1
|
Carrasco-Acosta M, Garcia-Jimenez P. Development of Multiplex RT qPCR Assays for Simultaneous Detection and Quantification of Faecal Indicator Bacteria in Bathing Recreational Waters. Microorganisms 2024; 12:1223. [PMID: 38930605 PMCID: PMC11205496 DOI: 10.3390/microorganisms12061223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/05/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
In this study, we designed and validated in silico and experimentally a rapid, sensitive, and specific multiplex RT qPCR for the detection and quantification of faecal indicator bacteria (FIB) used as microbiological references in marine bathing water regulations (Escherichia coli and intestinal enterococci). The 16S rRNA gene was used to quantify group-specific enterococci and Escherichia/Shigella and species-specific such as Enterococcus faecalis and E. faecium. Additionally, a ybbW gene encoding allantoin transporter protein was used to detect E. coli. An assessment of marine coastal systems (i.e., marine water and sediment) revealed that intestinal enterococci were the predominant group compared to Escherichia/Shigella. The low contribution of E. faecalis to the intestinal enterococci group was reported. As E. faecalis and E. faecium were reported at low concentrations, it is assumed that other enterococci of faecal origin are contributing to the high gene copy number of this group-specific enterococci. Moreover, low 16S rRNA gene copy numbers with respect to E. faecalis and E. faecium were reported in seawater compared to marine sediment. We conclude that marine sediments can affect the quantification of FIBs included in bathing water regulations. Valuing the quality of the marine coastal system through sediment monitoring is recommended.
Collapse
Affiliation(s)
| | - Pilar Garcia-Jimenez
- Department of Biology, Faculty of Marine Sciences, Instituto Universitario de Investigación en Estudios Ambientales y Recursos Naturales i-UNAT, Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Spain;
| |
Collapse
|
2
|
Ermolenko E, Baryshnikova N, Alekhina G, Zakharenko A, Ten O, Kashchenko V, Novikova N, Gushchina O, Ovchinnikov T, Morozova A, Ilina A, Karaseva A, Tsapieva A, Gladyshev N, Dmitriev A, Suvorov A. Autoprobiotics in the Treatment of Patients with Colorectal Cancer in the Early Postoperative Period. Microorganisms 2024; 12:980. [PMID: 38792809 PMCID: PMC11124500 DOI: 10.3390/microorganisms12050980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/26/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Despite great advances in the treatment of oncological diseases, the development of medical technologies to prevent or reduce complications of therapy, in particular, those associated with surgery and the introduction of antibiotics, remains relevant. The aim of this study is to evaluate the effectiveness of the use of autoprobiotics based on indigenous non-pathogenic strains of Enterococcus faecium and Enterococcus hirae as a personalized functional food product (PFFP) in the complex therapy of colorectal cancer (CRC) in the early postoperative period. A total of 36 patients diagnosed with CRC were enrolled in the study. Study group A comprised 24 CRC patients who received autoprobiotic therapy in the early postoperative period, while the control group C included 12 CRC patients without autoprobiotic therapy. Prior to surgery and between days 14 and 16 post-surgery, comprehensive evaluations were conducted on all patients, encompassing the following: stool and gastroenterological complaints analysis, examination of the gut microbiota (bacteriological study, quantitative polymerase chain reaction, metagenome analysis), and analysis of interleukins in the serum. Results: The use of autoprobiotics led to a decrease in dyspeptic complaints after surgery. It was also associated with the absence of postoperative complications, did not cause any side effects, and led to a decrease in the level of pro-inflammatory cytokines (IL-6 and IL-18) in the blood serum. The use of autoprobiotics led to positive changes in the structure of escherichia and enterococci populations, the elimination of Parvomonas micra and Fusobacterium nucleatum, and a decrease in the quantitative content of Clostridium perfringens and Akkermansia muciniphila. Metagenomic analysis (16S rRNA) revealed an increase in alpha diversity. Conclusion: The introduction of autoprobiotics in the postoperative period is a highly effective and safe approach in the complex treatment of CRC. Future studies will allow the discovery of additional fine mechanisms of autoprobiotic therapy and its impact on the digestive, immune, endocrine, and neural systems.
Collapse
Affiliation(s)
- Elena Ermolenko
- Scientific and Educational Center “Molecular Bases of Interaction of Microorganisms and Human”, World-Class Research Center “Center for Personalized Medicine”, Institute of Experimental Medicine, 197376 St-Petersburg, Russia; (E.E.); (A.M.); (A.T.); (N.G.)
| | - Natalia Baryshnikova
- Scientific and Educational Center “Molecular Bases of Interaction of Microorganisms and Human”, World-Class Research Center “Center for Personalized Medicine”, Institute of Experimental Medicine, 197376 St-Petersburg, Russia; (E.E.); (A.M.); (A.T.); (N.G.)
- Department of Internal Disease of Stomatology Faculty, Pavlov First St-Petersburg State Medical University, 197022 St-Petersburg, Russia
- Laboratory of Medico-Social Problems of Pediatry, St-Petersburg State Pediatric Medical University, 194100 St-Petersburg, Russia
| | - Galina Alekhina
- Scientific and Educational Center “Molecular Bases of Interaction of Microorganisms and Human”, World-Class Research Center “Center for Personalized Medicine”, Institute of Experimental Medicine, 197376 St-Petersburg, Russia; (E.E.); (A.M.); (A.T.); (N.G.)
| | - Alexander Zakharenko
- Oncology Department, Pavlov First St-Petersburg State Medical University, 197022 St-Petersburg, Russia;
| | - Oleg Ten
- North-Western District Scientific and Clinical Center Named after L. G. Sokolov, 194291 St-Petersburg, Russia (O.G.)
| | - Victor Kashchenko
- Department of Faculty Surgery, St-Petersburg State University, 199034 St-Petersburg, Russia;
- Beloostrov High Technology Clinic (MMC VT LLC), 188652 Leningrad Region, Russia
| | - Nadezhda Novikova
- Scientific and Educational Center “Molecular Bases of Interaction of Microorganisms and Human”, World-Class Research Center “Center for Personalized Medicine”, Institute of Experimental Medicine, 197376 St-Petersburg, Russia; (E.E.); (A.M.); (A.T.); (N.G.)
| | - Olga Gushchina
- North-Western District Scientific and Clinical Center Named after L. G. Sokolov, 194291 St-Petersburg, Russia (O.G.)
| | - Timofey Ovchinnikov
- North-Western District Scientific and Clinical Center Named after L. G. Sokolov, 194291 St-Petersburg, Russia (O.G.)
| | - Anastasia Morozova
- Scientific and Educational Center “Molecular Bases of Interaction of Microorganisms and Human”, World-Class Research Center “Center for Personalized Medicine”, Institute of Experimental Medicine, 197376 St-Petersburg, Russia; (E.E.); (A.M.); (A.T.); (N.G.)
| | - Anastasia Ilina
- Scientific and Educational Center “Molecular Bases of Interaction of Microorganisms and Human”, World-Class Research Center “Center for Personalized Medicine”, Institute of Experimental Medicine, 197376 St-Petersburg, Russia; (E.E.); (A.M.); (A.T.); (N.G.)
| | - Alena Karaseva
- Scientific and Educational Center “Molecular Bases of Interaction of Microorganisms and Human”, World-Class Research Center “Center for Personalized Medicine”, Institute of Experimental Medicine, 197376 St-Petersburg, Russia; (E.E.); (A.M.); (A.T.); (N.G.)
- Microbiology Department, St-Petersburg State University, 199034 St-Petersburg, Russia
| | - Anna Tsapieva
- Scientific and Educational Center “Molecular Bases of Interaction of Microorganisms and Human”, World-Class Research Center “Center for Personalized Medicine”, Institute of Experimental Medicine, 197376 St-Petersburg, Russia; (E.E.); (A.M.); (A.T.); (N.G.)
| | - Nikita Gladyshev
- Scientific and Educational Center “Molecular Bases of Interaction of Microorganisms and Human”, World-Class Research Center “Center for Personalized Medicine”, Institute of Experimental Medicine, 197376 St-Petersburg, Russia; (E.E.); (A.M.); (A.T.); (N.G.)
| | - Alexander Dmitriev
- Scientific and Educational Center “Molecular Bases of Interaction of Microorganisms and Human”, World-Class Research Center “Center for Personalized Medicine”, Institute of Experimental Medicine, 197376 St-Petersburg, Russia; (E.E.); (A.M.); (A.T.); (N.G.)
- Department of Molecular Biotechnology, Saint-Petersburg State Institute of Technology, 190013 St-Petersburg, Russia
| | - Alexander Suvorov
- Scientific and Educational Center “Molecular Bases of Interaction of Microorganisms and Human”, World-Class Research Center “Center for Personalized Medicine”, Institute of Experimental Medicine, 197376 St-Petersburg, Russia; (E.E.); (A.M.); (A.T.); (N.G.)
| |
Collapse
|
3
|
Monteiro Marques J, Coelho M, Santana AR, Pinto D, Semedo-Lemsaddek T. Dissemination of Enterococcal Genetic Lineages: A One Health Perspective. Antibiotics (Basel) 2023; 12:1140. [PMID: 37508236 PMCID: PMC10376465 DOI: 10.3390/antibiotics12071140] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/22/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Enterococcus spp. are commensals of the gastrointestinal tracts of humans and animals and colonize a variety of niches such as water, soil, and food. Over the last three decades, enterococci have evolved as opportunistic pathogens, being considered ESKAPE pathogens responsible for hospital-associated infections. Enterococci's ubiquitous nature, excellent adaptative capacity, and ability to acquire virulence and resistance genes make them excellent sentinel proxies for assessing the presence/spread of pathogenic and virulent clones and hazardous determinants across settings of the human-animal-environment triad, allowing for a more comprehensive analysis of the One Health continuum. This review provides an overview of enterococcal fitness and pathogenic traits; the most common clonal complexes identified in clinical, veterinary, food, and environmental sources; as well as the dissemination of pathogenic genomic traits (virulome, resistome, and mobilome) found in high-risk clones worldwide, across the One Health continuum.
Collapse
Affiliation(s)
- Joana Monteiro Marques
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica de Lisboa, 1300-477 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Mariana Coelho
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica de Lisboa, 1300-477 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Andressa Rodrigues Santana
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica de Lisboa, 1300-477 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Daniel Pinto
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica de Lisboa, 1300-477 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Teresa Semedo-Lemsaddek
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica de Lisboa, 1300-477 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| |
Collapse
|
4
|
Ermolenko E, Sitkin S, Vakhitov T, Solovyeva O, Karaseva A, Morozova A, Kotyleva M, Shumikhina I, Lavrenova N, Demyanova E, Dmitriev A, Suvorov A. Evaluation of the effectiveness of personalised therapy for the patients with irritable bowel syndrome. Benef Microbes 2023; 14:119-130. [PMID: 36970947 DOI: 10.3920/bm2022.0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Intestinal microbiota correction in the therapy of irritable bowel syndrome (IBS) is an important medical problem. We conducted a laboratory and pilot clinical trial to investigate the effect of autoprobiotic bacteria, indigenous bifidobacteria and enterococci isolated from faeces and grown on artificial media to use as personified food additives in IBS treatment. Convincing evidence of the clinical efficacy of autoprobiotic was demonstrated by the disappearance of dyspeptic symptoms. The microbiome of patients with IBS was compared to a group of healthy volunteers and changes in the microbiome after autoprobiotic use were detected by quantitative polymerase chain reaction and 16S rRNA metagenome analysis. The possibility of reducing opportunistic microorganisms in the treatment of IBS with autoprobiotics has been convincingly proven. The quantitative content of enterococci in the intestinal microbiota was higher in IBS patients than in healthy volunteers and increased after therapy. An increase in the relative abundance of genera Coprococcus, Blautia and a decrease in the relative abundance of Paraprevotella spp. were found at the end of therapy. A metabolome study which was performed by gas chromatography and mass spectrometry demonstrated an increase in the content of oxalic acid, a decrease of dodecanoate, lauric acid, and other metabolome components after taking autoprobiotics. Some of these parameters correlated with the relative abundances of Paraprevotella spp., Enterococcus spp., and Coprococcus spp. representative of the microbiome. Apparently, they reflected the peculiarities of metabolic compensation and changes in the microbiota. Therefore, the use of autoprobiotics for treatment of IBS may lead to a stable positive clinical effect, associated with compensatory changes in the intestinal microbiota, and accompanied by corresponding changes in metabolic processes in the organism.
Collapse
Affiliation(s)
- E Ermolenko
- Scientific and Educational Center 'Molecular Bases of Interaction of Microorganisms and Human' of the World-Class Research Center 'Center for Personalized Medicine', Institute of Experimental Medicine, 197376 Saint-Petersburg, Russia
| | - S Sitkin
- Scientific and Educational Center 'Molecular Bases of Interaction of Microorganisms and Human' of the World-Class Research Center 'Center for Personalized Medicine', Institute of Experimental Medicine, 197376 Saint-Petersburg, Russia
- Department of Internal Diseases, Clinical Pharmacology and Nephrology, North-Western State Medical University Named after I.I. Mechnikov, Ministry of Health of the Russian Federation, 195067 Saint-Petersburg, Russia
| | - T Vakhitov
- Scientific and Educational Center 'Molecular Bases of Interaction of Microorganisms and Human' of the World-Class Research Center 'Center for Personalized Medicine', Institute of Experimental Medicine, 197376 Saint-Petersburg, Russia
| | - O Solovyeva
- Department of Internal Diseases, Clinical Pharmacology and Nephrology, North-Western State Medical University Named after I.I. Mechnikov, Ministry of Health of the Russian Federation, 195067 Saint-Petersburg, Russia
| | - A Karaseva
- Scientific and Educational Center 'Molecular Bases of Interaction of Microorganisms and Human' of the World-Class Research Center 'Center for Personalized Medicine', Institute of Experimental Medicine, 197376 Saint-Petersburg, Russia
| | - A Morozova
- Scientific and Educational Center 'Molecular Bases of Interaction of Microorganisms and Human' of the World-Class Research Center 'Center for Personalized Medicine', Institute of Experimental Medicine, 197376 Saint-Petersburg, Russia
| | - M Kotyleva
- Scientific and Educational Center 'Molecular Bases of Interaction of Microorganisms and Human' of the World-Class Research Center 'Center for Personalized Medicine', Institute of Experimental Medicine, 197376 Saint-Petersburg, Russia
| | - I Shumikhina
- Department of Internal Diseases, Clinical Pharmacology and Nephrology, North-Western State Medical University Named after I.I. Mechnikov, Ministry of Health of the Russian Federation, 195067 Saint-Petersburg, Russia
| | - N Lavrenova
- Scientific and Educational Center 'Molecular Bases of Interaction of Microorganisms and Human' of the World-Class Research Center 'Center for Personalized Medicine', Institute of Experimental Medicine, 197376 Saint-Petersburg, Russia
| | - E Demyanova
- Scientific and Educational Center 'Molecular Bases of Interaction of Microorganisms and Human' of the World-Class Research Center 'Center for Personalized Medicine', Institute of Experimental Medicine, 197376 Saint-Petersburg, Russia
| | - A Dmitriev
- Scientific and Educational Center 'Molecular Bases of Interaction of Microorganisms and Human' of the World-Class Research Center 'Center for Personalized Medicine', Institute of Experimental Medicine, 197376 Saint-Petersburg, Russia
| | - A Suvorov
- Scientific and Educational Center 'Molecular Bases of Interaction of Microorganisms and Human' of the World-Class Research Center 'Center for Personalized Medicine', Institute of Experimental Medicine, 197376 Saint-Petersburg, Russia
| |
Collapse
|
5
|
Kumar S, Bhadane R, Shandilya S, Salo-Ahen OMH, Kapila S. Identification of HPr kinase/phosphorylase inhibitors: novel antimicrobials against resistant Enterococcus faecalis. J Comput Aided Mol Des 2022; 36:507-520. [PMID: 35809194 PMCID: PMC9399212 DOI: 10.1007/s10822-022-00461-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 06/14/2022] [Indexed: 12/02/2022]
Abstract
Enterococcus faecalis, a gram-positive bacterium, is among the most common nosocomial pathogens due to its limited susceptibility to antibiotics and its reservoir of the genes coding for virulence factors. Bacterial enzymes such as kinases and phosphorylases play important roles in diverse functions of a bacterial cell and, thus, are potential antibacterial drug targets. In Gram-positive bacteria, HPr Kinase/Phosphorylase (HPrK/P), a bifunctional enzyme is involved in the regulation of carbon catabolite repression by phosphorylating/dephosphorylating the histidine-containing phosphocarrier protein (HPr) at Ser46 residue. Deficiencies in HPrK/P function leads to severe defects in bacterial growth. This study aimed at identifying novel inhibitors of E. faecalis HPrK/P from a commercial compound library using structure-based virtual screening. The hit molecules were purchased and their effect on enzyme activity and growth of resistant E. faecalis was evaluated in vitro. Furthermore, docking and molecular dynamics simulations were performed to study the interactions of the hit compounds with HPrK/P. Among the identified hit molecules, two compounds inhibited the phosphorylation of HPr as well as significantly reduced the growth of resistant E. faecalis in vitro. These identified potential HPrK/P inhibitors open new research avenues towards the development of novel antimicrobials against resistant Gram-positive bacteria.
Collapse
Affiliation(s)
- Sandeep Kumar
- Animal Biochemistry Division, National Dairy Research Institute, Karnal, Haryana, India
| | - Rajendra Bhadane
- Structural Bioinformatics Laboratory, Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, 20520, Turku, Finland
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Pharmacy, Åbo Akademi University, 20520, Turku, Finland
| | - Shruti Shandilya
- Department of Applied Physics, School of Science, Aalto University, Espoo, Finland
| | - Outi M H Salo-Ahen
- Structural Bioinformatics Laboratory, Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, 20520, Turku, Finland.
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Pharmacy, Åbo Akademi University, 20520, Turku, Finland.
| | - Suman Kapila
- Animal Biochemistry Division, National Dairy Research Institute, Karnal, Haryana, India.
| |
Collapse
|
6
|
Soussan D, Salze M, Ledormand P, Sauvageot N, Boukerb A, Lesouhaitier O, Fichant G, Rincé A, Quentin Y, Muller C. The NagY regulator: A member of the BglG/SacY antiterminator family conserved in Enterococcus faecalis and involved in virulence. Front Microbiol 2022; 13:1070116. [PMID: 36875533 PMCID: PMC9981650 DOI: 10.3389/fmicb.2022.1070116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/21/2022] [Indexed: 02/19/2023] Open
Abstract
Enterococcus faecalis is a commensal bacterium of the gastrointestinal tract but also a major nosocomial pathogen. This bacterium uses regulators like BglG/SacY family of transcriptional antiterminators to adapt its metabolism during host colonization. In this report, we investigated the role of the BglG/SacY family antiterminator NagY in the regulation of the nagY-nagE operon in presence of N-acetylglucosamine, with nagE encoding a transporter of this carbohydrate, as well as the expression of the virulence factor HylA. We showed that this last protein is involved in biofilm formation and glycosaminoglycans degradation that are important features in bacterial infection, confirmed in the Galleria mellonella model. In order to elucidate the evolution of these actors, we performed phylogenomic analyses on E. faecalis and Enterococcaceae genomes, identified orthologous sequences of NagY, NagE, and HylA, and we report their taxonomic distribution. The study of the conservation of the upstream region of nagY and hylA genes showed that the molecular mechanism of NagY regulation involves ribonucleic antiterminator sequence overlapping a rho-independent terminator, suggesting a regulation conforming to the canonical model of BglG/SacY family antiterminators. In the perspective of opportunism understanding, we offer new insights into the mechanism of host sensing thanks to the NagY antiterminator and its targets expression.
Collapse
Affiliation(s)
- Diane Soussan
- Unité de Recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, Normandie Université, UNICAEN, Caen, France.,Fédération de Recherche SeSAD, Normandie Université, UNICAEN, Caen, France
| | - Marine Salze
- Unité de Recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, Normandie Université, UNICAEN, Caen, France.,Fédération de Recherche SeSAD, Normandie Université, UNICAEN, Caen, France
| | - Pierre Ledormand
- Unité de Recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, Normandie Université, UNICAEN, Caen, France.,Fédération de Recherche SeSAD, Normandie Université, UNICAEN, Caen, France
| | - Nicolas Sauvageot
- Unité de Recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, Normandie Université, UNICAEN, Caen, France.,Fédération de Recherche SeSAD, Normandie Université, UNICAEN, Caen, France
| | - Amine Boukerb
- Unité de Recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, Normandie Université, UNICAEN, Caen, France.,Fédération de Recherche SeSAD, Normandie Université, UNICAEN, Caen, France.,Plateforme de Génomique, CBSA EA4312, Normandie Université, UNIROUEN, Évreux, France
| | - Olivier Lesouhaitier
- Unité de Recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, Normandie Université, UNICAEN, Caen, France.,Fédération de Recherche SeSAD, Normandie Université, UNICAEN, Caen, France
| | - Gwennaele Fichant
- Laboratoire de Microbiologie et Génétique Moléculaires, UMR5100, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Paul Sabatier, Toulouse, France
| | - Alain Rincé
- Unité de Recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, Normandie Université, UNICAEN, Caen, France.,Fédération de Recherche SeSAD, Normandie Université, UNICAEN, Caen, France
| | - Yves Quentin
- Laboratoire de Microbiologie et Génétique Moléculaires, UMR5100, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Paul Sabatier, Toulouse, France
| | - Cécile Muller
- Unité de Recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, Normandie Université, UNICAEN, Caen, France.,Fédération de Recherche SeSAD, Normandie Université, UNICAEN, Caen, France
| |
Collapse
|
7
|
Johnson CN, Sheriff EK, Duerkop BA, Chatterjee A. Let Me Upgrade You: Impact of Mobile Genetic Elements on Enterococcal Adaptation and Evolution. J Bacteriol 2021; 203:e0017721. [PMID: 34370561 PMCID: PMC8508098 DOI: 10.1128/jb.00177-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enterococci are Gram-positive bacteria that have evolved to thrive as both commensals and pathogens, largely due to their accumulation of mobile genetic elements via horizontal gene transfer (HGT). Common agents of HGT include plasmids, transposable elements, and temperate bacteriophages. These vehicles of HGT have facilitated the evolution of the enterococci, specifically Enterococcus faecalis and Enterococcus faecium, into multidrug-resistant hospital-acquired pathogens. On the other hand, commensal strains of Enterococcus harbor CRISPR-Cas systems that prevent the acquisition of foreign DNA, restricting the accumulation of mobile genetic elements. In this review, we discuss enterococcal mobile genetic elements by highlighting their contributions to bacterial fitness, examine the impact of CRISPR-Cas on their acquisition, and identify key areas of research that can improve our understanding of enterococcal evolution and ecology.
Collapse
Affiliation(s)
- Cydney N. Johnson
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Emma K. Sheriff
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Breck A. Duerkop
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Anushila Chatterjee
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
8
|
Abstract
β-Lactam antibiotics have been widely used as therapeutic agents for the past 70 years, resulting in emergence of an abundance of β-lactam-inactivating β-lactamases. Although penicillinases in Staphylococcus aureus challenged the initial uses of penicillin, β-lactamases are most important in Gram-negative bacteria, particularly in enteric and nonfermentative pathogens, where collectively they confer resistance to all β-lactam-containing antibiotics. Critical β-lactamases are those enzymes whose genes are encoded on mobile elements that are transferable among species. Major β-lactamase families include plasmid-mediated extended-spectrum β-lactamases (ESBLs), AmpC cephalosporinases, and carbapenemases now appearing globally, with geographic preferences for specific variants. CTX-M enzymes include the most common ESBLs that are prevalent in all areas of the world. In contrast, KPC serine carbapenemases are present more frequently in the Americas, the Mediterranean countries, and China, whereas NDM metallo-β-lactamases are more prevalent in the Indian subcontinent and Eastern Europe. As selective pressure from β-lactam use continues, multiple β-lactamases per organism are increasingly common, including pathogens carrying three different carbapenemase genes. These organisms may be spread throughout health care facilities as well as in the community, warranting close attention to increased infection control measures and stewardship of the β-lactam-containing drugs in an effort to control selection of even more deleterious pathogens.
Collapse
|
9
|
High-throughput Sequencing-based Analysis of Microbial Diversity in Rice Wine Koji from Different Areas. Curr Microbiol 2020; 77:882-889. [PMID: 31950235 DOI: 10.1007/s00284-020-01877-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 01/03/2020] [Indexed: 02/07/2023]
Abstract
Rice wine, a traditional fermented alcoholic beverage in China, is produced with grains such as rice, which are fermented with saccharifying starter-koji. Its flavor quality is closely associated to the starter culture-koji, which is made by mixing botanical materials with high-class glutinous rice in certain ecological context. However, there are few reports on the microbial community structure of rice wine koji. In this paper, bacterial community structures of rice wine koji were analyzed using 16S rRNA gene sequencing based on Illumina MiSeq high-throughput technology in 20 samples collected from Xiaogan area, Hubei province and Dazhu area, Sichuan province (10 from each area). We found rice wine koji flora mainly consisted of Weissella, Lactobacillus, Lactococcus, Bacillus, Enterococcus, and Cronobacter, with relative abundances of 29.49%, 10.93%, 8.85%, 4.75%, 1.16% and 1.15%, respectively, as well as an accumulative average relative abundance of 58.71%. They all belonged to Firmicutes and Proteobacteria-the two known dominant genus. Genus-level PCA (Principal component analysis) and OTU-level PCoA (Principal coordinates analysis) based on unweighted UniFrac distances showed that the bacterial community structure differed significantly between the samples from the 2 areas. 7 OTUs were detected in all samples, accounting for 4.4% of the total qualified assembly. Among the 7 OTUs, 3 OTUs were identified as Enterococcus, 2 OTUs were identified as Cronobacter, 1 OTU was identified as Bacillus and 1 OTU was identified as Alkaliphilus. Fifty-eight lactic acid bacteria (LAB) strains were isolated from the 20 koji samples with traditional microbial methods. Among them, Enterococcus faecium and Pediococcus pentosaceus were the dominant LAB isolates, with relative abundances of 51.72% and 31.03%. Despite the differences, a large number of shared bacteria were detected in samples from the two areas.
Collapse
|
10
|
Fitness Restoration of a Genetically Tractable Enterococcus faecalis V583 Derivative To Study Decoration-Related Phenotypes of the Enterococcal Polysaccharide Antigen. mSphere 2019; 4:4/4/e00310-19. [PMID: 31292230 PMCID: PMC6620374 DOI: 10.1128/msphere.00310-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
E. faecalis strain VE14089 was derived from V583 cured of its plasmids. Although VE14089 had no major DNA rearrangements, it presented significant growth and host adaptation differences from the reference strain V583 of our collection. To construct a strain with better fitness, we sequenced the genome of VE14089, identified single nucleotide polymorphisms (SNPs), and repaired the genes that could account for these changes. Using this reference-derivative strain, we provide a novel genetic system to understand the role of the variable region of epa in the enterococcal lifestyle. Commensal and generally harmless in healthy individuals, Enterococcus faecalis causes opportunistic infections in immunocompromised patients. Plasmid-cured E. faecalis strain VE14089, derived from sequenced reference strain V583, is widely used for functional studies due to its improved genetic amenability. Although strain VE14089 has no major DNA rearrangements, with the exception of an ∼20-kb integrated region of pTEF1 plasmid, the strain presented significant growth differences from the V583 reference strain of our collection (renamed VE14002). In the present study, genome sequencing of strain VE14089 identified additional point mutations. Excision of the integrated pTEF1 plasmid region and sequential restoration of wild-type alleles showing nonsilent mutations were performed to obtain the VE18379 reference-derivative strain. Recovery of the growth ability of the restored VE18379 strain at a level similar to that seen with the reference strain points to GreA and Spx as bacterial fitness determinants. Virulence potential in Galleria mellonella and intestinal colonization in mouse demonstrated host adaptation of the VE18379 strain equivalent to VE14002 host adaptation. We further demonstrated that deletion of the 16.8-kb variable region of the epa locus recapitulates the key role of Epa decoration in host adaptation, providing a genetic system to study the role of specific epa-variable regions in host adaptation independently of other genetic variations. IMPORTANCEE. faecalis strain VE14089 was derived from V583 cured of its plasmids. Although VE14089 had no major DNA rearrangements, it presented significant growth and host adaptation differences from the reference strain V583 of our collection. To construct a strain with better fitness, we sequenced the genome of VE14089, identified single nucleotide polymorphisms (SNPs), and repaired the genes that could account for these changes. Using this reference-derivative strain, we provide a novel genetic system to understand the role of the variable region of epa in the enterococcal lifestyle.
Collapse
|
11
|
Abstract
β-Lactamases, the major resistance determinant for β-lactam antibiotics in Gram-negative bacteria, are ancient enzymes whose origins can be traced back millions of years ago. These well-studied enzymes, currently numbering almost 2,800 unique proteins, initially emerged from environmental sources, most likely to protect a producing bacterium from attack by naturally occurring β-lactams. Their ancestors were presumably penicillin-binding proteins that share sequence homology with β-lactamases possessing an active-site serine. Metallo-β-lactamases also exist, with one or two catalytically functional zinc ions. Although penicillinases in Gram-positive bacteria were reported shortly after penicillin was introduced clinically, transmissible β-lactamases that could hydrolyze recently approved cephalosporins, monobactams, and carbapenems later became important in Gram-negative pathogens. Nomenclature is based on one of two major systems. Originally, functional classifications were used, based on substrate and inhibitor profiles. A later scheme classifies β-lactamases according to amino acid sequences, resulting in class A, B, C, and D enzymes. A more recent nomenclature combines the molecular and biochemical classifications into 17 functional groups that describe most β-lactamases. Some of the most problematic enzymes in the clinical community include extended-spectrum β-lactamases (ESBLs) and the serine and metallo-carbapenemases, all of which are at least partially addressed with new β-lactamase inhibitor combinations. New enzyme variants continue to be described, partly because of the ease of obtaining sequence data from whole-genome sequencing studies. Often, these new enzymes are devoid of any phenotypic descriptions, making it more difficult for clinicians and antibiotic researchers to address new challenges that may be posed by unusual β-lactamases.
Collapse
Affiliation(s)
- Karen Bush
- Department of Biology, Indiana University Bloomington, Bloomington, Indiana, USA
| |
Collapse
|
12
|
Dai D, Wang H, Xu X, Chen C, Song C, Jiang D, Du P, Zhang Y, Zeng H. The emergence of multi-resistant Enterococcus faecalis clonal complex, CC4, causing nosocomial infections. J Med Microbiol 2018; 67:1069-1077. [PMID: 29923823 DOI: 10.1099/jmm.0.000761] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
PURPOSE Enterococcus faecalis is commonly found as a commensal gut bacteria, but some linages have caused increasing extra-gastrointestinal infections. In particular, strains with high-level virulence or antimicrobial resistance are prevalent in healthcare settings as nosocomial pathogens. This study was performed to elucidate the epidemiological characteristics and antimicrobial susceptibility profiles of E. faecalis causing nosocomial infections in a Chinese general hospital over a 4-year period. METHODOLOGY We collected 77 isolates causing extra-gastrointestinal infections from patients at 14 different wards in a tertiary hospital from 2011 to 2014. The population relationship was assessed by multilocus sequence typing and multilocus variable-number tandem repeat analysis. The Kirby-Bauer disk diffusion method was used to evaluate susceptibility against 11 antimicrobial agents. RESULTS The isolates showed high-level resistance to tetracycline (86.5 %), erythromycin (78.4 %), rifampin (62.2 %), etc. The major clonal complexes (CCs) included CC4, CC16 and CC21. As the most dominant subtype, CC16 was identified in almost all of the wards and all types of samples, but the isolation rate decreased continually. In contrast, the isolation rates of CC4 and CC21 increased and the proportion of these two CCs in 2014 was more than three times that in 2011. In addition, CC4 showed higher resistance than CC16. CONCLUSIONS This study demonstrated the prevalent subtypes and resistance profiles of E. faecalis causing nosocomial infection, and indicated that CC4 may be a newly emerging high-risk, multi-resistant cluster. More surveillance is urgently needed, which will increase our understanding of the prevention and treatment of such infections.
Collapse
Affiliation(s)
- Dongfa Dai
- 1Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, PR China
| | - Huizhu Wang
- 2Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, PR China
| | - Xinmin Xu
- 2Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, PR China
| | - Chen Chen
- 1Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, PR China
| | - Chuan Song
- 1Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, PR China
| | - Dong Jiang
- 1Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, PR China
| | - Pengcheng Du
- 1Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, PR China
| | - Yuanyuan Zhang
- 1Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, PR China
| | - Hui Zeng
- 1Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, PR China
| |
Collapse
|
13
|
Crouzet L, Derrien M, Cherbuy C, Plancade S, Foulon M, Chalin B, van Hylckama Vlieg JET, Grompone G, Rigottier-Gois L, Serror P. Lactobacillus paracasei CNCM I-3689 reduces vancomycin-resistant Enterococcus persistence and promotes Bacteroidetes resilience in the gut following antibiotic challenge. Sci Rep 2018; 8:5098. [PMID: 29572473 PMCID: PMC5865147 DOI: 10.1038/s41598-018-23437-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 03/13/2018] [Indexed: 12/30/2022] Open
Abstract
Enterococci, in particular vancomycin-resistant enterococci (VRE), are a leading cause of hospital-acquired infections. Promoting intestinal resistance against enterococci could reduce the risk of VRE infections. We investigated the effects of two Lactobacillus strains to prevent intestinal VRE. We used an intestinal colonisation mouse model based on an antibiotic-induced microbiota dysbiosis to mimic enterococci overgrowth and VRE persistence. Each Lactobacillus spp. was administered daily to mice starting one week before antibiotic treatment until two weeks after antibiotic and VRE inoculation. Of the two strains, Lactobacillus paracasei CNCM I-3689 decreased significantly VRE numbers in the feces demonstrating an improvement of the reduction of VRE. Longitudinal microbiota analysis showed that supplementation with L. paracasei CNCM I-3689 was associated with a better recovery of members of the phylum Bacteroidetes. Bile salt analysis and expression analysis of selected host genes revealed increased level of lithocholate and of ileal expression of camp (human LL-37) upon L. paracasei CNCM I-3689 supplementation. Although a direct effect of L. paracasei CNCM I-3689 on the VRE reduction was not ruled out, our data provide clues to possible anti-VRE mechanisms supporting an indirect anti-VRE effect through the gut microbiota. This work sustains non-antibiotic strategies against opportunistic enterococci after antibiotic-induced dysbiosis.
Collapse
Affiliation(s)
- Laureen Crouzet
- Micalis, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.,Medis, INRA Clermont-Ferrand-Theix, 63122, Saint-Genès-Champanelle, France
| | | | - Claire Cherbuy
- Micalis, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Sandra Plancade
- Maiage, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Mélanie Foulon
- Micalis, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Benjamin Chalin
- Micalis, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | | | - Gianfranco Grompone
- Danone Nutricia Research, F-91120, Palaiseau, France.,Instituto Nacional de Investigación Agropecuaria, Montevideo, Uruguay
| | | | - Pascale Serror
- Micalis, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.
| |
Collapse
|
14
|
Muller C, Massier S, Le Breton Y, Rincé A. The role of the CroR response regulator in resistance of Enterococcus faecalis to D-cycloserine is defined using an inducible receiver domain. Mol Microbiol 2017; 107:416-427. [PMID: 29205552 DOI: 10.1111/mmi.13891] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/28/2017] [Accepted: 12/01/2017] [Indexed: 11/28/2022]
Abstract
Enterococcus faecalis is an opportunistic multidrug-resistant human pathogen causing severe nosocomial infections. Previous investigations revealed that the CroRS two-component regulatory pathway likely displays a pleiotropic role in E. faecalis, involved in virulence, macrophage survival, oxidative stress response as well as antibiotic resistance. Therefore, CroRS represents an attractive potential new target for antibiotherapy. In this report, we further explored CroRS cellular functions by characterizing the CroR regulon: the 'domain swapping' method was applied and a CroR chimera protein was generated by fusing the receiver domain from NisR to the output domain from CroR. After demonstrating that the chimera CroR complements a croR gene deletion in E. faecalis (stress response, virulence), we conducted a global gene expression analysis using RNA-Seq and identified 50 potential CroR targets involved in multiple cellular functions such as cell envelope homeostasis, substrate transport, cell metabolism, gene expression regulation, stress response, virulence and antibiotic resistance. For validation, CroR direct binding to several candidate targets was demonstrated by EMSA. Further, this work identified alr, the gene encoding the alanine racemase enzyme involved in E. faecalis resistance to D-cycloserine, a promising antimicrobial drug to treat enterococcal infections, as a member of the CroR regulon.
Collapse
Affiliation(s)
- Cécile Muller
- Normandie Univ, UNICAEN, U2RM - Unité de Recherche Risques Microbiens, Caen, France
| | - Sébastien Massier
- Normandie Univ, UNICAEN, U2RM - Unité de Recherche Risques Microbiens, Caen, France
| | - Yoann Le Breton
- Normandie Univ, UNICAEN, U2RM - Unité de Recherche Risques Microbiens, Caen, France
| | - Alain Rincé
- Normandie Univ, UNICAEN, U2RM - Unité de Recherche Risques Microbiens, Caen, France
| |
Collapse
|
15
|
Adekunle Alayande K, Sabiu S, Ashafa OTA. Medicinal properties ofAbrus precatoriusL. leaf extract: antimicrobial, cytotoxicity and carbohydrate metabolising enzymes’ inhibitory potential. ACTA ACUST UNITED AC 2017. [DOI: 10.1080/0035919x.2017.1303797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Kazeem Adekunle Alayande
- Phytomedicine and Phytopharmacology Research Group, Department of Plant Sciences, University of the Free State, Qwaqwa campus, Phuthaditjhaba 9866, South Africa
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, PO Box 339, Nelson Mandela Drive, 9301 Bloemfontein, South Africa
| | - Saheed Sabiu
- Phytomedicine and Phytopharmacology Research Group, Department of Plant Sciences, University of the Free State, Qwaqwa campus, Phuthaditjhaba 9866, South Africa
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, PO Box 339, Nelson Mandela Drive, 9301 Bloemfontein, South Africa
- Phytomedicine, Food Factors and Toxicology Research Laboratory, Biochemistry Unit, Department of Biosciences and Biotechnology, Kwara State University, PMB 1530, Ilorin, Nigeria
| | - Omotayo Tom Anofi Ashafa
- Phytomedicine and Phytopharmacology Research Group, Department of Plant Sciences, University of the Free State, Qwaqwa campus, Phuthaditjhaba 9866, South Africa
| |
Collapse
|
16
|
Wang J, Feng Y, Wang C, Srinivas S, Chen C, Liao H, He E, Jiang S, Tang J. Pathogenic Streptococcus strains employ novel escape strategy to inhibit bacteriostatic effect mediated by mammalian peptidoglycan recognition protein. Cell Microbiol 2017; 19. [PMID: 28092693 DOI: 10.1111/cmi.12724] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 01/05/2017] [Accepted: 01/09/2017] [Indexed: 01/06/2023]
Abstract
Pathogenic streptococcal species are responsible for some of the most lethal and prevalent animal and human infections. Previous reports have identified a candidate pathogenicity island (PAI) in two highly virulent clinical isolates of Streptococcus suis type 2, a causative agent of high-mortality streptococcal toxic shock syndrome. This PAI contains a type-IVC secretion system C subgroup (type-IVC secretion system) that is involved in the secretion of unknown pathogenic effectors that are responsible for streptococcal toxic shock syndrome caused by highly virulent strains of S. suis. Both virulence protein B4 and virulence protein D4 were demonstrated to be key components of this type-IVC secretion system. In this study, we identify a new PAI family across 3 streptococcal species; Streptococcus genomic island contains type-IV secretion system, which contains a genomic island type-IVC secretion system and a novel PPIase molecule, SP1. SP1 is shown to interact with a component of innate immunity, peptidoglycan recognition protein (PGLYRP-1) and to perturb the PGLYRP-1-mediated bacteriostatic effect by interacting with protein PGLYRP-1. Our study elucidates a novel mechanism by which bacteria escape by components of the innate immune system by secretion of the SP1 protein in pathogenic Streptococci, which then interacts with PGLYRP-1 from the host. Our results provide potential targets for the development of new antimicrobial drugs against bacteria with resistance to innate host immunity.
Collapse
Affiliation(s)
- Jing Wang
- Translational Medicine Center, PLA Hospital No.454, Nanjing, China
| | - Youjun Feng
- Department of Medical Microbiology Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Changjun Wang
- Department of Epidemiology, Medicinal Research Institute, Nanjing Military Command, Nanjing, China
| | - Swaminath Srinivas
- Department of Medical Microbiology Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Chen Chen
- Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hui Liao
- Translational Medicine Center, PLA Hospital No.454, Nanjing, China
| | - Elaine He
- The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Shibo Jiang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA
| | - Jiaqi Tang
- PLA Research Institute of Clinical Laboratory Medicine, Nanjing General Hospital, Nanjing Military Command, Nanjing, China
| |
Collapse
|
17
|
Plotnikava D, Sidarenka A, Novik G. Antibiotic resistance in lactococci and enterococci: phenotypic and molecular-genetic aspects. THE EUROBIOTECH JOURNAL 2017. [DOI: 10.24190/issn2564-615x/2017/01.03] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Abstract
Extensive use of antibiotics in medicine, veterinary practice and animal husbandry has promoted the development and dissemination of bacterial drug resistance. The number of resistant pathogens causing common infectious diseases increases rapidly and creates worldwide public health problem. Commensal bacteria, including lactic acid bacteria of genera Enterococcus and Lactococcus colonizing gastrointestinal and urogenital tracts of humans and animals may act as vehicles of antibiotic resistance genes similar to those found in pathogens. Lactococci and enterococci are widely used in manufacturing of fermented products and as probiotics, therefore monitoring and control of transmissible antibiotic resistance determinants in industrial strains of these microorganisms is necessary to approve their Qualified Presumption of Safety status. Understanding the nature and molecular mechanisms of antibiotic resistance in enterococci and lactococci is essential, as intrinsic resistant bacteria pose no threat to environment and human health in contrast to bacteria with resistance acquired through horizontal transfer of resistance genes. The review summarizes current knowledge concerning intrinsic and acquired antibiotic resistance in Lactococcus and Enterococcus genera, and discusses role of enterococci and lactococci in distribution of this feature.
Collapse
Affiliation(s)
- Danuta Plotnikava
- Institute of Microbiology, National Academy of Sciences of Belarus, Kuprevich Street 2, 220141 Minsk , Belarus
| | - Anastasiya Sidarenka
- Institute of Microbiology, National Academy of Sciences of Belarus, Kuprevich Street 2, 220141 Minsk , Belarus
| | - Galina Novik
- Institute of Microbiology, National Academy of Sciences of Belarus, Kuprevich Street 2, 220141 Minsk , Belarus
| |
Collapse
|
18
|
Raven KE, Reuter S, Gouliouris T, Reynolds R, Russell JE, Brown NM, Török ME, Parkhill J, Peacock SJ. Genome-based characterization of hospital-adapted Enterococcus faecalis lineages. Nat Microbiol 2016; 1:15033. [PMID: 27213049 PMCID: PMC4872833 DOI: 10.1038/nmicrobiol.2015.33] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 12/24/2015] [Indexed: 11/09/2022]
Abstract
Vancomycin-resistant Enterococcus faecalis (VREfs) is an important nosocomial pathogen1,2. We undertook whole genome sequencing of E. faecalis associated with bloodstream infection in the UK and Ireland over more than a decade to determine the population structure and genetic associations with hospital adaptation. Three lineages predominated in the population, two of which (L1 and L2) were nationally distributed, and one (L3) geographically restricted. Genome comparison with a global collection identified that L1 and L3 were also present in the USA, but were genetically distinct. Over 90% of VREfs belonged to L1-L3, with resistance acquired and lost multiple times in L1 and L2, but only once followed by clonal expansion in L3. Putative virulence and antibiotic resistance genes were over-represented in L1, L2 and L3 isolates combined, versus the remainder. Each of the three main lineages contained a mixture of vancomycin-resistant and -susceptible E. faecalis (VSEfs), which has important implications for infection control and antibiotic stewardship.
Collapse
Affiliation(s)
- Kathy E. Raven
- Department of Medicine, University of Cambridge, Box 157 Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Sandra Reuter
- Department of Medicine, University of Cambridge, Box 157 Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Theodore Gouliouris
- Department of Medicine, University of Cambridge, Box 157 Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ, UK
- Clinical Microbiology and Public Health Laboratory, Public Health England, Box 236, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ, UK
- Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge CB2 0QQ, UK
| | - Rosy Reynolds
- British Society for Antimicrobial Chemotherapy, Griffin House, 53 Regent Place, Birmingham B1 3NJ, UK
- North Bristol NHS Trust, Southmead Hospital, Bristol, BS10 5NB, UK
| | - Julie E. Russell
- Culture Collections, Public Health England, Porton Down, Salisbury SP4 0JG, UK
| | - Nicholas M. Brown
- Clinical Microbiology and Public Health Laboratory, Public Health England, Box 236, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ, UK
- British Society for Antimicrobial Chemotherapy, Griffin House, 53 Regent Place, Birmingham B1 3NJ, UK
| | - M. Estée Török
- Department of Medicine, University of Cambridge, Box 157 Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ, UK
- Clinical Microbiology and Public Health Laboratory, Public Health England, Box 236, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ, UK
- Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge CB2 0QQ, UK
| | - Julian Parkhill
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Sharon J. Peacock
- Department of Medicine, University of Cambridge, Box 157 Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ, UK
- Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge CB2 0QQ, UK
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| |
Collapse
|
19
|
Detection of Vancomycin-Resistant Enterococci. Mol Microbiol 2016. [DOI: 10.1128/9781555819071.ch18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Bitoun JP, Wen ZT. Transcription factor Rex in regulation of pathophysiology in oral pathogens. Mol Oral Microbiol 2015; 31:115-24. [PMID: 26172563 DOI: 10.1111/omi.12114] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2015] [Indexed: 11/29/2022]
Abstract
The NAD(+) and NADH-sensing transcriptional regulator Rex is widely conserved across gram-positive bacteria. Rex monitors cellular redox poise and controls the expression of genes/operons involved in diverse pathways including alternative fermentation, oxidative stress responses, and biofilm formation. The oral cavity undergoes frequent and drastic fluctuations in nutrient availability, pH, temperature, oxygen tension, saliva, and shear forces. The oral streptococci are major colonizers of oral mucosa and tooth surfaces and include commensals as well as opportunistic pathogens, including the primary etiological agent of dental caries, Streptococcus mutans. Current understanding of the Rex regulon in oral bacteria is mostly based on studies in S. mutans and endodontic pathogen Enterococcus faecalis. Indeed, other oral bacteria encode homologs of the Rex protein and much is to be gleaned from more in-depth studies. Our current understanding has Rex positioned at the interface of oxygen and energy metabolism. In biofilms, heterogeneous oxygen tension influences the ratio of intracellular NADH and NAD(+) , which is finely tuned through glycolysis and fermentation. In S. mutans, Rex regulates the expression of glycolytic enzyme NAD(+) -dependent glyceraldehyde 3-phosphate dehydrogenase, and NADH-dependent fermentation enzymes/complexes lactate dehydrogenase, pyruvate dehydrogenase, alcohol-acetaldehyde dehydrogenase, and fumarate reductase. In addition, Rex controls the expression of NADH oxidase, a major enzyme used to eliminate oxidative stress and regenerate NAD(+) . Here, we summarize recent studies carried out on the Rex regulators in S. mutans and E. faecalis. This research has important implications for understanding how Rex monitors redox balance and optimizes fermentation pathways for survival and subsequent pathogenicity.
Collapse
Affiliation(s)
- J P Bitoun
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Z T Wen
- Department of Comprehensive Dentistry and Biomaterials, Louisiana State University Health Sciences Center, New Orleans, LA, USA.,Center of Oral and Craniofacial Biology, Louisiana State University Health Sciences Center, New Orleans, LA, USA.,Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| |
Collapse
|
21
|
Muller C, Cacaci M, Sauvageot N, Sanguinetti M, Rattei T, Eder T, Giard JC, Kalinowski J, Hain T, Hartke A. The Intraperitoneal Transcriptome of the Opportunistic Pathogen Enterococcus faecalis in Mice. PLoS One 2015; 10:e0126143. [PMID: 25978463 PMCID: PMC4433114 DOI: 10.1371/journal.pone.0126143] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 03/29/2015] [Indexed: 01/22/2023] Open
Abstract
Enterococcus faecalis is a Gram-positive lactic acid intestinal opportunistic bacterium with virulence potential. For a better understanding of the adapation of this bacterium to the host conditions, we performed a transcriptome analysis of bacteria isolated from an infection site (mouse peritonitis) by RNA-sequencing. We identified a total of 211 genes with significantly higher transcript levels and 157 repressed genes. Our in vivo gene expression database reflects well the infection process since genes encoding important virulence factors like cytolysin, gelatinase or aggregation substance as well as stress response proteins, are significantly induced. Genes encoding metabolic activities are the second most abundant in vivo induced genes demonstrating that the bacteria are metabolically active and adapt to the special nutrient conditions of the host. α- and β- glucosides seem to be important substrates for E. faecalis inside the host. Compared to laboratory conditions, the flux through the upper part of glycolysis seems to be reduced and more carbon may enter the pentose phosphate pathway. This may reflect the need of the bacteria under infection conditions to produce more reducing power for biosynthesis. Another important substrate is certainly glycerol since both pathways of glycerol catabolism are strongly induced. Strongly in vivo induced genes should be important for the infection process. This assumption has been verified in a virulence test using well characterized mutants affected in glycerol metabolism. This showed indeed that mutants unable to metabolize this sugar alcohol are affected in organ colonisation in a mouse model.
Collapse
Affiliation(s)
- Cécile Muller
- U2RM-Stress and Virulence, University of Caen Basse-Normandie, EA4655, 14032 Caen, France
- * E-mail: (AH); (CM)
| | - Margherita Cacaci
- U2RM-Stress and Virulence, University of Caen Basse-Normandie, EA4655, 14032 Caen, France
- Institute of Microbiology, Catholic University of Sacred Heart, 00168, Rome, Italy
| | - Nicolas Sauvageot
- U2RM-Stress and Virulence, University of Caen Basse-Normandie, EA4655, 14032 Caen, France
| | - Maurizio Sanguinetti
- Institute of Microbiology, Catholic University of Sacred Heart, 00168, Rome, Italy
| | - Thomas Rattei
- CUBE-Division for Computational Systems Biology, Dept. of Microbiology and Ecosystem Science, University of Vienna, 1090 Vienna, Austria
| | - Thomas Eder
- CUBE-Division for Computational Systems Biology, Dept. of Microbiology and Ecosystem Science, University of Vienna, 1090 Vienna, Austria
| | - Jean-Christophe Giard
- U2RM-Stress and Virulence, University of Caen Basse-Normandie, EA4655, 14032 Caen, France
| | - Jörn Kalinowski
- Center for Biotechnology, Bielefeld University, 33594 Bielefeld, Germany
| | - Torsten Hain
- Institute of Medicine Microbiology, Gießen University, 35392 Gießen, Germany
| | - Axel Hartke
- U2RM-Stress and Virulence, University of Caen Basse-Normandie, EA4655, 14032 Caen, France
- * E-mail: (AH); (CM)
| |
Collapse
|
22
|
Muruzábal-Lecumberri I, Girbau C, Canut A, Alonso R, Fernández-Astorga A. Spread of an Enterococcus faecalis sequence type 6 (CC2) clone in patients undergoing selective decontamination of the digestive tract. APMIS 2015; 123:245-51. [PMID: 25712203 DOI: 10.1111/apm.12336] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 09/24/2014] [Indexed: 11/27/2022]
Abstract
Enterococcus faecalis (E. faecalis) is a common cause of nosocomial infection in immunocompromised patients. The presence and dissemination of high-risk clonal complexes, such as CC2, is an ongoing problem in hospitals. The aim of this work was to characterize 24 E. faecalis isolates from ICU patients undergoing selective decontamination of the digestive tract (SDD) by phenotypical (antimicrobial susceptibility) and genotypical (presence of virulence genes, RAPD-PCR and MLST) methods. Our results showed high prevalence of the ST6 E. faecalis clone (91.6%), especially adapted to the hospital environment, with a multidrug resistance pattern and a multitude of putative virulence genes. In addition, ST179 (4.2%) and ST191 (4.2%) were detected. By RAPD-PCR analysis, the 22 isolates identified as ST6 showed six different DNA patterns, while the two remaining isolates, ST179 and ST191, showed two additional profiles. CC2 is a known clonal complex with high adaptability to hospital environment and worldwide distribution. The high prevalence of the ST6 clone in the studied population could be related to the presence of gentamicin in the SDD mixture since most strains were gentamicin resistant. Consequently, strict surveillance should be applied for rapid detection and control of this clone to prevent future spread outside the ICU.
Collapse
Affiliation(s)
- Izaskun Muruzábal-Lecumberri
- Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria, Spain
| | | | | | | | | |
Collapse
|
23
|
Population biology of intestinal enterococcus isolates from hospitalized and nonhospitalized individuals in different age groups. Appl Environ Microbiol 2014; 81:1820-31. [PMID: 25548052 DOI: 10.1128/aem.03661-14] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The diversity of enterococcal populations from fecal samples from hospitalized (n = 133) and nonhospitalized individuals (n = 173) of different age groups (group I, ages 0 to 19 years; group II, ages 20 to 59 years; group III, ages ≥60 years) was analyzed. Enterococci were recovered at similar rates from hospitalized and nonhospitalized persons (77.44% to 79.77%) of all age groups (75.0% to 82.61%). Enterococcus faecalis and Enterococcus faecium were predominant, although seven other Enterococcus species were identified. E. faecalis and E. faecium (including ampicillin-resistant E. faecium) colonization rates in nonhospitalized persons were age independent. For inpatients, E. faecalis colonization rates were age independent, but E. faecium colonization rates (particularly the rates of ampicillin-resistant E. faecium colonization) significantly increased with age. The population structure of E. faecium and E. faecalis was determined by superimposing goeBURST and Bayesian analysis of the population structure (BAPS). Most E. faecium sequence types (STs; 150 isolates belonging to 75 STs) were linked to BAPS groups 1 (22.0%), 2 (31.3%), and 3 (36.7%). A positive association between hospital isolates and BAPS subgroups 2.1a and 3.3a (which included major ampicillin-resistant E. faecium human lineages) and between community-based ampicillin-resistant E. faecium isolates and BAPS subgroups 1.2 and 3.3b was found. Most E. faecalis isolates (130 isolates belonging to 58 STs) were grouped into 3 BAPS groups, BAPS groups 1 (36.9%), 2 (40.0%), and 3 (23.1%), with each one comprising widespread lineages. No positive associations with age or hospitalization were established. The diversity and dynamics of enterococcal populations in the fecal microbiota of healthy humans are largely unexplored, with the available knowledge being fragmented and contradictory. The study offers a novel and comprehensive analysis of enterococcal population landscapes and suggests that E. faecium populations from hospitalized patients and from community-based individuals differ, with a predominance of certain clonal lineages, often in association with elderly individuals, occurring in the hospital setting.
Collapse
|
24
|
Linares DM, Perez M, Ladero V, Del Rio B, Redruello B, Martin MC, Fernandez M, Alvarez MA. An agmatine-inducible system for the expression of recombinant proteins in Enterococcus faecalis. Microb Cell Fact 2014; 13:169. [PMID: 25471381 PMCID: PMC4265343 DOI: 10.1186/s12934-014-0169-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 11/18/2014] [Indexed: 01/26/2023] Open
Abstract
Background Scientific interest in Enterococcus faecalis has increased greatly over recent decades. Some strains are involved in food fermentation and offer health benefits, whereas others are vancomycin-resistant and cause infections that are difficult to treat. The limited availability of vectors able to express cloned genes efficiently in E. faecalis has hindered biotechnological studies on the bacterium’s regulatory and pathogenicity-related genes. The agmatine deiminase (AGDI) pathway of E. faecalis, involved in the conversion of agmatine into putrescine, is driven by a response inducer gene aguR. Results This study describes that the exposure to the induction factor (agmatine) results in the transcription of genes under the control of the aguB promoter, including the aguBDAC operon. A novel E. faecalis expression vector, named pAGEnt, combining the aguR inducer gene and the aguB promoter followed by a cloning site and a stop codon was constructed. pAGEnt was designed for the overexpression and purification of a protein fused to a 10-amino-acid His-tag at the C-terminus. The use of GFP as a reporter of gene expression in E. faecalis revealed that under induction with 60 mM agmatine, fluorescence reached 40 arbitrary units compared to 0 in uninduced cells. Conclusion pAGEnt vector can be used for the overexpression of recombinant proteins under the induction of agmatine in E. faecalis, with a close correlation between agmatine concentration and fluorescence when GFP was used as reporter.
Collapse
Affiliation(s)
- Daniel M Linares
- Instituto de Productos Lácteos de Asturias, IPLA-CSIC, Paseo Río Linares s/n, 33300, Villaviciosa, Asturias, Spain.
| | - Marta Perez
- Instituto de Productos Lácteos de Asturias, IPLA-CSIC, Paseo Río Linares s/n, 33300, Villaviciosa, Asturias, Spain.
| | - Victor Ladero
- Instituto de Productos Lácteos de Asturias, IPLA-CSIC, Paseo Río Linares s/n, 33300, Villaviciosa, Asturias, Spain.
| | - Beatriz Del Rio
- Instituto de Productos Lácteos de Asturias, IPLA-CSIC, Paseo Río Linares s/n, 33300, Villaviciosa, Asturias, Spain.
| | - Begoña Redruello
- Instituto de Productos Lácteos de Asturias, IPLA-CSIC, Paseo Río Linares s/n, 33300, Villaviciosa, Asturias, Spain.
| | - M Cruz Martin
- Instituto de Productos Lácteos de Asturias, IPLA-CSIC, Paseo Río Linares s/n, 33300, Villaviciosa, Asturias, Spain.
| | - María Fernandez
- Instituto de Productos Lácteos de Asturias, IPLA-CSIC, Paseo Río Linares s/n, 33300, Villaviciosa, Asturias, Spain.
| | - Miguel A Alvarez
- Instituto de Productos Lácteos de Asturias, IPLA-CSIC, Paseo Río Linares s/n, 33300, Villaviciosa, Asturias, Spain.
| |
Collapse
|
25
|
Dubin K, Pamer EG. Enterococci and Their Interactions with the Intestinal Microbiome. Microbiol Spectr 2014; 5:10.1128/microbiolspec.bad-0014-2016. [PMID: 29125098 PMCID: PMC5691600 DOI: 10.1128/microbiolspec.bad-0014-2016] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Indexed: 12/15/2022] Open
Abstract
The Enterococcus genus comprises over 50 species that live as commensal bacteria in the gastrointestinal (GI) tracts of insects, birds, reptiles, and mammals. Named "entero" to emphasize their intestinal habitat, Enterococcus faecalis and Enterococcus faecium were first isolated in the early 1900s and are the most abundant species of this genus found in the human fecal microbiota. In the past 3 decades, enterococci have developed increased resistance to several classes of antibiotics and emerged as a prevalent causative agent of health care-related infections. In U.S. hospitals, antibiotic use has increased the transmission of multidrug-resistant enterococci. Antibiotic treatment depletes broad communities of commensal microbes from the GI tract, allowing resistant enterococci to densely colonize the gut. The reestablishment of a diverse intestinal microbiota is an emerging approach to combat infections caused by antibiotic-resistant bacteria in the GI tract. Because enterococci exist as commensals, modifying the intestinal microbiome to eliminate enterococcal clinical pathogens poses a challenge. To better understand how enterococci exist as both commensals and pathogens, in this article we discuss their clinical importance, antibiotic resistance, diversity in genomic composition and habitats, and interaction with the intestinal microbiome that may be used to prevent clinical infection.
Collapse
Affiliation(s)
- Krista Dubin
- Immunology Program and Infectious Disease Service, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065
| | - Eric G Pamer
- Immunology Program and Infectious Disease Service, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065
- Lucille Castori Center for Microbes, Inflammation, and Cancer, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| |
Collapse
|
26
|
Abstract
The Enterococcus genus comprises over 50 species that live as commensal bacteria in the gastrointestinal (GI) tracts of insects, birds, reptiles, and mammals. Named "entero" to emphasize their intestinal habitat, Enterococcus faecalis and Enterococcus faecium were first isolated in the early 1900s and are the most abundant species of this genus found in the human fecal microbiota. In the past 3 decades, enterococci have developed increased resistance to several classes of antibiotics and emerged as a prevalent causative agent of health care-related infections. In U.S. hospitals, antibiotic use has increased the transmission of multidrug-resistant enterococci. Antibiotic treatment depletes broad communities of commensal microbes from the GI tract, allowing resistant enterococci to densely colonize the gut. The reestablishment of a diverse intestinal microbiota is an emerging approach to combat infections caused by antibiotic-resistant bacteria in the GI tract. Because enterococci exist as commensals, modifying the intestinal microbiome to eliminate enterococcal clinical pathogens poses a challenge. To better understand how enterococci exist as both commensals and pathogens, in this article we discuss their clinical importance, antibiotic resistance, diversity in genomic composition and habitats, and interaction with the intestinal microbiome that may be used to prevent clinical infection.
Collapse
|
27
|
Rigottier-Gois L, Madec C, Navickas A, Matos RC, Akary-Lepage E, Mistou MY, Serror P. The surface rhamnopolysaccharide epa of Enterococcus faecalis is a key determinant of intestinal colonization. J Infect Dis 2014; 211:62-71. [PMID: 25035517 DOI: 10.1093/infdis/jiu402] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Enterococcus faecalis is a commensal bacterium of the human intestine and a major opportunistic pathogen in immunocompromised and elderly patients. The pathogenesis of E. faecalis infection relies in part on its capacity to colonize the gut. Following disruption of intestinal homeostasis, E. faecalis can overgrow, cross the intestinal barrier, and enter the lymph and bloodstream. To identify and characterize E. faecalis genes that are key to intestinal colonization, our strategy consisted in screening mutants for the following phenotypes related to intestinal lifestyle: antibiotic resistance, overgrowth, and competition against microbiota. From the identified colonization genes, epaX encodes a glycosyltransferase located in a variable region of the enterococcal polysaccharide antigen (epa) locus. We demonstrated that EpaX acts on sugar composition, promoting resistance to bile salts and cell wall integrity. Given that EpaX is enriched in hospital-adapted isolates, this study points to the importance of the epa variability as a key determinant for enterococcal intestinal colonization.
Collapse
Affiliation(s)
| | - Clément Madec
- INRA, UMR1319 Micalis AgroParisTech, UMR Micalis, Jouy-en-Josas, France
| | - Albertas Navickas
- INRA, UMR1319 Micalis AgroParisTech, UMR Micalis, Jouy-en-Josas, France
| | - Renata C Matos
- INRA, UMR1319 Micalis AgroParisTech, UMR Micalis, Jouy-en-Josas, France
| | | | | | - Pascale Serror
- INRA, UMR1319 Micalis AgroParisTech, UMR Micalis, Jouy-en-Josas, France
| |
Collapse
|
28
|
Asmat A, Dada AC, Gires U. Biofilm formation, gel and esp gene carriage among recreational beach Enterococci. Glob J Health Sci 2014; 6:241-53. [PMID: 25168975 PMCID: PMC4825529 DOI: 10.5539/gjhs.v6n5p241] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 09/18/2013] [Indexed: 11/12/2022] Open
Abstract
Biofilm production, gel and esp gene carriage was enumerated among forty six vancomycin resistant enterococci (VRE) and vancomycin susceptible enterococci (VSE) beach isolates. A higher proportion (61.54%) of biofilm producers was observed among beach sand as compared to beach water enterococci isolates (30%) indicating that enterococci within the sand column may be more dependent on biofilm production for survival than their beach water counterparts. Correlation analysis revealed strongly negative correlation (r=-0.535, p=0.015) between vancomycin resistance and biofilm formation. Given the observation of high prevalence of biofilm production among beach sand and the concomitant absence of esp gene carriage in any of the isolate, esp gene carriage may not be necessary for the production of biofilms among beach sand isolates. On the whole beach sand and water isolates demonstrated clearly different prevalence levels of vancomycin resistance, biofilm formation, esp and gel gene carriage. Application of these differences may be found useful in beach microbial source tracking studies. Tested starved cells still produced biofilm albeit at lower efficiencies. Non-dividing enterococci in beach sand can survive extended periods of environmental hardship and can resume growth or biofilm production in appropriate conditions thus making them infectious agents with potential health risk to recreational beach users.
Collapse
|
29
|
Schwaiger K, Harms KS, Bischoff M, Preikschat P, Mölle G, Bauer-Unkauf I, Lindorfer S, Thalhammer S, Bauer J, Hölzel CS. Insusceptibility to disinfectants in bacteria from animals, food and humans-is there a link to antimicrobial resistance? Front Microbiol 2014; 5:88. [PMID: 24672513 PMCID: PMC3957061 DOI: 10.3389/fmicb.2014.00088] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 02/18/2014] [Indexed: 12/15/2022] Open
Abstract
Enterococcus faecalis (n = 834) and Enterococcus faecium (n = 135) from blood and feces of hospitalized humans, from feces of outpatients and livestock and from food were screened for their susceptibility to a quaternary ammonium compound (didecyldimethylammoniumchloride, DDAC) and to 28 antibiotics by micro-/macrodilution. The maximum DDAC-MIC in our field study was 3.5 mg/l, but after adaptation in the laboratory, MIC values of 21.9 mg/l were observed. Strains for which DDAC had MICs > 1.4 mg/l ("non-wildtype," in total: 46 of 969 isolates/4.7%) were most often found in milk and dairy products (14.6%), while their prevalence in livestock was generally low (0-4%). Of human isolates, 2.9-6.8% had a "non-wildtype" phenotype. An association between reduced susceptibility to DDAC, high-level-aminoglycoside resistance and aminopenicillin resistance was seen in E. faecium (p < 0.05). No indications for a common source of non-wildtype strains were found by RAPD-PCR; however, several non-wildtype E. faecalis shared the same variant of the emeA-gene. In addition, bacteria (n = 42) of different genera were isolated from formic acid based boot bath disinfectant (20 ml of 55% formic acid/l). The MICs of this disinfectant exceeded the wildtype MICs up to 20-fold (staphylococci), but were still one to three orders of magnitude below the used concentration of the disinfectant (i. e., 1.1% formic acid). In conclusion, the bacterial susceptibility to disinfectants still seems to be high. Thus, the proper use of disinfectants in livestock surroundings along with a good hygiene praxis should still be highly encouraged. Hints to a link between antibiotic resistance and reduced susceptibility for disinfectants-as seen for E. faecium-should be substantiated in further studies and might be an additional reason to confine the use of antibiotics.
Collapse
Affiliation(s)
- Karin Schwaiger
- Animal Hygiene, Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt, Technische Universität MünchenFreising, Germany
| | - Katrin S. Harms
- Animal Hygiene, Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt, Technische Universität MünchenFreising, Germany
| | - Meike Bischoff
- Animal Hygiene, Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt, Technische Universität MünchenFreising, Germany
| | - Petra Preikschat
- Bavarian Health and Food Safety Authority (LGL)Erlangen, Germany
| | - Gabriele Mölle
- Bavarian Health and Food Safety Authority (LGL)Erlangen, Germany
| | | | - Solveig Lindorfer
- Animal Hygiene, Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt, Technische Universität MünchenFreising, Germany
| | - Sandra Thalhammer
- Animal Hygiene, Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt, Technische Universität MünchenFreising, Germany
| | - Johann Bauer
- Animal Hygiene, Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt, Technische Universität MünchenFreising, Germany
| | - Christina S. Hölzel
- Animal Hygiene, Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt, Technische Universität MünchenFreising, Germany
| |
Collapse
|
30
|
Performance of the EUCAST disk diffusion method, the CLSI agar screen method, and the Vitek 2 automated antimicrobial susceptibility testing system for detection of clinical isolates of Enterococci with low- and medium-level VanB-type vancomycin resistance: a multicenter study. J Clin Microbiol 2014; 52:1582-9. [PMID: 24599985 DOI: 10.1128/jcm.03544-13] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Different antimicrobial susceptibility testing methods to detect low-level vancomycin resistance in enterococci were evaluated in a Scandinavian multicenter study (n=28). A phenotypically and genotypically well-characterized diverse collection of Enterococcus faecalis (n=12) and Enterococcus faecium (n=18) strains with and without nonsusceptibility to vancomycin was examined blindly in Danish (n=5), Norwegian (n=13), and Swedish (n=10) laboratories using the EUCAST disk diffusion method (n=28) and the CLSI agar screen (n=18) or the Vitek 2 system (bioMérieux) (n=5). The EUCAST disk diffusion method (very major error [VME] rate, 7.0%; sensitivity, 0.93; major error [ME] rate, 2.4%; specificity, 0.98) and CLSI agar screen (VME rate, 6.6%; sensitivity, 0.93; ME rate, 5.6%; specificity, 0.94) performed significantly better (P=0.02) than the Vitek 2 system (VME rate, 13%; sensitivity, 0.87; ME rate, 0%; specificity, 1). The performance of the EUCAST disk diffusion method was challenged by differences in vancomycin inhibition zone sizes as well as the experience of the personnel in interpreting fuzzy zone edges as an indication of vancomycin resistance. Laboratories using Oxoid agar (P<0.0001) or Merck Mueller-Hinton (MH) agar (P=0.027) for the disk diffusion assay performed significantly better than did laboratories using BBL MH II medium. Laboratories using Difco brain heart infusion (BHI) agar for the CLSI agar screen performed significantly better (P=0.017) than did those using Oxoid BHI agar. In conclusion, both the EUCAST disk diffusion and CLSI agar screening methods performed acceptably (sensitivity, 0.93; specificity, 0.94 to 0.98) in the detection of VanB-type vancomycin-resistant enterococci with low-level resistance. Importantly, use of the CLSI agar screen requires careful monitoring of the vancomycin concentration in the plates. Moreover, disk diffusion methodology requires that personnel be trained in interpreting zone edges.
Collapse
|
31
|
Arias CA, Murray BE. Emergence and management of drug-resistant enterococcal infections. Expert Rev Anti Infect Ther 2014; 6:637-55. [DOI: 10.1586/14787210.6.5.637] [Citation(s) in RCA: 193] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
32
|
The majority of a collection of U.S. endocarditis Enterococcus faecalis isolates obtained from 1974 to 2004 lack capsular genes and belong to diverse, non-hospital-associated lineages. J Clin Microbiol 2013; 52:549-56. [PMID: 24478487 DOI: 10.1128/jcm.02763-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Eighty-one endocarditis-derived Enterococcus faecalis isolates that were collected from individual patients in the United States between 1974 and 2004 were sequence typed and analyzed for the presence of various genes, including some previously associated with virulence. Overall, using our previously described trilocus sequence typing (TLST), 44 different sequence types (STs) were found within this collection; 26 isolates were singletons (a unique TLST sequence type [ST(T)]), some ST(T)s contained multiple isolates (up to 6 isolates), and 16% of the isolates (13 isolates) could be grouped by additional sequence typing into clonal cluster 21 (CC21). Of note, only four isolates (7%) of the 56 whose multilocus sequence types were determined were found to belong to one of the previously described hospital-associated clonal clusters CC2 and CC9, and only 15% and 37% of all isolates had high-level resistance to gentamicin and streptomycin, respectively, including 10% that were resistant to both. We also found that 64% of the isolates lacked the genes for production of capsule polysaccharide, which has been proposed to enhance the pathogenic potential of the hospital-associated clonal clusters. In summary, while our collection is not a random sample of cases of E. faecalis endocarditis, these results indicate that nonencapsulated strains belonging to non-hospital-associated lineages were predominant among endocarditis E. faecalis isolates recovered during this time period.
Collapse
|
33
|
Matos RC, Lapaque N, Rigottier-Gois L, Debarbieux L, Meylheuc T, Gonzalez-Zorn B, Repoila F, Lopes MDF, Serror P. Enterococcus faecalis prophage dynamics and contributions to pathogenic traits. PLoS Genet 2013; 9:e1003539. [PMID: 23754962 PMCID: PMC3675006 DOI: 10.1371/journal.pgen.1003539] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 04/18/2013] [Indexed: 12/25/2022] Open
Abstract
Polylysogeny is frequently considered to be the result of an adaptive evolutionary process in which prophages confer fitness and/or virulence factors, thus making them important for evolution of both bacterial populations and infectious diseases. The Enterococcus faecalis V583 isolate belongs to the high-risk clonal complex 2 that is particularly well adapted to the hospital environment. Its genome carries 7 prophage-like elements (V583-pp1 to -pp7), one of which is ubiquitous in the species. In this study, we investigated the activity of the V583 prophages and their contribution to E. faecalis biological traits. We systematically analyzed the ability of each prophage to excise from the bacterial chromosome, to replicate and to package its DNA. We also created a set of E. faecalis isogenic strains that lack from one to all six non-ubiquitous prophages by mimicking natural excision. Our work reveals that prophages of E. faecalis V583 excise from the bacterial chromosome in the presence of a fluoroquinolone, and are able to produce active phage progeny. Intricate interactions between V583 prophages were also unveiled: i) pp7, coined EfCIV583 for E. faecalis chromosomal island of V583, hijacks capsids from helper phage 1, leading to the formation of distinct virions, and ii) pp1, pp3 and pp5 inhibit excision of pp4 and pp6. The hijacking exerted by EfCIV583 on helper phage 1 capsids is the first example of molecular piracy in Gram positive bacteria other than staphylococci. Furthermore, prophages encoding platelet-binding-like proteins were found to be involved in adhesion to human platelets, considered as a first step towards the development of infective endocarditis. Our findings reveal not only a role of E. faecalis V583 prophages in pathogenicity, but also provide an explanation for the correlation between antibiotic usage and E. faecalis success as a nosocomial pathogen, as fluoriquinolone may provoke release of prophages and promote gene dissemination among isolates. Enterococcus faecalis is a member of the core-microbiome of the human gastrointestinal tract. In the last decades however, this bacterial species has emerged as a major cause of hospital-acquired infections worldwide. Some isolates are particularly adapted to the hospital environment, and this adaptation was recently linked with enrichment in mobile genetic elements including prophages, which are chromosomal integrated genomes of bacterial viruses. We characterized the biological prophage activity in an E. faecalis strain of clinical origin that harbors 7 prophages. Six active prophages exhibit intricate interactions, one of which is involved in a molecular piracy phenomenon. We also established, for the first time, a direct correlation between prophage and adhesion to human platelets, an initial step towards infective endocarditis. Finally, we showed that fluoroquinolone increases prophage activity and can thus contribute to horizontal gene spreading. Overall, we provide evidence that prophages are key players in E. faecalis evolution towards pathogenicity.
Collapse
Affiliation(s)
- Renata C. Matos
- INRA, UMR1319 Micalis, Jouy-en-Josas, France
- AgroParisTech, UMR Micalis, Jouy-en-Josas, France
- ITQB, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Nicolas Lapaque
- INRA, UMR1319 Micalis, Jouy-en-Josas, France
- AgroParisTech, UMR Micalis, Jouy-en-Josas, France
| | - Lionel Rigottier-Gois
- INRA, UMR1319 Micalis, Jouy-en-Josas, France
- AgroParisTech, UMR Micalis, Jouy-en-Josas, France
| | - Laurent Debarbieux
- Institut Pasteur, Molecular Biology of the Gene in Extremophiles Unit, Department of Microbiology, Paris, France
| | - Thierry Meylheuc
- INRA, UMR1319 Micalis, Jouy-en-Josas, France
- AgroParisTech, UMR Micalis, Jouy-en-Josas, France
| | - Bruno Gonzalez-Zorn
- Dpto. de Sanidad Animal, Facultad de Veterinaria and VISAVET, Universidad Complutense de Madrid, Madrid, Spain
| | - Francis Repoila
- INRA, UMR1319 Micalis, Jouy-en-Josas, France
- AgroParisTech, UMR Micalis, Jouy-en-Josas, France
| | | | - Pascale Serror
- INRA, UMR1319 Micalis, Jouy-en-Josas, France
- AgroParisTech, UMR Micalis, Jouy-en-Josas, France
- * E-mail:
| |
Collapse
|
34
|
Genetic variability of vancomycin-resistant Enterococcus faecium and Enterococcus faecalis isolates from humans, chickens, and pigs in Malaysia. Appl Environ Microbiol 2013; 79:4528-33. [PMID: 23666337 DOI: 10.1128/aem.00650-13] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Vancomycin-resistant enterococci (VRE) have been reported to be present in humans, chickens, and pigs in Malaysia. In the present study, representative samples of VRE isolated from these populations were examined for similarities and differences by using the multilocus sequence typing (MLST) method. Housekeeping genes of Enterococcus faecium (n = 14) and Enterococcus faecalis (n = 11) isolates were sequenced and analyzed using the MLST databases eBURST and goeBURST. We found five sequence types (STs) of E. faecium and six STs of E. faecalis existing in Malaysia. Enterococcus faecium isolates belonging to ST203, ST17, ST55, ST79, and ST29 were identified, and E. faecium ST203 was the most common among humans. The MLST profiles of E. faecium from humans in this study were similar to the globally reported nosocomial-related strain lineage belonging to clonal complex 17 (CC17). Isolates from chickens and pigs have few similarities to those from humans, except for one isolate from a chicken, which was identified as ST203. E. faecalis isolates were more diverse and were identified as ST4, ST6, ST87, ST108, ST274, and ST244, which were grouped as specific to the three hosts. E. faecalis, belonging to the high-risk CC2 and CC87, were detected among isolates from humans. In conclusion, even though one isolate from a chicken was found clonal to that of humans, the MLST analysis of E. faecium and E. faecalis supports the findings of others who suggest VRE to be predominantly host specific and that clinically important strains are found mainly among humans. The infrequent detection of a human VRE clone in a chicken may in fact suggest a reverse transmission of VRE from humans to animals.
Collapse
|
35
|
Buhnik-Rosenblau K, Matsko-Efimov V, Danin-Poleg Y, Franz CMAP, Klein G, Kashi Y. Biodiversity of Enterococcus faecalis based on genomic typing. Int J Food Microbiol 2013; 165:27-34. [PMID: 23685727 DOI: 10.1016/j.ijfoodmicro.2013.04.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 01/09/2013] [Accepted: 04/14/2013] [Indexed: 11/16/2022]
Abstract
Enterococcus faecalis is a common inhabitant of the gastrointestinal tracts of different animals and is also found in other environments, such as plants, soil, food and water. The diverse nature of E. faecalis, which includes pathogenic, commensal and probiotic strains, calls for the development of tools for accurate discrimination and characterization at the strain level. Here we studied the genetic relationships among 106 E. faecalis strains isolated from diverse origins and possessing different degrees of virulence. Strain typing was conducted using a set of selected simple-sequence repeat (SSR) loci combined with multilocus sequence typing (MLST) analysis, which discriminated among the strains and separated them into three main clusters. While pathogenic and commensal isolates were dispersed along the dendrogram, probiotic and cheese-originated strains were highly associated with one specific cluster (cluster 1). The strain panel was further characterized by testing the occurrence of two virulence determinants (esp gene and β-hemolysis). The two determinants showed low abundance among probiotic and cheese-originated strains within cluster 1 when compared to non-cluster 1 cheese-originated strains, indicating a possible association of cluster 1 with non-virulent strains. Our results further emphasize the importance and challenge of precise characterization of E. faecalis strains from various sources.
Collapse
Affiliation(s)
- Keren Buhnik-Rosenblau
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | | | | | | | |
Collapse
|
36
|
Gilmore MS, Lebreton F, van Schaik W. Genomic transition of enterococci from gut commensals to leading causes of multidrug-resistant hospital infection in the antibiotic era. Curr Opin Microbiol 2013; 16:10-6. [PMID: 23395351 DOI: 10.1016/j.mib.2013.01.006] [Citation(s) in RCA: 184] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 12/11/2012] [Accepted: 01/08/2013] [Indexed: 01/30/2023]
Abstract
The enterococci evolved over eons as highly adapted members of gastrointestinal consortia of a wide variety of hosts, but for reasons that are not entirely clear, emerged in the 1970s as leading causes of multidrug resistant hospital infection. Hospital-adapted pathogenic isolates are characterized by the presence of multiple mobile elements conferring antibiotic resistance, as well as pathogenicity islands, capsule loci and other variable traits. Enterococci may have been primed to emerge among the vanguard of antibiotic resistant strains because of their occurrence in the GI tracts of insects and simple organisms living and feeding on organic matter that is colonized by antibiotic resistant, antibiotic producing micro-organisms. In response to the opportunity to inhabit a new niche--the antibiotic treated hospital patient--the enterococcal genome is evolving in a pattern characteristic of other bacteria that have emerged as pathogens because of opportunities stemming from anthropogenic change.
Collapse
Affiliation(s)
- Michael S Gilmore
- Department of Ophthalmology, Harvard Medical School, 243 Charles St., Boston, MA 02114, USA.
| | | | | |
Collapse
|
37
|
Cryptococcal genotype influences immunologic response and human clinical outcome after meningitis. mBio 2012; 3:mBio.00196-12. [PMID: 23015735 PMCID: PMC3448160 DOI: 10.1128/mbio.00196-12] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED In sub-Saharan Africa, cryptococcal meningitis (CM) continues to be a predominant cause of AIDS-related mortality. Understanding virulence and improving clinical treatments remain important. To characterize the role of the fungal strain genotype in clinical disease, we analyzed 140 Cryptococcus isolates from 111 Ugandans with AIDS and CM. Isolates consisted of 107 nonredundant Cryptococcus neoformans var. grubii strains and 8 C. neoformans var. grubii/neoformans hybrid strains. Multilocus sequence typing (MLST) was used to characterize genotypes, yielding 15 sequence types and 4 clonal clusters. The largest clonal cluster consisted of 74 isolates. The results of Burst and phylogenetic analysis suggested that the C. neoformans var. grubii strains could be separated into three nonredundant evolutionary groups (Burst group 1 to group 3). Patient mortality was differentially associated with the different evolutionary groups (P = 0.04), with the highest mortality observed among Burst group 1, Burst group 2, and hybrid strains. Compared to Burst group 3 strains, Burst group 1 strains were associated with higher mortality (P = 0.02), exhibited increased capsule shedding (P = 0.02), and elicited a more pronounced Th(2) response during ex vivo cytokine release assays with strain-specific capsule stimulation (P = 0.02). The results of these analyses suggest that cryptococcal strain variation can be an important determinant of human immune responses and mortality. IMPORTANCE Cryptococcus neoformans is a common life-threatening human fungal pathogen that is responsible for an estimated 1 million cases of meningitis in HIV-infected patients annually. Virulence factors that are important in human disease have been identified, yet the impacts of the fungal strain genotype on virulence and outcomes of human infection remain poorly understood. Using an analysis of strain variation based on in vitro assays and clinical data from Ugandans living with AIDS and cryptococcal infection, we report that strain genotype predicts the type of immune response and mortality risk. These studies suggest that knowledge of the strain genotype during human infections could be used to predict disease outcomes and lead to improved treatment approaches aimed at targeting the specific combination of pathogen virulence and host response.
Collapse
|
38
|
Kuch A, Willems RJL, Werner G, Coque TM, Hammerum AM, Sundsfjord A, Klare I, Ruiz-Garbajosa P, Simonsen GS, van Luit-Asbroek M, Hryniewicz W, Sadowy E. Insight into antimicrobial susceptibility and population structure of contemporary human Enterococcus faecalis isolates from Europe. J Antimicrob Chemother 2011; 67:551-8. [DOI: 10.1093/jac/dkr544] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
39
|
Willems RJL, Hanage WP, Bessen DE, Feil EJ. Population biology of Gram-positive pathogens: high-risk clones for dissemination of antibiotic resistance. FEMS Microbiol Rev 2011; 35:872-900. [PMID: 21658083 DOI: 10.1111/j.1574-6976.2011.00284.x] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Infections caused by multiresistant Gram-positive bacteria represent a major health burden in the community as well as in hospitalized patients. Staphylococcus aureus, Enterococcus faecalis and Enterococcus faecium are well-known pathogens of hospitalized patients, frequently linked with resistance against multiple antibiotics, compromising effective therapy. Streptococcus pneumoniae and Streptococcus pyogenes are important pathogens in the community and S. aureus has recently emerged as an important community-acquired pathogen. Population genetic studies reveal that recombination prevails as a driving force of genetic diversity in E. faecium, E. faecalis, S. pneumoniae and S. pyogenes, and thus, these species are weakly clonal. Although recombination has a relatively modest role driving the genetic variation of the core genome of S. aureus, the horizontal acquisition of resistance and virulence genes plays a key role in the emergence of new clinically relevant clones in this species. In this review, we discuss the population genetics of E. faecium, E. faecalis, S. pneumoniae, S. pyogenes and S. aureus. Knowledge of the population structure of these pathogens is not only highly relevant for (molecular) epidemiological research but also for identifying the genetic variation that underlies changes in clinical behaviour, to improve our understanding of the pathogenic behaviour of particular clones and to identify novel targets for vaccines or immunotherapy.
Collapse
Affiliation(s)
- Rob J L Willems
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
40
|
Choudhury T, Singh KV, Sillanpää J, Nallapareddy SR, Murray BE. Importance of two Enterococcus faecium loci encoding Gls-like proteins for in vitro bile salts stress response and virulence. J Infect Dis 2011; 203:1147-54. [PMID: 21451003 DOI: 10.1093/infdis/jiq160] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
General stress proteins, Gls24 and GlsB, were previously shown to be involved in bile salts resistance of Enterococcus faecalis and in virulence. Here, we identified 2 gene clusters in Enterococcus faecium each encoding a homolog of Gls24 (Gls33 and Gls20; designated on the basis of their predicted sizes) and of GlsB (GlsB and GlsB1). The sequences of the gls33 and gls20 gene clusters from available genomes indicate distinct lineages, with those of hospital-associated CC17 isolates differing from non-CC17 by ∼7% and ∼3.5%, respectively. Deletion of an individual locus did not have a significant effect on virulence in a mouse peritonitis model, whereas a double-deletion mutant was highly attenuated (P<.004) versus wild-type. However, mutants lacking either gls33-glsB, gls20-glsB1, or both all exhibited increased sensitivity to bile salts. These results suggest that gls-encoded loci may be important for adaptation to the intestinal environment, in addition to being important for virulence functions.
Collapse
Affiliation(s)
- Tina Choudhury
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical School at Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
41
|
Ahmad A, Ghosh A, Schal C, Zurek L. Insects in confined swine operations carry a large antibiotic resistant and potentially virulent enterococcal community. BMC Microbiol 2011; 11:23. [PMID: 21269466 PMCID: PMC3039560 DOI: 10.1186/1471-2180-11-23] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 01/26/2011] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Extensive use of antibiotics as growth promoters in the livestock industry constitutes strong selection pressure for evolution and selection of antibiotic resistant bacterial strains. Unfortunately, the microbial ecology and spread of these bacteria in the agricultural, urban, and suburban environments are poorly understood. Insects such as house flies (Musca domestica) and German cockroaches (Blattella germanica) can move freely between animal waste and food and may play a significant role in the dissemination of antibiotic resistant bacteria within and between animal production farms and from farms to residential settings. RESULTS Enterococci from the digestive tract of house flies (n = 162), and feces of German cockroaches (n = 83) and pigs (n = 119), collected from two commercial swine farms were isolated, quantified, identified, and screened for antibiotic resistance and virulence. The majority of samples (93.7%) were positive for enterococci with concentrations 4.2 ± 0.7 × 10⁴ CFU/house fly, 5.5 ± 1.1 × 10⁶ CFU/g of cockroach feces, and 3.2 ± 0.8 × 10⁵ CFU/g of pig feces. Among all the identified isolates (n = 639) Enterococcus faecalis was the most common (55.5%), followed by E. hirae (24.9%), E. faecium (12.8%), and E. casseliflavus (6.7%). E. faecalis was most prevalent in house flies and cockroaches, and E. hirae was most common in pig feces. Our data showed that multi-drug (mainly tetracycline and erythromycin) resistant enterococci were common from all three sources and frequently carried antibiotic resistance genes including tet(M) and erm(B) and Tn916/1545 transposon family. E. faecalis frequently harbored virulence factors gelE, esp, and asa1. PFGE analysis of selected E. faecalis and E. faecium isolates demonstrated that cockroaches and house flies shared some of the same enterococcal clones that were detected in the swine manure indicating that insects acquired enterococci from swine manure. CONCLUSIONS This study shows that house flies and German cockroaches in the confined swine production environment likely serve as vectors and/or reservoirs of antibiotic resistant and potentially virulent enterococci and consequently may play an important role in animal and public health.
Collapse
Affiliation(s)
- Aqeel Ahmad
- Department of Entomology, Kansas State University, Manhattan, KS, USA
- Monsanto Company, St. Louis, MO 63167, USA
| | - Anuradha Ghosh
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Coby Schal
- Department of Entomology, North Carolina State University, Raleigh, NC, USA
| | - Ludek Zurek
- Department of Entomology, Kansas State University, Manhattan, KS, USA
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
42
|
Solheim M, Brekke MC, Snipen LG, Willems RJL, Nes IF, Brede DA. Comparative genomic analysis reveals significant enrichment of mobile genetic elements and genes encoding surface structure-proteins in hospital-associated clonal complex 2 Enterococcus faecalis. BMC Microbiol 2011; 11:3. [PMID: 21205308 PMCID: PMC3022643 DOI: 10.1186/1471-2180-11-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 01/04/2011] [Indexed: 02/05/2023] Open
Abstract
Background Enterococci rank among the leading causes of nosocomial infections. The failure to identify pathogen-specific genes in Enterococcus faecalis has led to a hypothesis where the virulence of different strains may be linked to strain-specific genes, and where the combined endeavor of the different gene-sets result in the ability to cause infection. Population structure studies by multilocus sequence typing have defined distinct clonal complexes (CC) of E. faecalis enriched in hospitalized patients (CC2, CC9, CC28 and CC40). Results In the present study, we have used a comparative genomic approach to investigate gene content in 63 E. faecalis strains, with a special focus on CC2. Statistical analysis using Fisher's exact test revealed 252 significantly enriched genes among CC2-strains. The majority of these genes were located within the previously defined mobile elements phage03 (n = 51), efaB5 (n = 34) and a vanB associated genomic island (n = 55). Moreover, a CC2-enriched genomic islet (EF3217 to -27), encoding a putative phage related element within the V583 genome, was identified. From the draft genomes of CC2-strains HH22 and TX0104, we also identified a CC2-enriched non-V583 locus associated with the E. faecalis pathogenicity island (PAI). Interestingly, surface related structures (including MSCRAMMs, internalin-like and WxL protein-coding genes) implicated in virulence were significantly overrepresented (9.1%; p = 0.036, Fisher's exact test) among the CC2-enriched genes. Conclusion In conclusion, we have identified a set of genes with potential roles in adaptation or persistence in the hospital environment, and that might contribute to the ability of CC2 E. faecalis isolates to cause disease.
Collapse
Affiliation(s)
- Margrete Solheim
- Laboratory of Microbial Gene Technology and Food Microbiology, Department of Chemistry, Biotechnology and Food Science, The Norwegian University of Life Sciences, N-1432 Ås, Norway.
| | | | | | | | | | | |
Collapse
|
43
|
HAUBEK DORTE. The highly leukotoxic JP2 clone of Aggregatibacter actinomycetemcomitans: evolutionary aspects, epidemiology and etiological role in aggressive periodontitis. APMIS 2010:1-53. [DOI: 10.1111/j.1600-0463.2010.02665.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
44
|
Comparative genomic analysis of pathogenic and probiotic Enterococcus faecalis isolates, and their transcriptional responses to growth in human urine. PLoS One 2010; 5:e12489. [PMID: 20824220 PMCID: PMC2930860 DOI: 10.1371/journal.pone.0012489] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 07/11/2010] [Indexed: 01/01/2023] Open
Abstract
Urinary tract infection (UTI) is the most common infection caused by enterococci, and Enterococcus faecalis accounts for the majority of enterococcal infections. Although a number of virulence related traits have been established, no comprehensive genomic or transcriptomic studies have been conducted to investigate how to distinguish pathogenic from non-pathogenic E. faecalis in their ability to cause UTI. In order to identify potential genetic traits or gene regulatory features that distinguish pathogenic from non-pathogenic E. faecalis with respect to UTI, we have performed comparative genomic analysis, and investigated growth capacity and transcriptome profiling in human urine in vitro. Six strains of different origins were cultivated and all grew readily in human urine. The three strains chosen for transcriptional analysis showed an overall similar response with respect to energy and nitrogen metabolism, stress mechanism, cell envelope modifications, and trace metal acquisition. Our results suggest that citrate and aspartate are significant for growth of E. faecalis in human urine, and manganese appear to be a limiting factor. The majority of virulence factors were either not differentially regulated or down-regulated. Notably, a significant up-regulation of genes involved in biofilm formation was observed. Strains from different origins have similar capacity to grow in human urine. The overall similar transcriptional responses between the two pathogenic and the probiotic strain suggest that the pathogenic potential of a certain E. faecalis strain may to a great extent be determined by presence of fitness and virulence factors, rather than the level of expression of such traits.
Collapse
|
45
|
Quiñones D, Kobayashi N, Nagashima S. Molecular epidemiologic analysis of Enterococcus faecalis isolates in Cuba by multilocus sequence typing. Microb Drug Resist 2010; 15:287-93. [PMID: 19857135 DOI: 10.1089/mdr.2009.0028] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We carried out the first study of Enterococcus faecalis clinical isolates in Cuba by multilocus sequence typing linking the molecular typing data with the presence of virulence determinants and the antibiotic resistance genes. A total of 23 E. faecalis isolates recovered from several clinic sources and geographic areas of Cuba during a period between 2000 and 2005 were typed by multilocus sequence typing. Thirteen sequence types (STs) including five novel STs were identified, and the ST 64 (clonal complex [CC] 8), ST 6 (CC2), ST 21(CC21), and ST 16 (CC58) were found in more than one strain. Sixty-seven percent of STs corresponded to STs reported previously in Spain, Poland, and The Netherlands, and other STs (ST115, ST64, ST6, and ST40) were genetically close to those detected in the United States. Prevalence of both antimicrobial resistance genes [aac(6')-aph(2''), aph(3'), ant(6), ant(3'')(9), aph(2'')-Id, aph(2'')-Ic, erm(B), erm(A), erm(C), mef(A), tet(M), and tet(L)] and virulence genes (agg, gelE, cylA, esp, ccf, and efaAfs) were examined by polymerase chain reaction. Aminoglycoside resistance genes aac(6')-Ie-aph(2'')-Ia, aph(3'), ant(6), ant(3'')(9) were more frequently detected in ST6, ST16, ST23, ST64, and ST115. The multidrug resistance was distributed to all STs detected, except for ST117 and singleton ST225. The presence of cyl gene was specifically linked to the ST64 and ST16. Presence of the esp, gel, and agg genes was not specific to any particular ST. This research provided the first insight into the population structure of E. faecalis in Cuba, that is, most Cuban strains were related to European strains, whereas others to U.S. strains. The CC2, CC21, and CC8, three of the biggest CCs in the world, were evidently circulating in Cuba, associated with multidrug resistance and virulence traits.
Collapse
Affiliation(s)
- Dianelys Quiñones
- Department of Bacteriology-Mycology, Pedro Kourí Institute of Tropical Medicine, Havana, Cuba.
| | | | | |
Collapse
|
46
|
Occurrence of putative pathogenicity islands in enterococci from distinct species and of differing origins. Appl Environ Microbiol 2009; 75:7271-4. [PMID: 19801483 DOI: 10.1128/aem.00687-09] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enterococci isolated from ewe's milk and cheese, clinical isolates of human and veterinary origins, and reference strains obtained from culture collections were screened for the occurrence of putative pathogenicity island (PAIs). Results obtained after PCR amplification and hybridization point toward PAI dissemination among enterococci of diverse origins (food/clinical) and species (Enterococcus faecalis/non-E. faecalis).
Collapse
|
47
|
Argayosa AM, Lee YC. Identification of (L)-fucose-binding proteins from the Nile tilapia (Oreochromis niloticus L.) serum. FISH & SHELLFISH IMMUNOLOGY 2009; 27:478-485. [PMID: 19563899 DOI: 10.1016/j.fsi.2009.06.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Revised: 06/20/2009] [Accepted: 06/21/2009] [Indexed: 05/28/2023]
Abstract
Lectins are carbohydrate-binding proteins with many biological functions including cellular recognition and innate immunity. In this study, a major l-fucose-binding lectin from the serum of Nile tilapia (Oreochromis niloticus L.), designated as TFBP, was isolated by l-fucose-BSA Sepharose CL6B affinity chromatography. The SDS-PAGE (10%) analysis of TFBP revealed a major band of approximately 23 kDa with an N-terminal amino acid sequence of DQTETAGQQSXPQDIHAVLREL which did not give significant similarities to the protein databases using BLASTp searches. Ruthenium red staining indicate positive calcium-binding property of TFBP. The purified TFBP agglutinated human type O erythrocytes but not the type A and B fresh erythrocytes. Live Aeromonas hydrophila and Enterococcus faecalis cells were also agglutinated by the lectin. The fucose-binding proteins were detected in the soluble protein extracts from the gills, gut, head kidneys, liver, serum and spleen using a fucose-binding protein probe (l-fucose-BSA-horseradish peroxidase). The binding of TFBP with the l-fucose-BSA probe was inhibited by l-fucose but not by alpha-methyl-d-mannose.
Collapse
Affiliation(s)
- Anacleto M Argayosa
- Y.C. Lee Laboratory, Department of Biology, Johns Hopkins University, MD, USA.
| | | |
Collapse
|
48
|
Burgos MJG, López RL, Abriouel H, Omar NB, Galvez A. Multilocus sequence typing of Enterococcus faecalis from vegetable foods reveals two new sequence types. Foodborne Pathog Dis 2009; 6:321-7. [PMID: 19272006 DOI: 10.1089/fpd.2008.0169] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A collection of 16 isolates of Enterococcus faecalis from different vegetable foods were characterized by multilocus sequence typing (MLST). One isolate belonged to sequence type (ST) 9 of the previously described clonal complex 9, which is frequently associated with hospital environments. The rest of the isolates were grouped into two new STs named 168 and 169. ST168 represented a singleton clone that included 14 isolates and seemed to be the predominant type among E. faecalis from vegetable samples. ST168 was closely related to ST72, differing only by one allele type. Singleton ST169 was not related to any of the previously described STs.
Collapse
|
49
|
A trilocus sequence typing scheme for hospital epidemiology and subspecies differentiation of an important nosocomial pathogen, Enterococcus faecalis. J Clin Microbiol 2009; 47:2713-9. [PMID: 19571023 DOI: 10.1128/jcm.00667-09] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, we present a trilocus sequence typing (TLST) scheme based on intragenic regions of two antigenic genes, ace and salA (encoding a collagen/laminin adhesin and a cell wall-associated antigen, respectively), and a gene associated with antibiotic resistance, lsa (encoding a putative ABC transporter), for subspecies differentiation of Enterococcus faecalis. Each of the alleles was analyzed using 50 E. faecalis isolates representing 42 diverse multilocus sequence types (ST(M); based on seven housekeeping genes) and four groups of clonally linked (by pulsed-field gel electrophoresis [PFGE]) isolates. The allelic profiles and/or concatenated sequences of the three genes agreed with multilocus sequence typing (MLST) results for typing of 49 of the 50 isolates; in addition to the one exception, two isolates were found to have identical TLST types but were single-locus variants (differing by a single nucleotide) by MLST and were therefore also classified as clonally related by MLST. TLST was also comparable to PFGE for establishing short-term epidemiological relationships, typing all isolates classified as clonally related by PFGE with the same type. TLST was then applied to representative isolates (of each PFGE subtype and isolation year) of a collection of 48 hospital isolates and demonstrated the same relationships between isolates of an outbreak strain as those found by MLST and PFGE. In conclusion, the TLST scheme described here was shown to be successful for investigating short-term epidemiology in a hospital setting and may provide an alternative to MLST for discriminating isolates.
Collapse
|
50
|
McBride SM, Coburn PS, Baghdayan AS, Willems RJL, Grande MJ, Shankar N, Gilmore MS. Genetic variation and evolution of the pathogenicity island of Enterococcus faecalis. J Bacteriol 2009; 191:3392-402. [PMID: 19270086 PMCID: PMC2687173 DOI: 10.1128/jb.00031-09] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Accepted: 02/26/2009] [Indexed: 01/14/2023] Open
Abstract
Enterococcus faecalis is a leading cause of nosocomial infections and is known for its ability to acquire and transfer virulence and antibiotic resistance determinants from other organisms. A 150-kb pathogenicity island (PAI) encoding several genes that contribute to pathogenesis was identified among antibiotic-resistant clinical isolates. In the current study, we examined the structure of the PAI in a collection of isolates from diverse sources in order to gain insight into its genesis and dynamics. Using multilocus sequence typing to assess relatedness at the level of strain background and microarray analysis to identify variations in the PAI, we determined the extent to which structural variations occur within the PAI and also the extent to which these variations occur independently of the chromosome. Our findings provide evidence for a modular gain of defined gene clusters by the PAI. These results support horizontal transfer as the mechanism for accretion of genes into the PAI and highlight a likely role for mobile elements in the evolution of the E. faecalis PAI.
Collapse
Affiliation(s)
- Shonna M McBride
- Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, USA
| | | | | | | | | | | | | |
Collapse
|