the first class 1 integron from PGI2 (GenBank accession no. MG201402.1) in P. mirabilis, but varied due to missing, replaced, inserted and inverted gene clusters. The four novel SGI1/PGI2 variants contained the cmlA5, dfrA14, blaOXA-10, aadA15, blaOXA-1, catB3 and dfrA16 resistance genes, which have never been reported in SGI1/PGI2 variants. Phenotypically, all fourteen SGI1/PGI2-containing strains showed multidrug resistance. All except four strains were resistant to the first, or the second and/or-third generation cephalosporins. Considering the increasing number and the emergence of new SGI1/PGI2 variants, further surveillance is needed to prevent the spreading of the MDR genomic islands among Proteus isolates from human and food.
Collapse
Affiliation(s)
- Tao Xiao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China; Center for Human Pathogen Collection, China CDC, Beijing, 102206, China
| | - Hang Dai
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China; Center for Human Pathogen Collection, China CDC, Beijing, 102206, China
| | - Binghuai Lu
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Zhenpeng Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China
| | - Hongyan Cai
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China; Center for Human Pathogen Collection, China CDC, Beijing, 102206, China
| | - Zhenzhou Huang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China; Center for Human Pathogen Collection, China CDC, Beijing, 102206, China
| | - Biao Kan
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China
| | - Duochun Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China; Center for Human Pathogen Collection, China CDC, Beijing, 102206, China.
| |
Collapse
|
33
|
Reid CJ, Wyrsch ER, Roy Chowdhury P, Zingali T, Liu M, Darling AE, Chapman TA, Djordjevic SP. Porcine commensal Escherichia coli: a reservoir for class 1 integrons associated with IS26. Microb Genom 2019; 3. [PMID: 29306352 PMCID: PMC5761274 DOI: 10.1099/mgen.0.000143] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Porcine faecal waste is a serious environmental pollutant. Carriage of antimicrobial-resistance genes (ARGs) and virulence-associated genes (VAGs), and the zoonotic potential of commensal Escherichia coli from swine are largely unknown. Furthermore, little is known about the role of commensal E. coli as contributors to the mobilization of ARGs between food animals and the environment. Here, we report whole-genome sequence analysis of 103 class 1 integron-positive E. coli from the faeces of healthy pigs from two commercial production facilities in New South Wales, Australia. Most strains belonged to phylogroups A and B1, and carried VAGs linked with extraintestinal infection in humans. The 103 strains belonged to 37 multilocus sequence types and clonal complex 10 featured prominently. Seventeen ARGs were detected and 97 % (100/103) of strains carried three or more ARGs. Heavy-metal-resistance genes merA, cusA and terA were also common. IS26 was observed in 98 % (101/103) of strains and was often physically associated with structurally diverse class 1 integrons that carried unique genetic features, which may be tracked. This study provides, to our knowledge, the first detailed genomic analysis and point of reference for commensal E. coli of porcine origin in Australia, facilitating tracking of specific lineages and the mobile resistance genes they carry.
Collapse
Affiliation(s)
- Cameron J Reid
- 1The i3 institute, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Ethan R Wyrsch
- 1The i3 institute, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Piklu Roy Chowdhury
- 1The i3 institute, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Tiziana Zingali
- 1The i3 institute, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Michael Liu
- 1The i3 institute, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Aaron E Darling
- 1The i3 institute, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Toni A Chapman
- 2NSW Department of Primary Industries, Elizabeth MacArthur Agricultural Institute, Menangle, NSW 2568, Australia
| | - Steven P Djordjevic
- 1The i3 institute, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
34
|
Bie L, Fang M, Li Z, Wang M, Xu H. Identification and Characterization of New Resistance-Conferring SGI1s ( Salmonella Genomic Island 1) in Proteus mirabilis. Front Microbiol 2018; 9:3172. [PMID: 30619228 PMCID: PMC6305713 DOI: 10.3389/fmicb.2018.03172] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 12/07/2018] [Indexed: 12/23/2022] Open
Abstract
Salmonella genomic island 1 (SGI1) is a resistance-conferring chromosomal genomic island that contains an antibiotic resistance gene cluster. The international spread of SGI1-containing strains drew attention to the role of genomic islands in the dissemination of antibiotic resistance genes in Salmonella and other Gram-negative bacteria. In this study, five SGI1 variants conferring multidrug and heavy metal resistance were identified and characterized in Proteus mirabilis strains: SGI1-PmCAU, SGI1-PmABB, SGI1-PmJN16, SGI1-PmJN40, and SGI1-PmJN48. The genetic structures of SGI1-PmCAU and SGI1-PmABB were identical to previously reported SGI1s, while structural analysis showed that SGI1-PmJN16, SGI1-PmJN40, and SGI1-PmJN48 are new SGI1 variants. SGI1-PmJN16 is derived from SGI1-Z with the MDR region containing a new gene cassette array dfrA12-orfF-aadA2-qacEΔ1-sul1-chrA-orf1. SGI1-PmJN40 has an unprecedented structure that contains two right direct repeat sequences separated by a transcriptional regulator-rich DNA fragment, and is predicted to form two different extrachromosomal mobilizable DNA circles for dissemination. SGI1-PmJN48 lacks a common ORF S044, and its right junction region exhibits a unique genetic organization due to the reverse integration of a P. mirabilis chromosomal gene cluster and the insertion of part of a P. mirabilis plasmid, making it the largest known SGI1 to date (189.1 kb). Further mobility functional analysis suggested that these SGIs can be excised from the chromosome for transfer between bacteria, which promotes the horizontal transfer of antibiotic and heavy metal resistance genes. The identification and characterization of the new SGI1 variants in this work suggested the diversity of SGI1 structures and their significant roles in the evolution of bacteria.
Collapse
Affiliation(s)
- Luyao Bie
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Meng Fang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Zhiqiang Li
- Advanced Research Center for Optics, Shandong University, Qingdao, China
| | - Mingyu Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Hai Xu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| |
Collapse
|
35
|
McKinnon J, Roy Chowdhury P, Djordjevic SP. Genomic analysis of multidrug-resistant Escherichia coli ST58 causing urosepsis. Int J Antimicrob Agents 2018; 52:430-435. [PMID: 29966679 DOI: 10.1016/j.ijantimicag.2018.06.017] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 06/18/2018] [Accepted: 06/23/2018] [Indexed: 11/29/2022]
Abstract
Sequence type 58 (ST58) phylogroup B1 Escherichia coli have been isolated from a wide variety of mammalian and avian hosts but are not noted for their ability to cause serious disease in humans or animals. Here we determined the genome sequences of two multidrug-resistant E. coli ST58 strains from urine and blood of one patient using a combination of Illumina and Single Molecule, Real-Time (SMRT) sequencing. Both ST58 strains were clonal and were characterised as serotype O8:H25, phylogroup B1 and carried a complex resistance locus/loci (CRL) that featured an atypical class 1 integron with a dfrA5 (trimethoprim resistance) gene cassette followed by only 24 bp of the 3'-CS. CRL that carry this particular integron have been described previously in E. coli from cattle, pigs and humans in Australia. The integron abuts a copy of Tn6029, an IS26-flanked composite transposon encoding blaTEM, sul2 and strAB genes that confer resistance to ampicillin, sulfathiazole and streptomycin, respectively. The CRL resides within a novel Tn2610-like hybrid Tn1721/Tn21 transposon on an IncF, ColV plasmid (pSDJ2009-52F) of 138 553 bp that encodes virulence associated genes implicated in life-threatening extraintestinal pathogenic E. coli (ExPEC) infections. Notably, pSDJ2009-52F shares high sequence identity with pSF-088-1, a plasmid reported in an E. coli ST95 strain from a patient with blood sepsis from a hospital in San Francisco. These data suggest that extraintestinal infections caused by E. coli carrying ColV-like plasmids, irrespective of their phylogroup or ST, may pose a potential threat to human health, particularly to the elderly and immunocompromised.
Collapse
Affiliation(s)
- Jessica McKinnon
- ithree Institute, University of Technology Sydney, P.O. Box 123, Broadway, Sydney, NSW 2007, Australia
| | - Piklu Roy Chowdhury
- ithree Institute, University of Technology Sydney, P.O. Box 123, Broadway, Sydney, NSW 2007, Australia; Department of Primary Industries, Elizabeth Macarthur Agriculture Institute, PMB 4008, Camden, NSW 2567, Australia
| | - Steven P Djordjevic
- ithree Institute, University of Technology Sydney, P.O. Box 123, Broadway, Sydney, NSW 2007, Australia.
| |
Collapse
|
36
|
Hossain S, De Silva BCJ, Wimalasena SHMP, Pathirana HNKS, Dahanayake PS, Heo GJ. Distribution of Antimicrobial Resistance Genes and Class 1 Integron Gene Cassette Arrays in Motile Aeromonas spp. Isolated from Goldfish (Carassius auratus). Microb Drug Resist 2018; 24:1217-1225. [PMID: 29420133 DOI: 10.1089/mdr.2017.0388] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Aeromonas spp. are opportunistic pathogens related to multiple infectious diseases in ornamental fishes. In the present study, the antimicrobial susceptibility, resistance genes, and integrons of 65 goldfish-borne Aeromonas spp. were evaluated. The isolates were identified as A. hydrophila (n = 30), A. veronii (n = 32), and A. punctata (n = 3) by gyrB sequencing. The antimicrobial susceptibility testing of the isolates designated that most of the isolates were resistant to amoxicillin (100.00%), nalidixic acid (100.00%), ampicillin (98.46%), tetracycline (92.31%), rifampicin (86.15%), and cephalothin (61.54%) and each of the isolates showed multiple antimicrobial resistance phenotype (resistant to ≥3 classes of antimicrobials). PCR amplification of antimicrobial resistance genes revealed that the plasmid-mediated quinolone resistance gene, qnrS, was the most prevalent (73.85%) among the isolates. The other antimicrobial resistance genes were detected in the following proportions: qnrB (26.15%), aac(6')-Ib-cr (4.60%), tetA (16.92%), tetE (21.54%), aac(6')-Ib (29.23%), and aphAI-IAB (7.69%). The IntI gene was found in 64.62% isolates, and four class 1 integron gene cassette profiles (incomplete dfrA1, catB3-aadA1, dfrA1-orfC, and qacE2-orfD) were identified. These data suggest that goldfish-borne Aeromonas spp. serve as a reservoir of antimicrobial resistance genes and class 1 integrons.
Collapse
Affiliation(s)
- Sabrina Hossain
- Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University , Cheongju, Korea
| | | | | | | | - Pasan Sepala Dahanayake
- Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University , Cheongju, Korea
| | - Gang-Joon Heo
- Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University , Cheongju, Korea
| |
Collapse
|
37
|
de Curraize C, Amoureux L, Bador J, Chapuis A, Siebor E, Clément C, Sauge J, Aho-Glélé LS, Neuwirth C. "Does the Salmonella Genomic Island 1 (SGI1) confer invasiveness properties to human isolates?". BMC Infect Dis 2017; 17:741. [PMID: 29195496 PMCID: PMC5709944 DOI: 10.1186/s12879-017-2847-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 11/21/2017] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND In the eighties, a multidrug resistant clone of Salmonella Typhimurium DT104 emerged in UK and disseminated worldwide. This clone harbored a Salmonella genomic island 1 (SGI1) that consists of a backbone and a multidrug resistant region encoding for penta-resistance (ampicillin, chloramphenicol/florfenicol, streptomycin/spectinomycin, sulphonamides and tetracycline (ACSSuT)). Several authors suggested that SGI1 might have a potential role in enhancement of virulence properties of Salmonella enterica. The aim of this study was to investigate whether nontyphoidal S. enterica isolates carrying SGI1 cause more severe illness than SGI1 free ones in humans. METHODS From 2011 to 2016, all patients infected with nontyphoidal S. enterica in our hospital were retrospectively included. All nontyphoidal S. enterica isolates preserved in our University Hospital (Dijon, France) were screened for the presence of SGI1. Clinical and biological data of patients were retrospectively collected to evaluate illness severity. Statistical analysis of data was performed by Kruskal-Wallis test or Fisher's exact test for univariate analysis, and by logistic regression for multivariate analysis. RESULTS A total of 100 isolates of S. enterica (22 serovars) were collected. Twelve isolates (12%) belonging to 4 serovars harbored SGI1: S. Typhimurium, S. Infantis, S. Kentucky, S. St Paul. The severity of the disease was age-related (for invasive infection, sepsis and inflammatory response) and was associated with immunosuppression (for invasive infection, sepsis and bacteremia) but not with the presence of SGI1 or with antimicrobial resistance. CONCLUSION A rather high proportion (12%) of human clinical isolates belonging to various serovars (for the first time serovar St Paul) and harboring various antimicrobial resistance profile carried SGI1. Diseases due to SGI1-positive S. enterica or to antimicrobial resistant isolates were not more severe than the others. This first clinical observation should be confirmed by a multicenter and prospective study.
Collapse
Affiliation(s)
- Claire de Curraize
- Bacteriology Department, University Hospital Dijon and UMR 6249, PTB, BP 37013, 21070 Dijon Cedex, France
| | - Lucie Amoureux
- Bacteriology Department, University Hospital Dijon and UMR 6249, PTB, BP 37013, 21070 Dijon Cedex, France
| | - Julien Bador
- Bacteriology Department, University Hospital Dijon and UMR 6249, PTB, BP 37013, 21070 Dijon Cedex, France
| | - Angélique Chapuis
- Bacteriology Department, University Hospital Dijon and UMR 6249, PTB, BP 37013, 21070 Dijon Cedex, France
| | - Eliane Siebor
- Bacteriology Department, University Hospital Dijon and UMR 6249, PTB, BP 37013, 21070 Dijon Cedex, France
| | - Claire Clément
- Bacteriology Department, University Hospital Dijon and UMR 6249, PTB, BP 37013, 21070 Dijon Cedex, France
| | - Juliette Sauge
- Bacteriology Department, University Hospital Dijon and UMR 6249, PTB, BP 37013, 21070 Dijon Cedex, France
| | | | - Catherine Neuwirth
- Bacteriology Department, University Hospital Dijon and UMR 6249, PTB, BP 37013, 21070 Dijon Cedex, France
| |
Collapse
|
38
|
Papagiannitsis CC, Medvecky M, Chudejova K, Skalova A, Rotova V, Spanelova P, Jakubu V, Zemlickova H, Hrabak J. Molecular Characterization of Carbapenemase-Producing Pseudomonas aeruginosa of Czech Origin and Evidence for Clonal Spread of Extensively Resistant Sequence Type 357 Expressing IMP-7 Metallo-β-Lactamase. Antimicrob Agents Chemother 2017; 61:e01811-17. [PMID: 28993328 PMCID: PMC5700319 DOI: 10.1128/aac.01811-17] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 09/21/2017] [Indexed: 11/20/2022] Open
Abstract
The objective of this study was to perform molecular surveillance for assessing the spread of carbapenemase-producing Pseudomonas aeruginosa in Czech hospitals. One hundred thirty-six carbapenemase-producing isolates were recovered from 22 hospitals located throughout the country. Sequence type 357 (ST357) dominated (n = 120) among carbapenemase producers. One hundred seventeen isolates produced IMP-type (IMP-7 [n = 116] and IMP-1 [n = 1]) metallo-β-lactamases (MβLs), 15 produced the VIM-2 MβL, and the remaining isolates expressed the GES-5 enzyme. The blaIMP-like genes were located in three main integron types, with In-p110-like being the most prevalent (n = 115). The two other IMP-encoding integrons (In1392 and In1393) have not been described previously. blaVIM-2-carrying integrons included In59-like, In56, and a novel element (In1391). blaGES-5 was carried by In717. Sequencing data showed that In-p110-like was associated with a Tn4380-like transposon inserted in genomic island LESGI-3 in the P. aeruginosa chromosome. The other integrons were also integrated into the P. aeruginosa chromosome. These findings indicated the clonal spread of ST357 P. aeruginosa, carrying the IMP-7-encoding integron In-p110, in Czech hospitals. Additionally, the sporadic emergence of P. aeruginosa producing different carbapenemase types, associated with divergent or novel integrons, punctuated the ongoing evolution of these bacteria.
Collapse
Affiliation(s)
- Costas C Papagiannitsis
- Department of Microbiology, Faculty of Medicine and University Hospital in Pilsen, Charles University, Pilsen, Czech Republic
- Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czech Republic
| | | | - Katerina Chudejova
- Department of Microbiology, Faculty of Medicine and University Hospital in Pilsen, Charles University, Pilsen, Czech Republic
- Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czech Republic
| | - Anna Skalova
- Department of Microbiology, Faculty of Medicine and University Hospital in Pilsen, Charles University, Pilsen, Czech Republic
- Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czech Republic
| | - Veronika Rotova
- Department of Microbiology, Faculty of Medicine and University Hospital in Pilsen, Charles University, Pilsen, Czech Republic
- Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czech Republic
| | - Petra Spanelova
- National Reference Laboratory for Antibiotics, National Institute of Public Health, Prague, Czech Republic
| | - Vladislav Jakubu
- Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czech Republic
- National Reference Laboratory for Antibiotics, National Institute of Public Health, Prague, Czech Republic
| | - Helena Zemlickova
- Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czech Republic
- National Reference Laboratory for Antibiotics, National Institute of Public Health, Prague, Czech Republic
- Department of Clinical Microbiology, University Hospital and Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Jaroslav Hrabak
- Department of Microbiology, Faculty of Medicine and University Hospital in Pilsen, Charles University, Pilsen, Czech Republic
- Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czech Republic
| |
Collapse
|
39
|
Wang P, Zeng Z, Wang W, Wen Z, Li J, Wang X. Dissemination and loss of a biofilm-related genomic island in marine Pseudoalteromonas mediated by integrative and conjugative elements. Environ Microbiol 2017; 19:4620-4637. [PMID: 28892292 DOI: 10.1111/1462-2920.13925] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/31/2017] [Accepted: 08/31/2017] [Indexed: 01/24/2023]
Abstract
Acquisition of genomic islands (GIs) plays a central role in the diversification and adaptation of bacteria. Some GIs can be mobilized in trans by integrative and conjugative elements (ICEs) or conjugative plasmids if the GIs carry specific transfer-related sequences. However, the transfer mechanism of GIs lacking such elements remains largely unexplored. Here, we investigated the transmissibility of a GI found in a coral-associated marine bacterium. This GI does not carry genes with transfer functions, but it carries four genes required for robust biofilm formation. Notably, this GI is inserted in the integration site for SXT/R391 ICEs. We demonstrated that acquisition of an SXT/R391 ICE results in either a tandem GI/ICE arrangement or the complete displacement of the GI. The GI displacement by the ICE greatly reduces biofilm formation. In contrast, the tandem integration of the ICE with the GI in cis allows the GI to hijack the transfer machinery of the ICE to excise, transfer and re-integrate into a new host. Collectively, our findings reveal that the integration of an ICE into a GI integration site enables rapid genome dynamics and a new mechanism by which SXT/R391 ICEs can augment genome plasticity.
Collapse
Affiliation(s)
- Pengxia Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, the South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Zhenshun Zeng
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, the South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Weiquan Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, the South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongling Wen
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, the South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, the South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, the South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
40
|
Integrons in Enterobacteriaceae: diversity, distribution and epidemiology. Int J Antimicrob Agents 2017; 51:167-176. [PMID: 29038087 DOI: 10.1016/j.ijantimicag.2017.10.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/29/2017] [Accepted: 10/07/2017] [Indexed: 01/03/2023]
Abstract
Integrons are versatile gene acquisition systems that allow efficient capturing of exogenous genes and ensure their expression. Various classes of integrons possessing a wide variety of gene cassettes are ubiquitously distributed in enteric bacteria worldwide. The epidemiology of integrons associated multidrug resistance in Enterobacteriaceae is rapidly evolving. In the past two decades, the incidence of integrons in enteric bacteria has increased drastically with evolution of multiple gene cassettes, novel gene arrangements and complex chromosomal integrons such as Salmonella genomic islands. This review focuses on the distribution, versatility, spread and global trends of integrons among important members of the Enterobacteriaceae, including Escherichia coli, Klebsiella, Shigella and Salmonella, which are known to cause infections globally. Such a comprehensive understanding of integron-associated antibiotic resistance, their role in the spread of such resistance traits and their clinical relevance especially with regard to each genus individually is paramount to contain the global spread of antibiotic resistance.
Collapse
|
41
|
Lo YT, Wang CL, Chen BH, Hu CW, Chou CH. Prevalence and Antimicrobial Resistance of Salmonella in Market Raw Oysters in Taiwan. J Food Prot 2017; 80:734-739. [PMID: 28358258 DOI: 10.4315/0362-028x.jfp-16-336] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 01/01/2017] [Indexed: 11/11/2022]
Abstract
We tested 137 samples of domestic shucked oysters and 114 samples of imported oysters collected from traditional retail markets and supermarkets during 2010 and 2011 in Taiwan for the presence of Salmonella. We obtained a total of 91 Salmonella isolates, representing nine serotypes, from 80 of the domestic samples. We did not find any Salmonella in the imported oysters. The presence of Salmonella contamination tended to be specific to the area from which the oysters were harvested: the Dongshih area had a significantly higher contamination rate (68.8%) than the Budai (20.0%) and Wanggong (9.1%) areas. In addition, the rate of Salmonella contamination was higher in oysters that were packed or sold with water (P < 0.05). The most commonly identified Salmonella serotypes were Saintpaul (26.4%), Newport (22.0%), and Infantis (13.2%). We screened the isolates for susceptibility to nine antimicrobials and compared them genetically by using PCR for the class 1 integron (int1), tetA, tetB, and blaPSE-1 genes. Eighteen isolates (19.8%) were resistant to at least one antimicrobial agent, and the most frequent resistances were those to tetracycline and oxytetracycline (n = 12, 14.3%).We detected the antimicrobial resistance genes int1, tetA, tetB, and blaPSE-1 in 16.5, 26.4, 6.6, and 22.0% of the isolates, respectively. Eleven of the 18 antimicrobial-resistant isolates contained one or two int1 cassettes, suggesting that the presence of int1 is highly correlated with antimicrobial resistance in Salmonella isolates from oysters. The consumption of oysters is increasing in Taiwan, and information related to Salmonella contamination in oysters is rather limited. Our results indicate that raw oyster consumption from retail markets in Taiwan is associated with a human health hazard owing to Salmonella, including multidrug-resistant Salmonella strains.
Collapse
Affiliation(s)
- Yung-Tsun Lo
- Zoonoses Research Center and School of Veterinary Medicine, National Taiwan University, 1, Section 4, Roosevelt Road, Taipei City, 106, Taiwan
| | - Chia-Lan Wang
- Zoonoses Research Center and School of Veterinary Medicine, National Taiwan University, 1, Section 4, Roosevelt Road, Taipei City, 106, Taiwan
| | - Bai-Hsung Chen
- Zoonoses Research Center and School of Veterinary Medicine, National Taiwan University, 1, Section 4, Roosevelt Road, Taipei City, 106, Taiwan
| | - Chung-Wen Hu
- Zoonoses Research Center and School of Veterinary Medicine, National Taiwan University, 1, Section 4, Roosevelt Road, Taipei City, 106, Taiwan
| | - Chung-Hsi Chou
- Zoonoses Research Center and School of Veterinary Medicine, National Taiwan University, 1, Section 4, Roosevelt Road, Taipei City, 106, Taiwan
| |
Collapse
|
42
|
Carraro N, Rivard N, Burrus V, Ceccarelli D. Mobilizable genomic islands, different strategies for the dissemination of multidrug resistance and other adaptive traits. Mob Genet Elements 2017; 7:1-6. [PMID: 28439449 PMCID: PMC5397120 DOI: 10.1080/2159256x.2017.1304193] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 02/15/2017] [Accepted: 03/06/2017] [Indexed: 11/18/2022] Open
Abstract
Mobile genetic elements are near ubiquitous DNA segments that revealed a surprising variety of strategies for their propagation among prokaryotes and between eukaryotes. In bacteria, conjugative elements were shown to be key drivers of evolution and adaptation by efficiently disseminating genes involved in pathogenicity, symbiosis, metabolic pathways, and antibiotic resistance. Conjugative plasmids of the incompatibility groups A and C (A/C) are important vehicles for the dissemination of antibiotic resistance and the consequent global emergence and spread of multi-resistant pathogenic bacteria. Beyond their own mobility, A/C plasmids were also shown to drive the mobility of unrelated non-autonomous mobilizable genomic islands, which may also confer further advantageous traits. In this commentary, we summarize the current knowledge on different classes of A/C-dependent mobilizable genomic islands and we discuss other DNA hitchhikers and their implication in bacterial evolution. Furthermore, we glimpse at the complex genetic network linking autonomous and non-autonomous mobile genetic elements, and at the associated flow of genetic information between bacteria.
Collapse
Affiliation(s)
- Nicolas Carraro
- Laboratory of Bacterial Molecular Genetics, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada.,Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Nicolas Rivard
- Laboratory of Bacterial Molecular Genetics, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Vincent Burrus
- Laboratory of Bacterial Molecular Genetics, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Daniela Ceccarelli
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, Lelystad, the Netherlands
| |
Collapse
|
43
|
Salmonella genomic island 1 (SGI1) reshapes the mating apparatus of IncC conjugative plasmids to promote self-propagation. PLoS Genet 2017; 13:e1006705. [PMID: 28355215 PMCID: PMC5389848 DOI: 10.1371/journal.pgen.1006705] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 04/12/2017] [Accepted: 03/20/2017] [Indexed: 11/20/2022] Open
Abstract
IncC conjugative plasmids and Salmonella genomic island 1 (SGI1) and relatives are frequently associated with multidrug resistance of clinical isolates of pathogenic Enterobacteriaceae. SGI1 is specifically mobilized in trans by IncA and IncC plasmids (commonly referred to as A/C plasmids) following its excision from the chromosome, an event triggered by the transcriptional activator complex AcaCD encoded by these helper plasmids. Although SGI1 is not self-transmissible, it carries three genes, traNS, traHS and traGS, coding for distant homologs of the predicted mating pore subunits TraNC, TraHC and TraGC, respectively, encoded by A/C plasmids. Here we investigated the regulation of traNS and traHGS and the role of these three genes in the transmissibility of SGI1. Transcriptional fusion of the promoter sequences of traNS and traHGS to the reporter gene lacZ confirmed that expression of these genes is inducible by AcaCD. Mating experiments using combinations of deletion mutants of SGI1 and the helper IncC plasmid pVCR94 revealed complex interactions between these two mobile genetic elements. Whereas traNC and traHGC are essential for IncC plasmid transfer, SGI1 could rescue null mutants of each individual gene revealing that TraNS, TraHS and TraGS are functional proteins. Complementation assays of individual traC and traS mutants showed that not only do TraNS/HS/GS replace TraNC/HC/GC in the mating pore encoded by IncC plasmids but also that traGS and traHS are both required for SGI1 optimal transfer. In fact, remodeling of the IncC-encoded mating pore by SGI1 was found to be essential to enhance transfer rate of SGI1 over the helper plasmid. Furthermore, traGS was found to be crucial to allow DNA transfer between cells bearing IncC helper plasmids, thereby suggesting that by remodeling the mating pore SGI1 disables an IncC-encoded entry exclusion mechanism. Hence traS genes facilitate the invasion by SGI1 of cell populations bearing IncC plasmids. Acquisition and dissemination of multidrug resistance genes among Enterobacteriaceae is in part driven by IncA and IncC (A/C) conjugative plasmids and Salmonella genomic island 1 (SGI1). Although unrelated, SGI1 relies on the self-transmissible A/C plasmids to disseminate within bacterial populations. The mechanisms allowing SGI1 to hijack the mating apparatus synthesized by A/C plasmids have not been previously established. Here, we show that IncC plasmids trigger the expression of three SGI1-borne genes that code for functional mating pore subunits distantly related to those encoded by the IncC helper plasmids. Our results indicate that these subunits alter the mating pore encoded by IncC plasmids to ensure optimal transfer of SGI1 and promote SGI1 dissemination in cell populations harboring IncC plasmids. Apart from SGI1 and relatives, documented mobilizable genomic islands are not known to code for mating pore components, possibly because of redundancy with those encoded by helper conjugative elements. Instead they usually code for mobilization proteins such as a relaxase and auxiliary factors involved in DNA recognition, processing and docking to the mating pore encoded by their helper conjugative element. From an ecological and epidemiological perspective, the strategy used by SGI1 likely confers a strong competitive advantage to SGI1 over IncC plasmids in clinical settings and could account for the high prevalence of SGI1 and relatives in multidrug-resistant Salmonella enterica and Proteus mirabilis.
Collapse
|
44
|
Soliman AM, Ahmed AM, Shimamoto T, El-Domany RA, Nariya H, Shimamoto T. First report in Africa of two clinical isolates of Proteus mirabilis carrying Salmonella genomic island (SGI1) variants, SGI1-PmABB and SGI1-W. INFECTION GENETICS AND EVOLUTION 2017; 51:132-137. [PMID: 28359833 DOI: 10.1016/j.meegid.2017.03.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/20/2017] [Accepted: 03/26/2017] [Indexed: 01/20/2023]
Abstract
Two Proteus mirabilis strains, designated PmTAN59 and PmKAF126, were isolated from two different Egyptian cities in 2014 and 2015, respectively. PmTAN59 was isolated from a sputum swab from a pneumonia patient in Tanta University Teaching Hospital. PmKAF126 was isolated from a patient with a diabetic foot infection in a hospital in the city of Kafr El-Sheikh. The two isolates were identified with bacterial small ribosomal RNA (16S rRNA) gene amplification and sequencing and tested for antimicrobial sensitivity with a Kirby-Bauer disk diffusion assay. The two strains were resistant to amoxicillin/clavulante, ampicillin, cefotaxime, cefoxitin, ceftriaxone, chloramphenicol, ciprofloxacin, colistin, gentamicin, kanamycin, nalidixic acid, spectinomycin, streptomycin, sulfamethoxazole/trimethoprime, and tetracycline, but sensitive to aztreonam, imipenem, and meropenem. Molecular characterization was used to map the entire backbone, including the multiple antibiotic resistance (MDR) region, of Salmonella genomic island 1 (SGI1). Both isolates carried a structure similar to SGI1, with two different MDR regions corresponding to SGI1-PmABB in PmTAN59 and SGI1-W in PmKAF126. SGI1-PmABB carried an integron of ~1.5kb with a two-gene cassette, aacCA5-aadA7, which confers resistance to gentamicin, streptomycin, and spectinomycin, whereas SGI1-W carried an integron of ~1.9kb containing aadA2-lnuF, which confers resistance to spectinomycin, streptomycin, and lincosamides. PmKAF126 carried the entire SGI1 sequence, however PmTAN59 carried a SGI1 structure with a deletion in the region from ORF S005 to ORF S009 and accompanied by insertion of IS1359 (1258bp). Furthermore, PmTAN59 carried class 2 integron of ~2.2kb containing dfrA1-sat2-aadA1. An ERIC-PCR analysis detected no clonal relationship between the two strains. Molecular screening for other antimicrobial resistance genes and a plasmid analysis indicated that PmTAN59 carried an IncFIB plasmid type. This strain also carried blaTEM-1 and the plasmid-mediated quinolone-resistance gene qnrA1. However, PmKAF126 carried no plasmids and no resistance gene other than that contained in the MDR region of SGI1 and floR gene conferring resistance to florfenicol. To the best of our knowledge, this is the first report of an SGI1-positive P. mirabilis strain in Egypt or on the entire African continent.
Collapse
Affiliation(s)
- Ahmed M Soliman
- Laboratory of Food Microbiology and Hygiene, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan; Department of Microbiology and Immunology, Faculty of Pharmacy and Drug Industries, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Ashraf M Ahmed
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Toshi Shimamoto
- Laboratory of Food Microbiology and Hygiene, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Ramadan A El-Domany
- Department of Microbiology and Immunology, Faculty of Pharmacy and Drug Industries, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Hirofumi Nariya
- Laboratory of Food Microbiology and Hygiene, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Tadashi Shimamoto
- Laboratory of Food Microbiology and Hygiene, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan.
| |
Collapse
|
45
|
Fernández Márquez ML, Burgos MJG, Pulido RP, Gálvez A, López RL. Biocide Tolerance and Antibiotic Resistance in Salmonella Isolates from Hen Eggshells. Foodborne Pathog Dis 2016; 14:89-95. [PMID: 27841937 DOI: 10.1089/fpd.2016.2182] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The aim of the present study was to determine biocide tolerance and antibiotic resistance in Salmonella isolates from hen eggshells. A total of 39 isolates from hen eggshells, identified as either Salmonella spp. or Salmonella enterica according to 16S rDNA sequencing, were selected for biocide tolerance. Isolates with minimum inhibitory concentrations (MICs) above the wild-type MICs were considered to be biocide tolerant: benzalkonium chloride (BC, 7.7%), cetrimide (CT, 7.7%), hexadecylpyridinium chloride (HDP, 10.3%), triclosan (TC, 17.9%), hexachlorophene (CF, 30.8%), and P3-oxonia (OX, 25.6%). The resulting 21 biocide-tolerant isolates were further characterized. Most isolates (95.2%) were resistant to ampicillin, but only 9.5% were resistant to cefotaxime as well as to ceftazidime. Resistance to chloramphenicol (61.9%), tetracycline (47.6%), streptomycin (19.0%), nalidixic acid (28.6%), ciprofloxacin (9.5%), netilmicin (14.3%), and trimethoprim-sulfamethoxazole (38.1%) was also detected. Considering only antibiotics, 66.7% of isolates were multiresistant; furthermore, 90.5% were multiresistant considering antibiotics and biocides combined. Efflux pump and biocide tolerance genetic determinants detected included acrB (95.2%), oqxA (14.3%), mdfA (9.5%), qacA/B (4.8%), and qacE (9.5%). Antibiotic resistance genes detected included blaTEM (14.3%), blaCTXM-2 (4.8%), blaPSE (4.8%), floR (19.05%), tet(A) (9.5%), tet(C) (4.8%), dfrA12 (0.05%), and dfrA15 (0.05%). Significant positive correlations were detected between phenotypic tolerance/resistance to biocides, biocides and antibiotics, and also between antibiotics, suggesting that a generalized use of biocides could co-select antibiotic resistance.
Collapse
Affiliation(s)
- Maria Luisa Fernández Márquez
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén , Jaén, Spain
| | - María José Grande Burgos
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén , Jaén, Spain
| | - Rubén Pérez Pulido
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén , Jaén, Spain
| | - Antonio Gálvez
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén , Jaén, Spain
| | - Rosario Lucas López
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén , Jaén, Spain
| |
Collapse
|
46
|
Determination and Analysis of the Putative AcaCD-Responsive Promoters of Salmonella Genomic Island 1. PLoS One 2016; 11:e0164561. [PMID: 27727307 PMCID: PMC5058578 DOI: 10.1371/journal.pone.0164561] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/12/2016] [Indexed: 12/03/2022] Open
Abstract
The integrative genomic island SGI1 and its variants confer multidrug resistance in numerous Salmonella enterica serovariants and several Proteus mirabilis and Acinetobacter strains. SGI1 is mobilized by the IncA/C family plasmids. The island exploits not only the conjugation apparatus of the plasmid, but also utilizes the plasmid-encoded master regulator AcaCD to induce the excision and formation of its transfer-competent form, which is a key step in the horizontal transfer of SGI1. Triggering of SGI1 excision occurs via the AcaCD-dependent activation of xis gene expression. AcaCD binds in Pxis to an unusually long recognition sequence. Beside the Pxis promoter, upstream regions of four additional SGI1 genes, S004, S005, S012 and S018, also contain putative AcaCD-binding sites. Furthermore, SGI1 also encodes an AcaCD-related activator, FlhDCSGI1, which has no known function. Here, we have analysed the functionality of the putative AcaCD-dependent promoter regions and proved their activation by either AcaCD or FlhDCSGI1. Moreover, we provide evidence that both activators act on the same binding site in Pxis and that FlhDCSGI1 is able to complement the acaCD deletion of the IncA/C family plasmid R16a. We determined the transcription start sites for the AcaCD-responsive promoters and showed that orf S004 is expressed probably from a different start codon than predicted earlier. Additionally, expression of S003 from promoter PS004 was ruled out. Pxis and the four SGI1 promoters examined here also lack obvious -35 promoter box and their promoter profile is consistent with the class II-type activation pathway. Although the role of the four additionally analysed AcaCD/FlhDCSGI1-controlled genes in transfer and/or maintenance of SGI1 is not yet clear, the conservation of the whole region suggests the existence of some selection for their functionality.
Collapse
|
47
|
Haley BJ, Kim SW, Pettengill J, Luo Y, Karns JS, Van Kessel JAS. Genomic and Evolutionary Analysis of Two Salmonella enterica Serovar Kentucky Sequence Types Isolated from Bovine and Poultry Sources in North America. PLoS One 2016; 11:e0161225. [PMID: 27695032 PMCID: PMC5047448 DOI: 10.1371/journal.pone.0161225] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 08/02/2016] [Indexed: 11/18/2022] Open
Abstract
Salmonella enterica subsp. enterica serovar Kentucky is frequently isolated from healthy poultry and dairy cows and is occasionally isolated from people with clinical disease. A genomic analysis of 119 isolates collected in the United States from dairy cows, ground beef, poultry and poultry products, and human clinical cases was conducted. Results of the analysis demonstrated that the majority of poultry and bovine-associated S. Kentucky were sequence type (ST) 152. Several bovine-associated (n = 3) and food product isolates (n = 3) collected from the United States and the majority of human clinical isolates were ST198, a sequence type that is frequently isolated from poultry and occasionally from human clinical cases in Northern Africa, Europe and Southeast Asia. A phylogenetic analysis indicated that both STs are more closely related to other Salmonella serovars than they are to each other. Additionally, there was strong evidence of an evolutionary divergence between the poultry-associated and bovine-associated ST152 isolates that was due to polymorphisms in four core genome genes. The ST198 isolates recovered from dairy farms in the United States were phylogenetically distinct from those collected from human clinical cases with 66 core genome SNPs differentiating the two groups, but more isolates are needed to determine the significance of this distinction. Identification of S. Kentucky ST198 from dairy animals in the United States suggests that the presence of this pathogen should be monitored in food-producing animals.
Collapse
Affiliation(s)
- Bradd J. Haley
- Environmental Microbial and Food Safety Laboratory, Beltsville Area Research Center, Agricultural Research Services, United States Department of Agriculture, Beltsville, MD, United States of America
| | - Seon Woo Kim
- Environmental Microbial and Food Safety Laboratory, Beltsville Area Research Center, Agricultural Research Services, United States Department of Agriculture, Beltsville, MD, United States of America
| | - James Pettengill
- Office of Analytics and Outreach, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, United States of America
| | - Yan Luo
- Office of Analytics and Outreach, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, United States of America
| | - Jeffrey S. Karns
- Environmental Microbial and Food Safety Laboratory, Beltsville Area Research Center, Agricultural Research Services, United States Department of Agriculture, Beltsville, MD, United States of America
| | - Jo Ann S. Van Kessel
- Environmental Microbial and Food Safety Laboratory, Beltsville Area Research Center, Agricultural Research Services, United States Department of Agriculture, Beltsville, MD, United States of America
- * E-mail:
| |
Collapse
|
48
|
Boibessot T, Zschiedrich CP, Lebeau A, Bénimèlis D, Dunyach-Rémy C, Lavigne JP, Szurmant H, Benfodda Z, Meffre P. The Rational Design, Synthesis, and Antimicrobial Properties of Thiophene Derivatives That Inhibit Bacterial Histidine Kinases. J Med Chem 2016; 59:8830-8847. [PMID: 27575438 DOI: 10.1021/acs.jmedchem.6b00580] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The emergence of multidrug-resistant bacteria emphasizes the urgent need for novel antibacterial compounds targeting unique cellular processes. Two-component signal transduction systems (TCSs) are commonly used by bacteria to couple environmental stimuli to adaptive responses, are absent in mammals, and are embedded in various pathogenic pathways. To attenuate these signaling pathways, we aimed to target the TCS signal transducer histidine kinase (HK) by focusing on their highly conserved adenosine triphosphate-binding domain. We used a structure-based drug design strategy that begins from an inhibitor-bound crystal structure and includes a significant number of structurally simplifiying "intuitive" modifications to arrive at the simple achiral, biaryl target structures. Thus, ligands were designed, leading to a series of thiophene derivatives. These compounds were synthesized and evaluated in vitro against bacterial HKs. We identified eight compounds with significant inhibitory activities against these proteins, two of which exhibited broad-spectrum antimicrobial activity. The compounds were also evaluated as adjuvants for the treatment of resistant bacteria. One compound was found to restore the sensivity of these bacteria to the respective antibiotics.
Collapse
Affiliation(s)
- Thibaut Boibessot
- EA7352 CHROME, Rue du Dr G. Salan, University of Nîmes , 30021 Nîmes cedex 1, France
| | - Christopher P Zschiedrich
- Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences , Pomona, California 91766, United States.,Department of Molecular and Experimental Medicine, The Scripps Research Institute , La Jolla, California 92037, United States
| | - Alexandre Lebeau
- EA7352 CHROME, Rue du Dr G. Salan, University of Nîmes , 30021 Nîmes cedex 1, France
| | - David Bénimèlis
- EA7352 CHROME, Rue du Dr G. Salan, University of Nîmes , 30021 Nîmes cedex 1, France
| | - Catherine Dunyach-Rémy
- Institut National de la Santé et de la Recherche Médicale, U1047, Montpellier University , CHU de Nîmes, Place du Pr R. Debré, 30029 Nîmes, France
| | - Jean-Philippe Lavigne
- Institut National de la Santé et de la Recherche Médicale, U1047, Montpellier University , CHU de Nîmes, Place du Pr R. Debré, 30029 Nîmes, France
| | - Hendrik Szurmant
- Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences , Pomona, California 91766, United States.,Department of Molecular and Experimental Medicine, The Scripps Research Institute , La Jolla, California 92037, United States
| | - Zohra Benfodda
- EA7352 CHROME, Rue du Dr G. Salan, University of Nîmes , 30021 Nîmes cedex 1, France.,IBMM, UMR-CNRS5247, Université de Montpellier , Place Eugène Bataillon, 34095 Montpellier, France
| | - Patrick Meffre
- EA7352 CHROME, Rue du Dr G. Salan, University of Nîmes , 30021 Nîmes cedex 1, France.,IBMM, UMR-CNRS5247, Université de Montpellier , Place Eugène Bataillon, 34095 Montpellier, France
| |
Collapse
|
49
|
Destabilization of IncA and IncC plasmids by SGI1 and SGI2 type Salmonella genomic islands. Plasmid 2016; 87-88:51-57. [DOI: 10.1016/j.plasmid.2016.09.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/06/2016] [Accepted: 09/06/2016] [Indexed: 11/24/2022]
|
50
|
A toxin antitoxin system promotes the maintenance of the IncA/C-mobilizable Salmonella Genomic Island 1. Sci Rep 2016; 6:32285. [PMID: 27576575 PMCID: PMC5006074 DOI: 10.1038/srep32285] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 08/05/2016] [Indexed: 01/09/2023] Open
Abstract
The multidrug resistance Salmonella Genomic Island 1 (SGI1) is an integrative mobilizable element identified in several enterobacterial pathogens. This chromosomal island requires a conjugative IncA/C plasmid to be excised as a circular extrachromosomal form and conjugally mobilized in trans. Preliminary observations suggest stable maintenance of SGI1 in the host chromosome but paradoxically also incompatibility between SGI1 and IncA/C plasmids. Here, using a Salmonella enterica serovar Agona clonal bacterial population as model, we demonstrate that a Toxin-Antitoxin (TA) system encoded by SGI1 plays a critical role in its stable host maintenance when an IncA/C plasmid is concomitantly present. This system, designated sgiAT for Salmonella genomic island 1 Antitoxin and Toxin respectively, thus seems to play a stabilizing role in a situation where SGI1 is susceptible to be lost through plasmid IncA/C-mediated excision. Moreover and for the first time, the incompatibility between SGI1 and IncA/C plasmids was experimentally confirmed.
Collapse
|