1
|
Jia J, Lu SE. Comparative Genome Analyses Provide Insight into the Antimicrobial Activity of Endophytic Burkholderia. Microorganisms 2024; 12:100. [PMID: 38257926 PMCID: PMC10821513 DOI: 10.3390/microorganisms12010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Endophytic bacteria are endosymbionts that colonize a portion of plants without harming the plant for at least a part of its life cycle. Bacterial endophytes play an essential role in promoting plant growth using multiple mechanisms. The genus Burkholderia is an important member among endophytes and encompasses bacterial species with high genetic versatility and adaptability. In this study, the endophytic characteristics of Burkholderia species are investigated via comparative genomic analyses of several endophytic Burkholderia strains with pathogenic Burkholderia strains. A group of bacterial genes was identified and predicted as the putative endophytic behavior genes of Burkholderia. Multiple antimicrobial biosynthesis genes were observed in these endophytic bacteria; however, certain important pathogenic and virulence genes were absent. The majority of resistome genes were distributed relatively evenly among the endophytic and pathogenic bacteria. All known types of secretion systems were found in the studied bacteria. This includes T3SS and T4SS, which were previously thought to be disproportionately represented in endophytes. Additionally, questionable CRISPR-Cas systems with an orphan CRISPR array were prevalent, suggesting that intact CRISPR-Cas systems may not exist in symbiotes of Burkholderia. This research not only sheds light on the antimicrobial activities that contribute to biocontrol but also expands our understanding of genomic variations in Burkholderia's endophytic and pathogenic bacteria.
Collapse
Affiliation(s)
| | - Shi-En Lu
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA;
| |
Collapse
|
2
|
Ruest MK, Supina BSI, Dennis JJ. Bacteriophage steering of Burkholderia cenocepacia toward reduced virulence and increased antibiotic sensitivity. J Bacteriol 2023; 205:e0019623. [PMID: 37791751 PMCID: PMC10601696 DOI: 10.1128/jb.00196-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/06/2023] [Indexed: 10/05/2023] Open
Abstract
Antibiotic resistance in bacteria is a growing global concern and has spurred increasing efforts to find alternative therapeutics, such as the use of bacterial viruses, or bacteriophages. One promising approach is to use phages that not only kill pathogenic bacteria but also select phage-resistant survivors that are newly sensitized to traditional antibiotics, in a process called "phage steering." Members of the bacterial genus Burkholderia, which includes various human pathogens, are highly resistant to most antimicrobial agents, including serum immune components, antimicrobial peptides, and polymixin-class antibiotics. However, the application of phages in combination with certain antibiotics can produce synergistic effects that more effectively kill pathogenic bacteria. Herein, we demonstrate that Burkholderia cenocepacia serum resistance is due to intact lipopolysaccharide (LPS) and membranes, and phage-induced resistance altering LPS structure can enhance bacterial sensitivity not only to immune components in serum but also to membrane-associated antibiotics such as colistin. IMPORTANCE Bacteria frequently encounter selection pressure from both antibiotics and lytic phages, but little is known about the interactions between antibiotics and phages. This study provides new insights into the evolutionary trade-offs between phage resistance and antibiotic sensitivity. The creation of phage resistance through changes in membrane structure or lipopolysaccharide composition can simultaneously be a major cause of antibiotic sensitivity. Our results provide evidence of synergistic therapeutic efficacy in phage-antibiotic interactions and have implications for the future clinical use of phage steering in phage therapy applications.
Collapse
Affiliation(s)
- Marta K. Ruest
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | - Jonathan J. Dennis
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
3
|
Hogan AM, Rahman ASMZ, Motnenko A, Natarajan A, Maydaniuk DT, León B, Batun Z, Palacios A, Bosch A, Cardona ST. Profiling cell envelope-antibiotic interactions reveals vulnerabilities to β-lactams in a multidrug-resistant bacterium. Nat Commun 2023; 14:4815. [PMID: 37558695 PMCID: PMC10412643 DOI: 10.1038/s41467-023-40494-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/28/2023] [Indexed: 08/11/2023] Open
Abstract
The cell envelope of Gram-negative bacteria belonging to the Burkholderia cepacia complex (Bcc) presents unique restrictions to antibiotic penetration. As a consequence, Bcc species are notorious for causing recalcitrant multidrug-resistant infections in immunocompromised individuals. Here, we present the results of a genome-wide screen for cell envelope-associated resistance and susceptibility determinants in a Burkholderia cenocepacia clinical isolate. For this purpose, we construct a high-density, randomly-barcoded transposon mutant library and expose it to 19 cell envelope-targeting antibiotics. By quantifying relative mutant fitness with BarSeq, followed by validation with CRISPR-interference, we profile over a hundred functional associations and identify mediators of antibiotic susceptibility in the Bcc cell envelope. We reveal connections between β-lactam susceptibility, peptidoglycan synthesis, and blockages in undecaprenyl phosphate metabolism. The synergy of the β-lactam/β-lactamase inhibitor combination ceftazidime/avibactam is primarily mediated by inhibition of the PenB carbapenemase. In comparison with ceftazidime, avibactam more strongly potentiates the activity of aztreonam and meropenem in a panel of Bcc clinical isolates. Finally, we characterize in Bcc the iron and receptor-dependent activity of the siderophore-cephalosporin antibiotic, cefiderocol. Our work has implications for antibiotic target prioritization, and for using additional combinations of β-lactam/β-lactamase inhibitors that can extend the utility of current antibacterial therapies.
Collapse
Affiliation(s)
- Andrew M Hogan
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | - Anna Motnenko
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Aakash Natarajan
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Dustin T Maydaniuk
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Beltina León
- CINDEFI, CONICET-CCT La Plata, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Zayra Batun
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Armando Palacios
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Alejandra Bosch
- CINDEFI, CONICET-CCT La Plata, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Silvia T Cardona
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada.
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
4
|
Veloso P, Fernández A, Astorga J, González-Quintanilla D, Castro A, Escobar A, Hoare A, Hernández M. Lipopolysaccharide from Porphyromonas gingivalis, but Not from Porphyromonas endodontalis, Induces Macrophage M1 Profile. Int J Mol Sci 2022; 23:ijms231710011. [PMID: 36077408 PMCID: PMC9456100 DOI: 10.3390/ijms231710011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/29/2022] Open
Abstract
Apical Lesions of Endodontic Origin (ALEO) are initiated by polymicrobial endodontic canal infection. Porphyromonas gingivalis (Pg) and Porphyromonas endodontalis (Pe) lipopolysaccharides (LPS) can induce a pro-inflammatory macrophage response through their recognition by TLR2 and TLR4. However, polarization responses induced by Pg and/or Pe LPS in macrophages are not fully understood. We aimed to characterize the polarization profiles of macrophages differentiated from THP-1 cells following Pg and/or Pe LPS stimulation from reference strain and clinical isolates. A modified LPS purification protocol was implemented and the electrophoretic LPS profiles were characterized. THP-1 human monocytes differentiated to macrophages were stimulated with Pg and Pe LPS. Polarization profiles were characterized through cell surface markers and secreted cytokines levels after 24 h of stimulation. TLR2 and TLR4 cell surfaces and transcriptional levels were determined after 24 or 2 h of LPS stimulation, respectively. LPS from Pg induced a predominant M1 profile in macrophages evidenced by changes in the expression of the surface marker CD64 and pro-inflammatory cytokine profiles, TNF-α, IL-1β, IL-6, and IL-12. Pe LPS was unable to induce a significant response. TLR2 and TLR4 expressions were neither modified by Pg or Pe LPS. Pg LPS, but not Pe LPS, induced a macrophage M1 Profile.
Collapse
Affiliation(s)
- Pablo Veloso
- Laboratory of Periodontal Biology, Faculty of Dentistry, Universidad de Chile, Santiago 8380544, Chile
| | - Alejandra Fernández
- Laboratory of Periodontal Biology, Faculty of Dentistry, Universidad de Chile, Santiago 8380544, Chile
- Faculty of Dentistry, Universidad Andres Bello, Santiago 8370133, Chile
| | - Jessica Astorga
- Laboratory of Periodontal Biology, Faculty of Dentistry, Universidad de Chile, Santiago 8380544, Chile
| | - David González-Quintanilla
- Laboratory of Periodontal Biology, Faculty of Dentistry, Universidad de Chile, Santiago 8380544, Chile
- School of Health Sciences, Dentistry, Universidad Viña del Mar, Viña del Mar 2580022, Chile
| | - Alfredo Castro
- Laboratory of Periodontal Biology, Faculty of Dentistry, Universidad de Chile, Santiago 8380544, Chile
| | - Alejandro Escobar
- Cellular and Molecular Biology Laboratory, Institute of Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago 8380544, Chile
| | - Anilei Hoare
- Oral Microbiology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago 8380544, Chile
| | - Marcela Hernández
- Laboratory of Periodontal Biology, Faculty of Dentistry, Universidad de Chile, Santiago 8380544, Chile
- Department of Pathology and Oral Medicine, Faculty of Dentistry, Universidad de Chile, Santiago 8380544, Chile
- Correspondence:
| |
Collapse
|
5
|
Biosynthesis of the Pseudomonas aeruginosa common polysaccharide antigen by D-Rhamnosyltransferases WbpX and WbpY. Glycoconj J 2022; 39:393-411. [PMID: 35166992 PMCID: PMC8853325 DOI: 10.1007/s10719-022-10040-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 11/28/2021] [Accepted: 01/12/2022] [Indexed: 12/28/2022]
Abstract
The Gram-negative bacterium Pseudomonas aeruginosa simultaneously expresses two O-antigenic glycoforms. While the O-specific antigen (OSA) is variable in composition, the common polysaccharide antigen (CPA) is highly conserved and is composed of a homopolymer of D-rhamnose (D-Rha) in trisaccharide repeating units [D-Rhaα1-2-D-Rhaα1-3-D-Rhaɑ1-3]n. We have previously reported that α3-D-Rha-transferase WbpZ transfers a D-Rha residue from GDP-D-Rha to D-GlcNAcα-O-PO3-PO3-(CH2)11-O-phenyl. Genes encoding two more D-Rha-transferases are found in the O antigen gene cluster (wbpX and wbpY). In this study we showed that WbpX and WbpY recombinantly expressed in E. coli differ in their donor and acceptor specificities and have properties of GT-B folded enzymes of the GT4 glycosyltransferase family. NMR spectroscopic analysis of the WbpY reaction product showed that WbpY transferred one D-Rha residue in α1-3 linkage to synthetic D-Rhaα1-3-D-GlcNAcα-O-PO3-PO3-(CH2)11-O-phenyl acceptor. WbpX synthesized several products that contained D-Rha in both α1-2 and α1-3 linkages. Mass spectrometry indicated that the mixture of WbpX and WbpY efficiently catalyzed the synthesis of D-Rha oligomers in a non-processive mechanism. Since O antigens are virulence factors, these findings open the door to advancing technology for antibacterial drug discovery and vaccine development.
Collapse
|
6
|
Syed I, Wooten RM. Interactions Between Pathogenic Burkholderia and the Complement System: A Review of Potential Immune Evasion Mechanisms. Front Cell Infect Microbiol 2021; 11:701362. [PMID: 34660335 PMCID: PMC8515183 DOI: 10.3389/fcimb.2021.701362] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022] Open
Abstract
The genus Burkholderia contains over 80 different Gram-negative species including both plant and human pathogens, the latter of which can be classified into one of two groups: the Burkholderia pseudomallei complex (Bpc) or the Burkholderia cepacia complex (Bcc). Bpc pathogens Burkholderia pseudomallei and Burkholderia mallei are highly virulent, and both have considerable potential for use as Tier 1 bioterrorism agents; thus there is great interest in the development of novel vaccines and therapeutics for the prevention and treatment of these infections. While Bcc pathogens Burkholderia cenocepacia, Burkholderia multivorans, and Burkholderia cepacia are not considered bioterror threats, the incredible impact these infections have on the cystic fibrosis community inspires a similar demand for vaccines and therapeutics for the prevention and treatment of these infections as well. Understanding how these pathogens interact with and evade the host immune system will help uncover novel therapeutic targets within these organisms. Given the important role of the complement system in the clearance of bacterial pathogens, this arm of the immune response must be efficiently evaded for successful infection to occur. In this review, we will introduce the Burkholderia species to be discussed, followed by a summary of the complement system and known mechanisms by which pathogens interact with this critical system to evade clearance within the host. We will conclude with a review of literature relating to the interactions between the herein discussed Burkholderia species and the host complement system, with the goal of highlighting areas in this field that warrant further investigation.
Collapse
Affiliation(s)
- Irum Syed
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | | |
Collapse
|
7
|
Syed I, Wooten RM. Interactions Between Pathogenic Burkholderia and the Complement System: A Review of Potential Immune Evasion Mechanisms. Front Cell Infect Microbiol 2021. [PMID: 34660335 DOI: 10.1086/69216810.3389/fcimb.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023] Open
Abstract
The genus Burkholderia contains over 80 different Gram-negative species including both plant and human pathogens, the latter of which can be classified into one of two groups: the Burkholderia pseudomallei complex (Bpc) or the Burkholderia cepacia complex (Bcc). Bpc pathogens Burkholderia pseudomallei and Burkholderia mallei are highly virulent, and both have considerable potential for use as Tier 1 bioterrorism agents; thus there is great interest in the development of novel vaccines and therapeutics for the prevention and treatment of these infections. While Bcc pathogens Burkholderia cenocepacia, Burkholderia multivorans, and Burkholderia cepacia are not considered bioterror threats, the incredible impact these infections have on the cystic fibrosis community inspires a similar demand for vaccines and therapeutics for the prevention and treatment of these infections as well. Understanding how these pathogens interact with and evade the host immune system will help uncover novel therapeutic targets within these organisms. Given the important role of the complement system in the clearance of bacterial pathogens, this arm of the immune response must be efficiently evaded for successful infection to occur. In this review, we will introduce the Burkholderia species to be discussed, followed by a summary of the complement system and known mechanisms by which pathogens interact with this critical system to evade clearance within the host. We will conclude with a review of literature relating to the interactions between the herein discussed Burkholderia species and the host complement system, with the goal of highlighting areas in this field that warrant further investigation.
Collapse
Affiliation(s)
- Irum Syed
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - R Mark Wooten
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| |
Collapse
|
8
|
Hassan AA, dos Santos SC, Cooper VS, Sá-Correia I. Comparative Evolutionary Patterns of Burkholderia cenocepacia and B. multivorans During Chronic Co-infection of a Cystic Fibrosis Patient Lung. Front Microbiol 2020; 11:574626. [PMID: 33101250 PMCID: PMC7545829 DOI: 10.3389/fmicb.2020.574626] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 08/31/2020] [Indexed: 12/26/2022] Open
Abstract
During chronic respiratory infections of cystic fibrosis (CF) patients, bacteria adaptively evolve in response to the nutritional and immune environment as well as influence other infecting microbes. The present study was designed to gain insights into the genetic mechanisms underlying adaptation and diversification by the two most prevalent pathogenic species of the Burkholderia cepacia complex (Bcc), B. cenocepacia and B. multivorans. Herein, we study the evolution of both of these species during coinfection of a CF patient for 4.4 years using genome sequences of 9 B. multivorans and 11 B. cenocepacia. This co-infection spanned at least 3 years following initial infection by B. multivorans and ultimately ended in the patient's death by cepacia syndrome. Both species acquired several mutations with accumulation rates of 2.08 (B. cenocepacia) and 2.27 (B. multivorans) SNPs/year. Many of the mutated genes are associated with oxidative stress response, transition metal metabolism, defense mechanisms against antibiotics, and other metabolic alterations consistent with the idea that positive selection might be driven by the action of the host immune system, antibiotic therapy and low oxygen and iron concentrations. Two orthologous genes shared by B. cenocepacia and B. multivorans were found to be under strong selection and accumulated mutations associated with lineage diversification. One gene encodes a nucleotide sugar dehydratase involved in lipopolysaccharide O-antigen (OAg) biosynthesis (wbiI). The other gene encodes a putative two-component regulatory sensor kinase protein required to sense and adapt to oxidative- and heavy metal- inducing stresses. This study contributes to understanding of shared and species-specific evolutionary patterns of B. cenocepacia and B. multivorans evolving in the same CF lung environment.
Collapse
Affiliation(s)
- A. Amir Hassan
- iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Sandra C. dos Santos
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Vaughn S. Cooper
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Isabel Sá-Correia
- iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
9
|
Lee C, Mannaa M, Kim N, Kim J, Choi Y, Kim SH, Jung B, Lee HH, Lee J, Seo YS. Stress Tolerance and Virulence-Related Roles of Lipopolysaccharide in Burkholderia glumae. THE PLANT PATHOLOGY JOURNAL 2019; 35:445-458. [PMID: 31632220 PMCID: PMC6788416 DOI: 10.5423/ppj.oa.04.2019.0124] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/26/2019] [Accepted: 07/02/2019] [Indexed: 05/10/2023]
Abstract
The lipopolysaccharide (LPS) composed of lipid A, core, and O-antigen is the fundamental constituent of the outer membrane in gram-negative bacteria. This study was conducted to investigate the roles of LPS in Burkholderia glumae, the phytopathogen causing bacterial panicle blight and seedling rot in rice. To study the roles of the core oligosaccharide (OS) and the O-antigen region, mutant strains targeting the waaC and the wbiFGHI genes were generated. The LPS profile was greatly affected by disruption of the waaC gene and slight reductions were observed in the O-antigen region following wbiFGHI deletions. The results indicated that disruption in the core OS biosynthesis-related gene, waaC, was associated with increased sensitivity to environmental stress conditions including acidic, osmotic, saline, and detergent stress, and to polymyxin B. Moreover, significant impairment in the swimming and swarming motility and attenuation of bacterial virulence to rice were also observed in the waaC-defective mutant. The motility and virulence of O-antigen mutants defective in any gene of the wbiFGHI operon, were not significantly different from the wild-type except in slight decrease in swimming and swarming motility with wbiH deletion. Altogether, the results of present study indicated that the LPS, particularly the core OS region, is required for tolerance to environmental stress and full virulence in B. glumae. To our knowledge, this is the first functional study of LPS in a plant pathogenic Burkholderia sp. and presents a step forward toward full understanding of B. glumae pathogenesis.
Collapse
Affiliation(s)
- Chaeyeong Lee
- Department of Microbiology, Pusan National University, Busan 46241,
Korea
- Department of Integrated Biological Science, Pusan National University, Busan 46241,
Korea
| | - Mohamed Mannaa
- Department of Microbiology, Pusan National University, Busan 46241,
Korea
- Department of Integrated Biological Science, Pusan National University, Busan 46241,
Korea
| | - Namgyu Kim
- Department of Microbiology, Pusan National University, Busan 46241,
Korea
- Department of Integrated Biological Science, Pusan National University, Busan 46241,
Korea
| | - Juyun Kim
- Department of Microbiology, Pusan National University, Busan 46241,
Korea
- Department of Integrated Biological Science, Pusan National University, Busan 46241,
Korea
| | - Yeounju Choi
- Department of Microbiology, Pusan National University, Busan 46241,
Korea
- Department of Integrated Biological Science, Pusan National University, Busan 46241,
Korea
| | - Soo Hyun Kim
- Department of Microbiology, Pusan National University, Busan 46241,
Korea
- Department of Integrated Biological Science, Pusan National University, Busan 46241,
Korea
| | - Boknam Jung
- Department of Applied Biology, Dong-A University, Busan 49315,
Korea
| | - Hyun-Hee Lee
- Department of Microbiology, Pusan National University, Busan 46241,
Korea
- Department of Integrated Biological Science, Pusan National University, Busan 46241,
Korea
| | - Jungkwan Lee
- Department of Applied Biology, Dong-A University, Busan 49315,
Korea
| | - Young-Su Seo
- Department of Microbiology, Pusan National University, Busan 46241,
Korea
- Department of Integrated Biological Science, Pusan National University, Busan 46241,
Korea
- Corresponding author.: Phone) +82-51-510-2267, FAX) +82-51-514-1778, E-mail)
| |
Collapse
|
10
|
Fathy Mohamed Y, Scott NE, Molinaro A, Creuzenet C, Ortega X, Lertmemongkolchai G, Tunney MM, Green H, Jones AM, DeShazer D, Currie BJ, Foster LJ, Ingram R, De Castro C, Valvano MA. A general protein O-glycosylation machinery conserved in Burkholderia species improves bacterial fitness and elicits glycan immunogenicity in humans. J Biol Chem 2019; 294:13248-13268. [PMID: 31350337 PMCID: PMC6737235 DOI: 10.1074/jbc.ra119.009671] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/22/2019] [Indexed: 12/12/2022] Open
Abstract
The Burkholderia genus encompasses many Gram-negative bacteria living in the rhizosphere. Some Burkholderia species can cause life-threatening human infections, highlighting the need for clinical interventions targeting specific lipopolysaccharide proteins. Burkholderia cenocepacia O-linked protein glycosylation has been reported, but the chemical structure of the O-glycan and the machinery required for its biosynthesis are unknown and could reveal potential therapeutic targets. Here, using bioinformatics approaches, gene-knockout mutants, purified recombinant proteins, LC-MS-based analyses of O-glycans, and NMR-based structural analyses, we identified a B. cenocepacia O-glycosylation (ogc) gene cluster necessary for synthesis, assembly, and membrane translocation of a lipid-linked O-glycan, as well as its structure, which consists of a β-Gal-(1,3)-α-GalNAc-(1,3)-β-GalNAc trisaccharide. We demonstrate that the ogc cluster is conserved in the Burkholderia genus, and we confirm the production of glycoproteins with similar glycans in the Burkholderia species: B. thailandensis, B. gladioli, and B. pseudomallei Furthermore, we show that absence of protein O-glycosylation severely affects bacterial fitness and accelerates bacterial clearance in a Galleria mellonella larva infection model. Finally, our experiments revealed that patients infected with B. cenocepacia, Burkholderia multivorans, B. pseudomallei, or Burkholderia mallei develop O-glycan-specific antibodies. Together, these results highlight the importance of general protein O-glycosylation in the biology of the Burkholderia genus and its potential as a target for inhibition or immunotherapy approaches to control Burkholderia infections.
Collapse
Affiliation(s)
- Yasmine Fathy Mohamed
- Wellcome-Wolfson Institute of Experimental Medicine, Queen's University Belfast, Belfast BT97BL, United Kingdom; Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, 21561 Alexandria, Egypt
| | - Nichollas E Scott
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Naples, Federico II, Via Cintia 4, 80126 Napoli, Italy
| | - Carole Creuzenet
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Ximena Ortega
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Ganjana Lertmemongkolchai
- Centre for Research and Development of Medical Diagnostic Laboratories, Mekong Health Sciences Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Michael M Tunney
- Halo Research Group, School of Pharmacy, Queen's University Belfast, Belfast BT97BL, United Kingdom
| | - Heather Green
- Manchester Adult Cystic Fibrosis Centre, University Hospital of South Manchester NHS Foundation Trust, Manchester M23 9LT, United Kingdom
| | - Andrew M Jones
- Manchester Adult Cystic Fibrosis Centre, University Hospital of South Manchester NHS Foundation Trust, Manchester M23 9LT, United Kingdom
| | - David DeShazer
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland 21702
| | - Bart J Currie
- Menzies School of Health Research and Infectious Diseases Department, Royal Darwin Hospital, Darwin 0818, Northern Territory, Australia
| | - Leonard J Foster
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| | - Rebecca Ingram
- Wellcome-Wolfson Institute of Experimental Medicine, Queen's University Belfast, Belfast BT97BL, United Kingdom
| | - Cristina De Castro
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| | - Miguel A Valvano
- Wellcome-Wolfson Institute of Experimental Medicine, Queen's University Belfast, Belfast BT97BL, United Kingdom; Department of Microbiology and Immunology, University of Western Ontario, London, Ontario N6A 5C1, Canada.
| |
Collapse
|
11
|
Cloutier M, Muru K, Ravicoularamin G, Gauthier C. Polysaccharides from Burkholderia species as targets for vaccine development, immunomodulation and chemical synthesis. Nat Prod Rep 2019; 35:1251-1293. [PMID: 30023998 DOI: 10.1039/c8np00046h] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Covering: up to 2018 Burkholderia species are a vast group of human pathogenic, phytopathogenic, and plant- or environment-associated bacteria. B. pseudomallei, B. mallei, and B. cepacia complex are the causative agents of melioidosis, glanders, and cystic fibrosis-related infections, respectively, which are fatal diseases in humans and animals. Due to their high resistance to antibiotics, high mortality rates, and increased infectivity via the respiratory tract, B. pseudomallei and B. mallei have been listed as potential bioterrorism agents by the Centers for Disease Control and Prevention. Burkholderia species are able to produce a large network of surface-exposed polysaccharides, i.e., lipopolysaccharides, capsular polysaccharides, and exopolysaccharides, which are virulence factors, immunomodulators, major biofilm components, and protective antigens, and have crucial implications in the pathogenicity of Burkholderia-associated diseases. This review provides a comprehensive and up-to-date account regarding the structural elucidation and biological activities of surface polysaccharides produced by Burkholderia species. The chemical synthesis of oligosaccharides mimicking Burkholderia polysaccharides is described in detail. Emphasis is placed on the recent research efforts toward the development of glycoconjugate vaccines against melioidosis and glanders based on synthetic or native Burkholderia oligo/polysaccharides.
Collapse
Affiliation(s)
- Maude Cloutier
- INRS-Institut Armand-Frappier, Université du Québec, 531, boul. des Prairies, Laval, Québec H7V 1B7, Canada.
| | | | | | | |
Collapse
|
12
|
Cullen L, O'Connor A, McCormack S, Owens RA, Holt GS, Collins C, Callaghan M, Doyle S, Smith D, Schaffer K, Fitzpatrick DA, McClean S. The involvement of the low-oxygen-activated locus of Burkholderia cenocepacia in adaptation during cystic fibrosis infection. Sci Rep 2018; 8:13386. [PMID: 30190507 PMCID: PMC6127331 DOI: 10.1038/s41598-018-31556-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/20/2018] [Indexed: 12/30/2022] Open
Abstract
Chronic infection with opportunistic pathogens including Burkholderia cepacia complex (Bcc) is a hallmark of cystic fibrosis (CF). We investigated the adaptive mechanisms facilitating chronic lung infection in sequential Bcc isolates from two siblings with CF (P1 and P2), one of whom also experienced intermittent blood-stream infections (P2). We previously showed increased lung cell attachment with colonisation time in both P1 and P2. WGS analysis confirmed that the isolates are closely related. Twelve genes showed three or more mutations, suggesting these were genes under selection. Single nucleotide polymorphisms (SNVs) in 45 regulatory genes were also observed. Proteomic analysis showed that the abundance of 149 proteins increased over 61-months in sputum isolates, and both time- and source-related alterations in protein abundance between the second patient’s isolates. A consistent time-dependent increase in abundance of 19 proteins encoded by a low-oxygen-activated (lxa) locus was observed in both sets of isolates. Attachment was dramatically reduced in a B. cenocepacia K56-2Δlxa-locus deletion mutant, further indicating that it encodes protein(s) involved in host-cell attachment. Time-related changes in virulence in Galleria mellonella or motility were not observed. We conclude that the lxa-locus, associated with anoxic persistence in vitro, plays a role in host-cell attachment and adaptation to chronic colonization in the hypoxic niche of the CF lung.
Collapse
Affiliation(s)
- Louise Cullen
- Centre of Microbial Host Interactions, Institute of Technology Tallaght, Dublin, 24, Ireland
| | - Andrew O'Connor
- Centre of Microbial Host Interactions, Institute of Technology Tallaght, Dublin, 24, Ireland.,School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin, 4, Ireland
| | - Sarah McCormack
- School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin, 4, Ireland
| | - Rebecca A Owens
- Department of Biology, Maynooth University, Co. Kildare, Ireland
| | - Giles S Holt
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, England
| | - Cassandra Collins
- Centre of Microbial Host Interactions, Institute of Technology Tallaght, Dublin, 24, Ireland
| | - Máire Callaghan
- Centre of Microbial Host Interactions, Institute of Technology Tallaght, Dublin, 24, Ireland
| | - Sean Doyle
- Department of Biology, Maynooth University, Co. Kildare, Ireland
| | - Darren Smith
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, England
| | - Kirsten Schaffer
- Department of Microbiology, St. Vincent's University Hospital, Elm Park, Dublin, Ireland
| | | | - Siobhán McClean
- Centre of Microbial Host Interactions, Institute of Technology Tallaght, Dublin, 24, Ireland. .,School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin, 4, Ireland.
| |
Collapse
|
13
|
The Mla Pathway Plays an Essential Role in the Intrinsic Resistance of Burkholderia cepacia Complex Species to Antimicrobials and Host Innate Components. J Bacteriol 2018; 200:JB.00156-18. [PMID: 29986943 DOI: 10.1128/jb.00156-18] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/02/2018] [Indexed: 11/20/2022] Open
Abstract
Antibiotic resistance is a threat to our modern society, and new strategies leading to the identification of new molecules or targets to combat multidrug-resistant pathogens are needed. Species of the genus Burkholderia, including the Burkholderia cepacia complex (Bcc), Burkholderia pseudomallei, and Burkholderia mallei, can be highly pathogenic and are intrinsically resistant to multiple classes of antibiotics. Bcc species are nonetheless sensitive to extracellular products released by Pseudomonas aeruginosa in interspecies competition. We screened for Burkholderia transposon mutants with increased sensitivity to P. aeruginosa spent medium and identified multiple mutants in genes sharing homology with the Mla pathway. Insertional mutants in representative genes of the Bcc Mla pathway had a compromised cell membrane and were more sensitive to various extracellular stresses, including antibiotics and human serum. More precisely, mla mutants in the Bcc species Burkholderia cenocepacia and Burkholderia dolosa were more susceptible to Gram-positive antibiotics (i.e., macrolides and rifampin), fluoroquinolones, tetracyclines, and chloramphenicol. Genetic complementation of mlaC insertional mutants restored cell permeability and resistance to Gram-positive antibiotics. Importantly, Bcc mla mutants were not universally weaker strains since their susceptibilities to other classes of antibiotics were unaffected. Although cell permeability of homologous mla mutants in Escherichia coli or P. aeruginosa was also impaired, they were not more sensitive to Gram-positive antibiotics or other antimicrobials as was observed in Bcc mla mutants. Together, the data suggest that the Mla pathway in Burkholderia may play a different biological role, which could potentially represent a Burkholderia-specific drug target in combination therapy with antibiotic adjuvants.IMPORTANCE The outer membrane of Gram-negative bacteria acts as an effective barrier against toxic compounds, and therefore compromising this structure could increase sensitivity to currently available antibiotics. In this study, we show that the Mla pathway, a system involved in maintaining the integrity of the outer membrane, is genetically and functionally different in Burkholderia cepacia complex species compared to that in other proteobacteria. Mutants in mla genes of Burkholderia cenocepacia or Burkholderia dolosa were sensitive to Gram-positive antibiotics, while this effect was not observed in Escherichia coli or Pseudomonas aeruginosa The Mla pathway in Burkholderia species may represent an ideal genus-specific target to address their intrinsic antimicrobial resistances.
Collapse
|
14
|
Wong YC, Abd El Ghany M, Ghazzali RNM, Yap SJ, Hoh CC, Pain A, Nathan S. Genetic Determinants Associated With in Vivo Survival of Burkholderia cenocepacia in the Caenorhabditis elegans Model. Front Microbiol 2018; 9:1118. [PMID: 29896180 PMCID: PMC5987112 DOI: 10.3389/fmicb.2018.01118] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 05/11/2018] [Indexed: 12/15/2022] Open
Abstract
A Burkholderia cenocepacia infection usually leads to reduced survival and fatal cepacia syndrome in cystic fibrosis patients. The identification of B. cenocepacia essential genes for in vivo survival is key to designing new anti-infectives therapies. We used the Transposon-Directed Insertion Sequencing (TraDIS) approach to identify genes required for B. cenocepacia survival in the model infection host, Caenorhabditis elegans. A B. cenocepacia J2315 transposon pool of ∼500,000 mutants was used to infect C. elegans. We identified 178 genes as crucial for B. cenocepacia survival in the infected nematode. The majority of these genes code for proteins of unknown function, many of which are encoded by the genomic island BcenGI13, while other gene products are involved in nutrient acquisition, general stress responses and LPS O-antigen biosynthesis. Deletion of the glycosyltransferase gene wbxB and a histone-like nucleoid structuring (H-NS) protein-encoding gene (BCAL0154) reduced bacterial accumulation and attenuated virulence in C. elegans. Further analysis using quantitative RT-PCR indicated that BCAL0154 modulates B. cenocepacia pathogenesis via transcriptional regulation of motility-associated genes including fliC, fliG, flhD, and cheB1. This screen has successfully identified genes required for B. cenocepacia survival within the host-associated environment, many of which are potential targets for developing new antimicrobials.
Collapse
Affiliation(s)
- Yee-Chin Wong
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Moataz Abd El Ghany
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.,The Westmead Institute for Medical Research and The Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, NSW, Australia
| | - Raeece N M Ghazzali
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | | | | | - Arnab Pain
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Sheila Nathan
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| |
Collapse
|
15
|
Bi N, Xiong C, Jin G, Guo Z, Gu G. Synthesis of a trisaccharide repeating unit of the O-antigen from Burkholderia cenocepacia and its dimer. Carbohydr Res 2017; 451:1-11. [DOI: 10.1016/j.carres.2017.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 09/05/2017] [Accepted: 09/05/2017] [Indexed: 12/13/2022]
|
16
|
Stietz MS, Lopez C, Osifo O, Tolmasky ME, Cardona ST. Evaluation of the electron transfer flavoprotein as an antibacterial target in Burkholderia cenocepacia. Can J Microbiol 2017; 63:857-863. [PMID: 28817787 DOI: 10.1139/cjm-2017-0350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
There are hundreds of essential genes in multidrug-resistant bacterial genomes, but only a few of their products are exploited as antibacterial targets. An example is the electron transfer flavoprotein (ETF), which is required for growth and viability in Burkholderia cenocepacia. Here, we evaluated ETF as an antibiotic target for Burkholderia cepacia complex (Bcc). Depletion of the bacterial ETF during infection of Caenorhabditis elegans significantly extended survival of the nematodes, proving that ETF is essential for survival of B. cenocepacia in this host model. In spite of the arrest in respiration in ETF mutants, the inhibition of etf expression did not increase the formation of persister cells, when treated with high doses of ciprofloxacin or meropenem. To test if etf translation could be inhibited by RNA interference, antisense oligonucleotides that target the etfBA operon were synthesized. One antisense oligonucleotide was effective in inhibiting etfB translation in vitro but not in vivo, highlighting the challenge of reduced membrane permeability for the design of drugs against B. cenocepacia. This work contributes to the validation of ETF of B. cenocepacia as a target for antibacterial therapy and demonstrates the utility of a C. elegans liquid killing assay to validate gene essentiality in an in vivo infection model.
Collapse
Affiliation(s)
- Maria S Stietz
- a Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Christina Lopez
- b Department of Biological Science, Center for Applied Biotechnology Studies, California State University Fullerton, Fullerton, CA 92831-3599, USA
| | - Osasumwen Osifo
- a Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Marcelo E Tolmasky
- b Department of Biological Science, Center for Applied Biotechnology Studies, California State University Fullerton, Fullerton, CA 92831-3599, USA
| | - Silvia T Cardona
- a Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.,c Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
17
|
Mangalea MR, Borlee GI, Borlee BR. The Current Status of Extracellular Polymeric Substances Produced by Burkholderia pseudomallei. CURRENT TROPICAL MEDICINE REPORTS 2017. [DOI: 10.1007/s40475-017-0118-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Hassan AA, Maldonado RF, Dos Santos SC, Di Lorenzo F, Silipo A, Coutinho CP, Cooper VS, Molinaro A, Valvano MA, Sá-Correia I. Structure of O-Antigen and Hybrid Biosynthetic Locus in Burkholderia cenocepacia Clonal Variants Recovered from a Cystic Fibrosis Patient. Front Microbiol 2017. [PMID: 28642745 PMCID: PMC5462993 DOI: 10.3389/fmicb.2017.01027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Burkholderia cenocepacia is an opportunistic pathogen associated with chronic lung infections and increased risk of death in patients with cystic fibrosis (CF). In this work, we investigated the lipopolysaccharide (LPS) of clinical variants of B. cenocepacia that were collected from a CF patient over a period of 3.5 years, from the onset of infection until death by necrotizing pneumonia (cepacia syndrome). We report the chemical structure of the LPS molecule of various sequential isolates and the identification of a novel hybrid O-antigen (OAg) biosynthetic cluster. The OAg repeating unit of the LPS from IST439, the initial isolate, is a [→2)-β-D-Ribf-(1→4)-α-D-GalpNAc-(1→] disaccharide, which was not previously described in B. cenocepacia. The IST439 OAg biosynthetic gene cluster contains 7 of 23 genes that are closely homologous to genes found in B. multivorans, another member of the Burkholderia cepacia complex. None of the subsequent isolates expressed OAg. Genomic sequencing of these isolates enabled the identification of mutations within the OAg cluster, but none of these mutations could be associated with the loss of OAg. This study provides support to the notion that OAg LPS modifications are an important factor in the adaptation of B. cenocepacia to chronic infection and that the heterogeneity of OAgs relates to variation within the OAg gene cluster, indicating that the gene cluster might have been assembled through multiple horizontal transmission events.
Collapse
Affiliation(s)
- A A Hassan
- Department of Bioengineering, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de LisboaLisboa, Portugal
| | - Rita F Maldonado
- Department of Bioengineering, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de LisboaLisboa, Portugal
| | - Sandra C Dos Santos
- Department of Bioengineering, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de LisboaLisboa, Portugal
| | - Flaviana Di Lorenzo
- Department of Chemical Sciences, University of Napoli Federico II Complesso Universitário Monte SantangeloNapoli, Italy
| | - Alba Silipo
- Department of Chemical Sciences, University of Napoli Federico II Complesso Universitário Monte SantangeloNapoli, Italy
| | - Carla P Coutinho
- Department of Bioengineering, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de LisboaLisboa, Portugal
| | - Vaughn S Cooper
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, PittsburghPA, United States
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Napoli Federico II Complesso Universitário Monte SantangeloNapoli, Italy
| | - Miguel A Valvano
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University BelfastBelfast, United Kingdom
| | - Isabel Sá-Correia
- Department of Bioengineering, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de LisboaLisboa, Portugal
| |
Collapse
|
19
|
Malešević M, Vasiljević Z, Sovtić A, Filipić B, Novović K, Kojić M, Jovčić B. Virulence traits associated with Burkholderia cenocepacia ST856 epidemic strain isolated from cystic fibrosis patients. Antimicrob Resist Infect Control 2017; 6:57. [PMID: 28593045 PMCID: PMC5461758 DOI: 10.1186/s13756-017-0215-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/30/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Burkholderia cenocepacia is considered one of the most problematic cystic fibrosis (CF) pathogens. Colonization prevalence in the Serbian CF population is high and virtually exclusively limited to a single highly transmissible clone of B. cenocepacia ST856 which is positive for both the B. cepacia epidemic strain marker (BCESM) and cable pilin, and is closely related to the epidemic strain CZ1 (ST32). METHODS Biofilm formation for 182 isolates, and adhesion to components of the host extracellular matrix, proteolytic activity, mucoidy and motility of selected ST856 representatives, as well as B. cenocepacia ST858 and ST859, and B. stabilis ST857, novel STs isolated from Serbian CF patients, were investigated in this study. The presence of the cepI, cepR, fliG, llpE, wbiI, and bcscV genes was analyzed. RESULTS Biofilm-formation ability of analyzed strains was poor under standard laboratory conditions, but changed in stress conditions (cold stress) and conditions that mimic CF milieu (increased CO2). All strains expressed ability to bind to collagen and fibronectin albeit with different intensity. Representatives of ST856 exhibited gelatinase activity. ST858, ST859 and 9/11 of ST856 genotypes were positive for swimming and twitching motility whereas ST857 was non-motile. Mucoidy was demonstrated in all ST856 genotypes, ST857 was semi-mucoid, and ST858 and ST859 were non-mucoid. Molecular analysis for major virulence factors revealed that ST856 and ST857 carried the six analyzed genes, while ST858 and ST859 were negative for the llpE gene. CONCLUSION Variations in virulence phenotypes in different genotypes of epidemic B. cenocepacia ST856 clone, in vitro, could be a consequence of diversification driven by pathoadaptation. Diversity of epidemic clone genotypes virulence, could be challenging for accurate diagnosis and treatment, as well as for infection control.
Collapse
Affiliation(s)
- Milka Malešević
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, P.O. Box 23, Belgrade, 11010 Serbia
| | - Zorica Vasiljević
- Department of Clinical Microbiology, Mother and Child Health Care Institute of Serbia "Dr. Vukan Cupic", Radoja Dakica 8, Belgrade, 11070 Serbia
| | - Aleksandar Sovtić
- Department of Pulmonology, Mother and Child Health Care Institute of Serbia "Dr. Vukan Cupic", Radoja Dakica 8, Belgrade, 11070 Serbia.,School of Medicine, University of Belgrade, Dr Subotica 8, Belgrade, 11000 Serbia
| | - Brankica Filipić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, P.O. Box 23, Belgrade, 11010 Serbia.,Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, Belgrade, 11221 Serbia
| | - Katarina Novović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, P.O. Box 23, Belgrade, 11010 Serbia
| | - Milan Kojić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, P.O. Box 23, Belgrade, 11010 Serbia
| | - Branko Jovčić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, P.O. Box 23, Belgrade, 11010 Serbia.,Chair for Biochemistry and Molecular Biology, Faculty of Biology, University of Belgrade, 16, Studentski trg, Belgrade, 11000 Serbia
| |
Collapse
|
20
|
A Broad-Host-Range Tailocin from Burkholderia cenocepacia. Appl Environ Microbiol 2017; 83:AEM.03414-16. [PMID: 28258146 PMCID: PMC5411513 DOI: 10.1128/aem.03414-16] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/07/2017] [Indexed: 02/07/2023] Open
Abstract
The Burkholderia cepacia complex (Bcc) consists of 20 closely related Gram-negative bacterial species that are significant pathogens for persons with cystic fibrosis (CF). Some Bcc strains are highly transmissible and resistant to multiple antibiotics, making infection difficult to treat. A tailocin (phage tail-like bacteriocin), designated BceTMilo, with a broad host range against members of the Bcc, was identified in B. cenocepacia strain BC0425. Sixty-eight percent of Bcc representing 10 species and 90% of non-Bcc Burkholderia strains tested were sensitive to BceTMilo. BceTMilo also showed killing activity against Pseudomonas aeruginosa PAO1 and derivatives. Liquid chromatography-mass spectrometry analysis of the major BceTMilo proteins was used to identify a 23-kb tailocin locus in a draft BC0425 genome. The BceTMilo locus was syntenic and highly similar to a 24.6-kb region on chromosome 1 of B. cenocepacia J2315 (BCAL0081 to BCAL0107). A close relationship and synteny were observed between BceTMilo and Burkholderia phage KL3 and, by extension, with paradigm temperate myophage P2. Deletion mutants in the gene cluster encoding enzymes for biosynthesis of lipopolysaccharide (LPS) in the indicator strain B. cenocepacia K56-2 conferred resistance to BceTMilo. Analysis of the defined mutants in LPS biosynthetic genes indicated that an α-d-glucose residue in the core oligosaccharide is the receptor for BceTMilo.IMPORTANCE BceTMilo, presented in this study, is a broad-host-range tailocin active against Burkholderia spp. As such, BceTMilo and related or modified tailocins have potential as bactericidal therapeutic agents against plant- and human-pathogenic Burkholderia.
Collapse
|
21
|
Fathy Mohamed Y, Hamad M, Ortega XP, Valvano MA. The LpxL acyltransferase is required for normal growth and penta-acylation of lipid A in Burkholderia cenocepacia. Mol Microbiol 2017; 104:144-162. [PMID: 28085228 DOI: 10.1111/mmi.13618] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2017] [Indexed: 12/27/2022]
Abstract
Lipid A anchors the lipopolysaccharide (LPS) to the outer membrane and is usually composed of a hexa-acylated diglucosamine backbone. Burkholderia cenocepacia, an opportunistic pathogen, produces a mixture of tetra- and penta-acylated lipid A. "Late" acyltransferases add secondary acyl chains to lipid A after the incorporation of four primary acyl chains to the diglucosamine backbone. Here, we report that B. cenocepacia has only one late acyltransferase, LpxL (BCAL0508), which adds a myristoyl chain to the 2' position of lipid A resulting in penta-acylated lipid A. We also identified PagL (BCAL0788), which acts as an outer membrane lipase by removing the primary β-hydroxymyristate (3-OH-C14:0) chain at the 3 position, leading to tetra-acylated lipid A. Unlike PagL, LpxL depletion caused reduced cell growth and defects in cell morphology, both of which were suppressed by overexpressing the LPS flippase MsbA (BCAL2408), suggesting that lipid A molecules lacking the fifth acyl chain contributed by LpxL are not good substrates for the flippase. We also show that intracellular B. cenocepacia within macrophages produced more penta-acylated lipid A, suggesting lipid A penta-acylation in B. cenocepacia is required not only for bacterial growth and morphology but also for adaptation to intracellular lifestyle.
Collapse
Affiliation(s)
- Yasmine Fathy Mohamed
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, BT9 7BL, UK.,Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Mohamad Hamad
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada, N6A 5C1
| | - Ximena P Ortega
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada, N6A 5C1
| | - Miguel A Valvano
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, BT9 7BL, UK.,Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada, N6A 5C1
| |
Collapse
|
22
|
McNeely D, Chanyi RM, Dooley JS, Moore JE, Koval SF. Biocontrol of Burkholderia cepacia complex bacteria and bacterial phytopathogens by Bdellovibrio bacteriovorus. Can J Microbiol 2016; 63:350-358. [PMID: 28177793 DOI: 10.1139/cjm-2016-0612] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Bdellovibrio and like organisms are predatory bacteria that have the unusual property of using the cytoplasmic constituents of other Gram-negative bacteria as nutrients. These predators may thus provide an alternative approach to the biocontrol of human and plant pathogens. Predators were isolated on Burkholderia cenocepacia K56-2 and J2315 as prey cells, in enrichment cultures with soil and sewage. Three isolates (DM7C, DM8A, and DM11A) were identified as Bdellovibrio bacteriovorus on the basis of morphology, a periplasmic life cycle, and 16S rRNA gene sequencing. The prey range of these isolates was tested on Burkholderia cepacia complex bacteria and several phytopathogenic bacteria of agricultural importance. Of 31 strains of the Burkholderia cepacia complex tested, only 4 were resistant to predation by strain DM7C. A subset of 9 of the prey tested were also susceptible to strains DM8A and DM11A. Of 12 phytopathogens tested, 4 were resistant to strains DM7C and DM8A, and only 2 were resistant to strain DM11A. Thus, Bdellovibrio bacteriovorus strains retrieved from environmental samples on 2 Burkholderia cenocepacia isolates from cystic fibrosis patients did not distinguish in their prey range between other isolates of that pathogen or phytopathogens. Such strains hold promise as potential wide-spectrum biocontrol agents.
Collapse
Affiliation(s)
- Damian McNeely
- a Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 5C1, Canada.,b School of Biomedical Sciences, Faculty of Life and Health Sciences, Ulster University, Cromore Road, Coleraine, Co. Londonderry, BT52 1SA, Northern Ireland
| | - Ryan M Chanyi
- a Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 5C1, Canada.,c Division of Urology, Department of Surgery, Lawson Health Research Institute, St. Joseph's Hospital, London, ON N6A 4V2, Canada
| | - James S Dooley
- b School of Biomedical Sciences, Faculty of Life and Health Sciences, Ulster University, Cromore Road, Coleraine, Co. Londonderry, BT52 1SA, Northern Ireland
| | - John E Moore
- b School of Biomedical Sciences, Faculty of Life and Health Sciences, Ulster University, Cromore Road, Coleraine, Co. Londonderry, BT52 1SA, Northern Ireland.,d Department of Bacteriology, Belfast City Hospital, Lisburn Road, Belfast BT9 7AD, Northern Ireland
| | - Susan F Koval
- a Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 5C1, Canada
| |
Collapse
|
23
|
Dennehy R, Romano M, Ruggiero A, Mohamed YF, Dignam SL, Mujica Troncoso C, Callaghan M, Valvano MA, Berisio R, McClean S. The Burkholderia cenocepacia peptidoglycan-associated lipoprotein is involved in epithelial cell attachment and elicitation of inflammation. Cell Microbiol 2016; 19. [PMID: 27886433 DOI: 10.1111/cmi.12691] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 10/18/2016] [Accepted: 11/03/2016] [Indexed: 12/26/2022]
Abstract
The Burkholderia cepacia complex (Bcc) is a group of Gram-negative opportunistic pathogens causing infections in people with cystic fibrosis (CF). Bcc is highly antibiotic resistant, making conventional antibiotic treatment problematic. The identification of novel targets for anti-virulence therapies should improve therapeutic options for infected CF patients. We previously identified that the peptidoglycan-associated lipoprotein (Pal) was immunogenic in Bcc infected CF patients; however, its role in Bcc pathogenesis is unknown. The virulence of a pal deletion mutant (Δpal) in Galleria mellonella was 88-fold reduced (p < .001) compared to wild type. The lipopolysaccharide profiles of wild type and Δpal were identical, indicating no involvement of Pal in O-antigen transport. However, Δpal was more susceptible to polymyxin B. Structural elucidation by X-ray crystallography and calorimetry demonstrated that Pal binds peptidoglycan fragments. Δpal showed a 1.5-fold reduced stimulation of IL-8 in CF epithelial cells relative to wild type (p < .001), demonstrating that Pal is a significant driver of inflammation. The Δpal mutant had reduced binding to CFBE41o- cells, but adhesion of Pal-expressing recombinant E. coli to CFBE41o- cells was enhanced compared to wild-type E. coli (p < .0001), confirming that Pal plays a direct role in host cell attachment. Overall, Bcc Pal mediates host cell attachment and stimulation of cytokine secretion, contributing to Bcc pathogenesis.
Collapse
Affiliation(s)
- Ruth Dennehy
- Centre of Microbial Host Interactions, Institute of Technology Tallaght, Dublin, Ireland
| | - Maria Romano
- National Research Council, Institute of Biostructures and Bioimaging, Naples, Italy
| | - Alessia Ruggiero
- National Research Council, Institute of Biostructures and Bioimaging, Naples, Italy
| | - Yasmine F Mohamed
- Centre for Experimental Medicine, Queen's University, Belfast, Northern Ireland.,Faculty of Pharmacy, Department of Microbiology, Alexandria University, Alexandria, Egypt
| | - Simon L Dignam
- Centre of Microbial Host Interactions, Institute of Technology Tallaght, Dublin, Ireland
| | | | - Máire Callaghan
- Centre of Microbial Host Interactions, Institute of Technology Tallaght, Dublin, Ireland
| | - Miguel A Valvano
- Centre for Experimental Medicine, Queen's University, Belfast, Northern Ireland
| | - Rita Berisio
- National Research Council, Institute of Biostructures and Bioimaging, Naples, Italy
| | - Siobhán McClean
- Centre of Microbial Host Interactions, Institute of Technology Tallaght, Dublin, Ireland
| |
Collapse
|
24
|
Moreira AS, Mil-Homens D, Sousa SA, Coutinho CP, Pinto-de-Oliveira A, Ramos CG, Dos Santos SC, Fialho AM, Leitão JH, Sá-Correia I. Variation of Burkholderia cenocepacia virulence potential during cystic fibrosis chronic lung infection. Virulence 2016; 8:782-796. [PMID: 27652671 DOI: 10.1080/21505594.2016.1237334] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
During long-term lung infection in cystic fibrosis (CF) patients, Burkholderia cenocepacia faces multiple selective pressures in this highly stressful and fluctuating environment. As a consequence, the initial infecting strain undergoes genetic changes that result in the diversification of genotypes and phenotypes. Whether this clonal expansion influences the pathogenic potential is unclear. The virulence potential of 39 sequential B. cenocepacia (recA lineage IIIA) isolates, corresponding to 3 different clones retrieved from 3 chronically infected CF patients was compared in this study using the non-mammalian infection hosts Galleria mellonella and Caenorhabditis elegans. The isolates used in this retrospective study were picked randomly from selective agar plates as part of a CF Center routine, from the onset of infection until patients' death after 3.5 and 7.5 y or the more recent isolation date after 12.5 y of chronic infection. The infection models proved useful to assess virulence potential diversification, but for some isolates the relative values diverged in C. elegans and G. mellonella. Results also reinforce the concept of the occurrence of clonal diversification and co-existence of multiple phenotypes within the CF lungs, also with respect to pathogenicity. No clear trend of decrease (or increase) of the virulence potential throughout long-term infection was found but there is an apparent tendency for a clone/patient-dependent decrease of virulence when the G. mellonella model was used. The sole avirulent variant in both infection hosts was found to lack the small third replicon previously associated to virulence. Although possible, the in vivo loss of this nonessential megaplasmid was found to be a rare event (1 among a total of 64 isolates examined).
Collapse
Affiliation(s)
- Ana S Moreira
- a iBB-Institute for Bioengineering and Biosciences , Department of Bioengineering , Instituto Superior Técnico, Universidade de Lisboa , Lisbon , Portugal
| | - Dalila Mil-Homens
- a iBB-Institute for Bioengineering and Biosciences , Department of Bioengineering , Instituto Superior Técnico, Universidade de Lisboa , Lisbon , Portugal
| | - Sílvia A Sousa
- a iBB-Institute for Bioengineering and Biosciences , Department of Bioengineering , Instituto Superior Técnico, Universidade de Lisboa , Lisbon , Portugal
| | - Carla P Coutinho
- a iBB-Institute for Bioengineering and Biosciences , Department of Bioengineering , Instituto Superior Técnico, Universidade de Lisboa , Lisbon , Portugal
| | - Ana Pinto-de-Oliveira
- a iBB-Institute for Bioengineering and Biosciences , Department of Bioengineering , Instituto Superior Técnico, Universidade de Lisboa , Lisbon , Portugal
| | - Christian G Ramos
- a iBB-Institute for Bioengineering and Biosciences , Department of Bioengineering , Instituto Superior Técnico, Universidade de Lisboa , Lisbon , Portugal
| | - Sandra C Dos Santos
- a iBB-Institute for Bioengineering and Biosciences , Department of Bioengineering , Instituto Superior Técnico, Universidade de Lisboa , Lisbon , Portugal
| | - Arsénio M Fialho
- a iBB-Institute for Bioengineering and Biosciences , Department of Bioengineering , Instituto Superior Técnico, Universidade de Lisboa , Lisbon , Portugal
| | - Jorge H Leitão
- a iBB-Institute for Bioengineering and Biosciences , Department of Bioengineering , Instituto Superior Técnico, Universidade de Lisboa , Lisbon , Portugal
| | - Isabel Sá-Correia
- a iBB-Institute for Bioengineering and Biosciences , Department of Bioengineering , Instituto Superior Técnico, Universidade de Lisboa , Lisbon , Portugal
| |
Collapse
|
25
|
Schäffer C, Messner P. Emerging facets of prokaryotic glycosylation. FEMS Microbiol Rev 2016; 41:49-91. [PMID: 27566466 DOI: 10.1093/femsre/fuw036] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/17/2016] [Accepted: 08/01/2016] [Indexed: 12/16/2022] Open
Abstract
Glycosylation of proteins is one of the most prevalent post-translational modifications occurring in nature, with a wide repertoire of biological implications. Pathways for the main types of this modification, the N- and O-glycosylation, can be found in all three domains of life-the Eukarya, Bacteria and Archaea-thereby following common principles, which are valid also for lipopolysaccharides, lipooligosaccharides and glycopolymers. Thus, studies on any glycoconjugate can unravel novel facets of the still incompletely understood fundamentals of protein N- and O-glycosylation. While it is estimated that more than two-thirds of all eukaryotic proteins would be glycosylated, no such estimate is available for prokaryotic glycoproteins, whose understanding is lagging behind, mainly due to the enormous variability of their glycan structures and variations in the underlying glycosylation processes. Combining glycan structural information with bioinformatic, genetic, biochemical and enzymatic data has opened up an avenue for in-depth analyses of glycosylation processes as a basis for glycoengineering endeavours. Here, the common themes of glycosylation are conceptualised for the major classes of prokaryotic (i.e. bacterial and archaeal) glycoconjugates, with a special focus on glycosylated cell-surface proteins. We describe the current knowledge of biosynthesis and importance of these glycoconjugates in selected pathogenic and beneficial microbes.
Collapse
Affiliation(s)
- Christina Schäffer
- Department of NanoBiotechnology, Institute of Biologically Inspired Materials, NanoGlycobiology unit, Universität für Bodenkultur Wien, A-1180 Vienna, Austria
| | - Paul Messner
- Department of NanoBiotechnology, Institute of Biologically Inspired Materials, NanoGlycobiology unit, Universität für Bodenkultur Wien, A-1180 Vienna, Austria
| |
Collapse
|
26
|
Deng P, Wang X, Baird SM, Showmaker KC, Smith L, Peterson DG, Lu S. Comparative genome-wide analysis reveals that Burkholderia contaminans MS14 possesses multiple antimicrobial biosynthesis genes but not major genetic loci required for pathogenesis. Microbiologyopen 2016; 5:353-69. [PMID: 26769582 PMCID: PMC4905989 DOI: 10.1002/mbo3.333] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/22/2015] [Accepted: 12/03/2015] [Indexed: 11/13/2022] Open
Abstract
Burkholderia contaminans MS14 shows significant antimicrobial activities against plant and animal pathogenic fungi and bacteria. The antifungal agent occidiofungin produced by MS14 has great potential for development of biopesticides and pharmaceutical drugs. However, the use of Burkholderia species as biocontrol agent in agriculture is restricted due to the difficulties in distinguishing between plant growth-promoting bacteria and the pathogenic bacteria. The complete MS14 genome was sequenced and analyzed to find what beneficial and virulence-related genes it harbors. The phylogenetic relatedness of B. contaminans MS14 and other 17 Burkholderia species was also analyzed. To research MS14's potential virulence, the gene regions related to the antibiotic production, antibiotic resistance, and virulence were compared between MS14 and other Burkholderia genomes. The genome of B. contaminans MS14 was sequenced and annotated. The genomic analyses reveal the presence of multiple gene sets for antimicrobial biosynthesis, which contribute to its antimicrobial activities. BLAST results indicate that the MS14 genome harbors a large number of unique regions. MS14 is closely related to another plant growth-promoting Burkholderia strain B. lata 383 according to the average nucleotide identity data. Moreover, according to the phylogenetic analysis, plant growth-promoting species isolated from soils and mammalian pathogenic species are clustered together, respectively. MS14 has multiple antimicrobial activity-related genes identified from the genome, but it lacks key virulence-related gene loci found in the pathogenic strains. Additionally, plant growth-promoting Burkholderia species have one or more antimicrobial biosynthesis genes in their genomes as compared with nonplant growth-promoting soil-isolated Burkholderia species. On the other hand, pathogenic species harbor multiple virulence-associated gene loci that are not present in nonpathogenic Burkholderia species. The MS14 genome as well as Burkholderia species genome show considerable diversity. Multiple antimicrobial agent biosynthesis genes were identified in the genome of plant growth-promoting species of Burkholderia. In addition, by comparing to nonpathogenic Burkholderia species, pathogenic Burkholderia species have more characterized homologs of the gene loci known to contribute to pathogenicity and virulence to plant and animals.
Collapse
Affiliation(s)
- Peng Deng
- Departments of Biochemistry, Molecular BiologyEntomology and Plant PathologyMississippi State UniversityMississippi stateMississippi
| | - Xiaoqiang Wang
- Departments of Biochemistry, Molecular BiologyEntomology and Plant PathologyMississippi State UniversityMississippi stateMississippi
| | - Sonya M. Baird
- Departments of Biochemistry, Molecular BiologyEntomology and Plant PathologyMississippi State UniversityMississippi stateMississippi
| | - Kurt C. Showmaker
- Institute for GenomicsBiocomputing and BiotechnologyMississippi State UniversityMississippi stateMississippi
| | - Leif Smith
- Department of BiologyTexas A&M UniversityCollege StationTexas
| | - Daniel G. Peterson
- Institute for GenomicsBiocomputing and BiotechnologyMississippi State UniversityMississippi stateMississippi
| | - Shien Lu
- Departments of Biochemistry, Molecular BiologyEntomology and Plant PathologyMississippi State UniversityMississippi stateMississippi
| |
Collapse
|
27
|
Long-Term Evolution of Burkholderia multivorans during a Chronic Cystic Fibrosis Infection Reveals Shifting Forces of Selection. mSystems 2016; 1:mSystems00029-16. [PMID: 27822534 PMCID: PMC5069766 DOI: 10.1128/msystems.00029-16] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 04/25/2016] [Indexed: 11/20/2022] Open
Abstract
Burkholderia multivorans is an opportunistic pathogen capable of causing severe disease in patients with cystic fibrosis (CF). Patients may be chronically infected for years, during which the bacterial population evolves in response to unknown forces. Here we analyze the genomic and functional evolution of a B. multivorans infection that was sequentially sampled from a CF patient over 20 years. The population diversified into at least four primary, coexisting clades with distinct evolutionary dynamics. The average substitution rate was only 2.4 mutations/year, but notably, some lineages evolved more slowly, whereas one diversified more rapidly by mostly nonsynonymous mutations. Ten loci, mostly involved in gene expression regulation and lipid metabolism, acquired three or more independent mutations and define likely targets of selection. Further, a broad range of phenotypes changed in association with the evolved mutations; they included antimicrobial resistance, biofilm regulation, and the presentation of lipopolysaccharide O-antigen repeats, which was directly caused by evolved mutations. Additionally, early isolates acquired mutations in genes involved in cyclic di-GMP (c-di-GMP) metabolism that associated with increased c-di-GMP intracellular levels. Accordingly, these isolates showed lower motility and increased biofilm formation and adhesion to CFBE41o- epithelial cells than the initial isolate, and each of these phenotypes is an important trait for bacterial persistence. The timing of the emergence of this clade of more adherent genotypes correlated with the period of greatest decline in the patient's lung function. All together, our observations suggest that selection on B. multivorans populations during long-term colonization of CF patient lungs either directly or indirectly targets adherence, metabolism, and changes in the cell envelope related to adaptation to the biofilm lifestyle. IMPORTANCE Bacteria may become genetically and phenotypically diverse during long-term colonization of cystic fibrosis (CF) patient lungs, yet our understanding of within-host evolutionary processes during these infections is lacking. Here we combined current genome sequencing technologies and detailed phenotypic profiling of the opportunistic pathogen Burkholderia multivorans using sequential isolates sampled from a CF patient over 20 years. The evolutionary history of these isolates highlighted bacterial genes and pathways that were likely subject to strong selection within the host and were associated with altered phenotypes, such as biofilm production, motility, and antimicrobial resistance. Importantly, multiple lineages coexisted for years or even decades within the infection, and the period of diversification within the dominant lineage was associated with deterioration of the patient's lung function. Identifying traits under strong selection during chronic infection not only sheds new light onto Burkholderia evolution but also sets the stage for tailored therapeutics targeting the prevailing lineages associated with disease progression.
Collapse
|
28
|
Aubert DF, Xu H, Yang J, Shi X, Gao W, Li L, Bisaro F, Chen S, Valvano MA, Shao F. A Burkholderia Type VI Effector Deamidates Rho GTPases to Activate the Pyrin Inflammasome and Trigger Inflammation. Cell Host Microbe 2016; 19:664-74. [PMID: 27133449 DOI: 10.1016/j.chom.2016.04.004] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 03/17/2016] [Accepted: 03/30/2016] [Indexed: 10/21/2022]
Abstract
Burkholderia cenocepacia is an opportunistic pathogen of the cystic fibrosis lung that elicits a strong inflammatory response. B. cenocepacia employs a type VI secretion system (T6SS) to survive in macrophages by disarming Rho-type GTPases, causing actin cytoskeletal defects. Here, we identified TecA, a non-VgrG T6SS effector responsible for actin disruption. TecA and other bacterial homologs bear a cysteine protease-like catalytic triad, which inactivates Rho GTPases by deamidating a conserved asparagine in the GTPase switch-I region. RhoA deamidation induces caspase-1 inflammasome activation, which is mediated by the familial Mediterranean fever disease protein Pyrin. In mouse infection, the deamidase activity of TecA is necessary and sufficient for B. cenocepacia-triggered lung inflammation and also protects mice from lethal B. cenocepacia infection. Therefore, Burkholderia TecA is a T6SS effector that modifies a eukaryotic target through an asparagine deamidase activity, which in turn elicits host cell death and inflammation through activation of the Pyrin inflammasome.
Collapse
Affiliation(s)
- Daniel F Aubert
- Department of Microbiology and Immunology, University of Western Ontario, London N6A 5C1, Canada
| | - Hao Xu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Jieling Yang
- National Institute of Biological Sciences, Beijing 102206, China; National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xuyan Shi
- National Institute of Biological Sciences, Beijing 102206, China
| | - Wenqing Gao
- National Institute of Biological Sciences, Beijing 102206, China
| | - Lin Li
- National Institute of Biological Sciences, Beijing 102206, China
| | - Fabiana Bisaro
- Centre for Infection and Immunity, Queen's University Belfast, Belfast BT9 7AE, UK
| | - She Chen
- National Institute of Biological Sciences, Beijing 102206, China
| | - Miguel A Valvano
- Department of Microbiology and Immunology, University of Western Ontario, London N6A 5C1, Canada; Centre for Infection and Immunity, Queen's University Belfast, Belfast BT9 7AE, UK.
| | - Feng Shao
- National Institute of Biological Sciences, Beijing 102206, China; National Institute of Biological Sciences, Beijing, Collaborative Innovation Center for Cancer Medicine, Beijing 102206, China.
| |
Collapse
|
29
|
Díaz L, Hoare A, Soto C, Bugueño I, Silva N, Dutzan N, Venegas D, Salinas D, Pérez-Donoso JM, Gamonal J, Bravo D. Changes in lipopolysaccharide profile of Porphyromonas gingivalis clinical isolates correlate with changes in colony morphology and polymyxin B resistance. Anaerobe 2015; 33:25-32. [PMID: 25638398 DOI: 10.1016/j.anaerobe.2015.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 01/19/2015] [Accepted: 01/27/2015] [Indexed: 01/19/2023]
Abstract
Virulence factors on the surface of Porphyromonas gingivalis constitute the first line of interaction with host cells and contribute to immune modulation and periodontitis progression. In order to characterize surface virulence factors present on P. gingivalis, we obtained clinical isolates from healthy and periodontitis subjects and compared them with reference strains. Colony morphology, aggregation in liquid medium, surface charge, membrane permeability to bactericidal compounds, novobiocin and polymyxin B resistance, capsule presence and lipopolysaccharide (LPS) profiles were evaluated. By comparing isolates from healthy and periodontitis subjects, differences in colony morphology and aggregation in liquid culture were found; the latter being similar to two reference strains. These differences were not a consequence of variations in bacterial surface charge. Furthermore, isolates also presented differences in polymyxin B and novobiocin resistance; isolates from healthy subjects were susceptible to polymyxin B and resistant to novobiocin and, in contrast, isolates from periodontitis subjects were resistant to polymyxin B and susceptible to novobiocin. These changes in antimicrobial resistance levels correlate with variations in LPS profiles, since -unlike periodontitis isolates-isolates from healthy samples synthesize LPS molecules lacking both O-antigen moieties and anionic polysaccharide. Additionally, this phenotype correlated with the absence of O-antigen ligase activity. Altogether, our results reveal novel variations on surface components of P. gingivalis isolates obtained from healthy and periodontitis subjects that could be associated with differences in bacterial virulence and periodontitis progression.
Collapse
Affiliation(s)
- Leonor Díaz
- Oral Microbiology Laboratory, Pathology and Oral Medicine Department, Faculty of Dentistry, Universidad de Chile, Santiago, Chile; Laboratory of Periodontal Biology, Conservative Dentistry Department, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Anilei Hoare
- Oral Microbiology Laboratory, Pathology and Oral Medicine Department, Faculty of Dentistry, Universidad de Chile, Santiago, Chile; Laboratory of Periodontal Biology, Conservative Dentistry Department, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Cristopher Soto
- Oral Microbiology Laboratory, Pathology and Oral Medicine Department, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Isaac Bugueño
- Oral Microbiology Laboratory, Pathology and Oral Medicine Department, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Nora Silva
- Oral Microbiology Laboratory, Pathology and Oral Medicine Department, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Nicolás Dutzan
- Laboratory of Periodontal Biology, Conservative Dentistry Department, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Darna Venegas
- Oral Microbiology Laboratory, Pathology and Oral Medicine Department, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Daniela Salinas
- Oral Microbiology Laboratory, Pathology and Oral Medicine Department, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - José Manuel Pérez-Donoso
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Faculty of Biological Sciences, Universidad Andres Bello, Santiago, Chile
| | - Jorge Gamonal
- Laboratory of Periodontal Biology, Conservative Dentistry Department, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Denisse Bravo
- Oral Microbiology Laboratory, Pathology and Oral Medicine Department, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
30
|
Scott NE, Kinsella RL, Edwards AVG, Larsen MR, Dutta S, Saba J, Foster LJ, Feldman MF. Diversity within the O-linked protein glycosylation systems of acinetobacter species. Mol Cell Proteomics 2014; 13:2354-70. [PMID: 24917611 DOI: 10.1074/mcp.m114.038315] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The opportunistic human pathogen Acinetobacter baumannii is a concern to health care systems worldwide because of its persistence in clinical settings and the growing frequency of multiple drug resistant infections. To combat this threat, it is necessary to understand factors associated with disease and environmental persistence of A. baumannii. Recently, it was shown that a single biosynthetic pathway was responsible for the generation of capsule polysaccharide and O-linked protein glycosylation. Because of the requirement of these carbohydrates for virulence and the non-template driven nature of glycan biogenesis we investigated the composition, diversity, and properties of the Acinetobacter glycoproteome. Utilizing global and targeted mass spectrometry methods, we examined 15 strains and found extensive glycan diversity in the O-linked glycoproteome of Acinetobacter. Comparison of the 26 glycoproteins identified revealed that different A. baumannii strains target similar protein substrates, both in characteristics of the sites of O-glycosylation and protein identity. Surprisingly, glycan micro-heterogeneity was also observed within nearly all isolates examined demonstrating glycan heterogeneity is a widespread phenomena in Acinetobacter O-linked glycosylation. By comparing the 11 main glycoforms and over 20 alternative glycoforms characterized within the 15 strains, trends within the glycan utilized for O-linked glycosylation could be observed. These trends reveal Acinetobacter O-linked glycosylation favors short (three to five residue) glycans with limited branching containing negatively charged sugars such as GlcNAc3NAcA4OAc or legionaminic/pseudaminic acid derivatives. These observations suggest that although highly diverse, the capsule/O-linked glycan biosynthetic pathways generate glycans with similar characteristics across all A. baumannii.
Collapse
Affiliation(s)
- Nichollas E Scott
- From the ‡Centre for High-Throughput Biology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Rachel L Kinsella
- §Alberta Glycomics Centre and Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Alistair V G Edwards
- ¶Protein Research Group, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, 5000, Denmark
| | - Martin R Larsen
- ¶Protein Research Group, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, 5000, Denmark
| | | | - Julian Saba
- ‖Thermo Fisher Scientific, San Jose, California 95134
| | - Leonard J Foster
- From the ‡Centre for High-Throughput Biology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Mario F Feldman
- §Alberta Glycomics Centre and Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada;
| |
Collapse
|
31
|
Hanuszkiewicz A, Pittock P, Humphries F, Moll H, Rosales AR, Molinaro A, Moynagh PN, Lajoie GA, Valvano MA. Identification of the flagellin glycosylation system in Burkholderia cenocepacia and the contribution of glycosylated flagellin to evasion of human innate immune responses. J Biol Chem 2014; 289:19231-44. [PMID: 24841205 DOI: 10.1074/jbc.m114.562603] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Burkholderia cenocepacia is an opportunistic pathogen threatening patients with cystic fibrosis. Flagella are required for biofilm formation, as well as adhesion to and invasion of epithelial cells. Recognition of flagellin via the Toll-like receptor 5 (TLR5) contributes to exacerbate B. cenocepacia-induced lung epithelial inflammatory responses. In this study, we report that B. cenocepacia flagellin is glycosylated on at least 10 different sites with a single sugar, 4,6-dideoxy-4-(3-hydroxybutanoylamino)-D-glucose. We have identified key genes that are required for flagellin glycosylation, including a predicted glycosyltransferase gene that is linked to the flagellin biosynthesis cluster and a putative acetyltransferase gene located within the O-antigen lipopolysaccharide cluster. Another O-antigen cluster gene, rmlB, which is required for flagellin glycan and O-antigen biosynthesis, was essential for bacterial viability, uncovering a novel target against Burkholderia infections. Using glycosylated and nonglycosylated purified flagellin and a cell reporter system to assess TLR5-mediated responses, we also show that the presence of glycan in flagellin significantly impairs the inflammatory response of epithelial cells. We therefore suggest that flagellin glycosylation reduces recognition of flagellin by host TLR5, providing an evasive strategy to infecting bacteria.
Collapse
Affiliation(s)
- Anna Hanuszkiewicz
- From the Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University, Belfast BT9 7AE, Ireland, United Kingdom
| | - Paula Pittock
- the Don Rix Protein Identification Facility, Department of Biochemistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Fiachra Humphries
- the Institute of Immunology, Department of Biology, National University of Ireland at Maynooth, Maynooth, County Kildare, Ireland
| | - Hermann Moll
- the Bioanalytical Chemistry, Research Centre Borstel, 23845 Borstel, Germany
| | - Amanda Roa Rosales
- the Department of Microbiology and Immunology, University of Western Ontario, London, Ontario N6A 5C1, Canada, and
| | - Antonio Molinaro
- the Dipartimento di Scienze Chimiche, Università di Napoli, Federico II, 80134 Naples, Italy
| | - Paul N Moynagh
- From the Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University, Belfast BT9 7AE, Ireland, United Kingdom, the Institute of Immunology, Department of Biology, National University of Ireland at Maynooth, Maynooth, County Kildare, Ireland
| | - Gilles A Lajoie
- the Don Rix Protein Identification Facility, Department of Biochemistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Miguel A Valvano
- From the Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University, Belfast BT9 7AE, Ireland, United Kingdom, the Department of Microbiology and Immunology, University of Western Ontario, London, Ontario N6A 5C1, Canada, and
| |
Collapse
|
32
|
Mohamed YF, Valvano MA. A Burkholderia cenocepacia MurJ (MviN) homolog is essential for cell wall peptidoglycan synthesis and bacterial viability. Glycobiology 2014; 24:564-76. [PMID: 24688094 DOI: 10.1093/glycob/cwu025] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The cell wall peptidoglycan (PG) of Burkholderia cenocepacia, an opportunistic pathogen, has not yet been characterized. However, the B. cenocepacia genome contains homologs of genes encoding PG biosynthetic functions in other bacteria. PG biosynthesis involves the formation of the undecaprenyl-pyrophosphate-linked N-acetyl glucosamine-N-acetyl muramic acid-pentapeptide, known as lipid II, which is built on the cytosolic face of the cell membrane. Lipid II is then translocated across the membrane and its glycopeptide moiety becomes incorporated into the growing cell wall mesh; this translocation step is critical to PG synthesis. We have investigated candidate flippase homologs of the MurJ family in B. cenocepacia. Our results show that BCAL2764, herein referred to as murJBc, is indispensable for viability. Viable B. cenocepacia could only be obtained through a conditional mutagenesis strategy by placing murJBc under the control of a rhamnose-inducible promoter. Under rhamnose depletion, the conditional strain stopped growing and individual cells displayed morphological abnormalities consistent with a defect in PG synthesis. Bacterial cells unable to express MurJBc underwent cell lysis, while partial MurJBc depletion sensitized the mutant to the action of β-lactam antibiotics. Depletion of MurJBc caused accumulation of PG precursors consistent with the notion that this protein plays a role in lipid II flipping to the periplasmic compartment. Reciprocal complementation experiments of conditional murJ mutants in B. cenocepacia and Escherichia coli with plasmids expressing MurJ from each strain indicated that MurJBc and MurJEc are functional homologs. Together, our results are consistent with the notion that MurJBc is a PG lipid II flippase in B. cenocepacia.
Collapse
|
33
|
Characterization of BCAM0224, a multifunctional trimeric autotransporter from the human pathogen Burkholderia cenocepacia. J Bacteriol 2014; 196:1968-79. [PMID: 24659767 DOI: 10.1128/jb.00061-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Members of the trimeric autotransporter adhesin (TAA) family play a crucial role in adhesion of Gram-negative pathogens to host cells. Moreover, these proteins are multifunctional virulence factors involved in several other biological traits, including invasion into host cells and evasion of the host immune system. In cystic fibrosis epidemic Burkholderia cenocepacia strain J2315, we identified a unique TAA (BCAM0224)-encoding gene, previously described as being implicated in virulence. Here, we characterized this multifunctional protein, trying to establish its role in B. cenocepacia pathogenicity. We show that BCAM0224 occurs on the bacterial surface and adopts a trimeric conformation. Furthermore, we demonstrated that BCAM0224 is needed for earlier stages of biofilm formation and is required for swarming motility. In addition, BCAM0224 plays an important role in evasion of the human innate immune system, providing resistance against the bactericidal activity of serum via the complement classical pathway. Finally, BCAM0224 mediates bacterial adhesion to and invasion of cultured human bronchial epithelial cells. Together, these data reveal the high versatility of the BCAM0224 protein as a virulence factor in the pathogenic bacterium B. cenocepacia.
Collapse
|
34
|
Lithgow KV, Scott NE, Iwashkiw JA, Thomson ELS, Foster LJ, Feldman MF, Dennis JJ. A general protein O-glycosylation system within the Burkholderia cepacia complex is involved in motility and virulence. Mol Microbiol 2014; 92:116-37. [PMID: 24673753 DOI: 10.1111/mmi.12540] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2014] [Indexed: 01/25/2023]
Abstract
Bacteria of the Burkholderia cepacia complex (Bcc) are pathogens of humans, plants, and animals. Burkholderia cenocepacia is one of the most common Bcc species infecting cystic fibrosis (CF) patients and its carriage is associated with poor prognosis. In this study, we characterized a general O-linked protein glycosylation system in B. cenocepacia K56-2. The PglLBc O-oligosaccharyltransferase (O-OTase), encoded by the cloned gene bcal0960, was shown to be capable of transferring a heptasaccharide from the Campylobacter jejuni N-glycosylation system to a Neisseria meningitides-derived acceptor protein in an Escherichia coli background, indicating that the enzyme has relaxed specificities for both the sugar donor and protein acceptor. In B cenocepacia K56-2, PglLBc is responsible for the glycosylation of 23 proteins involved in diverse cellular processes. Mass spectrometry analysis revealed that these proteins are modified with a trisaccharide HexNAc-HexNAc-Hex, which is unrelated to the O-antigen biosynthetic process. The glycosylation sites that were identified existed within regions of low complexity, rich in serine, alanine, and proline. Disruption of bcal0960 abolished glycosylation and resulted in reduced swimming motility and attenuated virulence towards both plant and insect model organisms. This study demonstrates the first example of post-translational modification in Bcc with implications for pathogenesis.
Collapse
Affiliation(s)
- Karen V Lithgow
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada, T6G 2E9
| | | | | | | | | | | | | |
Collapse
|
35
|
Yuan J, Yang M, Ren J, Fu B, Jiang F, Zhang X. Analysis of genomic characters reveals that four distinct gene clusters are correlated with different functions in Burkholderia cenocepacia AU 1054. Appl Microbiol Biotechnol 2013; 98:361-72. [PMID: 24305740 DOI: 10.1007/s00253-013-5415-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 11/11/2013] [Accepted: 11/11/2013] [Indexed: 11/30/2022]
Abstract
Possessing three circular chromosomes is a distinct genomic characteristic of Burkholderia cenocepacia AU 1054, a clinically important pathogen in cystic fibrosis. In this study, base composition, codon usage and functional role category were analyzed in the B. cenocepacia AU 1054 genome. Although no bias in the base and codon usage was detected between any two chromosomes, function differences did exist in the genes of each chromosome. Similar base composition and differential functional role categories indicated that genes on these three chromosomes were relatively stable and that a proper division of labor was established. Based on variations in the base or codon usage, four small gene clusters were observed in all of the genes. Multivariate analysis revealed that protein hydrophobicity played a predominant role in shaping base usage bias, while horizontal gene transfer and the gene expression level were the two most important factors that affected the codon usage bias. Interestingly, we also found that these gene clusters were correlated with different biological functions: (i) 45 pyrimidine-leading-codon preferred genes were predominantly involved in regulatory function; (ii) most drug resistance-related genes involved in 826 genes that coding for hydrophobic proteins; (iii) most of the 111 horizontal transfer genes were responsible for genomic plasticity; and (iv) 73 highly expressed genes (predicted by their codon adaptation index values) showed environmental adaptation to cystic fibrosis. Our results showed that genes with base or codon usage bias were affected by mutational pressure and natural selection, and their functions could contribute to drug assistance and transmissible activity in B. cenocepacia.
Collapse
Affiliation(s)
- Jianbo Yuan
- Institute of Oceanology, Chinese Academy of Sciences, No. 7, Nanhai Road, Qingdao, 266071, China
| | | | | | | | | | | |
Collapse
|
36
|
Within-host evolution of Burkholderia pseudomallei over a twelve-year chronic carriage infection. mBio 2013; 4:mBio.00388-13. [PMID: 23860767 PMCID: PMC3735121 DOI: 10.1128/mbio.00388-13] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Burkholderia pseudomallei causes the potentially fatal disease melioidosis. It is generally accepted that B. pseudomallei is a noncommensal bacterium and that any culture-positive clinical specimen denotes disease requiring treatment. Over a 23-year study of melioidosis cases in Darwin, Australia, just one patient from 707 survivors has developed persistent asymptomatic B. pseudomallei carriage. To better understand the mechanisms behind this unique scenario, we performed whole-genome analysis of two strains isolated 139 months apart. During this period, B. pseudomallei underwent several adaptive changes. Of 23 point mutations, 78% were nonsynonymous and 43% were predicted to be deleterious to gene function, demonstrating a strong propensity for positive selection. Notably, a nonsense mutation inactivated the universal stress response sigma factor RpoS, with pleiotropic implications. The genome underwent substantial reduction, with four deletions in chromosome 2 resulting in the loss of 221 genes. The deleted loci included genes involved in secondary metabolism, environmental survival, and pathogenesis. Of 14 indels, 11 occurred in coding regions and 9 resulted in frameshift mutations that dramatically affected predicted gene products. Disproportionately, four indels affected lipopolysaccharide biosynthesis and modification. Finally, we identified a frameshift mutation in both P314 isolates within wcbR, an important component of the capsular polysaccharide I locus, suggesting virulence attenuation early in infection. Our study illustrates a unique clinical case that contrasts a high-consequence infectious agent with a long-term commensal infection and provides further insights into bacterial evolution within the human host. Some bacterial pathogens establish long-term infections that are difficult or impossible to eradicate with current treatments. Rapid advances in genome sequencing technologies provide a powerful tool for understanding bacterial persistence within the human host. Burkholderia pseudomallei is considered a highly pathogenic bacterium because infection is commonly fatal. Here, we document within-host evolution of B. pseudomallei in a unique case of human infection with ongoing chronic carriage. Genomic comparison of isolates obtained 139 months (11.5 years) apart showed a strong signal of adaptation within the human host, including inactivation of virulence and immunogenic factors, and deletion of pathways involved in environmental survival. Two global regulatory genes were mutated in the 139-month isolate, indicating extensive regulatory changes favoring bacterial persistence. Our study provides insights into B. pseudomallei pathogenesis and, more broadly, identifies parallel evolutionary mechanisms that underlie chronic persistence of all bacterial pathogens.
Collapse
|
37
|
Bloodworth RAM, Gislason AS, Cardona ST. Burkholderia cenocepacia conditional growth mutant library created by random promoter replacement of essential genes. Microbiologyopen 2013; 2:243-58. [PMID: 23389959 PMCID: PMC3633349 DOI: 10.1002/mbo3.71] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 12/24/2012] [Accepted: 01/08/2013] [Indexed: 01/05/2023] Open
Abstract
Identification of essential genes by construction of conditional knockouts with inducible promoters allows the identification of essential genes and creation of conditional growth (CG) mutants that are then available as genetic tools for further studies. We used large-scale transposon delivery of the rhamnose-inducible promoter, PrhaB followed by robotic screening of rhamnose-dependent growth to construct a genomic library of 106 Burkholderia cenocepacia CG mutants. Transposon insertions were found where PrhaB was in the same orientation of widely conserved, well-characterized essential genes as well as genes with no previous records of essentiality in other microorganisms. Using previously reported global gene-expression analyses, we demonstrate that PrhaB can achieve the wide dynamic range of expression levels required for essential genes when the promoter is delivered randomly and mutants with rhamnose-dependent growth are selected. We also show specific detection of the target of an antibiotic, novobiocin, by enhanced sensitivity of the corresponding CG mutant (PrhaB controlling gyrB expression) within the library. Modulation of gene expression to achieve 30-60% of wild-type growth created conditions for specific hypersensitivity demonstrating the value of the CG mutant library for chemogenomic experiments. In summary, CG mutants can be obtained on a large scale by random delivery of a tightly regulated inducible promoter into the bacterial chromosome followed by a simple screening for the CG phenotype, without previous information on gene essentiality.
Collapse
Affiliation(s)
- Ruhi A M Bloodworth
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | |
Collapse
|
38
|
Mil-Homens D, Fialho AM. A BCAM0223 mutant of Burkholderia cenocepacia is deficient in hemagglutination, serum resistance, adhesion to epithelial cells and virulence. PLoS One 2012; 7:e41747. [PMID: 22848588 PMCID: PMC3404963 DOI: 10.1371/journal.pone.0041747] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 06/25/2012] [Indexed: 11/19/2022] Open
Abstract
Burkholderia cepacia complex (Bcc) bacteria are a problematic group of microorganisms causing severe infections in patients with Cystic Fibrosis. In early stages of infection, Bcc bacteria must be able to adhere to and colonize the respiratory epithelium. Although this is not fully understood, this primary stage of infection is believed to be in part mediated by a specific type of adhesins, named trimeric autotransporter adhesins (TAAs). These homotrimeric proteins exist on the surface of many gram negative pathogens and often mediate a number of critical functions, including biofilm formation, serum resistance and adherence to an invasion of host cells. We have previously identified in the genome of the epidemic clinical isolate B. cenocepacia J2315, a novel cluster of genes putatively encoding three TAAs (BCAM0219, BCAM0223 and BCAM0224). In this study, the genomic organization of the TAA cluster has been determined. To further address the direct role of the putative TAA BCAM0223 in B. cenocepacia pathogenicity, an isogenic mutant was constructed via insertional inactivation. The BCAM0223::Tp mutant is deficient in hemagglutination, affected in adherence to vitronectin and in biofilm formation and showed attenuated virulence in the Galleria mellonella model of infection. Moreover, the BCAM0223::Tp mutant also showed a significant reduction in its resistance to human serum as well as in adherence, but not in invasion of, cultured human bronchial epithelial cells. Altogether these results demonstrate that the BCAM0223 protein is a multifunctional virulence factor that may contribute to the pathogenicity of B. cenocepacia.
Collapse
Affiliation(s)
- Dalila Mil-Homens
- IBB-Institute for Biotechnology and Bioengineering, Center for Biological and Chemical Engineering, Instituto Superior Técnico, Lisbon, Portugal
| | - Arsenio M. Fialho
- IBB-Institute for Biotechnology and Bioengineering, Center for Biological and Chemical Engineering, Instituto Superior Técnico, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Technical University of Lisbon, Lisbon, Portugal
- * E-mail:
| |
Collapse
|
39
|
Zlosnik JEA, Gunaratnam LC, Speert DP. Serum susceptibility in clinical isolates of Burkholderia cepacia complex bacteria: development of a growth-based assay for high throughput determination. Front Cell Infect Microbiol 2012; 2:67. [PMID: 22919658 PMCID: PMC3417400 DOI: 10.3389/fcimb.2012.00067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 04/27/2012] [Indexed: 11/27/2022] Open
Abstract
Burkholderia cepacia complex (BCC) bacteria can cause devastating chronic infections in people with cystic fibrosis. Of particular concern is “cepacia syndrome,” a rapidly progressive and usually fatal decline in health, characterized by a necrotizing bacteremic pneumonia. An important component of defense against bloodstream infections is the bactericidal action of serum. Traditional methods to determine the capacity of bacterial isolates to resist the bactericidal effects of serum are relatively low-throughput viability assays. In this study, we developed a novel growth-based assay for serum susceptibility, which allows for high throughput analysis. We applied this assay to a range of clinical isolates of BCC as well as isolates comprising the BCC experimental strain panel. Our data demonstrate that isolates from all species of BCC examined can possess serum resistant or serum sensitive/intermediate phenotypes. Of particular clinical significance, we also found no direct link between the last saved pulmonary isolate from patients who subsequently developed “cepacia syndrome” and their capacity to resist the inhibitory effects of human serum, suggesting serum resistance cannot be used as a marker of an isolate’s capacity to escape from the lung and cause bacteremia.
Collapse
Affiliation(s)
- James E A Zlosnik
- Department of Pediatrics, Faculty of Medicine, Centre for Understanding and Preventing Infection in Children, University of British Columbia Vancouver, BC, Canada.
| | | | | |
Collapse
|
40
|
Porter LA, Goldberg JB. Influence of neutrophil defects on Burkholderia cepacia complex pathogenesis. Front Cell Infect Microbiol 2011; 1:9. [PMID: 22919575 PMCID: PMC3417359 DOI: 10.3389/fcimb.2011.00009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 11/01/2011] [Indexed: 12/16/2022] Open
Abstract
The Burkholderia cepacia complex (Bcc) is a group of Gram-negative bacteria that are ubiquitous in the environment and have emerged as opportunistic pathogens in immunocompromised patients. The primary patient populations infected with Bcc include individuals with cystic fibrosis (CF), as well as those with chronic granulomatous disease (CGD). While Bcc infection in CF is better characterized than in CGD, these two genetic diseases are not obviously similar and it is currently unknown if there is any commonality in host immune defects that is responsible for the susceptibility to Bcc. CF is caused by mutations in the CF transmembrane conductance regulator, resulting in manifestations in various organ systems, however the major cause of morbidity and mortality is currently due to bacterial respiratory infections. CGD, on the other hand, is a genetic disorder that is caused by defects in phagocyte NADPH oxidase. Because of the defect in CGD, phagocytes in these patients are unable to produce reactive oxygen species, which results in increased susceptibility to bacterial and fungal infections. Despite this significant defect in microbial clearance, the spectrum of pathogens frequently implicated in infections in CGD is relatively narrow and includes some bacterial species that are considered almost pathognomonic for this disorder. Very little is known about the cause of the specific susceptibility to Bcc over other potential pathogens more prevalent in the environment, and a better understanding of specific mechanisms required for bacterial virulence has become a high priority. This review will summarize both the current knowledge and future directions related to Bcc virulence in immunocompromised individuals with a focus on the roles of bacterial factors and neutrophil defects in pathogenesis.
Collapse
Affiliation(s)
- Laura A Porter
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville, VA, USA
| | | |
Collapse
|
41
|
Parallel bacterial evolution within multiple patients identifies candidate pathogenicity genes. Nat Genet 2011; 43:1275-80. [PMID: 22081229 PMCID: PMC3245322 DOI: 10.1038/ng.997] [Citation(s) in RCA: 285] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 10/05/2011] [Indexed: 01/22/2023]
Abstract
Bacterial pathogens evolve during the infection of their human hosts1-8, but separating adaptive and neutral mutations remains challenging9-11. Here, we identify bacterial genes under adaptive evolution by tracking recurrent patterns of mutations in the same pathogenic strain during the infection of multiple patients. We conducted a retrospective study of a Burkholderia dolosa outbreak among people with cystic fibrosis, sequencing the genomes of 112 isolates collected from 14 individuals over 16 years. We find that 17 bacterial genes acquired non-synonymous mutations in multiple individuals, which indicates parallel adaptive evolution. Mutations in these genes illuminate the genetic basis of important pathogenic phenotypes, including antibiotic resistance and bacterial membrane composition, and implicate oxygen-dependent gene regulation as paramount in lung infections. Several genes have not been previously implicated in pathogenesis, suggesting new therapeutic targets. The identification of parallel molecular evolution suggests key selection forces acting on pathogens within humans and can help predict and prepare for their future evolutionary course.
Collapse
|
42
|
Fang K, Zhao H, Sun C, Lam CMC, Chang S, Zhang K, Panda G, Godinho M, Martins dos Santos VAP, Wang J. Exploring the metabolic network of the epidemic pathogen Burkholderia cenocepacia J2315 via genome-scale reconstruction. BMC SYSTEMS BIOLOGY 2011; 5:83. [PMID: 21609491 PMCID: PMC3123600 DOI: 10.1186/1752-0509-5-83] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 05/25/2011] [Indexed: 11/10/2022]
Abstract
BACKGROUND Burkholderia cenocepacia is a threatening nosocomial epidemic pathogen in patients with cystic fibrosis (CF) or a compromised immune system. Its high level of antibiotic resistance is an increasing concern in treatments against its infection. Strain B. cenocepacia J2315 is the most infectious isolate from CF patients. There is a strong demand to reconstruct a genome-scale metabolic network of B. cenocepacia J2315 to systematically analyze its metabolic capabilities and its virulence traits, and to search for potential clinical therapy targets. RESULTS We reconstructed the genome-scale metabolic network of B. cenocepacia J2315. An iterative reconstruction process led to the establishment of a robust model, iKF1028, which accounts for 1,028 genes, 859 internal reactions, and 834 metabolites. The model iKF1028 captures important metabolic capabilities of B. cenocepacia J2315 with a particular focus on the biosyntheses of key metabolic virulence factors to assist in understanding the mechanism of disease infection and identifying potential drug targets. The model was tested through BIOLOG assays. Based on the model, the genome annotation of B. cenocepacia J2315 was refined and 24 genes were properly re-annotated. Gene and enzyme essentiality were analyzed to provide further insights into the genome function and architecture. A total of 45 essential enzymes were identified as potential therapeutic targets. CONCLUSIONS As the first genome-scale metabolic network of B. cenocepacia J2315, iKF1028 allows a systematic study of the metabolic properties of B. cenocepacia and its key metabolic virulence factors affecting the CF community. The model can be used as a discovery tool to design novel drugs against diseases caused by this notorious pathogen.
Collapse
Affiliation(s)
- Kechi Fang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Drevinek P, Mahenthiralingam E. Burkholderia cenocepacia in cystic fibrosis: epidemiology and molecular mechanisms of virulence. Clin Microbiol Infect 2011; 16:821-30. [PMID: 20880411 DOI: 10.1111/j.1469-0691.2010.03237.x] [Citation(s) in RCA: 295] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Burkholderia cepacia complex (Bcc) bacteria have gained notoriety as pathogens in cystic fibrosis (CF) because they are difficult to identify and treat, and also have the ability to spread between CF individuals. Of the 17 formally named species within the complex, Burkholderia multivorans and Burkholderia cenocepacia dominate in CF. Multilocus sequence typing has proven to be a very useful tool for tracing the global epidemiology of Bcc bacteria and has shown that B. cenocepacia strains with high transmissibility, such as the ET-12 strain (ST-28) and the Czech strain (ST-32), have spread epidemically within CF populations in Canada and Europe. The majority of research on the molecular pathogenesis of Bcc bacteria has focused on the B. cenocepacia ET-12 epidemic lineage, with gene mutation, genome sequence analysis and, most recently, global gene expression studies shedding considerable light on the virulence and antimicrobial resistance of this pathogen. These studies demonstrate that the ability of B. cenocepacia to acquire foreign DNA (genomic islands, insertion sequences and other mobile elements), regulate gene expression via quorum sensing, compete for iron during infection, and mediate antimicrobial resistance and inflammation via its membrane and surface polysaccharides are key features that underpin the virulence of different strains. With the wealth of molecular knowledge acquired in the last decade on B. cenocepacia strains, we are now in a much better position to develop strategies for the treatment of pathogenic colonization with Bcc and to answer key questions on pathogenesis concerning, for example, the factors that trigger the rapid clinical decline in CF patients.
Collapse
Affiliation(s)
- P Drevinek
- Paediatric Department, 2nd Medical School, Charles University, Prague, Czech Republic.
| | | |
Collapse
|
44
|
Kotrange S, Kopp B, Akhter A, Abdelaziz D, Abu Khweek A, Caution K, Abdulrahman B, Wewers MD, McCoy K, Marsh C, Loutet SA, Ortega X, Valvano MA, Amer AO. Burkholderia cenocepacia O polysaccharide chain contributes to caspase-1-dependent IL-1beta production in macrophages. J Leukoc Biol 2010; 89:481-8. [PMID: 21178113 DOI: 10.1189/jlb.0910513] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Burkholderia cenocepacia infections in CF patients involve heightened inflammation, fatal sepsis, and high antibiotic resistance. Proinflammatory IL-1β secretion is important in airway inflammation and tissue damage. However, little is known about this pathway in macrophages upon B. cenocepacia infection. We report here that murine macrophages infected with B. cenocepacia K56-2 produce proinflammatory cytokine IL-1β in a TLR4 and caspase-1-mediated manner. We also determined that the OPS (O antigen) of B. cenocepacia LPS contributes to IL-1β production and pyroptotic cell death. Furthermore, we showed that the malfunction of the CFTR channel augmented IL-1β production upon B. cenocepacia infection of murine macrophages. Taken together, we identified eukaryotic and bacterial factors that contribute to inflammation during B. cenocepacia infection, which may aid in the design of novel approaches to control pulmonary inflammation.
Collapse
Affiliation(s)
- Sheetal Kotrange
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Center for Microbial Interface Biology and the Department of Internal Medicine, Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
The Burkholderia cepacia complex (Bcc) is a group of genetically related environmental bacteria that can cause chronic opportunistic infections in patients with cystic fibrosis (CF) and other underlying diseases. These infections are difficult to treat due to the inherent resistance of the bacteria to antibiotics. Bacteria can spread between CF patients through social contact and sometimes cause cepacia syndrome, a fatal pneumonia accompanied by septicemia. Burkholderia cenocepacia has been the focus of attention because initially it was the most common Bcc species isolated from patients with CF in North America and Europe. Today, B. cenocepacia, along with Burkholderia multivorans, is the most prevalent Bcc species in patients with CF. Given the progress that has been made in our understanding of B. cenocepacia over the past decade, we thought that it was an appropriate time to review our knowledge of the pathogenesis of B. cenocepacia, paying particular attention to the characterization of virulence determinants and the new tools that have been developed to study them. A common theme emerging from these studies is that B. cenocepacia establishes chronic infections in immunocompromised patients, which depend more on determinants mediating host niche adaptation than those involved directly in host cells and tissue damage.
Collapse
Affiliation(s)
- Slade A. Loutet
- Centre for Human Immunology, Department of Microbiology and Immunology, Department of Medicine, University of Western Ontario, London, Ontario, Canada
| | - Miguel A. Valvano
- Centre for Human Immunology, Department of Microbiology and Immunology, Department of Medicine, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
46
|
Membrane topology and identification of critical amino acid residues in the Wzx O-antigen translocase from Escherichia coli O157:H4. J Bacteriol 2010; 192:6160-71. [PMID: 20870764 DOI: 10.1128/jb.00141-10] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Wzx belongs to a family of membrane proteins involved in the translocation of isoprenoid lipid-linked glycans, which is loosely related to members of the major facilitator superfamily. Despite Wzx homologs performing a conserved function, it has been difficult to pinpoint specific motifs of functional significance in their amino acid sequences. Here, we elucidate the topology of the Escherichia coli O157 Wzx (Wzx(EcO157)) by a combination of bioinformatics and substituted cysteine scanning mutagenesis, as well as targeted deletion-fusions to green fluorescent protein and alkaline phosphatase. We conclude that Wzx(EcO157) consists of 12 transmembrane (TM) helices and six periplasmic and five cytosolic loops, with N and C termini facing the cytoplasm. Four TM helices (II, IV, X, and XI) contain polar residues (aspartic acid or lysine), and they may form part of a relatively hydrophilic core. Thirty-five amino acid replacements to alanine or serine were targeted to five native cysteines and most of the aspartic acid, arginine, and lysine residues. From these, only replacements of aspartic acid-85, aspartic acid-326, arginine-298, and lysine-419 resulted in a protein unable to support O-antigen production. Aspartic acid-85 and lysine-419 are located in TM helices II and XI, while arginine-298 and aspartic acid-326 are located in periplasmic and cytosolic loops 4, respectively. Further analysis revealed that the charge at these positions is required for Wzx function since conservative substitutions maintaining the same charge polarity resulted in a functional protein, whereas those reversing or eliminating polarity abolished function. We propose that the functional requirement of charged residues at both sides of the membrane and in two TM helices could be important to allow the passage of the Und-PP-linked saccharide substrate across the membrane.
Collapse
|
47
|
Vergunst AC, Meijer AH, Renshaw SA, O'Callaghan D. Burkholderia cenocepacia creates an intramacrophage replication niche in zebrafish embryos, followed by bacterial dissemination and establishment of systemic infection. Infect Immun 2010; 78:1495-508. [PMID: 20086083 PMCID: PMC2849400 DOI: 10.1128/iai.00743-09] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 08/05/2009] [Accepted: 01/09/2010] [Indexed: 11/20/2022] Open
Abstract
Bacteria belonging to the "Burkholderia cepacia complex" (Bcc) often cause fatal pulmonary infections in cystic fibrosis patients, yet little is know about the underlying molecular mechanisms. These Gram-negative bacteria can adopt an intracellular lifestyle, although their ability to replicate intracellularly has been difficult to demonstrate. Here we show that Bcc bacteria survive and multiply in macrophages of zebrafish embryos. Local dissemination by nonlytic release from infected cells was followed by bacteremia and extracellular replication. Burkholderia cenocepacia isolates belonging to the epidemic electrophoretic type 12 (ET12) lineage were highly virulent for the embryos; intravenous injection of <10 bacteria of strain K56-2 killed embryos within 3 days. However, small but significant differences between the clonal ET12 isolates K56-2, J2315, and BC7 were evident. In addition, the innate immune response in young embryos was sufficiently developed to control infection with other less virulent Bcc strains, such as Burkholderia vietnamiensis FC441 and Burkholderia stabilis LMG14294. A K56-2 cepR quorum-sensing regulator mutant was highly attenuated, and its ability to replicate and spread to neighboring cells was greatly reduced. Our data indicate that the zebrafish embryo is an excellent vertebrate model to dissect the molecular basis of intracellular replication and the early innate immune responses in this intricate host-pathogen interaction.
Collapse
Affiliation(s)
- Annette C Vergunst
- INSERM, ESPRI 26, UFR Médecine, CS83021, Avenue Kennedy, 30908 Nimes, France.
| | | | | | | |
Collapse
|
48
|
Induction of immune response to the 17 kDa OMPA Burkholderia cenocepacia polypeptide and protection against pulmonary infection in mice after nasal vaccination with an OMP nanoemulsion-based vaccine. Med Microbiol Immunol 2009; 199:81-92. [PMID: 19967396 DOI: 10.1007/s00430-009-0137-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2009] [Indexed: 10/20/2022]
Abstract
Burkholderia cepacia complex (Bcc) are opportunistic bacteria associated with life-threatening illness in persons with cystic fibrosis. Once Bcc colonization is established, these antimicrobial-resistant and biofilm-forming bacteria are difficult to eradicate and are associated with increased rates of morbidity and mortality. At present, no vaccines are available to prevent the Bcc infection. There is currently a paucity of published information regarding the development of vaccines designed to prevent Burkholderia colonization. This work expands on the recent studies published by Bertot et al. [Infect Immun 75(6):2740-2752, 2007], where successful protective immune responses were generated in mice using a B. multivorans OMP-based vaccine. Here, we evaluate an experimental mucosal vaccine against Bcc using a novel mucosal adjuvant (nanoemulsion) and a novel B. cenocepacia-based OMP antigen. The OMP antigen derived from B. cenocepacia was mixed with either nanoemulsion or with PBS and delivered intranasally to CD-1 mice. Serum analysis showed robust IgG and mucosal secretory IgA immune responses in vaccinated versus control mice. The antibodies had cross-neutralizing activity against both B. cenocepacia and B. multivorans species. We found that immunized mice were protected against pulmonary colonization with B. cenocepacia. We have also identified that a 17 kDa OmpA-like protein highly conserved between Burkholderia and Ralstonia species as a new immunodominant epitope in mucosal immunization.
Collapse
|
49
|
Saldías MS, Ortega X, Valvano MA. Burkholderia cenocepacia O antigen lipopolysaccharide prevents phagocytosis by macrophages and adhesion to epithelial cells. J Med Microbiol 2009; 58:1542-1548. [PMID: 19713359 DOI: 10.1099/jmm.0.013235-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chronic respiratory infections by the Burkholderia cepacia complex (Bcc) are of great concern to patients with cystic fibrosis. Bcc isolates may survive intracellularly within amoebae, respiratory epithelial cells and macrophages. The molecular mechanisms facilitating colonization and pathogenesis remain unclear. Given the importance of bacterial adhesion to host surfaces in microbial pathogenesis, we investigated the role of the O antigen LPS in the interaction of Burkholderia cenocepacia, a member of the Bcc, with macrophages and epithelial cells. Our results demonstrated that the O antigen modulates phagocytosis but does not affect intracellular survival of B. cenocepacia. Internalization of strains that lack O antigen was significantly increased compared to that of their isogenic smooth counterparts. However, no differences between rough and smooth strains were found in their ability to delay phagosomal maturation. We also found that the O antigen interfered with the ability of B. cenocepacia to adhere to bronchial epithelial cells, suggesting that this polysaccharide may mask one or more bacterial surface adhesins.
Collapse
Affiliation(s)
- M Soledad Saldías
- Infectious Diseases Research Group, Siebens-Drake Research Institute, Department of Microbiology and Immunology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Ximena Ortega
- Infectious Diseases Research Group, Siebens-Drake Research Institute, Department of Microbiology and Immunology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Miguel A Valvano
- Department of Medicine, University of Western Ontario, London, Ontario N6A 5C1, Canada.,Infectious Diseases Research Group, Siebens-Drake Research Institute, Department of Microbiology and Immunology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| |
Collapse
|
50
|
Ieranò T, Silipo A, Cescutti P, Leone MR, Rizzo R, Lanzetta R, Parrilli M, Molinaro A. Structural Study and Conformational Behavior of the Two Different Lipopolysaccharide O-Antigens Produced by the Cystic Fibrosis PathogenBurkholderia multivorans. Chemistry 2009; 15:7156-66. [DOI: 10.1002/chem.200900647] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|