1
|
Lee MH, Seo H, Lee MS, Kim BJ, Kim HL, Lee DH, Oh J, Shin JY, Jin JY, Jeong DH, Kim BJ. Protection against tuberculosis achieved by dissolving microneedle patches loaded with live Mycobacterium paragordonae in a BCG prime-boost strategy. Front Immunol 2023; 14:1178688. [PMID: 37398665 PMCID: PMC10312308 DOI: 10.3389/fimmu.2023.1178688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
Introduction Skin vaccination using dissolving microneedle patch (MNP) technology for transdermal delivery is a promising vaccine delivery strategy to overcome the limitations of the existing vaccine administration strategies using syringes. To improve the traditional microneedle mold fabrication technique, we introduced droplet extension (DEN) to reduce drug loss. Tuberculosis remains a major public health problem worldwide, and BCG revaccination had failed to increase the protective efficacy against tuberculosis. We developed an MNP with live Mycobacterium paragordonae (Mpg) (Mpg-MNP) as a candidate of tuberculosis booster vaccine in a heterologous prime-boost strategy to increase the BCG vaccine efficacy. Materials and methods The MNPs were fabricated by the DEN method on a polyvinyl alcohol mask film and hydrocolloid-adhesive sheet with microneedles composed of a mixture of mycobacteria and hyaluronic acid. We assessed the transdermal delivery efficiency by comparing the activation of the dermal immune system with that of subcutaneous injection. A BCG prime Mpg-MNP boost regimen was administered to a mouse model to evaluate the protective efficacy against M. tuberculosis. Results We demonstrated the successful transdermal delivery achieved by Mpg-MNP compared with that observed with BCG-MNP or subcutaneous vaccination via an increased abundance of MHCII-expressing Langerin+ cells within the dermis that could migrate into draining lymph nodes to induce T-cell activation. In a BCG prime-boost regimen, Mpg-MNP was more protective than BCG-only immunization or BCG-MNP boost, resulting in a lower bacterial burden in the lungs of mice infected with virulent M. tuberculosis. Mpg-MNP-boosted mice showed higher serum levels of IgG than BCG-MNP-boosted mice. Furthermore, Ag85B-specific T-cells were activated after BCG priming and Mpg-MNP boost, indicating increased production of Th1-related cytokines in response to M. tuberculosis challenge, which is correlated with enhanced protective efficacy. Discussion The MNP fabricated by the DEN method maintained the viability of Mpg and achieved effective release in the dermis. Our data demonstrate a potential application of Mpg-MNP as a booster vaccine to enhance the efficacy of BCG vaccination against M. tuberculosis. This study produced the first MNP loaded with nontuberculous mycobacteria (NTM) to be used as a heterologous booster vaccine with verified protective efficacy against M. tuberculosis.
Collapse
Affiliation(s)
- Mi-Hyun Lee
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyejun Seo
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Institute of Endemic Diseases, Seoul National University Medical Research Center (SNUMRC), Seoul, Republic of Korea
| | - Moon-Su Lee
- Medical Business Division, Raphas Co., Ltd., Seoul, Republic of Korea
| | - Byoung Jun Kim
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Hye Lin Kim
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Du Hyung Lee
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jaehun Oh
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ju Yeop Shin
- Medical Business Division, Raphas Co., Ltd., Seoul, Republic of Korea
| | - Ju Young Jin
- Medical Business Division, Raphas Co., Ltd., Seoul, Republic of Korea
| | - Do Hyeon Jeong
- Medical Business Division, Raphas Co., Ltd., Seoul, Republic of Korea
| | - Bum-Joon Kim
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Institute of Endemic Diseases, Seoul National University Medical Research Center (SNUMRC), Seoul, Republic of Korea
- Liver Research Institute, College of Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Frantsuzova E, Bogun A, Vetrova A, Delegan Y. Methods of Identifying Gordonia Strains in Clinical Samples. Pathogens 2022; 11:pathogens11121496. [PMID: 36558832 PMCID: PMC9786905 DOI: 10.3390/pathogens11121496] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Gordonia spp. are members of the family Gordoniacea in the suborder Corynebacteriales; their habitat, in most cases, is soil. Many representatives of this genus are human or veterinary pathogens. The main cause of the lack of a standardized approach to dealing with infections caused by Gordonia is their erroneous identification and little information regarding their susceptibility to antimicrobial drugs. This review presents the most common methods for identifying Gordonia strains, including modern approaches for identifying a species. The main prospects and future directions of this field of knowledge are briefly presented.
Collapse
Affiliation(s)
- Ekaterina Frantsuzova
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia
| | - Alexander Bogun
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia
- State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Moscow Region, Russia
| | - Anna Vetrova
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia
| | - Yanina Delegan
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia
- Correspondence:
| |
Collapse
|
3
|
Nishina S, Sakai H, Kawakami T, Kanai S, Ushiki A, Natori T, Igarashi Y, Mitarai S, Yoshiyama T, Ishida F, Nakazawa H. Isolated splenic Mycobacterium tuberculosis complex infection in an immunocompetent individual with FDG-PET positive mass. J Infect Chemother 2020; 27:354-358. [PMID: 33023820 DOI: 10.1016/j.jiac.2020.09.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/05/2020] [Accepted: 09/15/2020] [Indexed: 11/28/2022]
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis complex, is a leading cause of mortality in the world, and 15% of the patients may present with extrapulmonary diseases, including splenic lesion. However, isolated splenic infection with M. tuberculosis complex is very rare. A 19-year-old otherwise healthy woman presented with left flank pain, revealing FDG-avid nodules in the spleen. She did not have pulmonary lesions. Histopathology of splenectomized sample showed granuloma, and subsequent PCR revealed amplification of IS6110, a genetic sequence exclusively detected in M. tuberculosis complex. A wide range of differential diagnosis of isolated splenic lesion should include M. tuberculosis infection regardless of pulmonary involvement. An elective splenectomy may be mandatory in timely manner.
Collapse
Affiliation(s)
- Sayaka Nishina
- Division of Hematology, Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Hitoshi Sakai
- Division of Hematology, Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Toru Kawakami
- Division of Hematology, Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Shinichiro Kanai
- Infection Control Room, Shinshu University Hospital, Matsumoto, Japan; Department of Laboratory Medicine, Shinshu University Hospital, Matsumoto, Japan
| | - Atsuhito Ushiki
- Infection Control Room, Shinshu University Hospital, Matsumoto, Japan; First Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Tatsuya Natori
- Infection Control Room, Shinshu University Hospital, Matsumoto, Japan; Department of Laboratory Medicine, Shinshu University Hospital, Matsumoto, Japan
| | - Yuriko Igarashi
- Department of Mycobacterium Reference and Research, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Japan
| | - Satoshi Mitarai
- Department of Mycobacterium Reference and Research, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Japan
| | - Takashi Yoshiyama
- Tuberculosis Center, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Kiyose, Japan
| | - Fumihiro Ishida
- Division of Hematology, Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, Japan; Biomedical Laboratory Sciences, Shinshu University School of Medicine, Matsumoto, Japan
| | - Hideyuki Nakazawa
- Division of Hematology, Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, Japan.
| |
Collapse
|
4
|
Bolaños CAD, Paula CLD, Guerra ST, Franco MMJ, Ribeiro MG. Diagnosis of mycobacteria in bovine milk: an overview. Rev Inst Med Trop Sao Paulo 2017; 59:e40. [PMID: 28591268 PMCID: PMC5466425 DOI: 10.1590/s1678-9946201759040] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 02/22/2017] [Indexed: 11/22/2022] Open
Abstract
Tuberculosis remains as the world's biggest threat. In 2014, human tuberculosis ranked as a major infectious disease by the first time, overcoming HIV death rates. Bovine tuberculosis is a chronic disease of global distribution that affects animals and can be transmitted to humans by the consumption of raw milk, representing a serious public health concern. Despite the efforts of different countries to control and eradicate bovine tuberculosis, the high negative economic impact on meat and milk production chains remains, given the decreased production efficiency (approximately 25%), the high number of condemned carcasses, and increased animal culling rates. This scenario has motivated the establishment of official programs based on regulations and diagnostic procedures. Although Mycobacterium tuberculosis and Mycobacterium bovis are the major pathogenic species to humans and bovines, respectively, nontuberculous mycobacteria within the Mycobacterium genus have become increasingly important in recent decades due to human infections, including the ones that occur in immunocompetent people. Diagnosis of mycobacteria can be performed by microbiological culture from tissue samples (lymph nodes, lungs) and secretions (sputum, milk). In general, these pathogens demand special nutrient requirements for isolation/growth, and the use of selective and rich culture media. Indeed, within these genera, mycobacteria are classified as either fast- or slow-growth microorganisms. Regarding the latter ones, incubation times can vary from 45 to 90 days. Although microbiological culture is still considered the gold standard method for diagnosis, molecular approaches have been increasingly used. We describe here an overview of the diagnosis of Mycobacterium species in bovine milk.
Collapse
Affiliation(s)
- Carmen Alicia Daza Bolaños
- UNESP - Universidade Estadual Paulista Julio de Mesquita Filho, Faculdade de Medicina Veterinária e Zootecnia, Departamento de Higiene Veterinária e Saúde Pública, Botucatu, São Paulo, Brazil
| | - Carolina Lechinski de Paula
- UNESP - Universidade Estadual Paulista Julio de Mesquita Filho, Faculdade de Medicina Veterinária e Zootecnia, Departamento de Higiene Veterinária e Saúde Pública, Botucatu, São Paulo, Brazil
| | - Simony Trevizan Guerra
- UNESP - Universidade Estadual Paulista Julio de Mesquita Filho, Faculdade de Medicina Veterinária e Zootecnia, Departamento de Higiene Veterinária e Saúde Pública, Botucatu, São Paulo, Brazil
| | - Marília Masello Junqueira Franco
- UNESP - Universidade Estadual Paulista Julio de Mesquita Filho, Faculdade de Medicina Veterinária e Zootecnia, Departamento de Higiene Veterinária e Saúde Pública, Botucatu, São Paulo, Brazil
| | - Márcio Garcia Ribeiro
- UNESP - Universidade Estadual Paulista Julio de Mesquita Filho, Faculdade de Medicina Veterinária e Zootecnia, Departamento de Higiene Veterinária e Saúde Pública, Botucatu, São Paulo, Brazil
| |
Collapse
|
5
|
Identification of Species of Nontuberculous Mycobacteria Clinical Isolates from 8 Provinces of China. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2153910. [PMID: 27882322 PMCID: PMC5110891 DOI: 10.1155/2016/2153910] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 09/29/2016] [Indexed: 01/15/2023]
Abstract
Pulmonary diseases caused by nontuberculous mycobacteria (NTM) are increasing in incidence and prevalence worldwide. In this study, we identified NTM species of the clinical isolates from 8 provinces in China, in order to preliminarily provide some basic scientific data in the different species and distribution of NTM related to pulmonary disease in China. A total of 523 clinical isolates from patients with tuberculosis (TB) diagnosed clinically from 2005 to 2012 were identified to the species using conventional and molecular methods, including multilocus PCR, rpoB and hsp65 PCR-PRA, hsp65, rpoB, and 16S-23S internal transcribed spacer region sequencing. The isolates were identified into 3 bacterium genera, including NTM, Gordonia bronchialis, and Nocardia farcinica, and, for the 488 NTM isolates, 27 species were identified. For all the 27 species of NTM which were found to cause pulmonary infections in humans, the most prevalent species was M. intracellulare, followed by M. avium and M. abscessus. And seven other species were for the first time identified in patients with TB in China. NTM species identification is very important for distinguishing between tuberculosis and NTM pulmonary diseases, and the species diversity drives the creation of diverse and integrated identification methods with higher accuracy and efficacy.
Collapse
|
6
|
Gomez-Smith CK, LaPara TM, Hozalski RM. Sulfate Reducing Bacteria and Mycobacteria Dominate the Biofilm Communities in a Chloraminated Drinking Water Distribution System. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:8432-8440. [PMID: 26098899 DOI: 10.1021/acs.est.5b00555] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The quantity and composition of bacterial biofilms growing on 10 water mains from a full-scale chloraminated water distribution system were analyzed using real-time PCR targeting the 16S rRNA gene and next-generation, high-throughput Illumina sequencing. Water mains with corrosion tubercles supported the greatest amount of bacterial biomass (n = 25; geometric mean = 2.5 × 10(7) copies cm(-2)), which was significantly higher (P = 0.04) than cement-lined cast-iron mains (n = 6; geometric mean = 2.0 × 10(6) copies cm(-2)). Despite spatial variation of community composition and bacterial abundance in water main biofilms, the communities on the interior main surfaces were surprisingly similar, containing a core group of operational taxonomic units (OTUs) assigned to only 17 different genera. Bacteria from the genus Mycobacterium dominated all communities at the main wall-bulk water interface (25-78% of the community), regardless of main age, estimated water age, main material, and the presence of corrosion products. Further sequencing of the mycobacterial heat shock protein gene (hsp65) provided species-level taxonomic resolution of mycobacteria. The two dominant Mycobacteria present, M. frederiksbergense (arithmetic mean = 85.7% of hsp65 sequences) and M. aurum (arithmetic mean = 6.5% of hsp65 sequences), are generally considered to be nonpathogenic. Two opportunistic pathogens, however, were detected at low numbers: M. hemophilum (arithmetic mean = 1.5% of hsp65 sequences) and M. abscessus (arithmetic mean = 0.006% of hsp65 sequences). Sulfate-reducing bacteria from the genus Desulfovibrio, which have been implicated in microbially influenced corrosion, dominated all communities located underneath corrosion tubercules (arithmetic mean = 67.5% of the community). This research provides novel insights into the quantity and composition of biofilms in full-scale drinking water distribution systems, which is critical for assessing the risks to public health and to the water supply infrastructure.
Collapse
Affiliation(s)
- C Kimloi Gomez-Smith
- †Department of Civil, Environmental, and Geo- Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
- ‡Water Resources Sciences Graduate Program, University of Minnesota, St. Paul, Minnesota 55108, United States
| | - Timothy M LaPara
- †Department of Civil, Environmental, and Geo- Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
- §BioTechnology Institute, University of Minnesota, St. Paul, Minnesota 55108, United States
| | - Raymond M Hozalski
- †Department of Civil, Environmental, and Geo- Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
- §BioTechnology Institute, University of Minnesota, St. Paul, Minnesota 55108, United States
| |
Collapse
|
7
|
Carvalho C, Yang J, Vogan A, Maganti H, Yamamura D, Xu J. Clinical and tree hollow populations of human pathogenic yeast in Hamilton, Ontario, Canada are different. Mycoses 2013; 57:271-83. [PMID: 24283796 DOI: 10.1111/myc.12156] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 10/22/2013] [Accepted: 10/22/2013] [Indexed: 11/29/2022]
Abstract
Yeast are among the most frequent pathogens in humans. The dominant yeast causing human infections belong to the genus Candida and Candida albicans is the most frequently isolated species. However, several non-C. albicans species are becoming increasingly common in patients worldwide. The relationships between yeast in humans and the natural environments remain poorly understood. Furthermore, it is often difficult to identify or exclude the origins of disease-causing yeast from specific environmental reservoirs. In this study, we compared the yeast isolates from tree hollows and from clinics in Hamilton, Ontario, Canada. Our surveys and analyses showed significant differences in yeast species composition, in their temporal dynamics, and in yeast genotypes between isolates from tree hollows and hospitals. Our results are inconsistent with the hypothesis that yeast from trees constitute a significant source of pathogenic yeast in humans in this region. Similarly, the yeast in humans and clinics do not appear to contribute to yeast in tree hollows.
Collapse
Affiliation(s)
- Chris Carvalho
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | | | | | | | | | | |
Collapse
|
8
|
Isolation and Identification of Environmental Mycobacteria in the Waters of a Hemodialysis Center. Curr Microbiol 2013; 67:107-11. [DOI: 10.1007/s00284-013-0341-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 02/12/2013] [Indexed: 10/27/2022]
|
9
|
hsp65 PCR-restriction analysis (PRA) with capillary electrophoresis in comparison to three other methods for identification of Mycobacterium species. J Microbiol Methods 2010; 80:190-7. [DOI: 10.1016/j.mimet.2009.12.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 12/15/2009] [Accepted: 12/16/2009] [Indexed: 11/21/2022]
|
10
|
Saini V, Raghuvanshi S, Talwar GP, Ahmed N, Khurana JP, Hasnain SE, Tyagi AK, Tyagi AK. Polyphasic taxonomic analysis establishes Mycobacterium indicus pranii as a distinct species. PLoS One 2009; 4:e6263. [PMID: 19606228 PMCID: PMC2707620 DOI: 10.1371/journal.pone.0006263] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Accepted: 06/09/2009] [Indexed: 02/07/2023] Open
Abstract
Background Mycobacterium indicus pranii (MIP), popularly known as Mw, is a cultivable, non-pathogenic organism, which, based on its growth and metabolic properties, is classified in Runyon Group IV along with M. fortuitum, M. smegmatis and M. vaccae. The novelty of this bacterium was accredited to its immunological ability to undergo antigen driven blast transformation of leukocytes and delayed hypersensitivity skin test in leprosy patients, a disease endemic in the Indian sub-continent. Consequently, MIP has been extensively evaluated for its biochemical and immunological properties leading to its usage as an immunomodulator in leprosy and tuberculosis patients. However, owing to advances in sequencing and culture techniques, the citing of new strains with almost 100% similarity in the sequences of marker genes like 16S rRNA, has compromised the identity of MIP as a novel species. Hence, to define its precise taxonomic position, we have carried out polyphasic taxonomic studies on MIP that integrate its phenotypic, chemotaxonomic and molecular phylogenetic attributes. Methodology/Principal Findings The comparative analysis of 16S rRNA sequence of MIP by using BLAST algorithm at NCBI (nr database) revealed a similarity of ≥99% with M. intracellulare, M. arosiense, M. chimaera, M. seoulense, M. avium subsp. hominissuis, M. avium subsp. paratuberculosis and M. bohemicum. Further analysis with other widely used markers like rpoB and hsp65 could resolve the phylogenetic relationship between MIP and other closely related mycobacteria apart from M. intracellulare and M. chimaera, which shares ≥99% similarity with corresponding MIP orthologues. Molecular phylogenetic analysis, based on the concatenation of candidate orthologues of 16S rRNA, hsp65 and rpoB, also substantiated its distinctiveness from all the related organisms used in the analysis excluding M. intracellulare and M. chimaera with which it exhibited a close proximity. This necessitated further analysis of MIP with more sensitive and segregating parameters to ascertain its precise taxonomic position as a new species. The analysis of MIP and its comparison with other mycobacterial reference strains based on cellular and biochemical features, growth characteristics and chemotaxonomic studies like FAME profiling confirmed that MIP is uniquely endowed with diverse metabolic attributes that effectively distinguishes it from all the closely related mycobacteria including M. intracellulare and M. chimaera. Conclusion The results presented in this study coupled with the non-pathogenic nature and different biochemical and immunomodulatory properties of MIP affirm it as a distinct species belonging to M. avium complex (MAC). It is further proposed to use an earlier suggested name Mycobacterium indicus pranii for this newly established mycobacterial species. This study also exemplifies the growing need for a uniform, consensus based broader polyphasic frame work for the purpose of taxonomy and speciation, particularly in the genus Mycobacterium.
Collapse
Affiliation(s)
- Vikram Saini
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Saurabh Raghuvanshi
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | | | - Niyaz Ahmed
- Pathogen Biology Laboratory, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Jitendra P. Khurana
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Seyed E. Hasnain
- Institute of Life Sciences, University of Hyderabad, Hyderabad, India
- Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Akhilesh K. Tyagi
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Anil K. Tyagi
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
- * E-mail:
| |
Collapse
|