1
|
Gaffney A, Smyth EG, Moore Z, Patton D, Connor TO, Derwin R. Role of admission rapid antigen testing (RATs) for COVID-19 on patients transferred from acute hospitals to a post-acute rehabilitation setting. Am J Infect Control 2024:S0196-6553(24)00822-8. [PMID: 39489423 DOI: 10.1016/j.ajic.2024.10.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/26/2024] [Accepted: 10/27/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Rapid antigen tests (RATs) are suitable for point-of -care testing, require no laboratory time and give immediate results. However, are RATs useful for detecting asymptomatic COVID-19 infection when compared with polymerase chain reaction (PCR) testing in healthcare settings? AIM The aim of this study was to implement a reliable testing system utilising RATs to promptly detect COVID-19 infection in predominantly asymptomatic patients transferred from acute hospitals to a post-acute rehabilitation unit (PARU). METHODS RAT testing was carried out on all new admissions without a history of confirmed Covid-19 infection within three months of admission. PCR testing was carried out on all patients with a positive RAT for confirmation purposes. The cycle threshold (Ct) values of COVID-19 detected results on PCR testing were examined to determine the utility of the RATs. RESULTS A total of 1,403 patients were transferred to the PARU from January to December 2023. The results of the study revealed an 85% accuracy of RATs with a 15% rate of false negative results at the time of admission. All patients that had a positive RAT at the time of admission also had a positive PCR test. CONCLUSION This testing algorithm resulted in early detection and prompt isolation of positive cases reducing the likely spread of COVID-19 infection, hospital outbreaks and bed/ward closures.
Collapse
Affiliation(s)
- Ann Gaffney
- School of Nursing and Midwifery, Royal College of Surgeons in Ireland, St Stephens Green, St Peters, Dublin 2, Ireland; Clontarf Hospital, Blackheath Park, Clontarf, Dublin 3; Honorary Professor, Lida Institute, Shanghai, China.
| | - Edmond G Smyth
- Clontarf Hospital, Blackheath Park, Clontarf, Dublin 3; Honorary Professor, Lida Institute, Shanghai, China.
| | - Zena Moore
- School of Nursing and Midwifery, Royal College of Surgeons in Ireland, St Stephens Green, St Peters, Dublin 2, Ireland; Adjunct Professor, School of Nursing & Midwifery, Griffith University, Queensland, Australia; Visiting Professor, School of Health Sciences, Faculty of Life and Health Sciences Ulster University, Northern Ireland; Honorary Visiting Professor, Cardiff University, Cardiff, Wales; Adjunct Professor, Department of Nursing, Fakeeh College for Medical Sciences, Jeddah, KSA; Professor, Department of Public Health, Faculty of Medicine and Health Sciences, Ghent University, Belgium; Honorary Professor, Lida Institute, Shanghai, China.
| | - Declan Patton
- School of Nursing and Midwifery, Royal College of Surgeons in Ireland, St Stephens Green, St Peters, Dublin 2, Ireland; Adjunct Associate Professor, Fakeeh College of Health Sciences, Jeddah, Saudi Arabia; Honorary Senior Fellow, Faculty of Science, Medicine and Health, University of Wollongong, Australia; Honorary Professor, Lida Institute, Shanghai, China.
| | - Tom O Connor
- School of Nursing and Midwifery, Royal College of Surgeons in Ireland, St Stephens Green, St Peters, Dublin 2, Ireland; Adjunct Associate Professor, Fakeeh College of Health Sciences, Jeddah, Saudi Arabia; Honorary Professor, Lida Institute, Shanghai, China.
| | - Rosemarie Derwin
- School of Nursing and Midwifery, Trinity College Dublin, 24 D'Olier Street, Dublin 2, Ireland; Honorary Professor, Lida Institute, Shanghai, China.
| |
Collapse
|
2
|
Hirabayashi E, Mercado G, Hull B, Soin S, Koshy-Chenthittayil S, Raman S, Huang T, Keerthisinghe C, Feliciano S, Dongo A, Kal J, Azizan A, Duus K, Else T, DeArmond M, Stone AE. Comparison of diagnostic accuracy of rapid antigen tests for COVID-19 compared to the viral genetic test in adults: a systematic review and meta-analysis. JBI Evid Synth 2024; 22:1939-2002. [PMID: 39188132 PMCID: PMC11462910 DOI: 10.11124/jbies-23-00291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
OBJECTIVE The objective of this review was to determine the diagnostic accuracy of the currently available and upcoming point-of-care rapid antigen tests (RATs) used in primary care settings relative to the viral genetic real-time reverse transcriptase polymerase chain reaction (RT-PCR) test as a reference for diagnosing COVID-19/SARS-CoV-2 in adults. INTRODUCTION Accurate COVID-19 point-of-care diagnostic tests are required for real-time identification of SARS-CoV-2 infection in individuals. Real-time RT-PCR is the accepted gold standard for diagnostic testing, requiring technical expertise and expensive equipment that are unavailable in most primary care locations. RATs are immunoassays that detect the presence of a specific viral protein, which implies a current infection with SARS-CoV-2. RATs are qualitative or semi-quantitative diagnostics that lack thresholds that provide a result within a short time frame, typically within the hour following sample collection. In this systematic review, we synthesized the current evidence regarding the accuracy of RATs for detecting SARS-CoV-2 compared with RT-PCR. INCLUSION CRITERIA Studies that included nonpregnant adults (18 years or older) with suspected SARS-CoV-2 infection, regardless of symptomology or disease severity, were included. The index test was any available SARS-CoV-2 point-of-care RAT. The reference test was any commercially distributed RT-PCR-based test that detects the RNA genome of SARS-CoV-2 and has been validated by an independent third party. Custom or in-house RT-PCR tests were also considered, with appropriate validation documentation. The diagnosis of interest was COVID-19 disease and SARS-CoV-2 infection. This review considered cross-sectional and cohort studies that examined the diagnostic accuracy of COVID-19/SARS-CoV-2 infection where the participants had both index and reference tests performed. METHODS The keywords and index terms contained in relevant articles were used to develop a full search strategy for PubMed and adapted for Embase, Scopus, Qinsight, and the WHO COVID-19 databases. Studies published from November 2019 to July 12, 2022, were included, as SARS-CoV-2 emerged in late 2019 and is the cause of a continuing pandemic. Studies that met the inclusion criteria were critically appraised using QUADAS-2. Using a customized tool, data were extracted from included studies and were verified prior to analysis. The pooled sensitivity, specificity, positive predictive, and negative predictive values were calculated and presented with 95% CIs. When heterogeneity was observed, outlier analysis was conducted, and the results were generated by removing outliers. RESULTS Meta-analysis was performed on 91 studies of 581 full-text articles retrieved that provided true-positive, true-negative, false-positive, and false-negative values. RATs can identify individuals who have COVID-19 with high reliability (positive predictive value 97.7%; negative predictive value 95.2%) when considering overall performance. However, the lower level of sensitivity (67.1%) suggests that negative test results likely need to be retested through an additional method. CONCLUSIONS Most reported RAT brands had only a few studies comparing their performance with RT-PCR. Overall, a positive RAT result is an excellent predictor of a positive diagnosis of COVID-19. We recommend that Roche's SARS-CoV-2 Rapid Antigen Test and Abbott's BinaxNOW tests be used in primary care settings, with the understanding that negative results need to be confirmed through RT-PCR. We recommend adherence to the STARD guidelines when reporting on diagnostic data. REVIEW REGISTRATION PROSPERO CRD42020224250.
Collapse
Affiliation(s)
- Ellyn Hirabayashi
- Touro University Nevada, College of Osteopathic Medicine, Department of Basic Sciences, Henderson, NV, USA
| | - Guadalupe Mercado
- Touro University Nevada, College of Osteopathic Medicine, Department of Basic Sciences, Henderson, NV, USA
| | - Brandi Hull
- Touro University Nevada, College of Osteopathic Medicine, Department of Basic Sciences, Henderson, NV, USA
| | - Sabrina Soin
- Touro University Nevada, College of Osteopathic Medicine, Department of Basic Sciences, Henderson, NV, USA
| | - Sherli Koshy-Chenthittayil
- Touro University Nevada, College of Osteopathic Medicine, Department of Basic Sciences, Henderson, NV, USA
| | - Sarina Raman
- Touro University Nevada, College of Osteopathic Medicine, Department of Basic Sciences, Henderson, NV, USA
| | - Timothy Huang
- Touro University Nevada, College of Osteopathic Medicine, Department of Basic Sciences, Henderson, NV, USA
| | - Chathushya Keerthisinghe
- Touro University Nevada, College of Osteopathic Medicine, Department of Basic Sciences, Henderson, NV, USA
| | - Shelby Feliciano
- Touro University Nevada, College of Osteopathic Medicine, Department of Basic Sciences, Henderson, NV, USA
| | - Andrew Dongo
- Touro University Nevada, College of Osteopathic Medicine, Department of Basic Sciences, Henderson, NV, USA
| | - James Kal
- Touro University Nevada, College of Osteopathic Medicine, Department of Basic Sciences, Henderson, NV, USA
| | - Azliyati Azizan
- Touro University Nevada, College of Osteopathic Medicine, Department of Basic Sciences, Henderson, NV, USA
| | - Karen Duus
- Touro University Nevada, College of Osteopathic Medicine, Department of Basic Sciences, Henderson, NV, USA
| | - Terry Else
- Touro University Nevada, College of Osteopathic Medicine, Department of Basic Sciences, Henderson, NV, USA
| | - Megan DeArmond
- Touro University Nevada, Jay Sexter Library, Henderson, NV, USA
- Touro University Nevada: JBI Affiliated Group, Henderson, NV, USA
| | - Amy E.L. Stone
- Touro University Nevada, College of Osteopathic Medicine, Department of Basic Sciences, Henderson, NV, USA
| |
Collapse
|
3
|
Hayden MK, Hanson KE, Englund JA, Lee F, Lee MJ, Loeb M, Morgan DJ, Patel R, El Alayli A, El Mikati IK, Sultan S, Falck-Ytter Y, Mansour R, Amarin JZ, Morgan RL, Murad MH, Patel P, Bhimraj A, Mustafa RA. The Infectious Diseases Society of America Guidelines on the Diagnosis of COVID-19: Antigen Testing (January 2023). Clin Infect Dis 2024; 78:e350-e384. [PMID: 36702617 DOI: 10.1093/cid/ciad032] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 01/13/2023] [Indexed: 01/28/2023] Open
Abstract
Immunoassays designed to detect SARS-CoV-2 protein antigens (Ag) are commonly used to diagnose COVID-19. The most widely used tests are lateral flow assays that generate results in approximately 15 minutes for diagnosis at the point-of-care. Higher throughput, laboratory-based SARS-CoV-2 Ag assays have also been developed. The number of commercially available SARS-CoV-2 Ag detection tests has increased rapidly, as has the COVID-19 diagnostic literature. The Infectious Diseases Society of America (IDSA) convened an expert panel to perform a systematic review of the literature and develop best-practice guidance related to SARS-CoV-2 Ag testing. This guideline is an update to the third in a series of frequently updated COVID-19 diagnostic guidelines developed by the IDSA. IDSA's goal was to develop evidence-based recommendations or suggestions that assist clinicians, clinical laboratories, patients, public health authorities, administrators, and policymakers in decisions related to the optimal use of SARS-CoV-2 Ag tests in both medical and nonmedical settings. A multidisciplinary panel of infectious diseases clinicians, clinical microbiologists, and experts in systematic literature review identified and prioritized clinical questions related to the use of SARS-CoV-2 Ag tests. A review of relevant, peer-reviewed published literature was conducted through 1 April 2022. Grading of Recommendations Assessment, Development, and Evaluation (GRADE) methodology was used to assess the certainty of evidence and make testing recommendations. The panel made 10 diagnostic recommendations that address Ag testing in symptomatic and asymptomatic individuals and assess single versus repeat testing strategies. US Food and Drug Administration (FDA) SARS-CoV-2 Ag tests with Emergency Use Authorization (EUA) have high specificity and low to moderate sensitivity compared with nucleic acid amplification testing (NAAT). Ag test sensitivity is dependent on the presence or absence of symptoms and, in symptomatic patients, on timing of testing after symptom onset. In most cases, positive Ag results can be acted upon without confirmation. Results of point-of-care testing are comparable to those of laboratory-based testing, and observed or unobserved self-collection of specimens for testing yields similar results. Modeling suggests that repeat Ag testing increases sensitivity compared with testing once, but no empirical data were available to inform this question. Based on these observations, rapid RT-PCR or laboratory-based NAAT remain the testing methods of choice for diagnosing SARS-CoV-2 infection. However, when timely molecular testing is not readily available or is logistically infeasible, Ag testing helps identify individuals with SARS-CoV-2 infection. Data were insufficient to make a recommendation about the utility of Ag testing to guide release of patients with COVID-19 from isolation. The overall quality of available evidence supporting use of Ag testing was graded as very low to moderate.
Collapse
Affiliation(s)
- Mary K Hayden
- Division of Infectious Diseases, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
- Department of Pathology, Rush University Medical Center, Chicago, Illinois, USA
| | - Kimberly E Hanson
- Divisions of Infectious Diseases and Clinical Microbiology, University of Utah, Salt Lake City, Utah, USA
| | - Janet A Englund
- Department of Pediatrics, University of Washington, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Francesca Lee
- Departments of Pathology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Mark J Lee
- Department of Pathology and Clinical Microbiology Laboratory, Duke University School of Medicine, Durham, North Carolina, USA
| | - Mark Loeb
- Division of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Daniel J Morgan
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Robin Patel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, and the Division of Public Health, Infectious Diseases, and Occupational Medicine, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Abdallah El Alayli
- Department of Internal Medicine, Saint Louis University, St Louis, Missouri, USA
| | - Ibrahim K El Mikati
- Outcomes and Implementation Research Unit, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Shahnaz Sultan
- Division of Gastroenterology, Hepatology, and Nutrition, University of Minnesota, Minneapolis VA Healthcare System, Minneapolis, Minnesota, USA
| | - Yngve Falck-Ytter
- Department of Medicine, Case Western Reserve University, School of Medicine, Cleveland, Ohio, USA
- VA Northeast Ohio Healthcare System, Cleveland, Ohio, USA
| | - Razan Mansour
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Justin Z Amarin
- Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Rebecca L Morgan
- Department of Medicine, Case Western Reserve University, School of Medicine, Cleveland, Ohio, USA
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
| | - M Hassan Murad
- Division of Public Health, Infectious diseases and occupational Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Payal Patel
- Department of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Adarsh Bhimraj
- Department of Infectious Diseases, Cleveland Clinic, Cleveland, Ohio, USA
| | - Reem A Mustafa
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
4
|
Finsterer J, Zarrouk S. Assessing Outcome Predictors of COVID-19 Requires a Multicentre, Prospective Design and Inclusion of All Determinants. Pril (Makedon Akad Nauk Umet Odd Med Nauki) 2024; 45:69-70. [PMID: 38575382 DOI: 10.2478/prilozi-2024-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Affiliation(s)
| | - Sinda Zarrouk
- University of Tunis El Manar and Genomics Platform, Pasteur Institute of Tunis, Tunisia
| |
Collapse
|
5
|
Loidl V, Klinc C, Fusiak J, Crispin A, Hoffmann VS, Nennstiel-Ratzel U, Mansmann U. [Results of PCR Pool Testing In Primary and Special Needs Schools In Bavaria For The School Year 2021/2022: Sentinel Surveillance In Face-To-Face Teaching During The Sars-CoV-2 Pandemic]. DAS GESUNDHEITSWESEN 2024; 86:237-246. [PMID: 38316408 PMCID: PMC11301650 DOI: 10.1055/a-2216-0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
In the school years 2019/20 and 2020/21, children were physically, psychologically, and socially stressed by school closures caused by the SARS-CoV-2 pandemic. To ensure attendance with optimal infection protection, PCR pool testing was conducted during the 2021/22 school year at Bavarian elementary schools and schools for pupils with special needs for timely detection of SARS-CoV-2 infection. This study analyzes the results of PCR pool testing over time stratified by region, school type, and age of children. The data were obtained from classes in elementary and special needs schools, involving pupils aged 6 to 11 years, who participated in the Bavaria-wide PCR pool testing from 09/20/21 to 04/08/22. Samples were collected twice weekly, consisting of PCR pool samples and individual PCR samples, which were only evaluated in case of a positive pool test. A class was considered positive if at least one individual sample from that class was positive within a calendar week (CW). A school (class) was considered to be infection-prone if three or more classes in that school (students in that class) were positive within a CW. The data included 2,430 elementary schools (339 special needs schools) with 23,021 (2,711) classes and 456,478 (29,200) children. A total of 1,157,617 pools (of which 3.37% were positive) and 724,438 individual samples (6.76% positive) were analyzed. Larger schools exhibited higher PR compared to smaller schools. From January 2022, the Omicron variant led to a massive increase in PR across Bavaria. The incidence rates per 100,000 person-weeks within the individual school samples were significantly lower than the concurrently reported age-specific and general infection incidences in the overall Bavarian population. PCR pool testing revealed relatively few positive pools, with an average of four children per one hundred pools testing positive. Schools and classes were rarely considered infection-prone, even during periods of high incidences outside of schools. The combination of PCR pool testing and hygiene measures allowed for a largely safe in-person education for pupils in primary and special needs schools in the school year 2021/22.
Collapse
Affiliation(s)
- Verena Loidl
- Institut für Medizinische Informationsverarbeitung, Biometrie
und Epidemiologie (IBE), Ludwig-Maximilians-Universität München,
Medizinische Fakultät, München, Germany
- Pettenkofer School of Public Health,
Ludwig-Maximilians-Universität München, Medizinische
Fakultät, München, Germany
| | - Christina Klinc
- GP1, Bayerisches Landesamt für Gesundheit und
Lebensmittelsicherheit (LGL), Oberschleißheim, Germany
| | - Jakub Fusiak
- Institut für Medizinische Informationsverarbeitung, Biometrie
und Epidemiologie (IBE), Ludwig-Maximilians-Universität München,
Medizinische Fakultät, München, Germany
| | - Alexander Crispin
- Institut für Medizinische Informationsverarbeitung, Biometrie
und Epidemiologie (IBE), Ludwig-Maximilians-Universität München,
Medizinische Fakultät, München, Germany
| | - Verena Sophia Hoffmann
- Institut für Medizinische Informationsverarbeitung, Biometrie
und Epidemiologie (IBE), Ludwig-Maximilians-Universität München,
Medizinische Fakultät, München, Germany
| | - Uta Nennstiel-Ratzel
- GP1, Bayerisches Landesamt für Gesundheit und
Lebensmittelsicherheit (LGL), Oberschleißheim, Germany
| | - Ulrich Mansmann
- Institut für Medizinische Informationsverarbeitung, Biometrie
und Epidemiologie (IBE), Ludwig-Maximilians-Universität München,
Medizinische Fakultät, München, Germany
- Pettenkofer School of Public Health,
Ludwig-Maximilians-Universität München, Medizinische
Fakultät, München, Germany
| |
Collapse
|
6
|
Kyo H, Patel SA, Yamamoto M, Matsumura Y, Ikeda T, Nagao M. A population-based study of the trend in SARS-CoV-2 diagnostic modalities from the beginning of the pandemic to the Omicron surge in Kyoto City, Kyoto, Japan. BMC Public Health 2023; 23:2551. [PMID: 38129830 PMCID: PMC10734122 DOI: 10.1186/s12889-023-17498-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND The coronavirus disease 2019 (COVID-19) presents critical diagnostic challenges for managing the pandemic. We investigated the 30-month changes in COVID-19 testing modalities and functional testing sites from the early period of the pandemic to the most recent Omicron surge in 2022 in Kyoto City, Japan. METHODS This is a retrospective-observational study using a local anonymized population database that included patients' demographic and clinical information, testing methods and facilities from January 2020 to June 2022, a total of 30 months. We computed the distribution of symptomatic presentation, testing methods, and testing facilities among cases. Differences over time were tested using chi-square tests of independence. RESULTS During the study period, 133,115 confirmed COVID-19 cases were reported, of which 90.9% were symptomatic. Although nucleic acid amplification testing occupied 68.9% of all testing, the ratio of lateral flow devices (LFDs) rapidly increased in 2022. As the pandemic continued, the testing capability was shifted from COVID-19 designated facilities to general practitioners, who became the leading testing providers (57.3% of 99,945 tests in 2022). CONCLUSIONS There was a dynamic shift in testing modality during the first 30 months of the pandemic in Kyoto City. General practitioners increased their role substantially as the use of LFDs spread dramatically in 2022. By comprehending and documenting the evolution of testing methods and testing locations, it is anticipated that this will contribute to the establishment of an even more efficient testing infrastructure for the next pandemic.
Collapse
Affiliation(s)
- Hiroki Kyo
- MetroAtlanta Ambulance Service, Emory Healthcare Network, Atlanta, GA, USA
| | - Shivani A Patel
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Masaki Yamamoto
- Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Clinical Laboratory, Kyoto University Hospital, Kyoto, Japan
| | - Yasufumi Matsumura
- Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Clinical Laboratory, Kyoto University Hospital, Kyoto, Japan
| | - Takeshi Ikeda
- Public Health and Welfare Bureau of Kyoto City, Kyoto, Japan
| | - Miki Nagao
- Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan.
- Department of Clinical Laboratory, Kyoto University Hospital, Kyoto, Japan.
| |
Collapse
|
7
|
Su YD, Lai CC, Lin TH, Chen WC, Hsueh PR. Performance evaluation of the cobas SARS-CoV-2 Duo, a novel qualitative and quantitative assay, for the detection of SARS-CoV-2 RNA. Microbiol Spectr 2023; 11:e0136923. [PMID: 37909752 PMCID: PMC10715196 DOI: 10.1128/spectrum.01369-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/27/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE Quantitative SARS-CoV-2 tests for viral load are necessary to guide patient treatment, as well as to determine infection control measures and policies. Although the real-time RT-PCR assays can report the Ct value to estimate the viral load, there are several serious concerns regarding the use of Ct values. Importantly, Ct values can vary significantly among between- and within-run methods. The diagnostic performance of the cobas SARS-CoV-2 Duo is appropriate. It is a precise, accurate, and sensitive method for the detection of SARS-CoV-2 RNA and is comparable to two qualitative assays (the cobas SARS-CoV-2 and the Liat cobas SARS-CoV-2 and Inf A/B). In contrast, using the Ct value to estimate viral load is not reliable, and utilization of a quantitative detection test, such as the cobas SARS-CoV-2 Duo, to accurately measure the viral load is needed.
Collapse
Affiliation(s)
- Yang-Di Su
- Department of Laboratory Medicine, China Medical University Hospital, School of Medicine, China Medical University, Taichung, Taiwan
| | - Chih-Cheng Lai
- Department of Internal Medicine, Division of Hospital Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Tsai-Hsiu Lin
- Department of Laboratory Medicine, China Medical University Hospital, School of Medicine, China Medical University, Taichung, Taiwan
| | - Wei-Cheng Chen
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine,China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences and School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Po-Ren Hsueh
- Department of Laboratory Medicine, China Medical University Hospital, School of Medicine, China Medical University, Taichung, Taiwan
- Department of Internal Medicine, Division of Infectious Diseases, China Medical University Hospital, School of Medicine, China Medical University, Taichung, Taiwan
- PhD Program for Aging, School of Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
8
|
Muhsin SA, He Y, Al-Amidie M, Sergovia K, Abdullah A, Wang Y, Alkorjia O, Hulsey RA, Hunter GL, Erdal ZK, Pletka RJ, George HS, Wan XF, Almasri M. A microfluidic biosensor architecture for the rapid detection of COVID-19. Anal Chim Acta 2023; 1275:341378. [PMID: 37524456 PMCID: PMC10251744 DOI: 10.1016/j.aca.2023.341378] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 05/15/2023] [Indexed: 08/02/2023]
Abstract
The lack of enough diagnostic capacity to detect severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) has been one of the major challenges in the control the 2019 COVID pandemic; this led to significant delay in prompt treatment of COVID-19 patients or accurately estimate disease situation. Current methods for the diagnosis of SARS-COV-2 infection on clinical specimens (e.g. nasal swabs) include polymerase chain reaction (PCR) based methods, such as real-time reverse transcription (rRT) PCR, real-time reverse transcription loop-mediated isothermal amplification (rRT-LAMP), and immunoassay based methods, such as rapid antigen test (RAT). These conventional PCR methods excel in sensitivity and specificity but require a laboratory setting and typically take up to 6 h to obtain the results whereas RAT has a low sensitivity (typically at least 3000 TCID50/ml) although with the results with 15 min. We have developed a robust micro-electro-mechanical system (MEMS) based impedance biosensor fit for rapid and accurate detection of SARS-COV-2 of clinical samples in the field with minimal training. The biosensor consisted of three regions that enabled concentrating, trapping, and sensing the virus present in low quantities with high selectivity and sensitivity in 40 min using an electrode coated with a specific SARS-COV-2 antibody cross-linker mixture. Changes in the impedance value due to the binding of the SARS-COV-2 antigen to the antibody will indicate positive or negative result. The testing results showed that the biosensor's limit of detection (LoD) for detection of inactivated SARS-COV-2 antigen in phosphate buffer saline (PBS) was as low as 50 TCID50/ml. The biosensor specificity was confirmed using the influenza virus while the selectivity was confirmed using influenza polyclonal sera. Overall, the results showed that the biosensor is able to detect SARS-COV-2 in clinical samples (swabs) in 40 min with a sensitivity of 26 TCID50/ml.
Collapse
Affiliation(s)
- Sura A Muhsin
- Department of Electrical Engineering and Computer Science, College of Engineering, University of Missouri, 411 S 6th St, Columbia, Mo, 65211, USA
| | - Ying He
- Center for Influenza and Emerging Infectious Diseases, Department of Molecular Microbiology and Immunology, School of Medicine, Bond Life Sciences Center, University of Missouri, 1201 Rollins St, Columbia, MO, 65211, USA; Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA; Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Muthana Al-Amidie
- Department of Electrical Engineering and Computer Science, College of Engineering, University of Missouri, 411 S 6th St, Columbia, Mo, 65211, USA
| | - Karen Sergovia
- Center for Influenza and Emerging Infectious Diseases, Department of Molecular Microbiology and Immunology, School of Medicine, Bond Life Sciences Center, University of Missouri, 1201 Rollins St, Columbia, MO, 65211, USA; Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA; Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Amjed Abdullah
- Department of Electrical Engineering and Computer Science, College of Engineering, University of Missouri, 411 S 6th St, Columbia, Mo, 65211, USA
| | - Yang Wang
- Center for Influenza and Emerging Infectious Diseases, Department of Molecular Microbiology and Immunology, School of Medicine, Bond Life Sciences Center, University of Missouri, 1201 Rollins St, Columbia, MO, 65211, USA; Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA; Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Omar Alkorjia
- Department of Electrical Engineering and Computer Science, College of Engineering, University of Missouri, 411 S 6th St, Columbia, Mo, 65211, USA
| | - Robert A Hulsey
- Black and Veatch, 11401 Lamar, Overland Park, KS, 66211, USA
| | - Gary L Hunter
- Black and Veatch, 201 Brookfield Parkway, Suite 150, Greenville, SC, 29607, USA
| | - Zeynep K Erdal
- Black and Veatch, 201 Brookfield Parkway, Suite 150, Greenville, SC, 29607, USA
| | - Ryan J Pletka
- Black and Veatch, 2999 Oak Road, Suite 490, Walnut Creek, CA, 94597, USA
| | - Hyleme S George
- Black and Veatch, 11401 Lamar, Overland Park, KS, 66211, USA
| | - Xiu-Feng Wan
- Department of Electrical Engineering and Computer Science, College of Engineering, University of Missouri, 411 S 6th St, Columbia, Mo, 65211, USA; Center for Influenza and Emerging Infectious Diseases, Department of Molecular Microbiology and Immunology, School of Medicine, Bond Life Sciences Center, University of Missouri, 1201 Rollins St, Columbia, MO, 65211, USA; Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA; Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.
| | - Mahmoud Almasri
- Department of Electrical Engineering and Computer Science, College of Engineering, University of Missouri, 411 S 6th St, Columbia, Mo, 65211, USA.
| |
Collapse
|
9
|
Nemudraia A, Nemudryi A, Buyukyoruk M, Scherffius AM, Zahl T, Wiegand T, Pandey S, Nichols JE, Hall LN, McVey A, Lee HH, Wilkinson RA, Snyder LR, Jones JD, Koutmou KS, Santiago-Frangos A, Wiedenheft B. Sequence-specific capture and concentration of viral RNA by type III CRISPR system enhances diagnostic. Nat Commun 2022; 13:7762. [PMID: 36522348 PMCID: PMC9751510 DOI: 10.1038/s41467-022-35445-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Type-III CRISPR-Cas systems have recently been adopted for sequence-specific detection of SARS-CoV-2. Here, we repurpose the type III-A CRISPR complex from Thermus thermophilus (TtCsm) for programmable capture and concentration of specific RNAs from complex mixtures. The target bound TtCsm complex generates two cyclic oligoadenylates (i.e., cA3 and cA4) that allosterically activate ancillary nucleases. We show that both Can1 and Can2 nucleases cleave single-stranded RNA, single-stranded DNA, and double-stranded DNA in the presence of cA4. We integrate the Can2 nuclease with type III-A RNA capture and concentration for direct detection of SARS-CoV-2 RNA in nasopharyngeal swabs with 15 fM sensitivity. Collectively, this work demonstrates how type-III CRISPR-based RNA capture and concentration simultaneously increases sensitivity, limits time to result, lowers cost of the assay, eliminates solvents used for RNA extraction, and reduces sample handling.
Collapse
Affiliation(s)
- Anna Nemudraia
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA
| | - Artem Nemudryi
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA
| | - Murat Buyukyoruk
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA
| | - Andrew M Scherffius
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA
| | - Trevor Zahl
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA
| | - Tanner Wiegand
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA
| | - Shishir Pandey
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA
| | - Joseph E Nichols
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA
| | - Laina N Hall
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA
| | - Aidan McVey
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA
| | - Helen H Lee
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA
| | - Royce A Wilkinson
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA
| | - Laura R Snyder
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48105, USA
| | - Joshua D Jones
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48105, USA
| | - Kristin S Koutmou
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48105, USA
| | - Andrew Santiago-Frangos
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA.
| | - Blake Wiedenheft
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA.
| |
Collapse
|
10
|
Vilches TN, Rafferty E, Wells CR, Galvani AP, Moghadas SM. Economic evaluation of COVID-19 rapid antigen screening programs in the workplace. BMC Med 2022; 20:452. [PMID: 36424587 PMCID: PMC9686464 DOI: 10.1186/s12916-022-02641-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/26/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Diagnostic testing has been pivotal in detecting SARS-CoV-2 infections and reducing transmission through the isolation of positive cases. We quantified the value of implementing frequent, rapid antigen (RA) testing in the workplace to identify screening programs that are cost-effective. METHODS To project the number of cases, hospitalizations, and deaths under alternative screening programs, we adapted an agent-based model of COVID-19 transmission and parameterized it with the demographics of Ontario, Canada, incorporating vaccination and waning of immunity. Taking into account healthcare costs and productivity losses associated with each program, we calculated the incremental cost-effectiveness ratio (ICER) with quality-adjusted life year (QALY) as the measure of effect. Considering RT-PCR testing of only severe cases as the baseline scenario, we estimated the incremental net monetary benefits (iNMB) of the screening programs with varying durations and initiation times, as well as different booster coverages of working adults. RESULTS Assuming a willingness-to-pay threshold of CDN$30,000 per QALY loss averted, twice weekly workplace screening was cost-effective only if the program started early during a surge. In most scenarios, the iNMB of RA screening without a confirmatory RT-PCR or RA test was comparable or higher than the iNMB for programs with a confirmatory test for RA-positive cases. When the program started early with a duration of at least 16 weeks and no confirmatory testing, the iNMB exceeded CDN$1.1 million per 100,000 population. Increasing booster coverage of working adults improved the iNMB of RA screening. CONCLUSIONS Our findings indicate that frequent RA testing starting very early in a surge, without a confirmatory test, is a preferred screening program for the detection of asymptomatic infections in workplaces.
Collapse
Affiliation(s)
- Thomas N Vilches
- Agent-Based Modelling Laboratory, York University, Toronto, Ontario, Canada
| | - Ellen Rafferty
- Institute of Health Economics, Edmonton, Alberta, Canada
| | - Chad R Wells
- Center for Infectious Disease Modeling and Analysis, Yale School of Public Health, New Haven, CT, USA
| | - Alison P Galvani
- Center for Infectious Disease Modeling and Analysis, Yale School of Public Health, New Haven, CT, USA
| | - Seyed M Moghadas
- Agent-Based Modelling Laboratory, York University, Toronto, Ontario, Canada.
| |
Collapse
|
11
|
Arizti-Sanz J, Bradley A, Zhang YB, Boehm CK, Freije CA, Grunberg ME, Kosoko-Thoroddsen TSF, Welch NL, Pillai PP, Mantena S, Kim G, Uwanibe JN, John OG, Eromon PE, Kocher G, Gross R, Lee JS, Hensley LE, MacInnis BL, Johnson J, Springer M, Happi CT, Sabeti PC, Myhrvold C. Simplified Cas13-based assays for the fast identification of SARS-CoV-2 and its variants. Nat Biomed Eng 2022; 6:932-943. [PMID: 35637389 PMCID: PMC9398993 DOI: 10.1038/s41551-022-00889-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 04/01/2022] [Indexed: 02/03/2023]
Abstract
The widespread transmission and evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) call for rapid nucleic acid diagnostics that are easy to use outside of centralized clinical laboratories. Here we report the development and performance benchmarking of Cas13-based nucleic acid assays leveraging lyophilised reagents and fast sample inactivation at ambient temperature. The assays, which we named SHINEv.2 (for 'streamlined highlighting of infections to navigate epidemics, version 2'), simplify the previously reported RNA-extraction-free SHINEv.1 technology by eliminating heating steps and the need for cold storage of the reagents. SHINEv.2 detected SARS-CoV-2 in nasopharyngeal samples with 90.5% sensitivity and 100% specificity (benchmarked against the reverse transcription quantitative polymerase chain reaction) in less than 90 min, using lateral-flow technology and incubation in a heat block at 37 °C. SHINEv.2 also allows for the visual discrimination of the Alpha, Beta, Gamma, Delta and Omicron SARS-CoV-2 variants, and can be run without performance losses by using body heat. Accurate, easy-to-use and equipment-free nucleic acid assays could facilitate wider testing for SARS-CoV-2 and other pathogens in point-of-care and at-home settings.
Collapse
Affiliation(s)
- Jon Arizti-Sanz
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA, USA
| | - A'Doriann Bradley
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Yibin B Zhang
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Chloe K Boehm
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Catherine A Freije
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Michelle E Grunberg
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | | | - Nicole L Welch
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Program in Virology, Harvard Medical School, Boston, MA, USA
| | - Priya P Pillai
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Sreekar Mantena
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Gaeun Kim
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Jessica N Uwanibe
- African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun State, Nigeria
- Department of Biological Sciences, College of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria
| | - Oluwagboadurami G John
- Department of Biological Sciences, College of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria
| | - Philomena E Eromon
- African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun State, Nigeria
| | - Gregory Kocher
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institute of Health, Frederick, MD, USA
| | - Robin Gross
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institute of Health, Frederick, MD, USA
| | - Justin S Lee
- Biotechnology Cores Facility Branch, Division of Scientific Resources, National Center for Emerging and Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Lisa E Hensley
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institute of Health, Frederick, MD, USA
| | - Bronwyn L MacInnis
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jeremy Johnson
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Michael Springer
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Christian T Happi
- African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun State, Nigeria
- Department of Biological Sciences, College of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Pardis C Sabeti
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Cameron Myhrvold
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
12
|
Georgas A, Agiannis K, Papakosta V, Priftis P, Angelopoulos S, Ferraro A, Hristoforou E. A Biosensor Platform for Point-of-Care SARS-CoV-2 Screening. BIOSENSORS 2022; 12:487. [PMID: 35884290 PMCID: PMC9312522 DOI: 10.3390/bios12070487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/22/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022]
Abstract
The COVID-19 pandemic remains a constant threat to human health, the economy, and social relations. Scientists around the world are constantly looking for new technological tools to deal with the pandemic. Such tools are the rapid virus detection tests, which are constantly evolving and optimizing. This paper presents a biosensor platform for the rapid detection of spike protein both in laboratory conditions and in swab samples from hospitalized patients. It is a continuation and improvement of our previous work and consists of a microcontroller-based readout circuit, which measures the capacitance change generated in an interdigitated electrode transducer by the presence either of sole spike protein or the presence of SARS-CoV-2 particles in swab samples. The circuit efficiency is calibrated by its correlation with the capacitance measurement of an LCR (inductance (L), capacitance (C), and resistance (R)) meter. The test result is made available in less than 2 min through the microcontroller's LCD (liquid-crystal display) screen, whereas at the same time, the collected data are sent wirelessly to a mobile application interface. The novelty of this research lies in the potential it offers for continuous and effective screening of SARS-CoV-2 patients, which is facilitated and enhanced, providing big data statistics of COVID-19 in terms of space and time. This device can be used by individuals for SARS-CoV-2 testing at home, by health professionals for patient monitoring, and by public health agencies for monitoring the spatio-temporal spread of the virus.
Collapse
Affiliation(s)
- Antonios Georgas
- School of Electrical and Computer Engineering, National Technical University of Athens, 15780 Athens, Greece; (K.A.); (V.P.); (P.P.); (S.A.); (A.F.); (E.H.)
| | | | | | | | | | | | | |
Collapse
|
13
|
Dewald F, Suárez I, Johnen R, Grossbach J, Moran-Tovar R, Steger G, Joachim A, Rubio GH, Fries M, Behr F, Kley J, Lingnau A, Kretschmer A, Gude C, Baeza-Flores G, Del Valle DL, Roblero-Hernandez A, Magana-Cerino J, Hernandez AT, Ruiz-Quinones J, Schega K, Linne V, Junker L, Wunsch M, Heger E, Knops E, Di Cristanziano V, Meyer M, Hünseler C, Weber LT, Lüers JC, Quade G, Wisplinghoff H, Tiemann C, Zotz R, Jomaa H, Pranada A, Herzum I, Cullen P, Schmitz FJ, Philipsen P, Kirchner G, Knabbe C, Hellmich M, Buess M, Wolff A, Kossow A, Niessen J, Jeworutzki S, Schräpler JP, Lässig M, Dötsch J, Fätkenheuer G, Kaiser R, Beyer A, Rybniker J, Klein F. Effective high-throughput RT-qPCR screening for SARS-CoV-2 infections in children. Nat Commun 2022; 13:3640. [PMID: 35752615 PMCID: PMC9233713 DOI: 10.1038/s41467-022-30664-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/11/2022] [Indexed: 12/15/2022] Open
Abstract
Systematic SARS-CoV-2 testing is a valuable tool for infection control and surveillance. However, broad application of high sensitive RT-qPCR testing in children is often hampered due to unpleasant sample collection, limited RT-qPCR capacities and high costs. Here, we developed a high-throughput approach ('Lolli-Method') for SARS-CoV-2 detection in children, combining non-invasive sample collection with an RT-qPCR-pool testing strategy. SARS-CoV-2 infections were diagnosed with sensitivities of 100% and 93.9% when viral loads were >106 copies/ml and >103 copies/ml in corresponding Naso-/Oropharyngeal-swabs, respectively. For effective application of the Lolli-Method in schools and daycare facilities, SEIR-modeling indicated a preferred frequency of two tests per week. The developed test strategy was implemented in 3,700 schools and 698 daycare facilities in Germany, screening over 800,000 individuals twice per week. In a period of 3 months, 6,364 pool-RT-qPCRs tested positive (0.64%), ranging from 0.05% to 2.61% per week. Notably, infections correlated with local SARS-CoV-2 incidences and with a school social deprivation index. Moreover, in comparison with the alpha variant, statistical modeling revealed a 36.8% increase for multiple (≥2 children) infections per class following infections with the delta variant. We conclude that the Lolli-Method is a powerful tool for SARS-CoV-2 surveillance and can support infection control in schools and daycare facilities.
Collapse
Affiliation(s)
- Felix Dewald
- Institute of Virology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Isabelle Suárez
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Department I of Internal Medicine, Division of Infectious Diseases, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research, Partner Site Bonn-Cologne, Cologne, Germany
| | - Ronja Johnen
- CECAD Research center, University of Cologne, Cologne, Germany
| | - Jan Grossbach
- CECAD Research center, University of Cologne, Cologne, Germany
- CECAD Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases, University of Cologne, Cologne, Germany
| | | | - Gertrud Steger
- Institute of Virology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Alexander Joachim
- Department of Pediatrics, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Gibran Horemheb Rubio
- Institute of Virology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
- Infectious Diseases Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubiran, Mexico City, Mexico
| | - Mira Fries
- Department I of Internal Medicine, Division of Infectious Diseases, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
- Health department of Cologne, Cologne, Germany
| | - Florian Behr
- Department I of Internal Medicine, Division of Infectious Diseases, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
- Health department of Cologne, Cologne, Germany
| | - Joao Kley
- Department I of Internal Medicine, Division of Infectious Diseases, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Andreas Lingnau
- Ministry of Schools and Education of North Rhine-Westphalia, Düsseldorf, Germany
| | - Alina Kretschmer
- Department I of Internal Medicine, Division of Infectious Diseases, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Carina Gude
- CECAD Research center, University of Cologne, Cologne, Germany
| | - Guadelupe Baeza-Flores
- Centro de Investigación en Enfermedades Tropicales y Emergentes, Hospital Regional de Alta Especialidad, Dr. Juan Graham Casasús, Villahermosa, Mexico
| | - David Laveaga Del Valle
- Centro de Investigación en Enfermedades Tropicales y Emergentes, Hospital Regional de Alta Especialidad, Dr. Juan Graham Casasús, Villahermosa, Mexico
| | - Alberto Roblero-Hernandez
- Centro de Investigación en Enfermedades Tropicales y Emergentes, Hospital Regional de Alta Especialidad, Dr. Juan Graham Casasús, Villahermosa, Mexico
| | - Jesus Magana-Cerino
- Centro de Investigación en Enfermedades Tropicales y Emergentes, Hospital Regional de Alta Especialidad, Dr. Juan Graham Casasús, Villahermosa, Mexico
| | | | - Jesus Ruiz-Quinones
- Centro de Investigación en Enfermedades Tropicales y Emergentes, Hospital Regional de Alta Especialidad, Dr. Juan Graham Casasús, Villahermosa, Mexico
| | | | - Viktoria Linne
- Department I of Internal Medicine, Division of Infectious Diseases, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Lena Junker
- Department I of Internal Medicine, Division of Infectious Diseases, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Marie Wunsch
- Institute of Virology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Eva Heger
- Institute of Virology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Elena Knops
- Institute of Virology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Veronica Di Cristanziano
- Institute of Virology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Meike Meyer
- Department of Pediatrics, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Christoph Hünseler
- Department of Pediatrics, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Lutz T Weber
- Department of Pediatrics, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Jan-Christoffer Lüers
- Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Gustav Quade
- MVZ Labor Dr. Quade & Kollegen GmbH, Cologne, Germany
| | | | | | - Rainer Zotz
- Institute for Laboratory Medicine ZotzKlimas, Düsseldorf, Germany
- Department of Haemostasis, Haemotherapy and Transfusion Medicine, Heinrich Heine University Medical Centre, Düsseldorf, Germany
| | | | - Arthur Pranada
- Medizinisches Versorgungszentrum Dr. Eberhard & Partner, Dortmund, Germany
| | - Ileana Herzum
- Medizinische Laboratorien Düsseldorf, Düsseldorf, Germany
| | | | | | - Paul Philipsen
- Labor Mönchengladbach MVZ Dr. Stein und Kollegen, Mönchengladbach, Germany
| | - Georg Kirchner
- Eurofins Laborbetriebsgesellschaft Gelsenkirchen GmbH & Eurofins MVZ Medizinisches Labor Gelsenkirchen GmbH, Gelsenkirchen, Germany
| | - Cornelius Knabbe
- Heart- and Diabetes Center NRW, Medical Faculty, Ruhr-University Bochum, Institute for Laboratory and Transfusion Medicine, Bad Oeynhausen, Germany
| | - Martin Hellmich
- Institute of Medical Statistics and Computational Biology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | | | - Anna Wolff
- Health department of Cologne, Cologne, Germany
| | - Annelene Kossow
- Health department of Cologne, Cologne, Germany
- Institute for Hygiene, University Hospital Münster, Münster, Germany
| | | | | | - Jörg-Peter Schräpler
- Faculty of Social Science, Ruhr-University Bochum, Bochum, Germany
- German Socio Economic Panel Study (SOEP), Berlin, Germany
| | - Michael Lässig
- Institute for Biological Physics, University of Cologne, Cologne, Germany
| | - Jörg Dötsch
- Department of Pediatrics, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Gerd Fätkenheuer
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Department I of Internal Medicine, Division of Infectious Diseases, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Rolf Kaiser
- Institute of Virology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research, Partner Site Bonn-Cologne, Cologne, Germany
| | - Andreas Beyer
- CECAD Research center, University of Cologne, Cologne, Germany
- CECAD Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases, University of Cologne, Cologne, Germany
- Institute for Genetics, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | - Jan Rybniker
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Department I of Internal Medicine, Division of Infectious Diseases, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research, Partner Site Bonn-Cologne, Cologne, Germany
| | - Florian Klein
- Institute of Virology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany.
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.
- German Center for Infection Research, Partner Site Bonn-Cologne, Cologne, Germany.
| |
Collapse
|
14
|
Li X, Xiong M, Deng Q, Guo X, Li Y. The utility of SARS-CoV-2 nucleocapsid protein in laboratory diagnosis. J Clin Lab Anal 2022; 36:e24534. [PMID: 35657146 PMCID: PMC9279953 DOI: 10.1002/jcla.24534] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/01/2022] [Accepted: 05/19/2022] [Indexed: 11/10/2022] Open
Abstract
Background The Coronavirus Disease 2019 (COVID‐19) is caused by the severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2), which has now become a global pandemic owing to its high transmissibility. The SARS‐CoV‐2 nucleocapsid protein tests are playing an important role in screening and diagnosing patients with COVID‐19, and studies about the utility of SARS‐CoV‐2 nucleocapsid protein tests are increasing now. Methods In this review, all the relevant original studies were assessed by searching in electronic databases including Scopus, Pubmed, Embase, and Web of Science. “SARS‐CoV‐2”, “COVID‐19”, “nucleocapsid protein”, and “antigen detection” were used as keywords. Results In this review, we summarized the utility of SARS‐CoV‐2 nucleocapsid protein in laboratory diagnosis. Among the representative researches, this review analyzed, the sensitivity of SARS‐CoV‐2 nucleocapsid protein detection varies from 13% to 87.9%, while the specificity could almost reach 100% in most studies. As a matter of fact, the sensitivity is around 50% and could be higher or lower due to the influential factors. Conclusion It is well suggested that SARS‐CoV‐2 nucleocapsid protein is a convenient method with a short turnaround time of about half an hour, and the presence of N antigen is positively related to viral transmissibility, indicating that SARS‐CoV‐2 N protein immunoassays contribute to finding out those infected people rapidly and segregating them from the uninfected people.
Collapse
Affiliation(s)
- Xinwei Li
- Class 11, Grade 2018, Medical School of Zhengzhou University, Zhengzhou, China
| | - Mengyuan Xiong
- Department of Laboratory Medicine, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Qiaoling Deng
- Department of Laboratory Medicine, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Xiaobing Guo
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yirong Li
- Department of Laboratory Medicine, Zhongnan Hospital, Wuhan University, Wuhan, China
| |
Collapse
|
15
|
Schneider UV, Forsberg MW, Leineweber TD, Jensen CB, Ghathian K, Agergaard CN, Mortensen KK, Cohen A, Jørgensen CS, Larsen H, Hansen MB, Saleme U, Koch A, Kirkby NS, Kallemose T, Schaadt ML, Jensen FH, Jørgensen RL, Ma CMG, Steenhard N, Knudsen JD, Lisby JG. A nationwide analytical and clinical evaluation of 44 rapid antigen tests for SARS-CoV-2 compared to RT-qPCR. J Clin Virol 2022; 153:105214. [PMID: 35738151 PMCID: PMC9173826 DOI: 10.1016/j.jcv.2022.105214] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/25/2022] [Accepted: 06/06/2022] [Indexed: 11/30/2022]
Abstract
Background The SARS-CoV-2 pandemic has resulted in massive testing by Rapid Antigen Tests (RAT) without solid independent data regarding clinical performance being available. Thus, decision on purchase of a specific RAT may rely on manufacturer-provided data and limited peer-reviewed data. Methods This study consists of two parts. In the retrospective analytical part, 33 RAT from 25 manufacturers were compared to RT-PCR on 100 negative and 204 positive deep oropharyngeal cavity samples divided into four groups based on RT-PCR Cq levels. In the prospective clinical part, nearly 200 individuals positive for SARS-CoV-2 and nearly 200 individuals negative for SARS-CoV-2 by routine RT-PCR testing were retested within 72 h for each of 44 included RAT from 26 manufacturers applying RT-PCR as the reference method. Results The overall analytical sensitivity differed significantly between the 33 included RAT; from 2.5% (95% CI 0.5–4.8) to 42% (95% CI 35–49). All RAT presented analytical specificities of 100%. Likewise, the overall clinical sensitivity varied significantly between the 44 included RAT; from 2.5% (95% CI 0.5–4.8) to 94% (95% CI 91–97). All RAT presented clinical specificities between 98 and 100%. Conclusion The study presents analytical as well as clinical performance data for 44 commercially available RAT compared to the same RT-PCR test. The study enables identification of individual RAT that has significantly higher sensitivity than other included RAT and may aid decision makers in selecting between the included RAT. Funding The study was funded by a participant fee for each test and the Danish Regions.
Collapse
|
16
|
Stanley S, Hamel DJ, Wolf ID, Riedel S, Dutta S, Contreras E, Callahan CJ, Cheng A, Arnaout R, Kirby JE, Kanki PJ. Limit of Detection for Rapid Antigen Testing of the SARS-CoV-2 Omicron and Delta Variants of Concern Using Live-Virus Culture. J Clin Microbiol 2022; 60:e0014022. [PMID: 35440165 PMCID: PMC9116160 DOI: 10.1128/jcm.00140-22] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Sydney Stanley
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Donald J. Hamel
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Ian D. Wolf
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Stefan Riedel
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Sanjucta Dutta
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Elisa Contreras
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Cody J. Callahan
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Annie Cheng
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Ramy Arnaout
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Division of Clinical Informatics, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - James E. Kirby
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Phyllis J. Kanki
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
17
|
Kost GJ. The Coronavirus Disease 2019 Spatial Care Path: Home, Community, and Emergency Diagnostic Portals. Diagnostics (Basel) 2022; 12:diagnostics12051216. [PMID: 35626375 PMCID: PMC9140623 DOI: 10.3390/diagnostics12051216] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/10/2022] [Accepted: 05/10/2022] [Indexed: 12/28/2022] Open
Abstract
This research uses mathematically derived visual logistics to interpret COVID-19 molecular and rapid antigen test (RAgT) performance, determine prevalence boundaries where risk exceeds expectations, and evaluate benefits of recursive testing along home, community, and emergency spatial care paths. Mathematica and open access software helped graph relationships, compare performance patterns, and perform recursive computations. Tiered sensitivity/specificity comprise: (T1) 90%/95%; (T2) 95%/97.5%; and (T3) 100%/≥99%, respectively. In emergency medicine, median RAgT performance peaks at 13.2% prevalence, then falls below T1, generating risky prevalence boundaries. RAgTs in pediatric ERs/EDs parallel this pattern with asymptomatic worse than symptomatic performance. In communities, RAgTs display large uncertainty with median prevalence boundary of 14.8% for 1/20 missed diagnoses, and at prevalence > 33.3−36.9% risk 10% false omissions for symptomatic subjects. Recursive testing improves home RAgT performance. Home molecular tests elevate performance above T1 but lack adequate validation. Widespread RAgT availability encourages self-testing. Asymptomatic RAgT and PCR-based saliva testing present the highest chance of missed diagnoses. Home testing twice, once just before mingling, and molecular-based self-testing, help avoid false omissions. Community and ER/ED RAgTs can identify contagiousness in low prevalence. Real-world trials of performance, cost-effectiveness, and public health impact could identify home molecular diagnostics as an optimal diagnostic portal.
Collapse
Affiliation(s)
- Gerald J Kost
- Fulbright Scholar 2020-2022, ASEAN Program, Point-of-Care Testing Center for Teaching and Research (POCT•CTR), Pathology and Laboratory Medicine, School of Medicine, University of California, Davis, CA 95616, USA
| |
Collapse
|
18
|
Schneider UV, Knudsen JD, Koch A, Kirkby NS, Lisby JG. An Agreement of Antigen Tests on Oral Pharyngeal Swabs or Less Invasive Testing With Reverse Transcription Polymerase Chain Reaction for Detecting SARS-CoV-2 in Adults: Protocol for a Prospective Nationwide Observational Study. JMIR Res Protoc 2022; 11:e35706. [PMID: 35394449 PMCID: PMC9070418 DOI: 10.2196/35706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/20/2022] [Accepted: 03/29/2022] [Indexed: 01/01/2023] Open
Abstract
Background The SARS-CoV-2 pandemic has resulted in an unprecedented level of worldwide testing for epidemiologic and diagnostic purposes, and due to the extreme need for tests, the gold-standard Reverse Transcription Polymerase Chain Reaction (RT-PCR) testing capacity has been unable to meet the overall worldwide testing demand. Consequently, although the current literature has shown the sensitivity of rapid antigen tests (RATs) to be inferior to RT-PCR, RATs have been implemented on a large scale without solid data on performance. Objective This study will compare analytical and clinical sensitivities and specificities of 50 lateral flow– or laboratory-based RATs and 3 strand invasion–based amplification (SIBA)-RT-PCR tests from 30 manufacturers to RT-PCR testing of samples obtained from the deep oropharynx. In addition, the study will compare sensitivities and specificities of the included RATs as well as RT-PCR on clinical samples obtained from the deep oropharynx, the anterior nasal cavity, saliva, the deep nasopharynx, and expired air to RT-PCR on deep oropharyngeal samples. Methods In the prospective part of the study, 200 individuals found SARS-CoV-2 positive and 200 individuals found SARS-CoV-2 negative by routine RT-PCR testing will be retested with each RAT, applying RT-PCR as the reference method. In the retrospective part of the study, 304 deep oropharyngeal cavity swabs divided into 4 groups based on RT-PCR quantification cycle (Cq) levels will be tested with each RAT. Results The results will be reported in several papers with different aims. The first paper will report retrospective (analytical sensitivity, overall and stratified into different Cq range groups) and prospective (clinical sensitivity) data for RATs, with RT-PCR as the reference method. The second paper will report results for RAT based on anatomical sampling location. The third paper will compare different anatomical sampling locations by RT-PCR testing. The fourth paper will focus on RATs that rely on central laboratory testing. Tests from 4 different manufacturers will be compared for analytical performance data on retrospective deep oropharyngeal swab samples. The fifth paper will report the results of 4 RATs applied both as professional use and as self-tests. The last paper will report the results from 2 breath tests in the study. A comparison of sensitivity and specificity between RATs will be conducted using the McNemar test for paired samples and the chi-squared test for unpaired samples. Comparison of the positive predictive value (PPV) and negative predictive value (NPV) between RATs will be performed by the bootstrap test, and 95% CIs for sensitivity, specificity, PPV, and NPV will be calculated as bootstrap CIs. Conclusions The study will compare the sensitivities of a large number of RATs for SARS-CoV-2 to with those of RT-PCR and will address whether lateral flow–based RATs differ significantly from laboratory-based RATs. The anatomical test locations for both RATs and RT-PCR will also be compared. Trial Registration ClinicalTrials.gov NCT04913116; https://clinicaltrials.gov/ct2/show/NCT04913116 International Registered Report Identifier (IRRID) DERR1-10.2196/35706
Collapse
Affiliation(s)
- Uffe Vest Schneider
- Department of Clinical Microbiology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Jenny Dahl Knudsen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| | - Anders Koch
- Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | | | - Jan Gorm Lisby
- Department of Clinical Microbiology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| |
Collapse
|
19
|
Brümmer LE, Katzenschlager S, McGrath S, Schmitz S, Gaeddert M, Erdmann C, Bota M, Grilli M, Larmann J, Weigand MA, Pollock NR, Macé A, Erkosar B, Carmona S, Sacks JA, Ongarello S, Denkinger CM. Accuracy of rapid point-of-care antigen-based diagnostics for SARS-CoV-2: An updated systematic review and meta-analysis with meta-regression analyzing influencing factors. PLoS Med 2022; 19:e1004011. [PMID: 35617375 PMCID: PMC9187092 DOI: 10.1371/journal.pmed.1004011] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/10/2022] [Accepted: 05/04/2022] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Comprehensive information about the accuracy of antigen rapid diagnostic tests (Ag-RDTs) for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is essential to guide public health decision makers in choosing the best tests and testing policies. In August 2021, we published a systematic review and meta-analysis about the accuracy of Ag-RDTs. We now update this work and analyze the factors influencing test sensitivity in further detail. METHODS AND FINDINGS We registered the review on PROSPERO (registration number: CRD42020225140). We systematically searched preprint and peer-reviewed databases for publications evaluating the accuracy of Ag-RDTs for SARS-CoV-2 until August 31, 2021. Descriptive analyses of all studies were performed, and when more than 4 studies were available, a random-effects meta-analysis was used to estimate pooled sensitivity and specificity with reverse transcription polymerase chain reaction (RT-PCR) testing as a reference. To evaluate factors influencing test sensitivity, we performed 3 different analyses using multivariable mixed-effects meta-regression models. We included 194 studies with 221,878 Ag-RDTs performed. Overall, the pooled estimates of Ag-RDT sensitivity and specificity were 72.0% (95% confidence interval [CI] 69.8 to 74.2) and 98.9% (95% CI 98.6 to 99.1). When manufacturer instructions were followed, sensitivity increased to 76.3% (95% CI 73.7 to 78.7). Sensitivity was markedly better on samples with lower RT-PCR cycle threshold (Ct) values (97.9% [95% CI 96.9 to 98.9] and 90.6% [95% CI 88.3 to 93.0] for Ct-values <20 and <25, compared to 54.4% [95% CI 47.3 to 61.5] and 18.7% [95% CI 13.9 to 23.4] for Ct-values ≥25 and ≥30) and was estimated to increase by 2.9 percentage points (95% CI 1.7 to 4.0) for every unit decrease in mean Ct-value when adjusting for testing procedure and patients' symptom status. Concordantly, we found the mean Ct-value to be lower for true positive (22.2 [95% CI 21.5 to 22.8]) compared to false negative (30.4 [95% CI 29.7 to 31.1]) results. Testing in the first week from symptom onset resulted in substantially higher sensitivity (81.9% [95% CI 77.7 to 85.5]) compared to testing after 1 week (51.8%, 95% CI 41.5 to 61.9). Similarly, sensitivity was higher in symptomatic (76.2% [95% CI 73.3 to 78.9]) compared to asymptomatic (56.8% [95% CI 50.9 to 62.4]) persons. However, both effects were mainly driven by the Ct-value of the sample. With regards to sample type, highest sensitivity was found for nasopharyngeal (NP) and combined NP/oropharyngeal samples (70.8% [95% CI 68.3 to 73.2]), as well as in anterior nasal/mid-turbinate samples (77.3% [95% CI 73.0 to 81.0]). Our analysis was limited by the included studies' heterogeneity in viral load assessment and sample origination. CONCLUSIONS Ag-RDTs detect most of the individuals infected with SARS-CoV-2, and almost all (>90%) when high viral loads are present. With viral load, as estimated by Ct-value, being the most influential factor on their sensitivity, they are especially useful to detect persons with high viral load who are most likely to transmit the virus. To further quantify the effects of other factors influencing test sensitivity, standardization of clinical accuracy studies and access to patient level Ct-values and duration of symptoms are needed.
Collapse
Affiliation(s)
- Lukas E. Brümmer
- Division of Infectious Disease and Tropical Medicine, Center for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Sean McGrath
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Stephani Schmitz
- Department of Developmental Biology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Mary Gaeddert
- Division of Infectious Disease and Tropical Medicine, Center for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Marc Bota
- Agaplesion Bethesda Hospital, Hamburg, Germany
| | - Maurizio Grilli
- Library, University Medical Center Mannheim, Mannheim, Germany
| | - Jan Larmann
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Markus A. Weigand
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Nira R. Pollock
- Department of Laboratory Medicine, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | | | | | | | | | | | - Claudia M. Denkinger
- Division of Infectious Disease and Tropical Medicine, Center for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
- German Center for Infection Research (DZIF), partner site Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
20
|
Nemudraia A, Nemudryi A, Buyukyoruk M, Scherffius AM, Zahl T, Wiegand T, Pandey S, Nichols JE, Hall L, McVey A, Lee HH, Wilkinson RA, Snyder LR, Jones JD, Koutmou KS, Santiago-Frangos A, Wiedenheft B. Sequence-specific capture and concentration of viral RNA by type III CRISPR system enhances diagnostic. RESEARCH SQUARE 2022:rs.3.rs-1466718. [PMID: 35475170 PMCID: PMC9040678 DOI: 10.21203/rs.3.rs-1466718/v1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Type-III CRISPR-Cas systems have recently been adopted for sequence-specific detection of SARS-CoV-2. Here, we make two major advances that simultaneously limit sample handling and significantly enhance the sensitivity of SARS-CoV-2 RNA detection directly from patient samples. First, we repurpose the type III-A CRISPR complex from Thermus thermophilus (TtCsm) for programmable capture and concentration of specific RNAs from complex mixtures. The target bound TtCsm complex primarily generates two cyclic oligoadenylates (i.e., cA3 and cA4) that allosterically activate ancillary nucleases. To improve sensitivity of the diagnostic, we identify and test several ancillary nucleases (i.e., Can1, Can2, and NucC). We show that Can1 and Can2 are activated by both cA3 and cA4, and that different activators trigger changes in the substrate specificity of these nucleases. Finally, we integrate the type III-A CRISPR RNA-guided capture technique with the Can2 nuclease for 90 fM (5x104 copies/ul) detection of SARS-CoV-2 RNA directly from nasopharyngeal swab samples.
Collapse
Affiliation(s)
- Anna Nemudraia
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
- These authors contributed equally
| | - Artem Nemudryi
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
- These authors contributed equally
| | - Murat Buyukyoruk
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
- These authors contributed equally
| | - Andrew M. Scherffius
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
- These authors contributed equally
| | - Trevor Zahl
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Tanner Wiegand
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Shishir Pandey
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Joseph E. Nichols
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Laina Hall
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Aidan McVey
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Helen H Lee
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Royce A. Wilkinson
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Laura R. Snyder
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48105, USA
| | - Joshua D. Jones
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48105, USA
| | - Kristin S. Koutmou
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48105, USA
| | - Andrew Santiago-Frangos
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Blake Wiedenheft
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
- Lead contact
| |
Collapse
|
21
|
Parikh A, Cooper L, Frogel D, Le Benger K, Cooper CK, Parvu V. Large-Scale SARS-CoV-2 Antigen Testing With Real-World Specimens. Front Public Health 2022; 10:836328. [PMID: 35450121 PMCID: PMC9016156 DOI: 10.3389/fpubh.2022.836328] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/21/2022] [Indexed: 12/19/2022] Open
Abstract
Real-world data are needed to establish SARS-CoV-2 rapid antigen testing (RAT) as an effective and reliable approach for SARS-CoV-2 screening. This study included 1,952,931 individuals who provided upper respiratory specimens during SARS-CoV-2 screening at CityMD urgent care locations in the New York metropolitan area from October 2020 to March 2021. Positive and negative results, as determined by the BD Veritor™ System for Rapid Detection of SARS-CoV-2 antigen (Veritor), were obtained for all individuals, with reflex reverse transcriptase-polymerase chain reaction (RT-PCR) testing performed on a case-by-case basis, per standard of care. Using verification bias adjustment, two alternative model assumptions were utilized for RAT results with missing reflex RT-PCR results. The worst antigen diagnostic performance estimates asserted that missing RT-PCR results would show a distribution similar to those RT-PCR results actually obtained, based on symptom category. The best antigen diagnostic performance estimates asserted that individuals without RT-PCR results had a clinical presentation consistent with RAT results, and, therefore, missing RT-PCR results would agree with RAT results. For patients with symptoms or high-risk exposure, 25.3% (n = 86,811/343,253) of RAT results were positive; vs. 3.4% (n = 53,046/1,559,733) positive for asymptomatic individuals without high-risk exposure. Reflex RT-PCR results were obtained from 46.3% (n = 158,836/343,253) and 13.8% (n = 215,708/1,559,733) of symptomatic and asymptomatic individuals, respectively. RT-PCR confirmed 94.4% (4,265/4,518) of positive and 90.6% (139,759/154,318) of negative RAT results in symptomatic individuals; and confirmed 83.4% (6,693/8,024) of positive and 95.3% (197,955/207,684) of negative RAT results in asymptomatic individuals. Applied assumptions for missing reflex RT-PCR results led to worst performance sensitivity estimates of 77.2 and 38.5% in the symptomatic and asymptomatic populations, respectively; assumptions for best performance estimates led to sensitivity values of 85.6 and 84.2%, respectively. Specificity values, regardless of assumptions or symptom category, ranged from 97.9-99.9%. At 10% SARS-CoV-2 prevalence, RAT positive predictive value was 86.9 and 99.0% for worst and best performance estimates across the total population, respectively; negative predictive values were >95% regardless of the applied assumption. Veritor test performance was consistent with that listed in the manufacturer instructions for use for symptomatic individuals. Real-world evidence should be gathered on RATs to support their efficacy as SARS-CoV-2 persists.
Collapse
Affiliation(s)
- Ashish Parikh
- CityMD/Summit Medical Group, New York, NY, United States
| | - Lauren Cooper
- Becton, Dickinson and Company, BD Life Sciences—Integrated Diagnostic Solutions, Sparks, MD, United States
| | - Daniel Frogel
- CityMD/Summit Medical Group, New York, NY, United States
| | | | - Charles K. Cooper
- George Mason University, School of Systems Biology, Manassas, VA, United States
| | - Valentin Parvu
- Becton, Dickinson and Company, BD Life Sciences—Integrated Diagnostic Solutions, Sparks, MD, United States
| |
Collapse
|
22
|
Dien Bard J, Babady NE. The Successes and Challenges of SARS-CoV-2 Molecular Testing in the United States. Clin Lab Med 2022; 42:147-160. [PMID: 35636819 PMCID: PMC8901381 DOI: 10.1016/j.cll.2022.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Jennifer Dien Bard
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, 4650 Sunset Blvd, MS#32, Los Angeles, CA 90027, USA; Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA.
| | - N Esther Babady
- Clinical Microbiology Service, Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, 327 East 64th Street, CLM-522, NY 10065, USA; Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
23
|
Achenbach CJ, Caputo M, Hawkins C, Balmert LC, Qi C, Odorisio J, Dembele E, Jackson A, Abbas H, Frediani JK, Levy JM, Rebolledo PA, Kempker RR, Esper AM, Lam WA, Martin GS, Murphy RL. Clinical evaluation of the Diagnostic Analyzer for Selective Hybridization (DASH): a point-of-care PCR test for rapid detection of SARS-CoV-2 infection. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.01.24.22269785. [PMID: 35118476 PMCID: PMC8811909 DOI: 10.1101/2022.01.24.22269785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
BACKGROUND Rapid and accurate testing for SARS-CoV-2 is an essential tool in the medical and public health response to the COVID-19 pandemic. An ideal test for COVID-19 would combine the sensitivity of laboratory-based PCR combined with the speed and ease of use of point-of-care (POC) or home-based rapid antigen testing. METHODS To evaluate the performance of the Diagnostic Analyzer for Selective Hybridization (DASH) SARS-CoV-2 POC PCR (sample insertion to result time of 16 minutes), we conducted a cross-sectional study of adults with and without symptoms of COVID-19 at four clinical sites. We collected two bilateral anterior nasal swabs from each participant and information on COVID-19 symptoms, vaccination, and exposure. One swab was tested with the DASH SARS-CoV-2 POC PCR and the second in a central laboratory using Cepheid Xpert Xpress SARS-CoV-2 PCR. We assessed test concordance and calculated sensitivity, specificity, negative and positive predictive values using Xpert as the "gold standard." RESULTS We enrolled 315 and analyzed 313 participants with median age 42 years; 65% were female, 62% symptomatic, 75% had received ≥2 doses of mRNA COVID-19 vaccine, and 16% currently COVID-19 positive. There were concordant results for 307 tests indicating an overall agreement for DASH of 0.98 [95% CI 0.96, 0.99] compared to Xpert. DASH performed at 0.96 [95% CI 0.86, 1.00] sensitivity and 0.98 [95% CI 0.96, 1.00] specificity, with a positive predictive value of 0.85 [95% CI 0.73, 0.96] and negative predictive value of 0.996 [95% CI 0.99, 1.00]. The six discordant tests between DASH and Xpert all had high Ct values (>30) on the respective positive assay. DASH and Xpert Ct values were highly correlated (R=0.89 [95% CI 0.81, 0.94]). CONCLUSIONS DASH POC SARS-CoV-2 PCR was accurate, easy to use, and provided fast results in real-life clinical settings with an overall performance similar to an EUA-approved laboratory-based PCR. Its compact design and ease of use are optimal for a variety of healthcare, and potentially community settings, including areas with lack of access to central laboratory-based PCR testing. SUMMARY DASH is an accurate, easy to use, and fast point-of-care test with applications for diagnosis and screening of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Chad J Achenbach
- Havey Institute for Global Health, Feinberg School of Medicine, Northwestern University
- Department of Medicine, Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University
| | - Matthew Caputo
- Havey Institute for Global Health, Feinberg School of Medicine, Northwestern University
| | - Claudia Hawkins
- Havey Institute for Global Health, Feinberg School of Medicine, Northwestern University
- Department of Medicine, Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University
| | - Lauren C Balmert
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University
| | - Chao Qi
- Department of Pathology, Northwestern University
| | - Joseph Odorisio
- Havey Institute for Global Health, Feinberg School of Medicine, Northwestern University
| | - Etienne Dembele
- Havey Institute for Global Health, Feinberg School of Medicine, Northwestern University
| | | | | | - Jennifer K Frediani
- Atlanta Center for Microsystems Engineered Point-of-Care Technologies
- Emory University Nell Hodgson Woodruff School of Nursing
| | - Joshua M Levy
- Atlanta Center for Microsystems Engineered Point-of-Care Technologies
- Emory University Department of Otolaryngology
| | - Paulina A Rebolledo
- Atlanta Center for Microsystems Engineered Point-of-Care Technologies
- Emory University Division of Infectious Diseases
| | - Russell R Kempker
- Atlanta Center for Microsystems Engineered Point-of-Care Technologies
- Emory University Division of Infectious Diseases
| | - Annette M Esper
- Atlanta Center for Microsystems Engineered Point-of-Care Technologies
- Emory University Division of Pulmonary, Allergy, Critical Care and Sleep Medicine
| | - Wilbur A Lam
- Atlanta Center for Microsystems Engineered Point-of-Care Technologies
- Emory University Department of Pediatrics
| | - Greg S Martin
- Atlanta Center for Microsystems Engineered Point-of-Care Technologies
- Emory University Division of Pulmonary, Allergy, Critical Care and Sleep Medicine
| | - Robert L Murphy
- Havey Institute for Global Health, Feinberg School of Medicine, Northwestern University
- Department of Medicine, Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University
| |
Collapse
|
24
|
Tobin E, Brenner S. Nanotechnology Fundamentals Applied to Clinical Infectious Diseases and Public Health. Open Forum Infect Dis 2021; 8:ofab583. [PMID: 34988245 PMCID: PMC8694202 DOI: 10.1093/ofid/ofab583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/16/2021] [Indexed: 12/18/2022] Open
Abstract
Nanotechnology involves the discovery and fabrication of nanoscale materials possessing unique physicochemical properties that are being employed in industry and medicine. Infectious Diseases clinicians and public health scientists utilize nanotechnology applications to diagnose, treat, and prevent infectious diseases. However, fundamental principles of nanotechnology are often presented in technical formats that presuppose an advanced knowledge of chemistry, physics, and engineering, thereby limiting the clinician’s grasp of the underlying science. While nanoscience is technically complex, it need not be out of reach of the clinical practitioner. The aim of this review is to introduce fundamental principles of nanotechnology in an accessible format, describe examples of current clinical infectious diseases and public health applications, and provide a foundation that will aid understanding of and appreciation for this burgeoning and important field of science.
Collapse
Affiliation(s)
- Ellis Tobin
- College of Nanoscale Science and Engineering, State University of New York Polytechnic Institute, Albany, New York, USA
| | - Sara Brenner
- Office of In Vitro Diagnostics and Radiological Health, Office of Product Evaluation and Quality, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
25
|
Arizti-Sanz J, Bradley A, Zhang YB, Boehm CK, Freije CA, Grunberg ME, Kosoko-Thoroddsen TSF, Welch NL, Pillai PP, Mantena S, Kim G, Uwanibe JN, John OG, Eromon PE, Kocher G, Gross R, Lee JS, Hensley LE, Happi CT, Johnson J, Sabeti PC, Myhrvold C. Equipment-free detection of SARS-CoV-2 and Variants of Concern using Cas13. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.11.01.21265764. [PMID: 34751276 PMCID: PMC8575147 DOI: 10.1101/2021.11.01.21265764] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The COVID-19 pandemic, and the recent rise and widespread transmission of SARS-CoV-2 Variants of Concern (VOCs), have demonstrated the need for ubiquitous nucleic acid testing outside of centralized clinical laboratories. Here, we develop SHINEv2, a Cas13-based nucleic acid diagnostic that combines quick and ambient temperature sample processing and lyophilized reagents to greatly simplify the test procedure and assay distribution. We benchmarked a SHINEv2 assay for SARS-CoV-2 detection against state-of-the-art antigen-capture tests using 96 patient samples, demonstrating 50-fold greater sensitivity and 100% specificity. We designed SHINEv2 assays for discriminating the Alpha, Beta, Gamma and Delta VOCs, which can be read out visually using lateral flow technology. We further demonstrate that our assays can be performed without any equipment in less than 90 minutes. SHINEv2 represents an important advance towards rapid nucleic acid tests that can be performed in any location.
Collapse
Affiliation(s)
- Jon Arizti-Sanz
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA
- Harvard-MIT Program in Health Sciences and Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - A’Doriann Bradley
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA
| | - Yibin B. Zhang
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Chloe K. Boehm
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Catherine A. Freije
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA
| | - Michelle E. Grunberg
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | - Nicole L. Welch
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA
- Program in Virology, Harvard Medical School, Boston, MA 02115, USA
| | - Priya P. Pillai
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA
| | - Sreekar Mantena
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA
| | - Gaeun Kim
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Jessica N. Uwanibe
- African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer’s University, Ede, Osun State, Nigeria
- Department of Biological Sciences, College of Natural Sciences, Redeemer’s University, Ede, Osun State, Nigeria
| | - Oluwagboadurami G. John
- Department of Biological Sciences, College of Natural Sciences, Redeemer’s University, Ede, Osun State, Nigeria
| | - Philomena E. Eromon
- African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer’s University, Ede, Osun State, Nigeria
| | - Gregory Kocher
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and infectious diseases, National Institute of Health, Frederick, MD 21702, USA
| | - Robin Gross
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and infectious diseases, National Institute of Health, Frederick, MD 21702, USA
| | - Justin S. Lee
- Biotechnology Cores Facility Branch,Division of Scientific Resources, National Center for Emerging and Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Lisa E. Hensley
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and infectious diseases, National Institute of Health, Frederick, MD 21702, USA
| | - Christian T. Happi
- African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer’s University, Ede, Osun State, Nigeria
- Department of Biological Sciences, College of Natural Sciences, Redeemer’s University, Ede, Osun State, Nigeria
- Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA
| | - Jeremy Johnson
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA
| | - Pardis C. Sabeti
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
- Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- These authors jointly supervised this work: Pardis C. Sabeti, Cameron Myhrvold
| | - Cameron Myhrvold
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- These authors jointly supervised this work: Pardis C. Sabeti, Cameron Myhrvold
| |
Collapse
|