1
|
Grey B, Upton M, Joshi LT. Urinary tract infections: a review of the current diagnostics landscape. J Med Microbiol 2023; 72. [PMID: 37966174 DOI: 10.1099/jmm.0.001780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023] Open
Abstract
Urinary tract infections are the most common bacterial infections worldwide. Infections can range from mild, recurrent (rUTI) to complicated (cUTIs), and are predominantly caused by uropathogenic Escherichia coli (UPEC). Antibiotic therapy is important to tackle infection; however, with the continued emergence of antibiotic resistance there is an urgent need to monitor the use of effective antibiotics through better stewardship measures. Currently, clinical diagnosis of UTIs relies on empiric methods supported by laboratory testing including cellular analysis (of both human and bacterial cells), dipstick analysis and phenotypic culture. Therefore, development of novel, sensitive and specific diagnostics is an important means to rationalise antibiotic therapy in patients. This review discusses the current diagnostic landscape and highlights promising novel diagnostic technologies in development that could aid in treatment and management of antibiotic-resistant UTIs.
Collapse
Affiliation(s)
- Braith Grey
- Peninsula Dental School, Faculty of Health, University of Plymouth, Plymouth, Devon, UK
| | - Mathew Upton
- School of Biomedical Sciences, Faculty of Health, University of Plymouth, Plymouth, Devon, UK
| | - Lovleen Tina Joshi
- Peninsula Dental School, Faculty of Health, University of Plymouth, Plymouth, Devon, UK
| |
Collapse
|
2
|
Khoshbayan A, Golmoradi Zadeh R, Taati Moghadam M, Mirkalantari S, Darbandi A. Molecular determination of O25b/ST131 clone type among extended spectrum β-lactamases production Escherichia coli recovering from urinary tract infection isolates. Ann Clin Microbiol Antimicrob 2022; 21:35. [PMID: 35927655 PMCID: PMC9351160 DOI: 10.1186/s12941-022-00526-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 07/22/2022] [Indexed: 11/10/2022] Open
Abstract
Background Escherichia coli (E. coli) O25b/ST131 clone causes urinary tract infection (UTI) and is associated with a broad spectrum of other infections, such as intra-abdominal and soft tissue infections, that can be affecting bloodstream infections. Therefore, since O25b/ST131 has been reported in several studies from Iran, in the current study, we have investigated the molecular characteristics, typing, and biofilm formation of O25b/ST131 clone type E. coli collected from UTI specimens. Methods A total of 173 E. coli isolates from UTI were collected. The susceptibility to all fourth generations of cephalosporins (cefazolin, cefuroxime, ceftriaxone, cefotaxime, ceftazidime, cefepime) and ampicillin, ampicillin-sulbactam and aztreonam was determined. Class A ESBLs, class D ESBL and the presence of pabB gene screenings to detect of O25b/ST131 clone type were performed by using of PCR. Biofilm formation was compared between O25b/ST131 isolates and non-O25b/ST131 isolates. Finally, ERIC-PCR was used for typing of ESBL positive isolates. Results Ninety-four ESBL positive were detected of which 79 of them were O25b/ST131. Antimicrobial susceptibility test data showed that most antibiotics had a higher rate of resistance in isolates of the O25b/ST131 clonal type. Biofilm formation showed that there was a weak association between O25b/ST131 clone type isolates and the level of the biofilm formation. ERIC-PCR results showed that E. coli isolates were genetically diverse and classified into 14 groups. Conclusion Our results demonstrated the importance and high prevalence of E. coli O25b/ST131 among UTI isolates with the ability to spread fast and disseminate antibiotic resistance genes.
Collapse
Affiliation(s)
- Amin Khoshbayan
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Rezvan Golmoradi Zadeh
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Taati Moghadam
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Shiva Mirkalantari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran. .,Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
| | - Atieh Darbandi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Characterization of ampicillin-resistant genes in Vibrio parahaemolyticus. Microb Pathog 2022; 168:105573. [PMID: 35588966 DOI: 10.1016/j.micpath.2022.105573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/28/2022] [Accepted: 05/07/2022] [Indexed: 12/29/2022]
Abstract
Vibrio parahaemolyticus is strongly resistant to ampicillin (AMP). In this study, AMP-resistant genes in V. parahaemolyticus ATCC33846 were characterized. Transcriptomic analysis of V. parahaemolyticus exposed to AMP revealed 4608 differentially transcribed genes, including 670 significantly up-regulated genes and 655 significantly down-regulated genes. Based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses, significantly modulated genes in ATCC33846 under AMP stimulation were observed in the following categories: microbial metabolism in diverse environments, metabolic pathways, bacterial secretion system, citrate cycle, biofilm formation, oxidative phosphorylation, ribosome, citrate cycle, pyruvate metabolism, carbon metabolism, nitrogen metabolism, fatty acid metabolism and tryptophan metabolism. The genes VPA0510, VPA0252, VPA0699, VPA0768, VPA0320, VP0636, VPA1096, VPA0947 and VP1775 were significantly up-regulated at the similar level to blaA in V. parahaemolyticus under AMP stimulation, and their overexpression in V. parahaemolyticus could increase its resistance to AMP. These results indicate that AMP has a global influence on V. parahaemolyticus cells. The findings would provide new insights into the resistant mechanism of V. parahaemolyticus to AMP, which would be helpful for developing novel drugs for treating V. parahaemolyticus infection.
Collapse
|
4
|
Das S, Shaikh O, Gaur NK, Vijayakumar C, Kumbhar U. Fulminant Necrotizing Pyomyositis Tropicans. Cureus 2022; 14:e21767. [PMID: 35251837 PMCID: PMC8890598 DOI: 10.7759/cureus.21767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2022] [Indexed: 11/06/2022] Open
Abstract
Pyomyositis tropicans is a purulent invasive infection of the striated muscle tissues, usually caused by Gram-positive bacteria Staphylococcus aureus and Streptococcus in immunocompromised patients. We hereby report a case of fulminant necrotizing pyomyositis that occurred in a 16-year-old immunocompetent patient, and it is the first one of its kind to the best of our knowledge. The patient underwent imaging which suggested extensive intramuscular abdominal wall abscess formation, for which the patient underwent multiple surgical debridements of the lateral thoracic wall. Subsequent cultures grew Escherichia coli as the causative organism. Postoperatively, the patient went into catastrophic, irreversible septic shock ending in an eventual fatality.
Collapse
|
5
|
Yehouenou CL, Bogaerts B, De Keersmaecker SCJ, Roosens NHC, Marchal K, Tchiakpe E, Affolabi D, Simon A, Dossou FM, Vanneste K, Dalleur O. Whole-Genome Sequencing-Based Antimicrobial Resistance Characterization and Phylogenomic Investigation of 19 Multidrug-Resistant and Extended-Spectrum Beta-Lactamase-Positive Escherichia coli Strains Collected From Hospital Patients in Benin in 2019. Front Microbiol 2021; 12:752883. [PMID: 34956117 PMCID: PMC8695880 DOI: 10.3389/fmicb.2021.752883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/08/2021] [Indexed: 01/28/2023] Open
Abstract
The increasing worldwide prevalence of extended-spectrum beta-lactamase (ESBL) producing Escherichia coli constitutes a serious threat to global public health. Surgical site infections are associated with high morbidity and mortality rates in developing countries, fueled by the limited availability of effective antibiotics. We used whole-genome sequencing (WGS) to evaluate antimicrobial resistance and the phylogenomic relationships of 19 ESBL-positive E. coli isolates collected from surgical site infections in patients across public hospitals in Benin in 2019. Isolates were identified by MALDI-TOF mass spectrometry and phenotypically tested for susceptibility to 16 antibiotics. Core-genome multi-locus sequence typing and single-nucleotide polymorphism-based phylogenomic methods were used to investigate the relatedness between samples. The broader phylogenetic context was characterized through the inclusion of publicly available genome data. Among the 19 isolates, 13 different sequence types (STs) were observed, including ST131 (n = 2), ST38 (n = 2), ST410 (n = 2), ST405 (n = 2), ST617 (n = 2), and ST1193 (n = 2). The bla CTX-M-15 gene encoding ESBL resistance was found in 15 isolates (78.9%), as well as other genes associated with ESBL, such as bla OXA-1 (n = 14) and bla TEM-1 (n = 9). Additionally, we frequently observed genes encoding resistance against aminoglycosides [aac-(6')-Ib-cr, n = 14], quinolones (qnrS1 , n = 4), tetracyclines [tet(B), n = 14], sulfonamides (sul2, n = 14), and trimethoprim (dfrA17, n = 13). Nonsynonymous chromosomal mutations in the housekeeping genes parC and gyrA associated with resistance to fluoroquinolones were also detected in multiple isolates. Although the phylogenomic investigation did not reveal evidence of hospital-acquired transmissions, we observed two very similar strains collected from patients in different hospitals. By characterizing a set of multidrug-resistant isolates collected from a largely unexplored environment, this study highlights the added value for WGS as an effective early warning system for emerging pathogens and antimicrobial resistance.
Collapse
Affiliation(s)
- Carine Laurence Yehouenou
- Clinical Pharmacy Research Group (CLIP), Louvain Drug Research Institute (LDRI), Université Catholique de Louvain UCLouvain, Brussels, Belgium.,Laboratoire de Référence des Mycobactéries (LRM), Cotonou, Benin.,Faculté des Sciences de la Santé (FSS), Université d'Abomey Calavi (UAC), Cotonou, Benin
| | - Bert Bogaerts
- Transversal activities in Applied Genomics, Sciensano, Brussels, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | | | - Nancy H C Roosens
- Transversal activities in Applied Genomics, Sciensano, Brussels, Belgium
| | - Kathleen Marchal
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,Department of Information Technology, IDLab, Ghent University, IMEC, Ghent, Belgium.,Department of Genetics, University of Pretoria, Pretoria, South Africa
| | - Edmond Tchiakpe
- Laboratory of Cell Biology and Physiology, Department of Biochemistry and Cellular Biology Faculty of Sciences and Technology and Institute of Applied Biomedical Sciences (ISBA), University of Abomey-Calavi, Cotonou, Benin.,National Reference Laboratory of Health Program Fighting Against AIDS in Benin, Health Ministry, Cotonou, Benin
| | - Dissou Affolabi
- Laboratoire de Référence des Mycobactéries (LRM), Cotonou, Benin.,Faculté des Sciences de la Santé (FSS), Université d'Abomey Calavi (UAC), Cotonou, Benin.,Centre National Hospitalier et Universitaire Hubert Koutoukou Maga (CNHU-HKM), Cotonou, Benin
| | - Anne Simon
- Centres hospitaliers Jolimont, prevention et contrôle des infections, Haine-Saint-Paul, Belgium
| | - Francis Moise Dossou
- Department of Surgery and Surgical Specialties, Faculty of Health Sciences, Campus universitaire champ de foire, Cotonou, Benin
| | - Kevin Vanneste
- Transversal activities in Applied Genomics, Sciensano, Brussels, Belgium
| | - Olivia Dalleur
- Clinical Pharmacy Research Group (CLIP), Louvain Drug Research Institute (LDRI), Université Catholique de Louvain UCLouvain, Brussels, Belgium.,Pharmacy, Clinique universitaire Saint-Luc, Université catholique de Louvain, UCLouvain, Brussels, Belgium
| |
Collapse
|
6
|
Cho HH. Analysis of Sequence Type and Fluoroquinolone Resistance in Ciprofloxacin-Resistant Escherichia coli. KOREAN JOURNAL OF CLINICAL LABORATORY SCIENCE 2021. [DOI: 10.15324/kjcls.2021.53.3.217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Hye Hyun Cho
- Departments of Biomedical Laboratory Science, Daejeon Institute of Science and Technology, Daejeon, Korea
| |
Collapse
|
7
|
Pattanayak BS, Dehury B, Priyadarshinee M, Jha S, Beuria TK, Soren D, Mallick BC. Kanamycin-Mediated Conformational Dynamics of Escherichia coli Outer Membrane Protein TolC. Front Mol Biosci 2021; 8:636286. [PMID: 33937327 PMCID: PMC8083960 DOI: 10.3389/fmolb.2021.636286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/17/2021] [Indexed: 11/13/2022] Open
Abstract
TolC is a member of the outer membrane efflux proteins (OEPs) family and acts as an exit duct to export proteins, antibiotics, and substrate molecules across the Escherichia coli cell membrane. Export of these molecules is evidenced to be brought about through the reversible interactions and binding of substrate-specific drug molecules or antibiotics with TolC and by being open for transport, which afterward leads to cross-resistance. Hence, the binding of kanamycin with TolC was monitored through molecular docking (MD), the structural fluctuations and conformational changes to the atomic level. The results were further supported from the steady-state fluorescence binding and isothermal titration calorimetry (ITC) studies. Binding of kanamycin with TolC resulted in a concentration dependent fluorescence intensity quenching with 7 nm blue shift. ITC binding data maintains a single binding site endothermic energetic curve with binding parameters indicating an entropy driven binding process. The confirmational changes resulting from this binding were monitored by a circular dichroism (CD) study, and the results showed insignificant changes in the α-helix and β-sheets secondary structure contents, but the tertiary structure shows inclusive changes in the presence of kanamycin. The experimental data substaintially correlates the RMSD, R g, and RMSF results. The resulting conformational changes of the TolC-kanamycin complexation was stabilized through H-bonding and other interactions.
Collapse
Affiliation(s)
| | - Budheswar Dehury
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | | | - Suman Jha
- Department of Life Sciences, National Institute of Technology, Rourkela, India
| | | | | | | |
Collapse
|
8
|
Adler A, Katz DE, Marchaim D. The Continuing Plague of Extended-Spectrum β-Lactamase Producing Enterbacterales Infections: An Update. Infect Dis Clin North Am 2020; 34:677-708. [PMID: 33011052 DOI: 10.1016/j.idc.2020.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antimicrobial resistance is a common iatrogenic complication of modern life and medical care. One of the most demonstrative examples is the exponential increase in the incidence of extended-spectrum β-lactamases (ESBLs) production among Enterobacteriaceae, that is, the most common human pathogens outside of the hospital setting. Infections resulting from ESBL-producing bacteria are associated with devastating outcomes, now affecting even previously healthy individuals. This poses an enormous burden and threat to public health. This article aims to narrate the evolving epidemiology of ESBL infections and highlights current challenges in terms of management and prevention of these common infections.
Collapse
Affiliation(s)
- Amos Adler
- Clinical Microbiology Laboratory, Tel-Aviv Sourasky Medical Center, 6 Weizmann Street, Tel-Aviv 6423906 Israel; Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - David E Katz
- Division of Internal Medicine, Shaare Zedek Medical Center, 12 Shmuel Bait Street, Jerusalem 9103102, Israel
| | - Dror Marchaim
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Unit of Infection Control, Shamir (Assaf Harofeh) Medical Center, Zerifin, Israel.
| |
Collapse
|
9
|
Rasoulinasab M, Shahcheraghi F, Feizabadi MM, Nikmanesh B, Hajihasani A, Sabeti S, Aslani MM. Distribution of Pathogenicity Island Markers and H-Antigen Types of Escherichia coli O25b/ST131 Isolates from Patients with Urinary Tract Infection in Iran. Microb Drug Resist 2020; 27:369-382. [PMID: 32716242 DOI: 10.1089/mdr.2019.0485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Escherichia coli serogroup O25b-sequence type 131 (E. coli O25b/ST131) is known as a multidrug-resistant organism with high virulence potential and has received attention internationally. We aim to investigate the prevalence of O25b/ST131 and the distribution of blaCTX-M-15, pathogenicity island (PAI) markers, phylogenetic groups, and H-antigen typing in the E. coli O25b/ST131 isolated from patients with urinary tract infection (UTI) in Tehran, the capital of Iran. Seventy (26.9%) E. coli isolates were identified as O25b/ST131. There was also a significant difference in the prevalence of virulence genes, including papA, sfa, sat, cnf1, iutA, kpMII, traT, and usp, in the O25b/ST131 isolates rather than non-O25b/ST131 ones (p ≤ 0.05). Furthermore, 78% of the O25b/ST131 isolates carried four to seven PAIs, while 71% of non-O25b/ST131 isolates carried two to four PAI markers (p ≤ 0.05). Our study showed that in addition to H4, other H-antigens may play a role in the O25b/ST131 virulence potential. Besides, a significant association was found between the history of previous UTIs and infection among the O25b/ST131 clone isolates. Pulsed-field gel electrophoresis revealed circulating of O25b:H4-ST131/PST43 clone in both hospital and community. Approximately one in every three uropathogenic E. coli isolates was the O25b/ST131 clone, representing a significant public health threat. Practical investigation on O25b/ST131 can be helpful in better understanding of ST131 evolution and controlling UTI in hospitals.
Collapse
Affiliation(s)
| | | | - Mohammad Mehdi Feizabadi
- Department of Microbiology, Faculty of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Bahram Nikmanesh
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Azade Hajihasani
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Shahram Sabeti
- Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
10
|
Chen SL, Ding Y, Apisarnthanarak A, Kalimuddin S, Archuleta S, Omar SFS, De PP, Koh TH, Chew KL, Atiya N, Suwantarat N, Velayuthan RD, Wong JGX, Lye DC. The higher prevalence of extended spectrum beta-lactamases among Escherichia coli ST131 in Southeast Asia is driven by expansion of a single, locally prevalent subclone. Sci Rep 2019; 9:13245. [PMID: 31519972 PMCID: PMC6744567 DOI: 10.1038/s41598-019-49467-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 08/24/2019] [Indexed: 01/29/2023] Open
Abstract
The ST131 multilocus sequence type (MLST) of Escherichia coli is a globally successful pathogen whose dissemination is increasing rates of antibiotic resistance. Numerous global surveys have demonstrated the pervasiveness of this clone; in some regions ST131 accounts for up to 30% of all E. coli isolates. However, many regions are underrepresented in these published surveys, including Africa, South America, and Asia. We collected consecutive bloodstream E. coli isolates from three countries in Southeast Asia; ST131 was the most common MLST type. As in other studies, the C2/H30Rx clade accounted for the majority of ST131 strains. Clinical risk factors were similar to other reported studies. However, we found that nearly all of the C2 strains in this study were closely related, forming what we denote the SEA-C2 clone. The SEA-C2 clone is enriched for strains from Asia, particularly Southeast Asia and Singapore. The SEA-C2 clone accounts for all of the excess resistance and virulence of ST131 relative to non-ST131 E. coli. The SEA-C2 strains appear to be locally circulating and dominant in Southeast Asia, despite the intuition that high international connectivity and travel would enable frequent opportunities for other strains to establish themselves.
Collapse
Affiliation(s)
- Swaine L Chen
- Genome Institute of Singapore, Agency for Science, Technology, and Research, 60 Biopolis Street, Genome #02-01, Singapore, 138672, Singapore. .,Department of Medicine, Division of Infectious Diseases, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 10, Singapore, 119228, Singapore.
| | - Ying Ding
- National Centre for Infectious Diseases, 16 Jalan Tan Tock Seng, Singapore, 308442, Singapore
| | - Anucha Apisarnthanarak
- Division of Infectious Diseases, Faculty of Medicine, Thammasat University Hospital, 95 Phahonyothin Rd, Khlong Nueng, Khlong Luang District, Pathum Thani, 12120, Thailand
| | - Shirin Kalimuddin
- Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.,Department of Infectious Diseases, Singapore General Hospital, Academia Level 3, 20 College Road, Singapore, 169856, Singapore
| | - Sophia Archuleta
- Department of Medicine, Division of Infectious Diseases, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 10, Singapore, 119228, Singapore.,University Medicine Cluster, Division of Infectious Diseases, National University Hospital, , 5 Lower Kent Ridge Road, Singapore, 119074, Singapore
| | - Sharifah Faridah Syed Omar
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Partha Pratim De
- Communicable Diseases Centre, Institute of Infectious Disease and Epidemiology, Tan Tock Seng Hospital, Singapore, 308433, Singapore
| | - Tse Hsien Koh
- Department of Microbiology, Division of Pathology, Singapore General Hospital, Academia, Diagnostics Tower, Level 7, 20 College Road, Singapore, 169856, Singapore.,Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Kean Lee Chew
- Department of Laboratory Medicine, National University Hospital, 5 Lower Kent Ridge Road, Singapore, 119074, Singapore
| | - Nadia Atiya
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Nuntra Suwantarat
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, 12120, Thailand
| | - Rukumani Devi Velayuthan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Joshua Guo Xian Wong
- Communicable Diseases Centre, Institute of Infectious Disease and Epidemiology, Tan Tock Seng Hospital, Singapore, 308433, Singapore
| | - David C Lye
- Department of Medicine, Division of Infectious Diseases, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 10, Singapore, 119228, Singapore. .,National Centre for Infectious Diseases, 16 Jalan Tan Tock Seng, Singapore, 308442, Singapore. .,Communicable Diseases Centre, Institute of Infectious Disease and Epidemiology, Tan Tock Seng Hospital, Singapore, 308433, Singapore. .,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 639798, Singapore.
| |
Collapse
|
11
|
Ali I, Rafaque Z, Ahmed I, Tariq F, Graham SE, Salzman E, Foxman B, Dasti JI. Phylogeny, sequence-typing and virulence profile of uropathogenic Escherichia coli (UPEC) strains from Pakistan. BMC Infect Dis 2019; 19:620. [PMID: 31299909 PMCID: PMC6626394 DOI: 10.1186/s12879-019-4258-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/04/2019] [Indexed: 11/23/2022] Open
Abstract
Background Escherichia coli lineage ST131 predominates across various spectra of extra-intestinal infections, including urinary tract infection (UTI). The distinctive resistance profile, diverse armamentarium of virulence factors and rapid global dissemination of ST131 E. coli makes it an intriguing pathogen. However, not much is known about the prevalence and genetic attributes of ST131 lineage in Pakistan. Methods We estimated prevalence and genetic attributes of E. coli ST131 isolates causing UTI among 155 randomly selected samples. Samples were analyzed for phylogenetic grouping, O-typing and fumC/fimH typing. Isolates were further tested for the ESBL and virulence factors using PCR. Results Overall, 59% of the UPEC isolates belonged to the phylogenetic group B2, followed by D = 28%, B1 = 8% and A = 5%. Among 18 different Sequence-types, ST131 was the dominant lineage (n = 71; 46%) out of which 72% of the isolates were assigned to the phylogenetic group B2, while 61% adhered to the serogroup O25b. FumC/fimH typing confirmed 49% of the ST131 as H30 sub-types. In this study, significant numbers of the identified ST131 isolates were MDR and 42% showed ESBL phenotypes, out of which 37% carried bla-CTX-M-15. Moreover, different virulence factors were detected in following percentages: fimH,155(100%), iutA 86 (55%), feoB 76 (49%), papC 75 (48%), papGII 70 (45%), kpsMTII 40 (26%), papEF 37 (24%), fyuA 37 (24%), usp 22 (14%), papA 20 (13%), sfa/foc20 (13%), hlyA 18 (12%), afa 15 (10%), cdtB 11 (7%), papGI 6 (4%), papGIII 6 (4%), kpsMTIII 4 (3%) and bmaE2 (1%). Conclusion Conclusively, this study provides important insight into the genetic and virulence attributes of pandemic MDR ST131 strains involved in UTIs. It also highlights higher prevalence of ST131-O25b-H30 UPEC isolates in patients, which was previously unreported from this part of globe.
Collapse
Affiliation(s)
- Ihsan Ali
- Department of Medical Laboratory Technology (MLT), the University of Haripur, Abbottabad, Pakistan
| | - Zara Rafaque
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Ibrar Ahmed
- Alpha Genomics (Pvt) Ltd, Islamabad, Pakistan
| | - Faiza Tariq
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Sarah E Graham
- Department of Biophysics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Elizabeth Salzman
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Betsy Foxman
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Javid Iqbal Dasti
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
12
|
Riley LW. Differentiating Epidemic from Endemic or Sporadic Infectious Disease Occurrence. Microbiol Spectr 2019; 7:10.1128/microbiolspec.ame-0007-2019. [PMID: 31325286 PMCID: PMC10957193 DOI: 10.1128/microbiolspec.ame-0007-2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Indexed: 12/19/2022] Open
Abstract
One important scope of work of epidemiology is the investigation of infectious diseases that cluster in time and place. Clusters of infectious disease may represent outbreaks or epidemics in which the cases share in common a point source exposure or an infectious agent in a chain of transmission pathways. Investigations of outbreaks of an illness can facilitate identification of a source, risk, or cause of the illness. However, most infectious disease episodes occur not as part of any apparent outbreaks but as sporadic infections. Multiple sporadic infections that occur steadily in time and place are referred to as endemic disease. How does one investigate sources and risk factors for sporadic or endemic infections? As part of the Microbiology Spectrum Curated Collection: Advances in Molecular Epidemiology of Infectious Diseases, this review discusses limitations of traditional approaches and advantages of molecular epidemiology approaches to investigate sporadic and endemic infections. Using specific examples, the discussions show that most sporadic infections are actually part of unrecognized outbreaks and that what appears to be endemic disease occurrence is actually comprised of multiple small outbreaks. These molecular epidemiologic investigations have unmasked modes of transmission of infectious agents not known to cause outbreaks. They have also raised questions about the traditional ways to measure incidence and assess sources of drug-resistant infections in community settings. The discoveries made by the application of molecular microbiology methods in epidemiologic investigations have led to creation of new public health intervention strategies that have not been previously considered. *This article is part of a curated collection.
Collapse
Affiliation(s)
- Lee W Riley
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA 94720
| |
Collapse
|
13
|
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) strains are responsible for a majority of human extraintestinal infections globally, resulting in enormous direct medical and social costs. ExPEC strains are comprised of many lineages, but only a subset is responsible for the vast majority of infections. Few systematic surveillance systems exist for ExPEC. To address this gap, we systematically reviewed and meta-analyzed 217 studies (1995 to 2018) that performed multilocus sequence typing or whole-genome sequencing to genotype E. coli recovered from extraintestinal infections or the gut. Twenty major ExPEC sequence types (STs) accounted for 85% of E. coli isolates from the included studies. ST131 was the most common ST from 2000 onwards, covering all geographic regions. Antimicrobial resistance-based isolate study inclusion criteria likely led to an overestimation and underestimation of some lineages. European and North American studies showed similar distributions of ExPEC STs, but Asian and African studies diverged. Epidemiology and population dynamics of ExPEC are complex; summary proportion for some STs varied over time (e.g., ST95), while other STs were constant (e.g., ST10). Persistence, adaptation, and predominance in the intestinal reservoir may drive ExPEC success. Systematic, unbiased tracking of predominant ExPEC lineages will direct research toward better treatment and prevention strategies for extraintestinal infections.
Collapse
|
14
|
Hawkey PM, Warren RE, Livermore DM, McNulty CAM, Enoch DA, Otter JA, Wilson APR. Treatment of infections caused by multidrug-resistant Gram-negative bacteria: report of the British Society for Antimicrobial Chemotherapy/Healthcare Infection Society/British Infection Association Joint Working Party. J Antimicrob Chemother 2019. [PMID: 29514274 DOI: 10.1093/jac/dky027] [Citation(s) in RCA: 199] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The Working Party makes more than 100 tabulated recommendations in antimicrobial prescribing for the treatment of infections caused by multidrug-resistant (MDR) Gram-negative bacteria (GNB) and suggest further research, and algorithms for hospital and community antimicrobial usage in urinary infection. The international definition of MDR is complex, unsatisfactory and hinders the setting and monitoring of improvement programmes. We give a new definition of multiresistance. The background information on the mechanisms, global spread and UK prevalence of antibiotic prescribing and resistance has been systematically reviewed. The treatment options available in hospitals using intravenous antibiotics and in primary care using oral agents have been reviewed, ending with a consideration of antibiotic stewardship and recommendations. The guidance has been derived from current peer-reviewed publications and expert opinion with open consultation. Methods for systematic review were NICE compliant and in accordance with the SIGN 50 Handbook; critical appraisal was applied using AGREE II. Published guidelines were used as part of the evidence base and to support expert consensus. The guidance includes recommendations for stakeholders (including prescribers) and antibiotic-specific recommendations. The clinical efficacy of different agents is critically reviewed. We found there are very few good-quality comparative randomized clinical trials to support treatment regimens, particularly for licensed older agents. Susceptibility testing of MDR GNB causing infection to guide treatment needs critical enhancements. Meropenem- or imipenem-resistant Enterobacteriaceae should have their carbapenem MICs tested urgently, and any carbapenemase class should be identified: mandatory reporting of these isolates from all anatomical sites and specimens would improve risk assessments. Broth microdilution methods should be adopted for colistin susceptibility testing. Antimicrobial stewardship programmes should be instituted in all care settings, based on resistance rates and audit of compliance with guidelines, but should be augmented by improved surveillance of outcome in Gram-negative bacteraemia, and feedback to prescribers. Local and national surveillance of antibiotic use, resistance and outcomes should be supported and antibiotic prescribing guidelines should be informed by these data. The diagnosis and treatment of both presumptive and confirmed cases of infection by GNB should be improved. This guidance, with infection control to arrest increases in MDR, should be used to improve the outcome of infections with such strains. Anticipated users include medical, scientific, nursing, antimicrobial pharmacy and paramedical staff where they can be adapted for local use.
Collapse
Affiliation(s)
- Peter M Hawkey
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | | | | | - Cliodna A M McNulty
- Microbiology Department, Gloucestershire Royal Hospital, Great Western Road, Gloucester GL1 3NN, UK
| | - David A Enoch
- Public Health England, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | | | - A Peter R Wilson
- Department of Microbiology and Virology, University College London Hospitals, London, UK
| |
Collapse
|
15
|
Ko KS. Antibiotic-resistant clones in Gram-negative pathogens: presence of global clones in Korea. J Microbiol 2018; 57:195-202. [PMID: 30552629 DOI: 10.1007/s12275-019-8491-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/01/2018] [Accepted: 10/02/2018] [Indexed: 12/26/2022]
Abstract
Antibiotic resistance is a global concern in public health. Antibiotic-resistant clones can spread nationally, internationally, and globally. This review considers representative antibiotic-resistant Gram-negative bacterial clones-CTX-M- 15-producing ST131 in Escherichia coli, extended-spectrum ß-lactamase-producing ST11 and KPC-producing ST258 in Klebsiella pneumoniae, IMP-6-producing, carbapenem-resistant ST235 in Pseudomonas aeruginosa, and OXA-23-producing global clone 2 in Acinetobacter baumannii-that have disseminated worldwide, including in Korea. The findings highlight the urgency for systematic monitoring and international cooperation to suppress the emergence and propagation of antibiotic resistance.
Collapse
Affiliation(s)
- Kwan Soo Ko
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea.
| |
Collapse
|
16
|
Lee DS, Lee SJ, Choe HS. Community-Acquired Urinary Tract Infection by Escherichia coli in the Era of Antibiotic Resistance. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7656752. [PMID: 30356438 PMCID: PMC6178185 DOI: 10.1155/2018/7656752] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/19/2018] [Accepted: 09/09/2018] [Indexed: 01/27/2023]
Abstract
Urinary tract infections (UTIs) caused by Escherichia coli (E. coli) are the most common types of infections in women. The antibiotic resistance of E. coli is increasing rapidly, causing physicians to hesitate when selecting oral antibiotics. In this review, our objective is to ensure that clinicians understand the current seriousness of antibiotic-resistant E. coli, the mechanisms by which resistance is selected for, and methods that can be used to prevent antibiotic resistance.
Collapse
Affiliation(s)
- Dong Sup Lee
- Department of Urology, St. Vincent's Hospital, The Catholic University of Korea, College of Medicine, Republic of Korea
| | - Seung-Ju Lee
- Department of Urology, St. Vincent's Hospital, The Catholic University of Korea, College of Medicine, Republic of Korea
| | - Hyun-Sop Choe
- Department of Urology, St. Vincent's Hospital, The Catholic University of Korea, College of Medicine, Republic of Korea
| |
Collapse
|
17
|
Affiliation(s)
- Bente Olesen
- Department of Clinical Microbiology, Herlev and Gentofte Hospital, University of Copenhagen, Denmark
| |
Collapse
|
18
|
Adler A, Katz DE, Marchaim D. The Continuing Plague of Extended-spectrum β-lactamase-producing Enterobacteriaceae Infections. Infect Dis Clin North Am 2017; 30:347-375. [PMID: 27208763 DOI: 10.1016/j.idc.2016.02.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Antimicrobial resistance is a common iatrogenic complication of modern life and medical care. One of the most demonstrative examples is the exponential increase in the incidence of extended-spectrum β-lactamases (ESBLs) production among Enterobacteriaceae, which is the most common human pathogens outside of the hospital settings. Infections resulting from ESBL-producing bacteria are associated with devastating outcomes, now affecting even previously healthy individuals. This development poses an enormous burden and threat to public health. This paper aims to narrate the evolving epidemiology of ESBL infections, and highlight current challenges in terms of management and prevention of these common infections.
Collapse
Affiliation(s)
- Amos Adler
- Clinical Microbiology Laboratory, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel; Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - David E Katz
- Department of Internal Medicine D, Shaare Zedek Medical Center, Hebrew University School of Medicine, Jerusalem, Israel
| | - Dror Marchaim
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Division of Infectious Diseases, Assaf Harofeh Medical Center, Zerifin 70300, Israel.
| |
Collapse
|
19
|
Genome sequence of lung pathogenic Escherichia coli O78, a chimeric strain isolated from pneumonia forest musk deer. Genes Genomics 2017. [DOI: 10.1007/s13258-017-0545-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
20
|
Abstract
The emergence of genomics over the last 10 years has provided new insights into the evolution and virulence of extraintestinal Escherichia coli. By combining population genetics and phylogenetic approaches to analyze whole-genome sequences, it became possible to link genomic features to specific phenotypes, such as the ability to cause urinary tract infections. An E. coli chromosome can vary extensively in length, ranging from 4.3 to 6.2 Mb, encoding 4,084 to 6,453 proteins. This huge diversity is structured as a set of less than 2,000 genes (core genome) that are conserved between all the strains and a set of variable genes. Based on the core genome, the history of the species can be reliably reconstructed, revealing the recent emergence of phylogenetic groups A and B1 and the more ancient groups B2, F, and D. Urovirulence is most often observed in B2/F/D group strains and is a multigenic process involving numerous combinations of genes and specific alleles with epistatic interactions, all leading down multiple evolutionary paths. The genes involved mainly code for adhesins, toxins, iron capture systems, and protectins, as well as metabolic pathways and mutation-rate-control systems. However, the barrier between commensal and uropathogenic E. coli strains is difficult to draw as the factors that are responsible for virulence have probably also been selected to allow survival of E. coli as a commensal in the intestinal tract. Genomic studies have also demonstrated that infections are not the result of a unique and stable isolate, but rather often involve several isolates with variable levels of diversity that dynamically changes over time.
Collapse
|
21
|
Escherichia coli Sequence Type 131 H30 Is the Main Driver of Emerging Extended-Spectrum-β-Lactamase-Producing E. coli at a Tertiary Care Center. mSphere 2016; 1:mSphere00314-16. [PMID: 27904884 PMCID: PMC5120173 DOI: 10.1128/msphere.00314-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 11/04/2016] [Indexed: 11/20/2022] Open
Abstract
The ever-rising prevalence of resistance to first-line antibiotics among clinical Escherichia coli isolates leads to worse clinical outcomes and higher health care costs, thereby creating a need to discover its basis so that effective interventions can be developed. We found that the H30 subset within E. coli sequence type 131 (ST131-H30) is currently, and has been since at least 2004, the main E. coli lineage contributing to key resistance phenotypes—including extended-spectrum-beta-lactamase (ESBL) production, fluoroquinolone resistance, multidrug resistance, and dual ESBL production-plus-fluoroquinolone resistance—at a United States tertiary care center with a rising prevalence of ESBL-producing E. coli isolates. This identifies ST131-H30 as a target for diagnostic tests and preventive measures designed to curb the emergence of multidrug-resistant E. coli isolates and/or to blunt its clinical impact. The H30 strain of Escherichia coli sequence type 131 (ST131-H30) is a recently emerged, globally disseminated lineage associated with fluoroquinolone resistance and, via its H30Rx subclone, the CTX-M-15 extended-spectrum beta-lactamase (ESBL). Here, we studied the clonal background and resistance characteristics of 109 consecutive recent E. coli clinical isolates (2015) and 41 historical ESBL-producing E. coli blood isolates (2004 to 2011) from a public tertiary care center in California with a rising prevalence of ESBL-producing E. coli isolates. Among the 2015 isolates, ST131, which was represented mainly by ST131-H30, was the most common clonal lineage (23% overall). ST131-H30 accounted for 47% (8/17) of ESBL-producing, 47% (14/30) of fluoroquinolone-resistant, and 33% (11/33) of multidrug-resistant isolates. ST131-H30 also accounted for 53% (8/14) of dually fluoroquinolone-resistant, ESBL-producing isolates, with the remaining 47% comprised of diverse clonal groups that contributed a single isolate each. ST131-H30Rx, with CTX-M-15, was the major ESBL producer (6/8) among ST131-H30 isolates. ST131-H30 and H30Rx also dominated (46% and 37%, respectively) among the historical ESBL-producing isolates (2004 to 2011), without significant temporal shifts in relative prevalence. Thus, this medical center’s recently emerging ESBL-producing E. coli strains, although multiclonal, are dominated by ST131-H30 and H30Rx, which are the only clonally expanded fluoroquinolone-resistant, ESBL-producing lineages. Measures to rapidly and effectively detect, treat, and control these highly successful lineages are needed. IMPORTANCE The ever-rising prevalence of resistance to first-line antibiotics among clinical Escherichia coli isolates leads to worse clinical outcomes and higher health care costs, thereby creating a need to discover its basis so that effective interventions can be developed. We found that the H30 subset within E. coli sequence type 131 (ST131-H30) is currently, and has been since at least 2004, the main E. coli lineage contributing to key resistance phenotypes—including extended-spectrum-beta-lactamase (ESBL) production, fluoroquinolone resistance, multidrug resistance, and dual ESBL production-plus-fluoroquinolone resistance—at a United States tertiary care center with a rising prevalence of ESBL-producing E. coli isolates. This identifies ST131-H30 as a target for diagnostic tests and preventive measures designed to curb the emergence of multidrug-resistant E. coli isolates and/or to blunt its clinical impact.
Collapse
|
22
|
Giedraitienė A, Vitkauskienė A, Pavilonis A, Patamsytė V, Genel N, Decre D, Arlet G. Prevalence of O25b-ST131 clone among Escherichia coli strains producing CTX-M-15, CTX-M-14 and CTX-M-92 β-lactamases. Infect Dis (Lond) 2016; 49:106-112. [PMID: 27563748 DOI: 10.1080/23744235.2016.1221531] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND Dissemination of multidrug-resistant Escherichia coli is closely associated with the worldwide spread of a single clone ST131, which is the main cause of urinary tract and bloodstream infections in patients from nursing homes and immunocompromised patients. The aim of our study was to determine the prevalence of ST131 clone and the replicons involved in the spread of blaCTX-M genes among O25b-ST131 CTX-M-producing E. coli isolates in Lithuania. METHODS The strains included in this study were screened for CTX-M β-lactamase-encoding genes, phylogenetic groups and ST131 clone by PCR. Bacterial conjugation was performed to identify plasmid replicon types responsible for blaCTX-M genes dissemination. RESULTS A total of 158 E. coli clinical non-duplicate ESBL isolates were analyzed. Nearly half (n = 67, 42.4%) of the investigated E. coli isolates belonged to phylogenetic group B2. The isolates producing CTX-M-92 β-lactamases were identified to be the ST131 clone more frequently than the non-ST131 clone (11.5% vs. 3.1%, p = .035). The CTX-M-15 isolates were identified as ST131 isolates less frequently than non-ST131 isolates (50.8% vs. 71.1%; p = .015). The ST131 clone isolates contained type L/M and A/C replicons; a fused FII/FIB replicon was found in four isolates (23.5%). Type HI1 replicon was identified in ST131 E. coli isolates producing CTX-M-15 β-lactamases. CONCLUSIONS This study demonstrates the predominance of the ST131 clone among CTX-M β-lactamase-producing E. coli isolates. Dissemination of blaCTX-M genes in ST131 strains can be linked not only to highly adapted IncF plasmids such as FII/FIB and FII, but also to plasmid replicon types A/C, L/M and HI1.
Collapse
Affiliation(s)
- Agnė Giedraitienė
- a Institute of Microbiology and Virology, Veterinary Academy , Lithuanian University of Health Sciences , Kaunas , Lithuania
| | - Astra Vitkauskienė
- b Department of Laboratory Medicine, Medical Academy , Lithuanian University of Health Sciences , Kaunas , Lithuania
| | - Alvydas Pavilonis
- a Institute of Microbiology and Virology, Veterinary Academy , Lithuanian University of Health Sciences , Kaunas , Lithuania
| | - Vaiva Patamsytė
- c Institute of Cardiology, Medical Academy , Lithuanian University of Health Sciences , Kaunas , Lithuania
| | - Nathalie Genel
- d Laboratoire de Bacteriologie, Faculte de Médecine , Universite Pierre et Marie Curie Paris 6 , Paris , France
| | - Dominique Decre
- d Laboratoire de Bacteriologie, Faculte de Médecine , Universite Pierre et Marie Curie Paris 6 , Paris , France.,e Service de Microbiologie , Hopital Saint Antoine, APHP , Paris , France
| | - Guillaume Arlet
- d Laboratoire de Bacteriologie, Faculte de Médecine , Universite Pierre et Marie Curie Paris 6 , Paris , France.,f Service de Bacteriologie , Hopital Tenon, APHP , Paris , France
| |
Collapse
|
23
|
Trends in ExPEC serogroups in the UK and their significance. Eur J Clin Microbiol Infect Dis 2016; 35:1661-6. [PMID: 27329302 PMCID: PMC5035653 DOI: 10.1007/s10096-016-2707-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/06/2016] [Indexed: 11/20/2022]
Abstract
Extra-intestinal pathogenic Escherichia coli are a significant cause of urinary tract infection and bacteraemia within the UK. We sought to identify the serogroups of 658 E. coli isolates collected in the UK between January 2011 and March 2012, to better understand the ExPEC population and understand the relevance of serogroups in this pathotype. Isolates were typed and serogroup identified using established phenotypic and molecular methods. Sixty-two serogroups were identified; 54 among urinary isolates and 35 among bloodstream isolates. However, serogroups O25, O6, and O2 dominated both infection types. These serogroups were linked to the major ExPEC STs as follows: ST131-O25, ST73-O6, ST127-O6, and ST95-O2. The serogroup data from this study have increased our understanding of the ExPEC population in the UK, but also highlighted key ST–serogroup relationships within the major ExPEC clones. These data can be used to guide vaccine design and in the development of laboratory diagnostic tests targeting the ExPEC population.
Collapse
|
24
|
Hefzy EM, Hassuna NA. Fluoroquinolone-Resistant Sequence Type 131 Subgroups O25b and O16 Among Extraintestinal Escherichia coli Isolates from Community-Acquired Urinary Tract Infections. Microb Drug Resist 2016; 23:224-229. [PMID: 27214282 DOI: 10.1089/mdr.2016.0040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The multidrug-resistant sequence type 131 (ST131) Escherichia coli is a spreading epidemiological burden particularly among isolates resistant to fluoroquinolones. We aimed to evaluate the commonality of ST131-O25b and ST131-O16 among fluoroquinolone-resistant E. coli isolates causing community-acquired urinary tract infections (UTIs) at Fayoum University Hospital, in Egypt. Ninety-two fluoroquinolone-resistant E. coli isolates were subjected to multiplex PCR for detection of ST131 of either O25b or O16 subgroups. Positive isolates were then assessed for antimicrobial susceptibility and virulence genotyping. Out of 92 fluoroquinolone-resistant E. coli isolates, 56 (60.9%) isolates were O25b/O16 subgroups of ST131, including 44 (78.6%) ST131-O25b and 12 (21.4%) ST131-O16 subgroups. All the O25b/O16 ST131 isolates were sensitive to meropenem, where ST131-O25b isolates were significantly more resistant to extended spectrum cephalosporins compared to S131-O16 strains. All the O25b/O16 ST131 isolates harbored three or more of the virulence factors associated with extraintestinal pathogenic E. coli status. ST131-O16 showed a significantly higher virulence score than ST131-O25b isolates. Our results bring to highlight the emergence of O25b/O16 ST131 isolates between community acquired UTIs among Egyptian patients. This is the first report for the presence of O16 isolates in Egypt, showing a lower predominance than the O25b subgroup. The high prevalence of O25b/O16 ST131 isolates requires strict stewardship on antimicrobial use, notably fluoroquinolones, to control the endemicity of such emerging multidrug-resistant clone in the community.
Collapse
Affiliation(s)
- Enas Mamdouh Hefzy
- 1 Department of Medical Microbiology and Immunology, Faculty of Medicine, Fayoum University , Fayoum, Egypt
| | - Noha Anwar Hassuna
- 2 Department of Microbiology and Immunology, Faculty of Medicine, Minia University , Minia, Egypt
| |
Collapse
|
25
|
Dautzenberg MJD, Haverkate MR, Bonten MJM, Bootsma MCJ. Epidemic potential of Escherichia coli ST131 and Klebsiella pneumoniae ST258: a systematic review and meta-analysis. BMJ Open 2016; 6:e009971. [PMID: 26988349 PMCID: PMC4800154 DOI: 10.1136/bmjopen-2015-009971] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVES Observational studies have suggested that Escherichia coli sequence type (ST) 131 and Klebsiella pneumoniae ST258 have hyperendemic properties. This would be obvious from continuously high incidence and/or prevalence of carriage or infection with these bacteria in specific patient populations. Hyperendemicity could result from increased transmissibility, longer duration of infectiousness, and/or higher pathogenic potential as compared with other lineages of the same species. The aim of our research is to quantitatively estimate these critical parameters for E. coli ST131 and K. pneumoniae ST258, in order to investigate whether E. coli ST131 and K. pneumoniae ST258 are truly hyperendemic clones. PRIMARY OUTCOME MEASURES A systematic literature search was performed to assess the evidence of transmissibility, duration of infectiousness, and pathogenicity for E. coli ST131 and K. pneumoniae ST258. Meta-regression was performed to quantify these characteristics. RESULTS The systematic literature search yielded 639 articles, of which 19 data sources provided information on transmissibility (E. coli ST131 n=9; K. pneumoniae ST258 n=10)), 2 on duration of infectiousness (E. coli ST131 n=2), and 324 on pathogenicity (E. coli ST131 n=285; K. pneumoniae ST258 n=39). Available data on duration of carriage and on transmissibility were insufficient for quantitative assessment. In multivariable meta-regression E. coli isolates causing infection were associated with ST131, compared to isolates only causing colonisation, suggesting that E. coli ST131 can be considered more pathogenic than non-ST131 isolates. Date of isolation, location and resistance mechanism also influenced the prevalence of ST131. E. coli ST131 was 3.2 (95% CI 2.0 to 5.0) times more pathogenic than non-ST131. For K. pneumoniae ST258 there were not enough data for meta-regression assessing the influence of colonisation versus infection on ST258 prevalence. CONCLUSIONS With the currently available data, it cannot be confirmed nor rejected, that E. coli ST131 or K. pneumoniae ST258 are hyperendemic clones.
Collapse
Affiliation(s)
- M J D Dautzenberg
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - M R Haverkate
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - M J M Bonten
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - M C J Bootsma
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands Faculty of Sciences, Department of Mathematics, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
26
|
Resistance patterns, ESBL genes, and genetic relatedness of Escherichia coli from dogs and owners. Braz J Microbiol 2016; 47:150-8. [PMID: 26887238 PMCID: PMC4822764 DOI: 10.1016/j.bjm.2015.11.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 10/09/2014] [Indexed: 11/26/2022] Open
Abstract
Antimicrobial resistance in Escherichia coli isolated from pet dogs can be considered a potential threat of infection for the human population. Our objective was to characterize the resistance pattern, extended spectrum beta-lactamase production and genetic relatedness of multiresistant E. coli strains isolated from dogs (n = 134), their owners (n = 134), and humans who claim to have no contact with dogs (n = 44, control), searching for sharing of strains. The strains were assessed for their genetic relatedness by phylogenetic grouping and pulsed-field gel electrophoresis. Multiresistant E. coli strains were isolated from 42 (31.3%) fecal samples from pairs of dogs and owners, totaling 84 isolates, and from 19 (43.1%) control group subjects. The strains showed high levels of resistance to ampicillin, streptomycin, tetracycline, trimethoprim and sulfamethoxazole regardless of host species or group of origin. The blaTEM, blaCTX-M, and blaSHV genes were detected in similar proportions in all groups. All isolates positive for bla genes were ESBL producers. The phylogenetic group A was the most prevalent, irrespective of the host species. None of the strains belonging to the B2 group contained bla genes. Similar resistance patterns were found for strains from dogs, owners and controls; furthermore, identical PFGE profiles were detected in four (9.5%) isolate pairs from dogs and owners, denoting the sharing of strains. Pet dogs were shown to be a potential household source of multiresistant E. coli strains.
Collapse
|
27
|
Plasmid-Mediated Quinolone Resistance in Different Diarrheagenic Escherichia coli Pathotypes Responsible for Complicated, Noncomplicated, and Traveler's Diarrhea Cases. Antimicrob Agents Chemother 2015; 60:1950-1. [PMID: 26711743 DOI: 10.1128/aac.02909-15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
28
|
Anderson E, Leahy O, Cheng AC, Grummet J. Risk factors for infection following prostate biopsy - a case control study. BMC Infect Dis 2015; 15:580. [PMID: 26700859 PMCID: PMC4690315 DOI: 10.1186/s12879-015-1328-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 12/17/2015] [Indexed: 12/16/2022] Open
Abstract
Background Infection is a complication of TRUS prostate biopsy, despite the use of antimicrobial prophylaxis. Worryingly the rate of infectious complications following TRUS biopsy has been shown to be increasing. We aimed to determine the rate, severity, risk factors, standard patterns of care and microbiology resistance profiles associated with TRUS biopsy sepsis. Methods A retrospective case–control study was conducted. Using electronic coding all patients who presented to Cabrini Hospital with sepsis following a TRUS biopsy from 2009 to 2013 were identified. Validated cases were matched to controls in a ratio of 1:3. Eligible controls were required to have undergone a TRUS biopsy at the same surgical institution as the case and in the closest period of time. Demographic, procedural and patient related data-points were recorded for all patients using hospital and urologist records. Univariate logistic regression models were constructed and used to determine risk factors associated with infection. Results 71 cases developed sepsis following TRUS biopsy and were matched to 213 controls. The average rate of sepsis over the 5-year study period was 1.5 %. A SOFA score ≥ 2 was identified in 28 % of cases. We found a high prevalence of antimicrobial resistant E. coli, with 61 % of blood culture isolates classified as Multidrug resistant organisms. Eight different prophylactic antimicrobial regimens were identified with 33 % of cases receiving ineffective antimicrobial prophylaxis. Statistically significant risk factors included previous antimicrobial use and prior international travel within the six months prior to biopsy. Conclusions TRUS biopsy is an elective procedure and as such needs to be associated with minimal morbidity. The patterns of care surrounding periprocedural variables for TRUS biopsies were non-uniform and diverse. A wide variety of different prophylaxis regimens and bowel preparation routines were recorded. Patients with risk factors for sepsis may represent a better target population for intervention with alternative preventative strategies. Alternative preventative options include augmented prophylaxis, tailored prophylaxis or the TP biopsy approach either as a first line biopsy modality or based on epidemiological risk factors.
Collapse
Affiliation(s)
| | - Olivia Leahy
- Department of Urology, Alfred Health, Melbourne, Victoria, Australia.
| | - Allen C Cheng
- Department of Epidemiology and Preventative Medicine, Monash University, Melbourne, Victoria, Australia. .,Department of Infectious Diseases, Alfred Health, Melbourne, Victoria, Australia.
| | - Jeremy Grummet
- Department of Urology, Alfred Health, Melbourne, Victoria, Australia. .,Department of Surgery, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
29
|
Cha MK, Kang CI, Kim SH, Cho SY, Ha YE, Wi YM, Chung DR, Peck KR, Song JH. Comparison of the microbiological characteristics and virulence factors of ST131 and non-ST131 clones among extended-spectrum β-lactamase-producing Escherichia coli causing bacteremia. Diagn Microbiol Infect Dis 2015; 84:102-4. [PMID: 26632660 DOI: 10.1016/j.diagmicrobio.2015.10.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 10/21/2015] [Accepted: 10/24/2015] [Indexed: 01/04/2023]
Abstract
We evaluated the molecular epidemiology and microbiological characteristics of extended-spectrum β-lactamase-producing Escherichia coli (ESBL-EC) isolates that cause bacteremia in Korean hospitals, focusing especially on ST131. Our data suggest that ST131 isolates possessed more virulence traits and showed more multidrug resistance patterns than non-ST131 isolates. Among CTX-M-15 producers, the frequency of serum resistance was significantly higher in ST131 than in non-ST131. As in other parts of the world, the ESBL-EC ST131 clone has emerged and disseminated in both community and hospital settings in Korea, including in blood isolates in patients with bacteremia.
Collapse
Affiliation(s)
- Min Kyeong Cha
- Asia Pacific Foundation for Infectious Diseases (APFID), Seoul, South Korea
| | - Cheol-In Kang
- Division of Infectious Diseases, Samsung Medical Center, Sungkyunkwan University School of Medicine, Irwon-ro 81, Gangnam-gu, Seoul 135-710, South Korea.
| | - So Hyun Kim
- Asia Pacific Foundation for Infectious Diseases (APFID), Seoul, South Korea; Division of Infectious Diseases, Samsung Medical Center, Sungkyunkwan University School of Medicine, Irwon-ro 81, Gangnam-gu, Seoul 135-710, South Korea
| | - Sun Young Cho
- Division of Infectious Diseases, Samsung Medical Center, Sungkyunkwan University School of Medicine, Irwon-ro 81, Gangnam-gu, Seoul 135-710, South Korea
| | - Young Eun Ha
- Division of Infectious Diseases, Samsung Medical Center, Sungkyunkwan University School of Medicine, Irwon-ro 81, Gangnam-gu, Seoul 135-710, South Korea
| | - Yu Mi Wi
- Division of Infectious Diseases, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, South Korea
| | - Doo Ryeon Chung
- Asia Pacific Foundation for Infectious Diseases (APFID), Seoul, South Korea; Division of Infectious Diseases, Samsung Medical Center, Sungkyunkwan University School of Medicine, Irwon-ro 81, Gangnam-gu, Seoul 135-710, South Korea
| | - Kyong Ran Peck
- Division of Infectious Diseases, Samsung Medical Center, Sungkyunkwan University School of Medicine, Irwon-ro 81, Gangnam-gu, Seoul 135-710, South Korea
| | - Jae-Hoon Song
- Asia Pacific Foundation for Infectious Diseases (APFID), Seoul, South Korea; Division of Infectious Diseases, Samsung Medical Center, Sungkyunkwan University School of Medicine, Irwon-ro 81, Gangnam-gu, Seoul 135-710, South Korea
| |
Collapse
|
30
|
The role of epidemic resistance plasmids and international high-risk clones in the spread of multidrug-resistant Enterobacteriaceae. Clin Microbiol Rev 2015; 28:565-91. [PMID: 25926236 DOI: 10.1128/cmr.00116-14] [Citation(s) in RCA: 556] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Escherichia coli sequence type 131 (ST131) and Klebsiella pneumoniae ST258 emerged in the 2000s as important human pathogens, have spread extensively throughout the world, and are responsible for the rapid increase in antimicrobial resistance among E. coli and K. pneumoniae strains, respectively. E. coli ST131 causes extraintestinal infections and is often fluoroquinolone resistant and associated with extended-spectrum β-lactamase production, especially CTX-M-15. K. pneumoniae ST258 causes urinary and respiratory tract infections and is associated with carbapenemases, most often KPC-2 and KPC-3. The most prevalent lineage within ST131 is named fimH30 because it contains the H30 variant of the type 1 fimbrial adhesin gene, and recent molecular studies have demonstrated that this lineage emerged in the early 2000s and was then followed by the rapid expansion of its sublineages H30-R and H30-Rx. K. pneumoniae ST258 comprises 2 distinct lineages, namely clade I and clade II. Moreover, it seems that ST258 is a hybrid clone that was created by a large recombination event between ST11 and ST442. Epidemic plasmids with blaCTX-M and blaKPC belonging to incompatibility group F have contributed significantly to the success of these clones. E. coli ST131 and K. pneumoniae ST258 are the quintessential examples of international multidrug-resistant high-risk clones.
Collapse
|
31
|
Anes J, McCusker MP, Fanning S, Martins M. The ins and outs of RND efflux pumps in Escherichia coli. Front Microbiol 2015; 6:587. [PMID: 26113845 PMCID: PMC4462101 DOI: 10.3389/fmicb.2015.00587] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 05/28/2015] [Indexed: 11/13/2022] Open
Abstract
Infectious diseases remain one of the principal causes of morbidity and mortality in the world. Relevant authorities including the WHO and CDC have expressed serious concern regarding the continued increase in the development of multidrug resistance among bacteria. They have also reaffirmed the urgent need for investment in the discovery and development of new antibiotics and therapeutic approaches to treat multidrug resistant (MDR) bacteria. The extensive use of antimicrobial compounds in diverse environments, including farming and healthcare, has been identified as one of the main causes for the emergence of MDR bacteria. Induced selective pressure has led bacteria to develop new strategies of defense against these chemicals. Bacteria can accomplish this by several mechanisms, including enzymatic inactivation of the target compound; decreased cell permeability; target protection and/or overproduction; altered target site/enzyme and increased efflux due to over-expression of efflux pumps. Efflux pumps can be specific for a single substrate or can confer resistance to multiple antimicrobials by facilitating the extrusion of a broad range of compounds including antibiotics, heavy metals, biocides and others, from the bacterial cell. To overcome antimicrobial resistance caused by active efflux, efforts are required to better understand the fundamentals of drug efflux mechanisms. There is also a need to elucidate how these mechanisms are regulated and how they respond upon exposure to antimicrobials. Understanding these will allow the development of combined therapies using efflux inhibitors together with antibiotics to act on Gram-negative bacteria, such as the emerging globally disseminated MDR pathogen Escherichia coli ST131 (O25:H4). This review will summarize the current knowledge on resistance-nodulation-cell division efflux mechanisms in E. coli, a bacteria responsible for community and hospital-acquired infections, as well as foodborne outbreaks worldwide.
Collapse
Affiliation(s)
- João Anes
- UCD Centre for Food Safety, School of Public Health, Physiotherapy and Population Science, UCD Centre for Molecular Innovation and Drug Discovery, University College Dublin Dublin, Ireland
| | - Matthew P McCusker
- UCD Centre for Food Safety, School of Public Health, Physiotherapy and Population Science, UCD Centre for Molecular Innovation and Drug Discovery, University College Dublin Dublin, Ireland
| | - Séamus Fanning
- UCD Centre for Food Safety, School of Public Health, Physiotherapy and Population Science, UCD Centre for Molecular Innovation and Drug Discovery, University College Dublin Dublin, Ireland
| | - Marta Martins
- UCD Centre for Food Safety, School of Public Health, Physiotherapy and Population Science, UCD Centre for Molecular Innovation and Drug Discovery, University College Dublin Dublin, Ireland
| |
Collapse
|
32
|
Tal Jasper R, Coyle JR, Katz DE, Marchaim D. The complex epidemiology of extended-spectrum β-lactamase-producing Enterobacteriaceae. Future Microbiol 2015; 10:819-39. [DOI: 10.2217/fmb.15.16] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
ABSTRACT Antimicrobial resistance is a growing worldwide iatrogenic complication of modern medical care. Extended-spectrum β-lactamases have emerged as one of the most successful resistance mechanisms, limiting our therapeutic options to treat various human infections. The dissemination of these enzymes to the community probably signifies an irreversible step. This paper will review the evolution of human infections associated with extended-spectrum β-lactamase-producing organisms in the past 20 years, and will present and discuss the current challenges, controversies, debates and knowledge gaps in this research field.
Collapse
Affiliation(s)
- Ruthy Tal Jasper
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Joseph R Coyle
- Division of Communicable Diseases, Bureau of Disease Control, Prevention & Epidemiology, Michigan Department of Community Health, 201 Townsend St, Lansing, MI, USA, 48909
| | - David E Katz
- Department of Internal Medicine D, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Dror Marchaim
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Division of Infectious Diseases, Assaf Harofeh Medical Center, Zerifin, Israel
| |
Collapse
|
33
|
Extraintestinal Pathogenic and Antimicrobial-Resistant Escherichia coli Contamination of 56 Public Restrooms in the Greater Minneapolis-St. Paul Metropolitan Area. Appl Environ Microbiol 2015; 81:4498-506. [PMID: 25911488 DOI: 10.1128/aem.00638-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 04/20/2015] [Indexed: 01/15/2023] Open
Abstract
How extraintestinal pathogenic Escherichia coli (ExPEC) and antimicrobial-resistant E. coli disseminate through the population is undefined. We studied public restrooms for contamination with E. coli and ExPEC in relation to source and extensively characterized the E. coli isolates. For this, we cultured 1,120 environmental samples from 56 public restrooms in 33 establishments (obtained from 10 cities in the greater Minneapolis-St. Paul, MN, metropolitan area in 2003) for E. coli and compared ecological data with culture results. Isolates underwent virulence genotyping, phylotyping, clonal typing, pulsed-field gel electrophoresis (PFGE), and disk diffusion antimicrobial susceptibility testing. Overall, 168 samples (15% from 89% of restrooms) fluoresced, indicating presumptive E. coli: 25 samples (2.2% from 32% of restrooms) yielded E. coli isolates, and 10 samples (0.9% from 16% of restrooms) contained ExPEC. Restroom category and cleanliness level significantly predicted only fluorescence, gender predicted fluorescence and E. coli, and feces-like material and toilet-associated sites predicted all three endpoints. Of the 25 E. coli isolates, 7 (28%) were from phylogenetic group B2(virulence-associated), and 8 (32%) were ExPEC. ExPEC isolates more commonly represented group B2 (50% versus 18%) and had significantly higher virulence gene scores than non-ExPEC isolates. Six isolates (24%) exhibited ≥3-class antibiotic resistance, 10 (40%) represented classic human-associated sequence types, and one closely resembled reference human clinical isolates by pulsed-field gel electrophoresis. Thus, E. coli, ExPEC, and antimicrobial-resistant E. coli sporadically contaminate public restrooms, in ways corresponding with restroom characteristics and within-restroom sites. Such restroom-source E. coli strains likely reflect human fecal contamination, may pose a health threat, and may contribute to population-wide dissemination of such strains.
Collapse
|
34
|
Abstract
Pathogenic Escherichia coli strains cause a wide variety of intestinal and extraintestinal infections. The widespread geographical clonal dissemination of intestinal pathogenic E. coli strains, such as E. coli O157:H7, is well recognized, and its spread is most often attributed to contaminated food products. On the other hand, the clonal dissemination of extraintestinal pathogenic E. coli (ExPEC) strains is also recognized, but the mechanism of their spread is not well explained. Here, I describe major pandemic clonal lineages of ExPEC based on multilocus sequence typing (MLST), and discuss possible reasons for their global dissemination. These lineages include sequence type (ST)131, ST393, ST69, ST95, and ST73, which are all associated with both community-onset and healthcare-associated infections, in particular urinary tract infections and bloodstream infections. As with many other types of drug-resistant Gram-negative and Gram-positive bacterial infections, drug-resistant ExPEC infections are recognized to be caused by a limited set of clonal lineages. However, reported observations on these major pandemic lineages suggest that the resistance phenotype is not necessarily the determinant of their clonal dissemination. Both epidemiological factors and their intrinsic biological 'fitness' are likely to contribute. An important public health and clinical concern is that pandemicity itself may be a determinant of progressive drug resistance acquisition by clonal lineages. New research is urgently needed to better understand the epidemiological and biological causes of ExPEC pandemicity.
Collapse
Affiliation(s)
- L W Riley
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA, USA
| |
Collapse
|
35
|
Abstract
In 2008, a previously unknown Escherichia coli clonal group, sequence type 131 (ST131), was identified on three continents. Today, ST131 is the predominant E. coli lineage among extraintestinal pathogenic E. coli (ExPEC) isolates worldwide. Retrospective studies have suggested that it may originally have risen to prominence as early as 2003. Unlike other classical group B2 ExPEC isolates, ST131 isolates are commonly reported to produce extended-spectrum β-lactamases, such as CTX-M-15, and almost all are resistant to fluoroquinolones. Moreover, ST131 E. coli isolates are considered to be truly pathogenic, due to the spectrum of infections they cause in both community and hospital settings and the large number of virulence-associated genes they contain. ST131 isolates therefore seem to contradict the widely held view that high levels of antimicrobial resistance are necessarily associated with a fitness cost leading to a decrease in pathogenesis. Six years after the first description of E. coli ST131, this review outlines the principal traits of ST131 clonal group isolates, based on the growing body of published data, and highlights what is currently known and what we need to find out to provide public health authorities with better information to help combat ST131.
Collapse
|
36
|
Umene YD, Wong LK, Satoh T, Yamane K, Matsui M, Riley LW, Arakawa Y, Suzuki S. Molecular epidemiological characterization of uropathogenic escherichia coli from an outpatient urology clinic in rural Japan. J Clin Microbiol 2015; 53:681-3. [PMID: 25428151 PMCID: PMC4298499 DOI: 10.1128/jcm.03068-14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 11/18/2014] [Indexed: 02/04/2023] Open
Abstract
In the remote Japanese community of Saku, a rural town in the Nagano Prefecture, a large proportion of outpatient urinary tract infections was caused by well-recognized globally dispersed clonal lineages of uropathogenic Escherichia coli (UPEC). However, most of these strains were drug susceptible, suggesting that factors other than selection pressure account for the clonal spread of drug-susceptible UPEC.
Collapse
Affiliation(s)
- Yasuyo D Umene
- UC Berkeley-UC San Francisco Joint Medical Program, Division of Health and Medical Sciences, School of Public Health, University of California, Berkeley, California, USA
| | - Lisa K Wong
- Division of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, California, USA
| | | | - Kunikazu Yamane
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan Department of Public Health, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Mari Matsui
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Lee W Riley
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, California, USA
| | - Yoshichika Arakawa
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan Department of Bacteriology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Satowa Suzuki
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
37
|
Yilmaz S, Altinkanat-Gelmez G, Bolelli K, Guneser-Merdan D, Ufuk Over-Hasdemir M, Aki-Yalcin E, Yalcin I. Binding site feature description of 2-substituted benzothiazoles as potential AcrAB-TolC efflux pump inhibitors in E. coli. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2015; 26:853-871. [PMID: 26559566 DOI: 10.1080/1062936x.2015.1106581] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The resistance-nodulation-division (RND) family efflux pumps are important in the antibiotic resistance of Gram-negative bacteria. However, although a number of bacterial RND efflux pump inhibitors have been developed, there has been no clinically available RND efflux pump inhibitor to date. A set of BSN-coded 2-substituted benzothiazoles were tested alone and in combinations with ciprofloxacin (CIP) against the AcrAB-TolC overexpressor Escherichia coli AG102 clinical strain. The results indicated that the BSN compounds did not show intrinsic antimicrobial activity when tested alone. However, when used in combinations with CIP, a reversal in the antibacterial activity of CIP with up to 10-fold better MIC values was observed. In order to describe the binding site features of these BSN compounds with AcrB, docking studies were performed using the CDocker method. The performed docking poses and the calculated binding energy scores revealed that the tested compounds BSN-006, BSN-023, and BSN-004 showed significant binding interactions with the phenylalanine-rich region in the distal binding site of the AcrB binding monomer. Moreover, the tested compounds BSN-006 and BSN-023 possessed stronger binding energies than CIP, verifying that BSN compounds are acting as the putative substrates of AcrB.
Collapse
Affiliation(s)
- S Yilmaz
- a Pharmaceutical Chemistry Department, Faculty of Pharmacy , Ankara University , Ankara , Turkey
| | - G Altinkanat-Gelmez
- b Medical Microbiology Department, Faculty of Medicine , Marmara University , Istanbul , Turkey
| | - K Bolelli
- a Pharmaceutical Chemistry Department, Faculty of Pharmacy , Ankara University , Ankara , Turkey
| | - D Guneser-Merdan
- b Medical Microbiology Department, Faculty of Medicine , Marmara University , Istanbul , Turkey
| | - M Ufuk Over-Hasdemir
- b Medical Microbiology Department, Faculty of Medicine , Marmara University , Istanbul , Turkey
| | - E Aki-Yalcin
- a Pharmaceutical Chemistry Department, Faculty of Pharmacy , Ankara University , Ankara , Turkey
| | - I Yalcin
- a Pharmaceutical Chemistry Department, Faculty of Pharmacy , Ankara University , Ankara , Turkey
| |
Collapse
|
38
|
Giacobbe DR, Del Bono V, Coppo E, Marchese A, Viscoli C. Emergence of a KPC-3-Producing Escherichia coli ST69 as a Cause of Bloodstream Infections in Italy. Microb Drug Resist 2014; 21:342-4. [PMID: 25514440 DOI: 10.1089/mdr.2014.0230] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The spread of carbapenem-resistant gram negatives is a global emergency, and surveillance of new resistant clones is critical from both public health and clinical standpoints. Herein, we describe the emergence of a KPC-3-producing Escherichia coli ST69 as a cause of bloodstream infection in two Italian patients.
Collapse
Affiliation(s)
- Daniele Roberto Giacobbe
- 1Infectious Diseases Unit, IRCCS San Martino University Hospital-IST, University of Genoa, Genoa, Italy
| | - Valerio Del Bono
- 1Infectious Diseases Unit, IRCCS San Martino University Hospital-IST, University of Genoa, Genoa, Italy
| | - Erika Coppo
- 2Microbiology Unit DISC, IRCCS San Martino University Hospital-IST, University of Genoa, Genoa, Italy
| | - Anna Marchese
- 2Microbiology Unit DISC, IRCCS San Martino University Hospital-IST, University of Genoa, Genoa, Italy
| | - Claudio Viscoli
- 1Infectious Diseases Unit, IRCCS San Martino University Hospital-IST, University of Genoa, Genoa, Italy
| |
Collapse
|
39
|
Mathers AJ, Peirano G, Pitout JDD. Escherichia coli ST131: The quintessential example of an international multiresistant high-risk clone. ADVANCES IN APPLIED MICROBIOLOGY 2014; 90:109-54. [PMID: 25596031 DOI: 10.1016/bs.aambs.2014.09.002] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Escherichia coli ST131 emerged during the early to mid-2000s is an important human pathogen, has spread extensively throughout the world, and is responsible for the rapid increase in antimicrobial resistance among E. coli. ST131 is known to cause extraintestinal infections, being fluoroquinolone resistant, and is associated with ESBL production most often due to CTX-M-15. Recent molecular epidemiologic studies using whole-genome sequencing and phylogenetic analysis have demonstrated that the H30 ST131 lineage emerged in early 2000s that was followed by the rapid expansion of its sublineages H30-R and H30-Rx. Escherichia coli ST131 clearly has all of the essential characteristics that define a high-risk clone and might be the quintessential example of an international multiresistant high-risk clone. We urgently need rapid cost-effective detection methods for E. coli ST131, as well as well-designed epidemiological and molecular studies to understand the dynamics of transmission, risk factors, and reservoirs for ST131. This will provide insight into the emergence and spread of this multiresistant sequence type that will hopefully lead to information essential for preventing the spread of ST131.
Collapse
Affiliation(s)
| | - Gisele Peirano
- Division of Microbiology, Calgary Laboratory Services, University of Calgary, Calgary, AB, Canada; Departments of Pathology & Laboratory Medicine, University of Calgary, Calgary, AB, Canada
| | - Johann D D Pitout
- Division of Microbiology, Calgary Laboratory Services, University of Calgary, Calgary, AB, Canada; Departments of Pathology & Laboratory Medicine, University of Calgary, Calgary, AB, Canada; Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
40
|
Can F, Azap OK, Seref C, Ispir P, Arslan H, Ergonul O. Emerging Escherichia coli O25b/ST131 clone predicts treatment failure in urinary tract infections. Clin Infect Dis 2014; 60:523-7. [PMID: 25378460 DOI: 10.1093/cid/ciu864] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND We described the clinical predictive role of emerging Escherichia coli O25b/sequence type 131 (ST131) in treatment failure of urinary tract infection. METHODS In this prospective observational cohort study, the outpatients with acute cystitis with isolation of E. coli in their urine cultures were assessed. All the patients were followed up for clinical cure after 10 days of treatment. Detection of the E. coli O25:H4/ST131 clone was performed by multiplex polymerase chain reaction (PCR) for phylogroup typing and using PCR with primers for O25b rfb and allele 3 of the pabB gene. RESULTS In a cohort of patients with diagnosis of acute urinary cystitis, 294 patients whose urine cultures were positive with a growth of >10(4) colony-forming units/mL of E. coli were included in the study. In empiric therapy, ciprofloxacin was the first choice of drug (27%), followed by phosphomycin (23%), trimethoprim-sulfamethoxazole (TMP-SMX) (9%), and cefuroxime (7%). The resistance rate was 39% against ciprofloxacin, 44% against TMP-SMX, and 25% against cefuroxime. Thirty-five of 294 (12%) isolates were typed under the O25/ST131 clone. The clinical cure rate was 85% after the treatment. In multivariate analysis, detection of the O25/ST131 clone (odds ratio [OR], 4; 95% confidence interval [CI], 1.51-10.93; P = .005) and diabetes mellitus (OR, 2.1; 95% CI, .99-4.79; P = .05) were found to be significant risk factors for the treatment failure. In another multivariate analysis performed among quinolone-resistant isolates, treatment failure was 3 times more common among the patients who were infected with ST131 E. coli (OR, 3; 95% CI, 1.27-7.4; P = .012). CONCLUSIONS In urinary tract infections, the E. coli ST131 clone seems to be a consistent predictor of treatment failure.
Collapse
Affiliation(s)
- Fusun Can
- Department of Medical Microbiology, Koç University, School of Medicine, Istanbul
| | - Ozlem Kurt Azap
- Department of Infectious Diseases, Baskent University, School of Medicine, Ankara
| | - Ceren Seref
- Department of Medical Microbiology, Koç University, School of Medicine, Istanbul
| | - Pelin Ispir
- Department of Medical Microbiology, Koç University, School of Medicine, Istanbul
| | - Hande Arslan
- Department of Infectious Diseases, Baskent University, School of Medicine, Ankara
| | - Onder Ergonul
- Department of Infectious Diseases, Koç University, School of Medicine, Istanbul, Turkey
| |
Collapse
|
41
|
Partridge SR, Ginn AN, Wiklendt AM, Ellem J, Wong JSJ, Ingram P, Guy S, Garner S, Iredell JR. Emergence of blaKPC carbapenemase genes in Australia. Int J Antimicrob Agents 2014; 45:130-6. [PMID: 25465526 DOI: 10.1016/j.ijantimicag.2014.10.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 10/02/2014] [Accepted: 10/06/2014] [Indexed: 01/03/2023]
Abstract
blaKPC genes encoding resistance to carbapenems are increasingly widely reported and are now endemic in parts of several countries, but only one Klebsiella pneumoniae isolate carrying blaKPC-2 had previously been reported in Australia, in 2010. Here we characterised this isolate, six additional K. pneumoniae and one Escherichia coli carrying blaKPC and another K. pneumoniae lacking blaKPC, all isolated in Australia in 2012. Seven K. pneumoniae belonged to clonal complex (CC) 292, associated with blaKPC in several countries. Five with blaKPC-2 plus the isolate lacking a blaKPC gene were sequence type 258 (ST258) and the seventh was the closely related ST512 with blaKPC-3. The eighth K. pneumoniae isolate, novel ST1048, and the E. coli (ST131) also carried blaKPC-2. blaKPC genes were associated with the most common Tn4401a variant, which gives the highest levels of expression, in all isolates. The ST258 isolates appeared to share a similar set of plasmids, with IncFIIK, IncX3 and ColE-type plasmids identified in most isolates. All K. pneumoniae isolates had a characteristic insertion in the ompK35 gene resulting in a frameshift and early termination, but only the ST512 isolate had a GlyAsp insertion in loop 3 of OmpK36 that may contribute to increased resistance. The clinical epidemiology of blaKPC emergence in Australia thus appears to reflect the global dominance of K. pneumoniae CC292 (and perhaps E. coli ST131). Some, but not all, patients carrying these isolates had previously been hospitalised outside Australia, suggesting multiple discrete importation events of closely related strains, as well as undetected nosocomial spread.
Collapse
Affiliation(s)
- Sally R Partridge
- Centre for Infectious Diseases and Microbiology, University of Sydney, Westmead Hospital, Westmead, NSW, Australia; Westmead Millennium Institute, Westmead, NSW, Australia; Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW, Australia
| | - Andrew N Ginn
- Centre for Infectious Diseases and Microbiology, University of Sydney, Westmead Hospital, Westmead, NSW, Australia; Westmead Millennium Institute, Westmead, NSW, Australia; Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW, Australia
| | - Agnieszka M Wiklendt
- Centre for Infectious Diseases and Microbiology, University of Sydney, Westmead Hospital, Westmead, NSW, Australia; Centre for Infectious Diseases and Microbiology Laboratory Services, Westmead Hospital, Westmead, NSW, Australia
| | - Justin Ellem
- Centre for Infectious Diseases and Microbiology Laboratory Services, Westmead Hospital, Westmead, NSW, Australia
| | - Jenny S J Wong
- Dorevitch Pathology, Department of Microbiology, Footscray, Vic., Australia
| | - Paul Ingram
- Department of Microbiology, Royal Perth Hospital, Perth, WA, Australia; School of Pathology and Laboratory Medicine, University of Western Australia, Perth, WA, Australia
| | - Stephen Guy
- Department of Infectious Diseases, Western Health, Footscray, Vic., Australia
| | - Sarah Garner
- Dorevitch Pathology, Department of Microbiology, Heidelberg, Vic., Australia
| | - Jonathan R Iredell
- Centre for Infectious Diseases and Microbiology, University of Sydney, Westmead Hospital, Westmead, NSW, Australia; Westmead Millennium Institute, Westmead, NSW, Australia; Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
42
|
Wiedemann B, Heisig A, Heisig P. Uncomplicated Urinary Tract Infections and Antibiotic Resistance-Epidemiological and Mechanistic Aspects. Antibiotics (Basel) 2014; 3:341-52. [PMID: 27025749 PMCID: PMC4790371 DOI: 10.3390/antibiotics3030341] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 07/11/2014] [Accepted: 07/14/2014] [Indexed: 11/16/2022] Open
Abstract
Uncomplicated urinary tract infections are typically monobacterial and are predominantly caused by Escherichia coli. Although several effective treatment options are available, the rates of antibiotic resistance in urinary isolates of E. coli have increased during the last decade. Knowledge of the actual local rates of antibiotic resistant pathogens as well as the underlying mechanisms are important factors in addition to the geographical location and the health state of the patient for choosing the most effective antibiotic treatment. Recommended treatment options include trimethoprim alone or in combination with sulfamethoxazol, fluoroquinolones, β-lactams, fosfomycin-trometamol, and nitrofurantoin. Three basic mechanisms of resistance to all antibiotics are known, i.e., target alteration, reduced drug concentration and inactivation of the drug. These mechanisms—alone or in combination—contribute to resistance against the different antibiotic classes. With increasing prevalence, combinations of resistance mechanisms leading to multiple drug resistant (mdr) pathogens are being detected and have been associated with reduced fitness under in vitro situations. However, mdr clones among clinical isolates such as E. coli sequence type 131 (ST131) have successfully adapted in fitness and growth rate and are rapidly spreading as a worldwide predominating clone of extraintestinal pathogenic E. coli.
Collapse
Affiliation(s)
| | - Anke Heisig
- Pharmaceutical Biology and Microbiology, Institute of Biochemistry and Molecular Biology, University of Hamburg, Bundesstrasse 45, 20146 Hamburg, Germany.
| | - Peter Heisig
- Pharmaceutical Biology and Microbiology, Institute of Biochemistry and Molecular Biology, University of Hamburg, Bundesstrasse 45, 20146 Hamburg, Germany.
| |
Collapse
|
43
|
Strand L, Jenkins A, Henriksen IH, Allum AG, Grude N, Kristiansen BE. High levels of multiresistance in quinolone resistant urinary tract isolates of Escherichia coli from Norway; a non clonal phenomen? BMC Res Notes 2014; 7:376. [PMID: 24941949 PMCID: PMC4077835 DOI: 10.1186/1756-0500-7-376] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 05/28/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The problem of emerging ciprofloxacin resistance is compounded by its frequent association with multiresistance, the reason for which is not fully understood. In this study we compare multiresistance, clonal similarities and phylogenetic group in urinary tract isolates of Escherichia coli sensitive and resistant to the quinolone antimicrobials nalidixic acid and ciprofloxacin. RESULTS Quinolone resistant isolates were more resistant to non-quinolone antibiotics than sensitive isolates, with resistance to ampicillin, mecillinam, sulphonamide, trimethoprim, tetracycline, kanamycin and chloramphenicol significantly increased. Fifty-one percent of quinolone-resistant isolates were multiresistant. Although multiresistance was most prevalent (63%) in isolates showing high-level ciprofloxacin resistance, it was still highly prevalent (41%) in nalidixic acid resistant isolates with low-level ciprofloxacin resistance. Multiresistance was more frequent among singleton isolates (61%) than clonal isolates (40%) of quinolone resistant Escherichia coli. Ciprofloxacin resistance was associated with certain specific clones, among them the globally distributed clonal Group A. However, there was no significant difference in the overall degree of clonality between quinolone sensitive and resistant isolates. Ciprofloxacin resistance was positively associated with phylogroup D and negatively associated with phylogroup B2. This correlation was not associated with clonal isolates. CONCLUSION This study supports earlier findings of association between ciprofloxacin resistance and resistance to other antibiotics. The prevalence of multiresistance in quinolone-resistant isolates that have not yet developed high-level ciprofloxacin resistance suggest that multiresistance arises early in the development of quinolone resistance. This is consistent with exposure to quinolones causing quinolone resistance by mutations and mobilization of multiresistance elements by induction of the SOS response. The spread of clones seems to be less important than previously reported in regard to emergence of quinolone resistance and multiresistance as both are associated primarily with singleton isolates.
Collapse
|
44
|
A new clone sweeps clean: the enigmatic emergence of Escherichia coli sequence type 131. Antimicrob Agents Chemother 2014; 58:4997-5004. [PMID: 24867985 DOI: 10.1128/aac.02824-14] [Citation(s) in RCA: 183] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Escherichia coli sequence type 131 (ST131) is an extensively antimicrobial-resistant E. coli clonal group that has spread explosively throughout the world. Recent molecular epidemiologic and whole-genome phylogenetic studies have elucidated the fine clonal structure of ST131, which comprises multiple ST131 subclones with distinctive resistance profiles, including the (nested) H30, H30-R, and H30-Rx subclones. The most prevalent ST131 subclone, H30, arose from a single common fluoroquinolone (FQ)-susceptible ancestor containing allele 30 of fimH (type 1 fimbrial adhesin gene). An early H30 subclone member acquired FQ resistance and launched the rapid expansion of the resulting FQ-resistant subclone, H30-R. Subsequently, a member of H30-R acquired the CTX-M-15 extended-spectrum beta-lactamase and launched the rapid expansion of the CTX-M-15-containing subclone within H30-R, H30-Rx. Clonal expansion clearly is now the dominant mechanism for the rising prevalence of both FQ resistance and CTX-M-15 production in ST131 and in E. coli generally. Reasons for the successful dissemination and expansion of the key ST131 subclones remain undefined but may include increased transmissibility, greater ability to colonize and/or persist in the intestine or urinary tract, enhanced virulence, and more-extensive antimicrobial resistance compared to other E. coli. Here we discuss the epidemiology and molecular phylogeny of ST131 and its key subclones, possible mechanisms for their ecological success, implications of their widespread dissemination, and future research needs.
Collapse
|
45
|
Qureshi ZA, Doi Y. Escherichia colisequence type 131: epidemiology and challenges in treatment. Expert Rev Anti Infect Ther 2014; 12:597-609. [DOI: 10.1586/14787210.2014.899901] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
46
|
Dawson SE, Gibreel T, Nicolaou N, AlRabiah H, Xu Y, Goodacre R, Upton M. Implementation of Fourier transform infrared spectroscopy for the rapid typing of uropathogenic Escherichia coli. Eur J Clin Microbiol Infect Dis 2014; 33:983-8. [DOI: 10.1007/s10096-013-2036-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 12/10/2013] [Indexed: 10/25/2022]
|
47
|
Giufre M, Accogli M, Farina C, Giammanco A, Pecile P, Cerquetti M. Predominance of the fimH30 subclone among multidrug-resistant Escherichia coli strains belonging to sequence type 131 in Italy. J Infect Dis 2013; 209:629-30. [PMID: 24203778 DOI: 10.1093/infdis/jit583] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Maria Giufre
- Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità, Rome
| | | | | | | | | | | |
Collapse
|
48
|
The clonal distribution and diversity of extraintestinal Escherichia coli isolates vary according to patient characteristics. Antimicrob Agents Chemother 2013; 57:5912-7. [PMID: 24041881 DOI: 10.1128/aac.01065-13] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The clonal distribution of Escherichia coli across an unselected population in the current era of widespread antimicrobial resistance is incompletely defined. In this study, we used a newly described clonal typing strategy based on sequencing of fumC and fimH (i.e., CH typing) to infer multilocus sequence types (STs) for 299 consecutive, nonduplicate extraintestinal E. coli isolates from all cultures submitted to Olmsted County, MN, laboratories in February and March 2011 and then compared STs with epidemiological data. Forty-seven different STs were identified, most commonly ST131 (27%), ST95 (11%), ST73 (8%), ST127 (6%), and ST69 (5%). Isolates from these five STs comprised two-thirds of health care-associated (HA) isolates but only half of community-associated (CA) isolates. ST131 was represented overwhelmingly (88%) by a single recently expanded H30 subclone, which was the most extensively antimicrobial-resistant subclone overall and was especially predominant in HA infections and among adults >50 years old. In contrast, among patients 11 to 50 years old, ST69, -95, and -73 were more common. Because of the preponderance of the H30 subclone of ST131, ST diversity was lower among HA than CA isolates, and among antimicrobial-resistant than antimicrobial-susceptible isolates, which otherwise had similar ST distributions. In conclusion, in this U.S. Midwest region, the distribution and diversity of STs among extraintestinal E. coli clinical isolates vary by patient age, type of infection, and resistance phenotype. ST131 predominates among young children and the elderly, HA infections, and antimicrobial-resistant isolates, whereas other well-known pathogenic lineages are more common among adolescents and young adults, CA infections, and antimicrobial-susceptible isolates.
Collapse
|
49
|
Colpan A, Johnston B, Porter S, Clabots C, Anway R, Thao L, Kuskowski MA, Tchesnokova V, Sokurenko EV, Johnson JR. Escherichia coli sequence type 131 (ST131) subclone H30 as an emergent multidrug-resistant pathogen among US veterans. Clin Infect Dis 2013; 57:1256-65. [PMID: 23926176 DOI: 10.1093/cid/cit503] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Escherichia coli sequence type 131 (ST131), typically fluoroquinolone-resistant (FQ-R) and/or extended-spectrum β-lactamase (ESBL)-producing, has emerged globally. We assessed its prevalence and characteristics among US veterans. METHODS In 2011, 595 de-identified E. coli clinical isolates were collected systematically within 3 resistance groups (FQ-susceptible [FQ-S], FQ-R, and ESBL-producing) from 24 nationally distributed Veterans Affairs Medical Centers (VAMCs). ST131 and its H30 subclone were detected by polymerase chain reaction and compared with other E. coli for molecular traits, source, and resistance profiles. RESULTS ST131 accounted for 78% (184/236) of FQ-R and 64.2% (79/123) of ESBL-producing isolates, but only 7.2% (17/236) of FQ-S isolates (P < .001). The H30 subclone accounted for ≥95% of FQ-R and ESBL-producing, but only 12.5% of FQ-S, ST131 isolates (P < .001). By back-calculation, 28% of VAMC E. coli isolates nationally represented ST131. Overall, ST131 varied minimally in prevalence by specimen type, inpatient/outpatient source, or locale; was the most prevalent ST, followed distantly by ST95 and ST12 (13% each); and accounted for ≥40% (β-lactams), >50% (trimethoprim-sulfamethoxazole , multidrug), or >70% (ciprofloxacin, gentamicin) of total antimicrobial resistance. FQ-R and ESBL-producing ST131 isolates had higher virulence scores than corresponding non-ST131 isolates. ST131 pulsotypes overlapped extensively among VAMCs. CONCLUSIONS Among US veterans, ST131, primarily its H30 subclone, accounts for most antimicrobial-resistant E. coli and is the dominant E. coli strain overall. Possible contributors include multidrug resistance, extensive virulence gene content, and ongoing transmission. Focused attention to ST131, especially its H30 subclone, could reduce infection-related morbidity, mortality, and costs among veterans.
Collapse
|
50
|
Escherichia coli sequence type 131 as a prominent cause of antibiotic resistance among urinary Escherichia coli isolates from reproductive-age women. J Clin Microbiol 2013; 51:3270-6. [PMID: 23885001 DOI: 10.1128/jcm.01315-13] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The recent emergence of multidrug-resistant Escherichia coli sequence type 131 (ST131) has coincided with an increase in general antibiotic resistance of E. coli, suggesting that ST131 has a contributing role in resistance. However, there is little information about the contribution of ST131 to different clinical syndromes or the basis for its impressive emergence and epidemic spread. To investigate this, we studied 953 E. coli isolates from women of reproductive age in the central west region of New South Wales, Australia, including 623 urinary isolates from patients with cystitis (cystitis isolates) (n = 322) or pyelonephritis (pyelonephritis isolates) (n = 301) and 330 fecal isolates from healthy controls. The characteristics studied included ST131 clonal group status, resistance to different antibiotics, presence of virulence factor (VF) genes, and biofilm production. As expected, fecal isolates differed significantly from urinary (cystitis and pyelonephritis) isolates in most of the studied characteristics. Antibiotic resistance was significantly more common in ST131 than in non-ST131 isolates. Both antibiotic resistance and ST131 were more common in pyelonephritis than cystitis isolates and least so among fecal isolates. Within each source group, individual VF genes were more prevalent and VF scores were higher for ST131 than for non-ST131 isolates. For ST131 only, the prevalences of most individual VF genes and VF scores were the lowest in the fecal isolates, higher in the cystitis isolates, and highest in the pyelonephritis isolates. Biofilm production was strongly associated with ST131 status and antibiotic resistance. These results clarify the distribution of the ST131 clonal group and its epidemiological associations in our region and suggest that it exhibits both enhanced virulence and increased antibiotic resistance compared with those of other urinary tract infection (UTI) and fecal E. coli isolates from women of reproductive age.
Collapse
|