1
|
Al-Bukhalifa MA, Al-Tameemi HM. First whole genome sequencing of Staphylococcus aureus isolates from Iraq: Insights into zoonotic relations and biofilm-related genes. Open Vet J 2024; 14:3269-3288. [PMID: 39927357 PMCID: PMC11799623 DOI: 10.5455/ovj.2024.v14.i12.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 11/12/2024] [Indexed: 02/11/2025] Open
Abstract
Background Staphylococcus aureus is a significant zoonotic pathogen capable of causing infections in both humans and animals. The bacterium's capacity to develop biofilms and resistance to many different antibiotics has raised significant concerns for public health. Furthermore, studies have demonstrated that horizontal gene transfer enables the transfer of deleterious features between strains found in humans and animals, consequently rendering treatment and control efforts more challenging. Aim This study aimed to investigate the relationships between human and animal isolates and biofilm-associated genes in local S. aureus strains using whole genome sequencing technique. Methods We examined 111 suspected cases of S. aureus infection in humans and in animals and screened all S. aureus -positive isolates (11 isolates) for biofilm formation and antimicrobial profiles. Additionally, we sequenced and studied five S. aureus genomes isolated from humans, cows, sheep, cats, and dogs for significant biofilm-related genes and predicted their loci following annotation and deposition in the NCBI database. Results The study showed that the isolates have genome sizes between 2.7 and 2.8 megabases, a GC content of 32.8%-33.1%, and a coding sequence count between 2,718 and 2,838. The cow isolate (MHB) and cat isolate (MHF) exhibited substantial genomic similarities with human isolates of S. aureus (N315) and the type strain of S. aureus (DSM 20231). The genomes of the human isolate (MHH) and the dog isolate (MHC) were comparable to S. aureus (N315). The sheep isolate (MHO) showed lesser genomic similarity and was closely related to S. aureus subsp. anaerobius. The genomes were submitted to the NCBI database with the following accession numbers: MHB (GCA_040196135.1), MHH (GCA_040196155.1), MHO (GCA_040195495.1), MHF (GCA_040195555.1), and MHC (GCA_040195445.1). The isolates were categorized by PubMLST typing into MHC (ST-1156), MHB (ST-6), MHF (ST-6), and MHO (a unique ST). We identified the accession numbers, locations, and lengths of biofilm-associated genes and regulators within the studied genomes. Conclusion The study is the first to conduct complete genome sequencing of Staphylococcus aureus in Iraq, allowing analysis of biofilm-associated genes in local isolates. It provides the first large-scale genomic investigation of genetic relationships among animal and human isolates in Iraq.
Collapse
Affiliation(s)
| | - Hassan M. Al-Tameemi
- Microbiology Department, College of Veterinary Medicine, Basrah University, Basrah, Iraq
| |
Collapse
|
2
|
Francis D, Bhairaddy A, Joy A, Hari GV, Francis A. Secretory proteins in the orchestration of microbial virulence: The curious case of Staphylococcus aureus. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 133:271-350. [PMID: 36707204 DOI: 10.1016/bs.apcsb.2022.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Microbial virulence showcases an excellent model for adaptive changes that enable an organism to survive and proliferate in a hostile environment and exploit host resources to its own benefit. In Staphylococcus aureus, an opportunistic pathogen of the human host, known for the diversity of the disease conditions it inflicts and the rapid evolution of antibiotic resistance, virulence is a consequence of having a highly plastic genome that is amenable to quick reprogramming and the ability to express a diverse arsenal of virulence factors. Virulence factors that are secreted to the host milieu effectively manipulate the host conditions to favor bacterial survival and growth. They assist in colonization, nutrient acquisition, immune evasion, and systemic spread. The structural and functional characteristics of the secreted virulence proteins have been shaped to assist S. aureus in thriving and disseminating effectively within the host environment and exploiting the host resources to its best benefit. With the aim of highlighting the importance of secreted virulence proteins in bacterial virulence, the present chapter provides a comprehensive account of the role of the major secreted proteins of S. aureus in orchestrating its virulence in the human host.
Collapse
Affiliation(s)
- Dileep Francis
- Department of Life Sciences, Kristu Jayanti College, Autonomous, Bengaluru, Karnataka, India.
| | - Anusha Bhairaddy
- Department of Life Sciences, Kristu Jayanti College, Autonomous, Bengaluru, Karnataka, India
| | - Atheene Joy
- Department of Life Sciences, Kristu Jayanti College, Autonomous, Bengaluru, Karnataka, India
| | | | - Ashik Francis
- Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala, India
| |
Collapse
|
3
|
Zha J, Li J, Su Z, Akimbekov N, Wu X. Lysostaphin: Engineering and Potentiation toward Better Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11441-11457. [PMID: 36082619 DOI: 10.1021/acs.jafc.2c03459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Lysostaphin is a potent bacteriolytic enzyme with endopeptidase activity against the common pathogen Staphylococcus aureus. By digesting the pentaglycine crossbridge in the cell wall peptidoglycan of S. aureus including the methicillin-resistant strains, lysostaphin initiates rapid lysis of planktonic and sessile cells (biofilms) and has great potential for use in agriculture, food industries, and pharmaceutical industries. In the past few decades, there have been tremendous efforts in potentiating lysostaphin for better applications in these fields, including engineering of the enzyme for higher potency and lower immunogenicity with longer-lasting effects, formulation and immobilization of the enzyme for higher stability and better durability, and recombinant expression for low-cost industrial production and in situ biocontrol. These achievements are extensively reviewed in this article focusing on applications in disease control, food preservation, surface decontamination, and pathogen detection. In addition, some basic properties of lysostaphin that have been controversial and only elucidated recently are summarized, including the substrate-binding properties, the number of zinc-binding sites, the substrate range, and the cleavage site in the pentaglycine crossbridge. Resistance to lysostaphin is also highlighted with a focus on various mechanisms. This article is concluded with a discussion on the limitations and future perspectives for the actual applications of lysostaphin.
Collapse
Affiliation(s)
- Jian Zha
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jingyuan Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Zheng Su
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Nuraly Akimbekov
- Department of Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Xia Wu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
4
|
Liu H, Prajapati V, Prajapati S, Bais H, Lu J. Comparative Genome Analysis of Bacillus amyloliquefaciens Focusing on Phylogenomics, Functional Traits, and Prevalence of Antimicrobial and Virulence Genes. Front Genet 2021; 12:724217. [PMID: 34659348 PMCID: PMC8514880 DOI: 10.3389/fgene.2021.724217] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 08/26/2021] [Indexed: 11/13/2022] Open
Abstract
Bacillus amyloliquefaciens is a gram-positive, nonpathogenic, endospore-forming, member of a group of free-living soil bacteria with a variety of traits including plant growth promotion, production of antifungal and antibacterial metabolites, and production of industrially important enzymes. We have attempted to reconstruct the biogeographical structure according to functional traits and the evolutionary lineage of B. amyloliquefaciens using comparative genomics analysis. All the available 96 genomes of B. amyloliquefaciens strains were curated from the NCBI genome database, having a variety of important functionalities in all sectors keeping a high focus on agricultural aspects. In-depth analysis was carried out to deduce the orthologous gene groups and whole-genome similarity. Pan genome analysis revealed that shell genes, soft core genes, core genes, and cloud genes comprise 17.09, 5.48, 8.96, and 68.47%, respectively, which demonstrates that genomes are very different in the gene content. It also indicates that the strains may have flexible environmental adaptability or versatile functions. Phylogenetic analysis showed that B. amyloliquefaciens is divided into two clades, and clade 2 is further dived into two different clusters. This reflects the difference in the sequence similarity and diversification that happened in the B. amyloliquefaciens genome. The majority of plant-associated strains of B. amyloliquefaciens were grouped in clade 2 (73 strains), while food-associated strains were in clade 1 (23 strains). Genome mining has been adopted to deduce antimicrobial resistance and virulence genes and their prevalence among all strains. The genes tmrB and yuaB codes for tunicamycin resistance protein and hydrophobic coat forming protein only exist in clade 2, while clpP, which codes for serine proteases, is only in clade 1. Genome plasticity of all strains of B. amyloliquefaciens reflects their adaption to different niches.
Collapse
Affiliation(s)
- Hualin Liu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Vimalkumar Prajapati
- Division of Microbiology and Environmental, Biotechnology, Aspee Shakilam Biotechnology Institute, Navsari Agricultural University, Surat, India
| | - Shobha Prajapati
- SVP-A School of Sardar Vallabhbhai National Institute of Technology, Surat, India
| | - Harsh Bais
- Delaware Biotechnology Institute, University of Delaware, Newark, DE, United States
| | - Jianguo Lu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| |
Collapse
|
5
|
The protealysin operon encodes emfourin, a prototype of a novel family of protein metalloprotease inhibitors. Int J Biol Macromol 2020; 169:583-596. [PMID: 33385454 DOI: 10.1016/j.ijbiomac.2020.12.170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 01/02/2023]
Abstract
Protealysin is a Serratia proteamaculans metalloproteinase of the M4 peptidase family and the prototype of a large group of protealysin-like proteases (PLPs). PLPs are likely involved in bacterial interaction with plants and animals as well as in bacterial pathogenesis. We demonstrated that the PLP genes in bacteria colocalize with the genes of putative conserved proteins. In S. proteamaculans, these two genes form a bicistronic operon. The putative S. proteamaculans protein that we called emfourin (M4in) was expressed in Escherichia coli and characterized. M4in forms a complex with protealysin with a 1:1 stoichiometry and is a potent slow-binding competitive inhibitor of protealysin (Ki = 52 ± 14 pM); besides, M4in is not secreted from S. proteamaculans constitutively. A comparison of amino acid sequences of M4in and its homologs with those of known inhibitors suggests that M4in is the prototype of a new family of protein inhibitors of proteases.
Collapse
|
6
|
Hume EB, Cole N, Khan S, Walsh BJ, Willcox MD. The role of staphopain a in Staphylococcus aureus keratitis. Exp Eye Res 2020; 193:107994. [PMID: 32147399 DOI: 10.1016/j.exer.2020.107994] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/24/2020] [Accepted: 03/04/2020] [Indexed: 12/17/2022]
Abstract
Staphylococcus aureus is a common bacterial isolate from cases of microbial keratitis. The virulence factors that contribute to its pathogenicity during this disease have not been fully resolved. The aim of the current study was to examine the effects of the extracellular protease Staphopain A on corneal virulence. Two strains were used, one Staph 38 that gives a high pathology score during keratitis and a less virulent strain ATCC 8325-4. The effect of inhibition of Staphopain by general or specific protease inhibitors on adhesion of strains to fibronectin-coated glass or PMMA was determined. This was followed by an analysis of the effect of Staphopain A on the ability of the bacteria to adhere to and invade corneal epithelial cells. Finally, the effect of inhibiting Staphopain A on pathogenesis in a mouse model of keratitis was studied. Staphopain A increased the adhesion of strains to fibronectin-coated substrata and inhibition of Staphopain A reduced adhesion. The inhibition of Staphopain A by staphostatin A significantly decreased both association with and invasion into human corneal epithelial cells by 15-fold for strain Saur38. Inhibition of Staphopain A significantly reduced the pathology associated with S. aureus keratitis, reducing the infecting numbers of bacteria from 1.8x105 to <1x104 cells/cornea (p ≤ 0.001), significantly reducing the corneal pathology score (p ≤ 0.038) and reducing the numbers of infiltrating PMNs. This study shows that Staphopain increases adhesion and invasion of corneal cells due to increasing fibronectin binding and its inhibition has a significant impact on pathogenicity of S. aureus during keratitis.
Collapse
Affiliation(s)
- Emma Bh Hume
- School of Optometry and Vision Science, The University of New South Wales, UNSW, Sydney, NSW, 2052, Australia
| | - Nerida Cole
- School of Optometry and Vision Science, The University of New South Wales, UNSW, Sydney, NSW, 2052, Australia
| | - Shamila Khan
- School of Optometry and Vision Science, The University of New South Wales, UNSW, Sydney, NSW, 2052, Australia
| | - Bradley J Walsh
- Minomic International Ltd, Macquarie Park, NSW, 2113, Australia
| | - Mark Dp Willcox
- School of Optometry and Vision Science, The University of New South Wales, UNSW, Sydney, NSW, 2052, Australia.
| |
Collapse
|
7
|
Tam K, Torres VJ. Staphylococcus aureus Secreted Toxins and Extracellular Enzymes. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0039-2018. [PMID: 30873936 PMCID: PMC6422052 DOI: 10.1128/microbiolspec.gpp3-0039-2018] [Citation(s) in RCA: 208] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Indexed: 02/06/2023] Open
Abstract
Staphylococcus aureus is a formidable pathogen capable of causing infections in different sites of the body in a variety of vertebrate animals, including humans and livestock. A major contribution to the success of S. aureus as a pathogen is the plethora of virulence factors that manipulate the host's innate and adaptive immune responses. Many of these immune modulating virulence factors are secreted toxins, cofactors for activating host zymogens, and exoenzymes. Secreted toxins such as pore-forming toxins and superantigens are highly inflammatory and can cause leukocyte cell death by cytolysis and clonal deletion, respectively. Coagulases and staphylokinases are cofactors that hijack the host's coagulation system. Exoenzymes, including nucleases and proteases, cleave and inactivate various immune defense and surveillance molecules, such as complement factors, antimicrobial peptides, and surface receptors that are important for leukocyte chemotaxis. Additionally, some of these secreted toxins and exoenzymes can cause disruption of endothelial and epithelial barriers through cell lysis and cleavage of junction proteins. A unique feature when examining the repertoire of S. aureus secreted virulence factors is the apparent functional redundancy exhibited by the majority of the toxins and exoenzymes. However, closer examination of each virulence factor revealed that each has unique properties that have important functional consequences. This chapter provides a brief overview of our current understanding of the major secreted virulence factors critical for S. aureus pathogenesis.
Collapse
Affiliation(s)
- Kayan Tam
- Department of Microbiology, New York University School of Medicine, Alexandria Center for Life Science, New York, NY 10016
| | - Victor J Torres
- Department of Microbiology, New York University School of Medicine, Alexandria Center for Life Science, New York, NY 10016
| |
Collapse
|
8
|
Lysostaphin Lysibody Leads to Effective Opsonization and Killing of Methicillin-Resistant Staphylococcus aureus in a Murine Model. Antimicrob Agents Chemother 2018; 62:AAC.01056-18. [PMID: 30038041 DOI: 10.1128/aac.01056-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/16/2018] [Indexed: 12/31/2022] Open
Abstract
The cell wall of Gram-positive bacteria contains abundant surface-exposed carbohydrate structures that are highly conserved. While these properties make surface carbohydrates ideal targets for immunotherapy, carbohydrates elicit a poor immune response that results primarily in low-affinity IgM antibodies. In a previous publication, we introduced the lysibody approach to address this shortcoming. Lysibodies are engineered molecules that combine a high-affinity carbohydrate-binding domain of bacterial or bacteriophage origin and an Fc effector portion of a human IgG antibody, thus directing effective immunity to conserved bacterial surface carbohydrates. Here, we describe the first example of a lysibody containing the binding domain from a bacteriocin, lysostaphin. We also describe the creation of five lysibodies with binding domains derived from phage lysins, directed against Staphylococcus aureus The lysostaphin and LysK lysibodies showed the most promise and were further characterized. Both lysibodies bound a range of clinically important staphylococcal strains, fixed complement on the staphylococcal surface, and induced phagocytosis of S. aureus by macrophages and human neutrophils. The lysostaphin lysibody had superior in vitro activity compared to that of the LysK lysibody, as well as that of the previously characterized ClyS lysibody, and it effectively protected mice in a kidney abscess/bacteremia model. These results further demonstrate that the lysibody approach is a reproducible means of creating antibacterial antibodies that cannot be produced by conventional means. Lysibodies therefore are a promising solution for opsonic antibodies that may be used passively to both treat and prevent infection by drug-resistant pathogens.
Collapse
|
9
|
The ω Subunit Governs RNA Polymerase Stability and Transcriptional Specificity in Staphylococcus aureus. J Bacteriol 2016; 199:JB.00459-16. [PMID: 27799328 DOI: 10.1128/jb.00459-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 10/26/2016] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus is a major human pathogen that causes infection in a wide variety of sites within the human body. Its ability to adapt to the human host and to produce a successful infection requires precise orchestration of gene expression. While DNA-dependent RNA polymerase (RNAP) is generally well characterized, the roles of several small accessory subunits within the complex have yet to be fully explored. This is particularly true for the omega (ω or RpoZ) subunit, which has been extensively studied in Gram-negative bacteria but largely neglected in Gram-positive counterparts. In Escherichia coli, it has been shown that ppGpp binding, and thus control of the stringent response, is facilitated by ω. Interestingly, key residues that facilitate ppGpp binding by ω are not conserved in S. aureus, and consequently, survival under starvation conditions is unaffected by rpoZ deletion. Further to this, ω-lacking strains of S. aureus display structural changes in the RNAP complex, which result from increased degradation and misfolding of the β' subunit, alterations in δ and σ factor abundance, and a general dissociation of RNAP in the absence of ω. Through RNA sequencing analysis we detected a variety of transcriptional changes in the rpoZ-deficient strain, presumably as a response to the negative effects of ω depletion on the transcription machinery. These transcriptional changes translated to an impaired ability of the rpoZ mutant to resist stress and to fully form a biofilm. Collectively, our data underline, for the first time, the importance of ω for RNAP stability, function, and cellular physiology in S. aureus IMPORTANCE: In order for bacteria to adjust to changing environments, such as within the host, the transcriptional process must be tightly controlled. Transcription is carried out by DNA-dependent RNA polymerase (RNAP). In addition to its major subunits (α2ββ') a fifth, smaller subunit, ω, is present in all forms of life. Although this small subunit is well studied in eukaryotes and Gram-negative bacteria, only limited information is available for Gram-positive and pathogenic species. In this study, we investigated the structural and functional importance of ω, revealing key roles in subunit folding/stability, complex assembly, and maintenance of transcriptional integrity. Collectively, our data underline, for the first time, the importance of ω for RNAP function and cellular harmony in S. aureus.
Collapse
|
10
|
Misawa Y, Kelley KA, Wang X, Wang L, Park WB, Birtel J, Saslowsky D, Lee JC. Staphylococcus aureus Colonization of the Mouse Gastrointestinal Tract Is Modulated by Wall Teichoic Acid, Capsule, and Surface Proteins. PLoS Pathog 2015. [PMID: 26201029 PMCID: PMC4511793 DOI: 10.1371/journal.ppat.1005061] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Staphylococcus aureus colonizes the nose, throat, skin, and gastrointestinal (GI) tract of humans. GI carriage of S. aureus is difficult to eradicate and has been shown to facilitate the transmission of the bacterium among individuals. Although staphylococcal colonization of the GI tract is asymptomatic, it increases the likelihood of infection, particularly skin and soft tissue infections caused by USA300 isolates. We established a mouse model of persistent S. aureus GI colonization and characterized the impact of selected surface antigens on colonization. In competition experiments, an acapsular mutant colonized better than the parental strain Newman, whereas mutants defective in sortase A and clumping factor A showed impaired ability to colonize the GI tract. Mutants lacking protein A, clumping factor B, poly-N-acetyl glucosamine, or SdrCDE showed no defect in colonization. An S. aureus wall teichoic acid (WTA) mutant (ΔtagO) failed to colonize the mouse nose or GI tract, and the tagO and clfA mutants showed reduced adherence in vitro to intestinal epithelial cells. The tagO mutant was recovered in lower numbers than the wild type strain in the murine stomach and duodenum 1 h after inoculation. This reduced fitness correlated with the in vitro susceptibility of the tagO mutant to bile salts, proteases, and a gut-associated defensin. Newman ΔtagO showed enhanced susceptibility to autolysis, and an autolysin (atl) tagO double mutant abrogated this phenotype. However, the atl tagO mutant did not survive better in the mouse GI tract than the tagO mutant. Our results indicate that the failure of the tagO mutant to colonize the GI tract correlates with its poor adherence and susceptibility to bactericidal factors within the mouse gut, but not to enhanced activity of its major autolysin. Staphylococcus aureus persistently colonizes ~20% of the human population, and 40–60% of humans are intermittently colonized by this bacterium. The most common reservoir for S. aureus is the anterior nares, and the incidence of staphylococcal disease in higher in individuals who are colonized. Rectal colonization by S. aureus isolates, reflecting gastrointestinal (GI) carriage, has recently been recognized as an important reservoir from which person to person transmission occurs. We developed a murine model of S. aureus GI colonization to investigate bacterial factors that promote staphylococcal colonization of the gut. We identified several surface-associated S. aureus antigens that modulate colonization of the GI tract and identified a surface glycopolymer (cell wall teichoic acid) as critical for the early steps in colonization. The failure of the teichoic acid mutant to colonize the GI tract can be attributed to its defects in bacterial adherence and to its enhanced susceptibility to mammalian host defenses unique to the gastrointestinal tract. Efforts to develop antimicrobials that target WTA may lead to an overall reduction in asymptomatic colonization by antibiotic-resistant S. aureus and may impact the incidence of invasive disease.
Collapse
Affiliation(s)
- Yoshiki Misawa
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Kathryn A. Kelley
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Xiaogang Wang
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Linhui Wang
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Wan Beom Park
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Johannes Birtel
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - David Saslowsky
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jean C. Lee
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
11
|
Hall JW, Yang J, Guo H, Ji Y. The AirSR two-component system contributes to Staphylococcus aureus survival in human blood and transcriptionally regulates sspABC operon. Front Microbiol 2015; 6:682. [PMID: 26191060 PMCID: PMC4490255 DOI: 10.3389/fmicb.2015.00682] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 06/22/2015] [Indexed: 12/14/2022] Open
Abstract
To date, genes identified and transcriptionally regulated by the AirSR TCS have been involved in energy production and cellular homeostasis of the staphylococcal cell. It is well accepted that the state of cellular metabolism impacts the expression of virulence factors in Staphylococcus aureus. For this reason, we conducted experiments to determine if the AirSR TCS contributes to the pathogenesis of S. aureus using an antisense RNA interference technology, an inducible overexpression system, and gene deletions. Depletion of AirSR by antisense RNA expression or deletion of the genes, results in significant decrease in bacterial survival in human blood. Conversely, overexpression of AirR significantly promotes survival of S. aureus in blood. AirR promotes the secretion of virulence factors that inhibits opsonin-based phagocytosis. This enhanced survival is partially linked to the transcriptional regulation of the sspABC operon, encoding V8 protease (SspA), staphopain B (SspB) and staphostatin B (SspC). SspA and SspB are known virulence factors which proteolytically digest opsonins and inhibit killing of S. aureus by professional phagocytes. This is the first evidence linking the AirSR TCS to pathogenesis of S. aureus.
Collapse
Affiliation(s)
- Jeffrey W Hall
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN USA
| | - Junshu Yang
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN USA
| | - Haiyong Guo
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN USA
| | - Yinduo Ji
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN USA
| |
Collapse
|
12
|
Gowrishankar S, Kamaladevi A, Ayyanar KS, Balamurugan K, Pandian SK. Bacillus amyloliquefaciens-secreted cyclic dipeptide – cyclo(l-leucyl-l-prolyl) inhibits biofilm and virulence production in methicillin-resistant Staphylococcus aureus. RSC Adv 2015. [DOI: 10.1039/c5ra11641d] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The current study explores the inhibitory efficacy of cyclo(l-leucyl-l-prolyl) (CLP), a cyclic dipeptide fromBacillus amyloliquefacienson the biofilm and virulence production of methicillin-resistantStaphylococcus aureus(MRSA).
Collapse
Affiliation(s)
| | - Arumugam Kamaladevi
- Department of Biotechnology
- Alagappa University
- Science Campus
- Karaikudi – 630 004
- India
| | | | | | | |
Collapse
|
13
|
Song Y, Lunde CS, Benton BM, Wilkinson BJ. Studies on the mechanism of telavancin decreased susceptibility in a laboratory-derived mutant. Microb Drug Resist 2013; 19:247-55. [PMID: 23551248 DOI: 10.1089/mdr.2012.0195] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Telavancin is a novel semisynthetic lipoglycopeptide derivative of vancomycin with a dual mode of action. This study sought to understand the mechanisms of decreased telavancin susceptibility in a laboratory-derived Staphlococcus aureus mutant Tlv(DS)MED1952. There were extensive changes in the transcriptome of Tlv(DS)MED1952 compared to the susceptible parent strain MED1951. Genes upregulated included cofactor biosynthesis genes, cell wall-related genes, fatty acid biosynthesis genes, and stress genes. Downregulated genes included lysine operon biosynthesis genes and lrgB, which are induced by telavancin in susceptible strains, agr and kdpDE genes, various cell surface protein genes, phenol-soluble modulin genes, several protease genes, and genes involved in anaerobic metabolism. The decreased susceptibility mutant had somewhat thicker cell walls and a decreased autolytic activity that may be related to decreased proteolytic peptidoglycan hydrolase processing. Membrane fatty acid changes correlated with increased membrane fluidity were observed. It seems likely that there are multiple genetic changes associated with the development of decreased telavancin susceptibility. The Tlv(DS) mutant showed some similar features to vancomycin-intermediate S. aureus and decreased daptomycin susceptibility strains, but also exhibited its own unique features.
Collapse
Affiliation(s)
- Yang Song
- School of Biological Sciences, Illinois State University, Normal, Illinois 61790-4120, USA
| | | | | | | |
Collapse
|
14
|
Inactivation of the serine proteinase operon (proMCD) of Staphylococcus warneri M: serine proteinase and cysteine proteases are involved in the autolysis. Gene 2013; 512:240-6. [PMID: 23107764 DOI: 10.1016/j.gene.2012.10.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 10/16/2012] [Indexed: 01/28/2023]
Abstract
Unlike other members of coagulase negative staphylococci (CNS), strain warneri has proMCD operon, a homologue of sspABC proteinase operon of S. aureus. The proM and proC encode serine glutamyl endopeptidase and cysteine protease respectively, whereas proD directs homologue of SspC, putative cytoplasmic inhibitor which protects the host bacterium from premature activation of SspB. We determined whole nucleotide sequence of proMCD operon of S. warneri M, succeeded in expression of these genes, and investigated their functions by gene inactivation and complementation experiments. In gelatin zymography of the culture supernatant, a 20-kDa band corresponding to PROC cysteine protease was detected. By Western blotting, PROD was also confirmed in the cytoplasmic protein fraction. PROC and PROD showed significant similarity to SspB and SspC of S. aureus (73% and 58%, respectively). Inactivation mutants of proMCD, proCD and proD genes were established, separately. In the proMCD mutant, degradation/processing of extracellular proteins was drastically reduced, suggesting that PROM was responsible for the cleavage of extracellular proteins. By the proD mutation, the growth profile was not affected, and secretion of PROC was retained. Extracellular protein profiles of the proCD and proD mutants were not so different each other, but autolysin profiles were slightly dissimilar, around 39-48 kDa and 20kDa bands in zymogram. Experiments in buffer systems showed that autolysis was significantly diminished in proMCD mutant, and was promoted by addition of purified PROM. The proC gene was cloned into a multicopy plasmid, and introduced into the proMCD mutant. Compared with the wild type, autolysis of the proC-complemented strain was definitely enhanced by addition of purified PROM. These results suggested that PROM and PROC affected the coccal autolysis, through processing of the autolysin.
Collapse
|
15
|
Ma Y, Xu Y, Yestrepsky BD, Sorenson RJ, Chen M, Larsen SD, Sun H. Novel inhibitors of Staphylococcus aureus virulence gene expression and biofilm formation. PLoS One 2012; 7:e47255. [PMID: 23077578 PMCID: PMC3471953 DOI: 10.1371/journal.pone.0047255] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 09/10/2012] [Indexed: 12/27/2022] Open
Abstract
Staphylococcus aureus is a major human pathogen and one of the more prominent pathogens causing biofilm related infections in clinic. Antibiotic resistance in S. aureus such as methicillin resistance is approaching an epidemic level. Antibiotic resistance is widespread among major human pathogens and poses a serious problem for public health. Conventional antibiotics are either bacteriostatic or bacteriocidal, leading to strong selection for antibiotic resistant pathogens. An alternative approach of inhibiting pathogen virulence without inhibiting bacterial growth may minimize the selection pressure for resistance. In previous studies, we identified a chemical series of low molecular weight compounds capable of inhibiting group A streptococcus virulence following this alternative anti-microbial approach. In the current study, we demonstrated that two analogs of this class of novel anti-virulence compounds also inhibited virulence gene expression of S. aureus and exhibited an inhibitory effect on S. aureus biofilm formation. This class of anti-virulence compounds could be a starting point for development of novel anti-microbial agents against S. aureus.
Collapse
Affiliation(s)
- Yibao Ma
- Department of Internal Medicine, University of Missouri, Columbia, Missouri, United States of America
| | - Yuanxi Xu
- Department of Internal Medicine, University of Missouri, Columbia, Missouri, United States of America
| | - Bryan D. Yestrepsky
- Vahlteich Medicinal Chemistry Core, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Roderick J. Sorenson
- Vahlteich Medicinal Chemistry Core, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Meng Chen
- Nanova, Inc., Columbia, Missouri, United States of America
| | - Scott D. Larsen
- Vahlteich Medicinal Chemistry Core, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail: (HS); (SDL)
| | - Hongmin Sun
- Department of Internal Medicine, University of Missouri, Columbia, Missouri, United States of America
- * E-mail: (HS); (SDL)
| |
Collapse
|
16
|
Thornton RF, Murphy EC, Kagawa TF, O'Toole PW, Cooney JC. The effect of environmental conditions on expression of Bacteroides fragilis and Bacteroides thetaiotaomicron C10 protease genes. BMC Microbiol 2012; 12:190. [PMID: 22943521 PMCID: PMC3462683 DOI: 10.1186/1471-2180-12-190] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 08/23/2012] [Indexed: 01/07/2023] Open
Abstract
Background Bacteroides fragilis and Bacteroides thetaiotaomicron are members of the normal human intestinal microbiota. However, both organisms are capable of causing opportunistic infections, during which the environmental conditions to which the bacteria are exposed change dramatically. To further explore their potential for contributing to infection, we have characterized the expression in B. thetaiotaomicron of four homologues of the gene encoding the C10 cysteine protease SpeB, a potent extracellular virulence factor produced by Streptococcus pyogenes. Results We identified a paralogous set of genes (btp genes) in the B. thetaiotaomicron genome, that were related to C10 protease genes we recently identified in B. fragilis. Similar to C10 proteases found in B. fragilis, three of the B. thetaiotaomicron homologues were transcriptionally coupled to genes encoding small proteins that are similar in structural architecture to Staphostatins, protease inhibitors associated with Staphopains in Staphylococcus aureus. The expression of genes for these C10 proteases in both B. fragilis and B. thetaiotaomicron was found to be regulated by environmental stimuli, in particular by exposure to oxygen, which may be important for their contribution to the development of opportunistic infections. Conclusions Genes encoding C10 proteases are increasingly identified in operons which also contain genes encoding proteins homologous to protease inhibitors. The Bacteroides C10 protease gene expression levels are responsive to different environmental stimuli suggesting they may have distinct roles in the bacterial-host interaction.
Collapse
|
17
|
Kolar SL, Nagarajan V, Oszmiana A, Rivera FE, Miller HK, Davenport JE, Riordan JT, Potempa J, Barber DS, Koziel J, Elasri MO, Shaw LN. NsaRS is a cell-envelope-stress-sensing two-component system of Staphylococcus aureus. MICROBIOLOGY-SGM 2011; 157:2206-2219. [PMID: 21565927 DOI: 10.1099/mic.0.049692-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Staphylococcus aureus possesses 16 two-component systems (TCSs), two of which (GraRS and NsaRS) belong to the intramembrane-sensing histidine kinase (IM-HK) family, which is conserved within the firmicutes. NsaRS has recently been documented as being important for nisin resistance in S. aureus. In this study, we present a characterization of NsaRS and reveal that, as with other IM-HK TCSs, it responds to disruptions in the cell envelope. Analysis using a lacZ reporter-gene fusion demonstrated that nsaRS expression is upregulated by a variety of cell-envelope-damaging antibiotics, including phosphomycin, ampicillin, nisin, gramicidin, carbonyl cyanide m-chlorophenylhydrazone and penicillin G. Additionally, we reveal that NsaRS regulates a downstream transporter NsaAB during nisin-induced stress. NsaS mutants also display a 200-fold decreased ability to develop resistance to the cell-wall-targeting antibiotic bacitracin. Microarray analysis reveals that the transcription of 245 genes is altered in an nsaS mutant, with the vast majority being downregulated. Included within this list are genes involved in transport, drug resistance, cell envelope synthesis, transcriptional regulation, amino acid metabolism and virulence. Using inductively coupled plasma-MS we observed a decrease in intracellular divalent metal ions in an nsaS mutant when grown under low abundance conditions. Characterization of cells using electron microscopy reveals that nsaS mutants have alterations in cell envelope structure. Finally, a variety of virulence-related phenotypes are impaired in nsaS mutants, including biofilm formation, resistance to killing by human macrophages and survival in whole human blood. Thus, NsaRS is important in sensing cell damage in S. aureus and functions to reprogram gene expression to modify cell envelope architecture, facilitating adaptation and survival.
Collapse
Affiliation(s)
- Stacey L Kolar
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Vijayaraj Nagarajan
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Anna Oszmiana
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Frances E Rivera
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Halie K Miller
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Jessica E Davenport
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, USA
| | - James T Riordan
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - David S Barber
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, USA
| | - Joanna Koziel
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Mohamed O Elasri
- Department of Biological Sciences, The University of Southern Mississippi, Hattiesburg, MS, USA
| | - Lindsey N Shaw
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, USA
| |
Collapse
|
18
|
Thornton RF, Kagawa TF, O'Toole PW, Cooney JC. The dissemination of C10 cysteine protease genes in Bacteroides fragilis by mobile genetic elements. BMC Microbiol 2010; 10:122. [PMID: 20416045 PMCID: PMC2873492 DOI: 10.1186/1471-2180-10-122] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 04/23/2010] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The C10 family of cysteine proteases includes enzymes that contribute to the virulence of bacterial pathogens, such as SpeB in Streptococcus pyogenes. The presence of homologues of cysteine protease genes in human commensal organisms has not been examined. Bacteroides fragilis is a member of the dominant Bacteroidetes phylum of the human intestinal microbiota, and is a significant opportunistic pathogen. RESULTS Four homologues of the streptococcal virulence factor SpeB were identified in the B. fragilis genome. These four protease genes, two were directly contiguous to open reading frames predicted to encode staphostatin-like inhibitors, with which the protease genes were co-transcribed. Two of these protease genes are unique to B. fragilis 638R and are associated with two large genomic insertions. Gene annotation indicated that one of these insertions was a conjugative Tn-like element and the other was a prophage-like element, which was shown to be capable of excision. Homologues of the B. fragilis C10 protease genes were present in a panel of clinical isolates, and in DNA extracted from normal human faecal microbiota. CONCLUSIONS This study suggests a mechanism for the evolution and dissemination of an important class of protease in major members of the normal human microbiota.
Collapse
|
19
|
Nickerson N, Ip J, Passos DT, McGavin MJ. Comparison of Staphopain A (ScpA) and B (SspB) precursor activation mechanisms reveals unique secretion kinetics of proSspB (Staphopain B), and a different interaction with its cognate Staphostatin, SspC. Mol Microbiol 2010; 75:161-77. [DOI: 10.1111/j.1365-2958.2009.06974.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Structural and functional characterization of SplA, an exclusively specific protease of Staphylococcus aureus. Biochem J 2009; 419:555-64. [PMID: 19175361 DOI: 10.1042/bj20081351] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Staphylococcus aureus is a dangerous human pathogen whose antibiotic resistance is steadily increasing and no efficient vaccine is as yet available. This serious threat drives extensive studies on staphylococcal physiology and pathogenicity pathways, especially virulence factors. Spl (serine protease-like) proteins encoded by an operon containing up to six genes are a good example of poorly characterized secreted proteins probably involved in virulence. In the present study, we describe an efficient heterologous expression system for SplA and detailed biochemical and structural characterization of the recombinant SplA protease. The enzyme shares a significant sequence homology to V8 protease and epidermolytic toxins which are well documented staphylococcal virulence factors. SplA has a very narrow substrate specificity apparently imposed by the precise recognition of three amino acid residues positioned N-terminal to the hydrolysed peptide bond. To explain determinants of this extended specificity we resolve the crystal structure of SplA and define the consensus model of substrate binding. Furthermore we demonstrate that artificial N-terminal elongation of mature SplA mimicking a naturally present signal peptide abolishes enzymatic activity. The probable physiological role of the process is discussed. Of interest, even though precise N-terminal trimming is a common regulatory mechanism among S1 family enzymes, the crystal structure of SplA reveals novel significantly different mechanistic details.
Collapse
|
21
|
Identification and characterization of sigma, a novel component of the Staphylococcus aureus stress and virulence responses. PLoS One 2008; 3:e3844. [PMID: 19050758 PMCID: PMC2585143 DOI: 10.1371/journal.pone.0003844] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2008] [Accepted: 10/28/2008] [Indexed: 12/16/2022] Open
Abstract
S. aureus is a highly successful pathogen that is speculated to be the most common cause of human disease. The progression of disease in S. aureus is subject to multi-factorial regulation, in response to the environments encountered during growth. This adaptive nature is thought to be central to pathogenesis, and is the result of multiple regulatory mechanisms employed in gene regulation. In this work we describe the existence of a novel S. aureus regulator, an as yet uncharacterized ECF-sigma factor (σS), that appears to be an important component of the stress and pathogenic responses of this organism. Using biochemical approaches we have shown that σS is able to associates with core-RNAP, and initiate transcription from its own coding region. Using a mutant strain we determined that σS is important for S. aureus survival during starvation, extended exposure to elevated growth temperatures, and Triton X-100 induced lysis. Coculture studies reveal that a σS mutant is significantly outcompeted by its parental strain, which is only exacerbated during prolonged growth (7 days), or in the presence of stressor compounds. Interestingly, transcriptional analysis determined that under standard conditions, S. aureus SH1000 does not initiate expression of sigS. Assays performed hourly for 72h revealed expression in typically background ranges. Analysis of a potential anti-sigma factor, encoded downstream of sigS, revealed it to have no obvious role in the upregulation of sigS expression. Using a murine model of septic arthritis, sigS-mutant infected animals lost significantly less weight, developed septic arthritis at significantly lower levels, and had increased survival rates. Studies of mounted immune responses reveal that sigS-mutant infected animals had significantly lower levels of IL-6, indicating only a weak immunological response. Finally, strains of S. aureus lacking sigS were far less able to undergo systemic dissemination, as determined by bacterial loads in the kidneys of infected animals. These results establish that σS is an important component in S. aureus fitness, and in its adaptation to stress. Additionally it appears to have a significant role in its pathogenic nature, and likely represents a key component in the S. aureus regulatory network.
Collapse
|
22
|
Ono T, Nemoto TK, Shimoyama Y, Kimura S, Ohara-Nemoto Y. An Escherichia coli expression system for glutamyl endopeptidases optimized by complete suppression of autodegradation. Anal Biochem 2008; 381:74-80. [DOI: 10.1016/j.ab.2008.06.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Revised: 06/01/2008] [Accepted: 06/14/2008] [Indexed: 10/21/2022]
|
23
|
Nickerson NN, Joag V, McGavin MJ. Rapid autocatalytic activation of the M4 metalloprotease aureolysin is controlled by a conserved N-terminal fungalysin-thermolysin-propeptide domain. Mol Microbiol 2008; 69:1530-43. [DOI: 10.1111/j.1365-2958.2008.06384.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Nemoto TK, Ohara-Nemoto Y, Ono T, Kobayakawa T, Shimoyama Y, Kimura S, Takagi T. Characterization of the glutamyl endopeptidase from Staphylococcus aureus expressed in Escherichia coli. FEBS J 2008; 275:573-87. [PMID: 18199287 DOI: 10.1111/j.1742-4658.2007.06224.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
V8 protease, a member of the glutamyl endopeptidase I family, of Staphylococcus aureus V8 strain (GluV8) is widely used for proteome analysis because of its unique substrate specificity and resistance to detergents. In this study, an Escherichia coli expression system for GluV8, as well as its homologue from Staphylococcus epidermidis (GluSE), was developed, and the roles of the prosegments and two specific amino acid residues, Val69 and Ser237, were investigated. C-terminal His(6)-tagged proGluSE was successfully expressed from the full-length sequence as a soluble form. By contrast, GluV8 was poorly expressed by the system as a result of autodegradation; however, it was efficiently obtained by swapping its preprosegment with that of GluSE, or by the substitution of four residues in the GluV8 prosequence with those of GluSE. The purified proGluV8 was converted to the mature form in vitro by thermolysin treatment. The prosegment was essential for the suppression of proteolytic activity, as well as for the correct folding of GluV8, indicating its role as an intramolecular chaperone. Furthermore, the four amino acid residues at the C-terminus of the prosegment were sufficient for both of these roles. In vitro mutagenesis revealed that Ser237 was essential for proteolytic activity, and that Val69 was indispensable for the precise cleavage by thermolysin and was involved in the proteolytic reaction itself. This is the first study to express quantitatively GluV8 in E. coli, and to demonstrate explicitly the intramolecular chaperone activity of the prosegment of glutamyl endopeptidase I.
Collapse
Affiliation(s)
- Takayuki K Nemoto
- Department of Oral Molecular Biology, Course of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, Japan.
| | | | | | | | | | | | | |
Collapse
|
25
|
Władyka B, Pustelny K. Regulation of bacterial protease activity. Cell Mol Biol Lett 2008; 13:212-29. [PMID: 18026858 PMCID: PMC6275810 DOI: 10.2478/s11658-007-0048-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Accepted: 09/13/2007] [Indexed: 11/24/2022] Open
Abstract
Proteases, also referred to as peptidases, are the enzymes that catalyse the hydrolysis of peptide bonds in polipeptides. A variety of biological functions and processes depend on their activity. Regardless of the organism's complexity, peptidases are essential at every stage of life of every individual cell, since all protein molecules produced must be proteolytically processed and eventually recycled. Protease inhibitors play a crucial role in the required strict and multilevel control of the activity of proteases involved in processes conditioning both the physiological and pathophysiological functioning of an organism, as well as in host-pathogen interactions. This review describes the regulation of activity of bacterial proteases produced by dangerous human pathogens, focusing on the Staphylococcus genus.
Collapse
Affiliation(s)
- Benedykt Władyka
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| | | |
Collapse
|
26
|
Nickerson NN, Prasad L, Jacob L, Delbaere LT, McGavin MJ. Activation of the SspA serine protease zymogen of Staphylococcus aureus proceeds through unique variations of a trypsinogen-like mechanism and is dependent on both autocatalytic and metalloprotease-specific processing. J Biol Chem 2007; 282:34129-38. [PMID: 17878159 DOI: 10.1074/jbc.m705672200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The serine and cysteine proteases SspA and SspB of Staphylococcus aureus are secreted as inactive zymogens, zSspA and zSspB. Mature SspA is a trypsin-like glutamyl endopeptidase and is required to activate zSspB. Although a metalloprotease Aureolysin (Aur) is in turn thought to contribute to activation of zSspA, a specific role has not been demonstrated. We found that pre-zSspA is processed by signal peptidase at ANA(29) downward arrow, releasing a Leu(30) isoform that is first processed exclusively through autocatalytic intramolecular cleavage within a glutamine-rich propeptide segment, (40)QQTQSSKQQTPKIQ(53). The preferred site is Gln(43) with secondary processing at Gln(47) and Gln(53). This initial processing is necessary for optimal and subsequent Aur-dependent processing at Leu(58) and then Val(69) to release mature SspA. Although processing by Aur is rate-limiting in zSspA activation, the first active molecules of Val(69)SspA promote rapid intermolecular processing of remaining zSspA at Glu(65), producing an N-terminal (66)HANVILP isoform that is inactive until removal of the HAN tripeptide by Aur. Modeling indicated that His(66) of this penultimate isoform blocks the active site by hydrogen bonding to Ser(237) and occlusion of substrate. Binding of glutamate within the active site of zSspA is energetically unfavorable, but glutamine fits into the primary specificity pocket and is predicted to hydrogen bond to Thr(232) proximal to Ser(237), permitting autocatalytic cleavage of the glutamine-rich propeptide segment. These and other observations suggest that zSspA is activated through a trypsinogen-like mechanism where supplementary features of the propeptide must be sequentially processed in the correct order to allow efficient activation.
Collapse
Affiliation(s)
- Nicholas N Nickerson
- Department of Laboratory Medicine and Pathobiology, University of Toronto Sunnybrook Health Science Centre, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
27
|
Shaw LN, Jonsson IM, Singh VK, Tarkowski A, Stewart GC. Inactivation of traP has no effect on the agr quorum-sensing system or virulence of Staphylococcus aureus. Infect Immun 2007; 75:4519-27. [PMID: 17548478 PMCID: PMC1951194 DOI: 10.1128/iai.00491-07] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The success of Staphylococcus aureus as a pathogen can largely be attributed to the plethora of genetic regulators encoded within its genome that temporally regulate its arsenal of virulence determinants throughout its virulence lifestyle. Arguably the most important of these is the two-component, quorum-sensing system agr. Over the last decade, the controversial presence of a second quorum-sensing system (the TRAP system) has been proposed, and it has been mooted to function as the master regulator of virulence in S. aureus by modulating agr. Mutants defective in TRAP are reported to be devoid of agr expression, lacking in hemolytic activity, essentially deficient in the secretion of virulence determinants, and avirulent in infection models. A number of research groups have questioned the validity of the TRAP findings in recent years; however, a thorough and independent analysis of its role in S. aureus physiology and pathogenesis has not been forthcoming. Therefore, we have undertaken such an analysis of the TRAP locus of S. aureus. We found that a traP mutant was equally hemolytic as the wild-type strain. Furthermore, transcriptional profiling found no alterations in the traP mutant in expression levels of agr or in expression levels of multiple agr-regulated genes (hla, sspA, and spa). Analysis of secreted and surface proteins of the traP mutant revealed no deviation in comparison to the parent. Finally, analysis conducted using a murine model of S. aureus septic arthritis revealed that, in contrast to an agr mutant, the traP mutant was just as virulent as the wild-type strain.
Collapse
Affiliation(s)
- Lindsey N Shaw
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | | | | | | | | |
Collapse
|
28
|
Dubin G, Wladyka B, Stec-Niemczyk J, Chmiel D, Zdzalik M, Dubin A, Potempa J. The staphostatin family of cysteine protease inhibitors in the genus Staphylococcus as an example of parallel evolution of protease and inhibitor specificity. Biol Chem 2007; 388:227-35. [PMID: 17261086 DOI: 10.1515/bc.2007.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractStaphostatins constitute a family of staphylococcal cysteine protease inhibitors sharing a lipocalin-like fold and a unique mechanism of action. Each of these cytoplasmic proteins is co-expressed from one operon, together with a corresponding target extracellular cysteine protease (staphopain). To cast more light on staphostatin/staphopain interaction and the evolution of the encoding operons, we have cloned and characterized a staphopain (StpA2aurCH-91) and its inhibitor (StpinA2aurCH-91) from a novel staphylococcal thiol protease operon (stpAB2CH-91) identified inS.aureusstrain CH-91. Furthermore, we have expressed a staphostatin fromStaphylococcus warneri(StpinBwar) and characterized its target protease (StpBwar). Analysis of the reciprocal interactions among novel and previously described members of the staphostatin and staphopain families demonstrates that the co-transcribed protease is the primary target for each staphostatin. Nevertheless, the inhibitor derived from one species ofStaphylococcuscan inhibit the staphopain from another species, although theKivalues are generally higher and inhibition only occurs if both proteins belong to the same subgroup of eitherS. aureusstaphopain A/staphostatin A (α group) or staphopain B/staphostatin B (β group) orthologs. This indicates that both subgroups arose in a single event of ancestral allelic duplication, followed by parallel evolution of the protease/inhibitor pairs. The tight coevolution is likely the result of the known deleterious effects of uncontrolled staphopain action.
Collapse
Affiliation(s)
- Grzegorz Dubin
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland.
| | | | | | | | | | | | | |
Collapse
|
29
|
Shaw LN, Aish J, Davenport JE, Brown MC, Lithgow JK, Simmonite K, Crossley H, Travis J, Potempa J, Foster SJ. Investigations into sigmaB-modulated regulatory pathways governing extracellular virulence determinant production in Staphylococcus aureus. J Bacteriol 2006; 188:6070-80. [PMID: 16923874 PMCID: PMC1595368 DOI: 10.1128/jb.00551-06] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The commonly used Staphylococcus aureus laboratory strain 8325-4 bears a naturally occurring 11-bp deletion in the sigmaB-regulating phosphatase rsbU. We have previously published a report (M. J. Horsburgh, J. L. Aish, I. J. White, L. Shaw, J. K. Lithgow, and S. J. Foster, J. Bacteriol. 184:5457-5467, 2002) on restoring the rsbU deletion, producing a sigmaB-functional 8325-4 derivative, SH1000. SH1000 is pleiotropically altered in phenotype from 8325-4, displaying enhanced pigmentation, increased growth yields, and a marked decrease in secreted exoproteins. This reduction in exoprotein secretion appears to result from a sixfold reduction in agr expression. In this study we have undertaken transposon mutagenesis of SH1000 to identify components involved in the modulation of extracellular proteases and alpha-hemolysin compared to 8325-4. In total, 13 genes were identified displaying increased alpha-hemolysin transcription and extracellular proteolysis. Phenotypic analysis revealed that each mutant also had decreased pigmentation and a general increase in protein secretion. Interestingly this phenotype was not identical in each case but was variable from mutant to mutant. None of the genes identified encoded classic regulatory proteins but were predominantly metabolic enzymes involved in amino acid biosynthesis and transport. Further analysis revealed that all of these mutations were clustered in a 35-kb region of the chromosome. By complementation and genetic manipulation we were able to demonstrate the validity of these mutations. Interestingly transcriptional analysis revealed that rather than being regulated by sigmaB, these genes appeared to have a role in the regulation of sigmaB activity. Thus, we propose that the loss of individual genes in this chromosomal hot spot region results in a destabilization of cellular harmony and disruption of the sigmaB regulatory cascade.
Collapse
Affiliation(s)
- Lindsey N Shaw
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Popowicz GM, Dubin G, Stec-Niemczyk J, Czarny A, Dubin A, Potempa J, Holak TA. Functional and structural characterization of Spl proteases from Staphylococcus aureus. J Mol Biol 2006; 358:270-9. [PMID: 16516230 DOI: 10.1016/j.jmb.2006.01.098] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Revised: 01/25/2006] [Accepted: 01/26/2006] [Indexed: 11/27/2022]
Abstract
Staphylococcus aureus is the major cause of nosocomial infections world-wide, with increasing prevalence of community-acquired diseases. The recent dramatic increase in multi-antibiotic resistance, including resistance to the last-resort drug, vancomycin, together with the lack of an effective vaccine highlight the need for better understanding of S.aureus pathogenicity. Comparative analysis of available bacterial genomes allows for the identification of previously uncharacterized S.aureus genes with potential roles in pathogenicity. A good example is a cluster of six serine protease-like (spl) genes encompassed in one operon, which encode for putative proteases with similarity to staphylococcal glutamylendopeptidase (V8 protease). Here, we describe an efficient expression system for the production of recombinant SplB and SplC proteases in Escherichia coli, together with structural and functional characterization of the purified enzymes. A unique mechanism of cytoplasm protection against activity of misdirected SplB was uncovered. Apparently, the co-translated signal peptide maintains protease latency until it is cleaved by the signal peptidase during protein secretion. Furthermore, the crystal structure of the SplC protease revealed a fold resembling that of the V8 protease and epidermolytic toxins. Arrangement of the active site cleft and substrate-binding pocket of SplC explains the mechanism of enzyme latency and suggests that some Spl proteases possess restricted substrate specificity similar to that of the V8 protease and epidermolytic toxins.
Collapse
Affiliation(s)
- Grzegorz M Popowicz
- Max-Planck Institute of Biochemistry, Am Klopferspitz 18A, 82-152 Martinsried, Germany
| | | | | | | | | | | | | |
Collapse
|
31
|
Meehl MA, Pinkner JS, Anderson PJ, Hultgren SJ, Caparon MG. A novel endogenous inhibitor of the secreted streptococcal NAD-glycohydrolase. PLoS Pathog 2005; 1:e35. [PMID: 16333395 PMCID: PMC1298937 DOI: 10.1371/journal.ppat.0010035] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2005] [Accepted: 08/24/2005] [Indexed: 02/07/2023] Open
Abstract
The Streptococcus pyogenes NAD-glycohydrolase (SPN) is a toxic enzyme that is introduced into infected host cells by the cytolysin-mediated translocation pathway. However, how S. pyogenes protects itself from the self-toxicity of SPN had been unknown. In this report, we describe immunity factor for SPN (IFS), a novel endogenous inhibitor that is essential for SPN expression. A small protein of 161 amino acids, IFS is localized in the bacterial cytoplasmic compartment. IFS forms a stable complex with SPN at a 1:1 molar ratio and inhibits SPN's NAD-glycohydrolase activity by acting as a competitive inhibitor of its β-NAD+ substrate. Mutational studies revealed that the gene for IFS is essential for viability in those S. pyogenes strains that express an NAD-glycohydrolase activity. However, numerous strains contain a truncated allele of ifs that is linked to an NAD-glycohydrolase−deficient variant allele of spn. Of practical concern, IFS allowed the normally toxic SPN to be produced in the heterologous host Escherichia coli to facilitate its purification. To our knowledge, IFS is the first molecularly characterized endogenous inhibitor of a bacterial β-NAD+−consuming toxin and may contribute protective functions in the streptococci to afford SPN-mediated pathogenesis. The gram-positive bacterium Streptococcus pyogenes is a human pathogen that causes a wide range of infections from pharyngitis (“strep throat”) to invasive necrotizing fasciitis (“flesh-eating disease”). While strep throat responds to antibiotic therapy, more invasive infections caused by S. pyogenes often require surgical intervention. It is currently unknown exactly how the bacteria can switch between the different types of infection, but one possibility is via a mechanism by which the bacterium injects a bacterial protein toxin (S. pyogenes NAD-glycohydrolase [SPN]) into human skin cells, causing their death. In this study, the authors have shown that the injected toxin also has the ability to affect the bacteria. A second protein neutralizes SPN to ensure the bacteria are immune to its toxic effects. Consequently, S. pyogenes has developed a valuable weapon in its arsenal to promote its survival by ensuring the safe production of SPN, through its own protection by immunity factor for SPN, enabling the delivery of active SPN into human cells. The process reported in this paper may ultimately help create therapeutic inhibitors of SPN and possibly other SPN-like toxins implicated in microbial disease progression.
Collapse
Affiliation(s)
- Michael A Meehl
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Jerome S Pinkner
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Patricia J Anderson
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Scott J Hultgren
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Michael G Caparon
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
32
|
Potempa J, Golonka E, Filipek R, Shaw LN. Fighting an enemy within: cytoplasmic inhibitors of bacterial cysteine proteases. Mol Microbiol 2005; 57:605-10. [PMID: 16045606 DOI: 10.1111/j.1365-2958.2005.04714.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The genes encoding secreted, broad-spectrum activity cysteine proteases of Staphylococcus spp. (staphopains) and Streptococcus pyogenes (streptopain, SpeB) are genetically linked to genes encoding cytoplasmic inhibitors. While staphopain inhibitors have lipocalin-like folds, streptopain is inhibited by a protein bearing the scaffold of the enzyme profragment. Bioinformatic analysis of other prokaryotic genomes has revealed that two more species may utilize this same genetic arrangement to control streptopain-like proteases with lipocalin-like inhibitors, while three other species may employ a C-terminally located domain that resembles the profragment. This apparently represents a novel system that bacteria use to control the intracellular activity of their proteases.
Collapse
Affiliation(s)
- Jan Potempa
- Department of Microbiology, Faculty of Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Kraków, Poland.
| | | | | | | |
Collapse
|
33
|
Wootton M, Bennett PM, MacGowan AP, Walsh TR. Reduced expression of the atl autolysin gene and susceptibility to autolysis in clinical heterogeneous glycopeptide-intermediate Staphylococcus aureus (hGISA) and GISA strains. J Antimicrob Chemother 2005; 56:944-7. [PMID: 16157619 DOI: 10.1093/jac/dki289] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES To assess a link between resistance to Triton X-100 induced autolysis (TIA) and lowered atl expression in a collection of clinical glycopeptide-intermediate Staphylococcus aureus (GISA) and heterogeneous GISA (hGISA). METHODS Nine clinical GISA, 11 hGISA and 11 glycopeptide-susceptible S. aureus (GSSA), including three pairs of related isolates, were analysed using TIA assays. Lysostaphin MICs were determined by a broth microdilution technique and reverse transcriptase PCR was used to compare atl expression levels in all isolates. RESULTS Eight of nine clinical GISA and six of 11 hGISA exhibited lower susceptibility to TIA and higher MICs of lysostaphin than GSSA. Eight of nine GISA and all hGISA strains had lowered atl expression levels compared with GSSA. CONCLUSIONS The majority of GISA and hGISA isolates exhibited lowered susceptibility to TIA and lysostaphin and reduced atl expression when compared with GSSA isolates. These factors could contribute to, or predispose to the development of, a thickened cell wall and glycopeptide-intermediate resistance.
Collapse
Affiliation(s)
- Mandy Wootton
- Bristol Centre for Antimicrobial Research and Evaluation, Department of Cellular and Molecular Medicine, Medical Sciences, University of Bristol, Bristol BS1 8TD, UK.
| | | | | | | |
Collapse
|
34
|
Kagawa TF, O'toole PW, Cooney JC. SpeB-Spi: a novel protease-inhibitor pair from Streptococcus pyogenes. Mol Microbiol 2005; 57:650-66. [PMID: 16045611 DOI: 10.1111/j.1365-2958.2005.04708.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This study presents evidence for a novel protease-protease inhibitor couple, SpeB-Spi, in the human pathogen Streptococcus pyogenes. The gene for the inhibitor Spi is located directly downstream of the gene for the streptococcal cysteine protease SpeB. Spi is 37% identical and 70% similar to the sequence of the SpeB propeptide, suggesting that Spi and the SpeB propeptide might bind to SpeB in an analogous manner. Secondary structure predictions and molecular modelling suggested that Spi would adopt a structure similar to the SpeB propeptide. The spi gene was co-transcribed with speB on the 1.7 knt and 2.2 knt transcripts previously identified for speB. The Spi protein was purified by SpeB-affinity chromatography from the S. pyogenes cytoplasm. Recombinant Spi was produced and purified, and shown to bind to SpeB and to inhibit its protease activity. Although a similar genetic arrangement of protease and inhibitor is present in staphylococci, this is the first example of an inhibitor molecule that is a structural homologue of the cognate propeptide, and which is genetically linked to the protease gene. Thus, this represents a novel system whereby bacteria may control the intracellular activity of their proteases.
Collapse
Affiliation(s)
- Todd F Kagawa
- Department of Chemical and Environmental Sciences, and Materials and Surfaces Sciences Institute, University of Limerick, Limerick, Ireland
| | | | | |
Collapse
|