1
|
Gewecke A, Hare RK, Salgård C, Kyndi L, Høg M, Petersen G, Nahimana D, Abou-Chakra N, Knudsen JD, Rosendahl S, Vissing NH, Arendrup MC. A single-source nosocomial outbreak of Aspergillus flavus uncovered by genotyping. Microbiol Spectr 2024; 12:e0027324. [PMID: 38888358 PMCID: PMC11302659 DOI: 10.1128/spectrum.00273-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/14/2024] [Indexed: 06/20/2024] Open
Abstract
During construction work (2017-2019), an increase in Aspergillus flavus infections was noted among pediatric patients, the majority of whom were receiving amphotericin B prophylaxis. Microsatellite genotyping was used to characterize the outbreak. A total of 153 A. flavus isolates of clinical and environmental origin were included. Clinical isolates included 140 from 119 patients. Eight patients were outbreak-related patients, whereas 111 were outbreak-unrelated patients from Danish hospitals (1994-2023). We further included four control strains. Nine A. flavus isolates were from subsequent air sampling in the outbreak ward (2022-2023). Typing followed Rudramurthy et al.(S. M. Rudramurthy, H. A. de Valk, A. Chakrabarti, J. Meis, and C. H. W. Klaassen, PLoS One 6:e16086, 2011, https://doi.org/10.1371/journal.pone.0016086). Minimum spanning tree (MST) and discriminant analysis of principal components (DAPC) were used for cluster analysis. DAPC analysis placed all 153 isolates in five clusters. Microsatellite marker pattern was clearly distinct for one cluster compared to the others. The same cluster was observed in an MST. This cluster included all outbreak isolates, air-sample isolates, and additional patient isolates from the outbreak hospital, previously undisclosed as outbreak related. The highest air prevalence of A. flavus was found in two technical risers of the outbreak ward, which were then sealed. Follow-up air samples were negative for A. flavus. Microsatellite typing defined the outbreak as nosocomial and facilitated the identification of an in-hospital source. Six months of follow-up air sampling was without A. flavus. Outbreak-related/non-related isolates were easily distinguished with DAPC and MST, as the outbreak clone's distinct marker pattern was delineated in both statistical analyses. Thus, it could be a variant of A. flavus, with a niche ability to thrive in the outbreak-hospital environment. IMPORTANCE Aspergillus flavus can cause severe infections and hospital outbreaks in immunocompromised individuals. Although lack of isogeneity does not preclude an outbreak, our study underlines the value of microsatellite genotyping in the setting of potential A. flavus outbreaks. Microsatellite genotyping documented an isogenic hospital outbreak with an internal source. This provided the "smoking gun" that prompted the rapid allocation of resources for thorough environmental sampling, the results of which guided immediate and relevant cleaning and source control measures. Consequently, we advise that vulnerable patients should be protected from exposure and that genotyping be included early in potential A. flavus outbreak investigations. Inspection and sampling are recommended at any site where airborne spores might disperse from. This includes rarely accessed areas where air communication to the hospital ward cannot be disregarded.
Collapse
Affiliation(s)
- A. Gewecke
- Mycology Unit, Department for Bacteria, Parasites, and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - R. Krøger Hare
- Mycology Unit, Department for Bacteria, Parasites, and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - C. Salgård
- Department for Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| | - L. Kyndi
- Department for Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| | - M. Høg
- Department for Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| | - G. Petersen
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - D. Nahimana
- Mycology Unit, Department for Bacteria, Parasites, and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - N. Abou-Chakra
- Mycology Unit, Department for Bacteria, Parasites, and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - J. D. Knudsen
- Department for Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| | - S. Rosendahl
- Section for Ecology and Evolution, Department for Biology, University of Copenhagen, Copenhagen, Denmark
| | - N. H. Vissing
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - M. C. Arendrup
- Mycology Unit, Department for Bacteria, Parasites, and Fungi, Statens Serum Institut, Copenhagen, Denmark
- Department for Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- Department for Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Spruijtenburg B, Meis JF, Verweij PE, de Groot T, Meijer EFJ. Short Tandem Repeat Genotyping of Medically Important Fungi: A Comprehensive Review of a Powerful Tool with Extensive Future Potential. Mycopathologia 2024; 189:72. [PMID: 39096450 PMCID: PMC11297828 DOI: 10.1007/s11046-024-00877-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/11/2024] [Indexed: 08/05/2024]
Abstract
Fungal infections pose an increasing threat to public health. New pathogens and changing epidemiology are a pronounced risk for nosocomial outbreaks. To investigate clonal transmission between patients and trace the source, genotyping is required. In the last decades, various typing assays have been developed and applied to different medically important fungal species. While these different typing methods will be briefly discussed, this review will focus on the development and application of short tandem repeat (STR) genotyping. This method relies on the amplification and comparison of highly variable STR markers between isolates. For most common fungal pathogens, STR schemes were developed and compared to other methods, like multilocus sequence typing (MLST), amplified fragment length polymorphism (AFLP) and whole genome sequencing (WGS) single nucleotide polymorphism (SNP) analysis. The pros and cons of STR typing as compared to the other methods are discussed, as well as the requirements for the development of a solid STR typing assay. The resolution of STR typing, in general, is higher than MLST and AFLP, with WGS SNP analysis being the gold standard when it comes to resolution. Although most modern laboratories are capable to perform STR typing, little progress has been made to standardize typing schemes. Allelic ladders, as developed for Aspergillus fumigatus, facilitate the comparison of STR results between laboratories and develop global typing databases. Overall, STR genotyping is an extremely powerful tool, often complimentary to whole genome sequencing. Crucial details for STR assay development, its applications and merit are discussed in this review.
Collapse
Affiliation(s)
- Bram Spruijtenburg
- Radboudumc-CWZ Center of Expertise for Mycology, Nijmegen, The Netherlands
- Canisius-Wilhelmina Hospital (CWZ)/Dicoon, Nijmegen, The Netherlands
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jacques F Meis
- Radboudumc-CWZ Center of Expertise for Mycology, Nijmegen, The Netherlands
- Cologne Excellence Cluster On Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Excellence Center for Medical Mycology, Institute of Translational Research, University of Cologne, Cologne, Germany
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Paul E Verweij
- Radboudumc-CWZ Center of Expertise for Mycology, Nijmegen, The Netherlands
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Theun de Groot
- Radboudumc-CWZ Center of Expertise for Mycology, Nijmegen, The Netherlands
- Canisius-Wilhelmina Hospital (CWZ)/Dicoon, Nijmegen, The Netherlands
| | - Eelco F J Meijer
- Radboudumc-CWZ Center of Expertise for Mycology, Nijmegen, The Netherlands.
- Canisius-Wilhelmina Hospital (CWZ)/Dicoon, Nijmegen, The Netherlands.
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
3
|
Lucio J, Alcazar-Fuoli L, Gil H, Cano-Pascual S, Hernandez-Egido S, Cuetara MS, Mellado E. Distribution of Aspergillus species and prevalence of azole resistance in clinical and environmental samples from a Spanish hospital during a three-year study period. Mycoses 2024; 67:e13719. [PMID: 38551063 DOI: 10.1111/myc.13719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/05/2024] [Accepted: 03/17/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND Surveillance studies are crucial for updating trends in Aspergillus species and antifungal susceptibility information. OBJECTIVES Determine the Aspergillus species distribution and azole resistance prevalence during this 3-year prospective surveillance study in a Spanish hospital. MATERIALS AND METHODS Three hundred thirty-five Aspergillus spp. clinical and environmental isolates were collected during a 3-year study. All isolates were screened for azole resistance using an agar-based screening method and resistance was confirmed by EUCAST antifungal susceptibility testing. The azole resistance mechanism was confirmed by sequencing the cyp51A gene and its promoter. All Aspergillus fumigatus strains were genotyped using TRESPERG analysis. RESULTS Aspergillus fumigatus was the predominant species recovered with a total of 174 strains (51.94%). The rest of Aspergillus spp. were less frequent: Aspergillus niger (14.93%), Aspergillus terreus (9.55%), Aspergillus flavus (8.36%), Aspergillus nidulans (5.37%) and Aspergillus lentulus (3.28%), among other Aspergillus species (6.57%). TRESPERG analysis showed 99 different genotypes, with 72.73% of the strains being represented as a single genotype. Some genotypes were common among clinical and environmental A. fumigatus azole-susceptible strains, even when isolated months apart. We describe the occurrence of two azole-resistant A. fumigatus strains, one clinical and another environmental, that were genotypically different and did not share genotypes with any of the azole-susceptible strains. CONCLUSIONS Aspergillus fumigatus strains showed a very diverse population although several genotypes were shared among clinical and environmental strains. The isolation of azole-resistant strains from both settings suggest that an efficient analysis of clinical and environmental sources must be done to detect azole resistance in A. fumigatus.
Collapse
Affiliation(s)
- Jose Lucio
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Laura Alcazar-Fuoli
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
- Center for Biomedical Research in Network in Infectious Diseases (CIBERINFEC-CB21/13/00105), Instituto de Salud Carlos III, Madrid, Spain
| | - Horacio Gil
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Samuel Cano-Pascual
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Sara Hernandez-Egido
- Microbiology Department, University Hospital Severo Ochoa, Leganés, Madrid, Spain
| | | | - Emilia Mellado
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
- Center for Biomedical Research in Network in Infectious Diseases (CIBERINFEC-CB21/13/00105), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
4
|
Birnie JD, Ahmed T, Kidd SE, Westall GP, Snell GI, Peleg AY, Morrissey CO. Multi-Locus Microsatellite Typing of Colonising and Invasive Aspergillus fumigatus Isolates from Patients Post Lung Transplantation and with Chronic Lung Disease. J Fungi (Basel) 2024; 10:95. [PMID: 38392766 PMCID: PMC10889758 DOI: 10.3390/jof10020095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/24/2024] Open
Abstract
Aspergillus fumigatus can cause different clinical manifestations/phenotypes in lung transplant (LTx) recipients and patients with chronic respiratory diseases. It can also precipitate chronic lung allograft dysfunction (CLAD) in LTx recipients. Many host factors have been linked with the severity of A. fumigatus infection, but little is known about the contribution of different A. fumigatus strains to the development of different phenotypes and CLAD. We used multi-locus microsatellite typing (MLMT) to determine if there is a relationship between strain (i.e., genotype) and phenotype in 60 patients post LTx or with chronic respiratory disease across two time periods (1 November 2006-31 March 2009 and 1 November 2015-30 June 2017). The MLMT (STRAf) assay was highly discriminatory (Simpson's diversity index of 0.9819-0.9942) with no dominant strain detected. No specific genotype-phenotype link was detected, but several clusters and related strains were associated with invasive aspergillosis (IA) and colonisation in the absence of CLAD. Host factors were linked to clinical phenotypes, with prior lymphopenia significantly more common in IA cases as compared with A. fumigatus-colonised patients (12/16 [75%] vs. 13/36 [36.1%]; p = 0.01), and prior Staphylococcus aureus infection was a significant risk factor for the development of IA (odds ratio 13.8; 95% confidence interval [2.01-279.23]). A trend toward a greater incidence of CMV reactivation post-A. fumigatus isolation was observed (0 vs. 5; p = 0.06) in LTx recipients. Further research is required to determine the pathogenicity and immunogenicity of specific A. fumigatus strains.
Collapse
Affiliation(s)
- Joshua D Birnie
- University Hospital Geelong, Barwon Health, Geelong, VIC 3220, Australia
| | - Tanveer Ahmed
- Department of Infectious Diseases, Alfred Health and Monash University, Melbourne, VIC 3004, Australia
| | - Sarah E Kidd
- National Mycology Reference Centre, SA Pathology, Adelaide, SA 5000, Australia
| | - Glen P Westall
- Lung Transplant Service, Department of Respiratory Medicine, Alfred Health and Monash University, Melbourne, VIC 3004, Australia
| | - Gregory I Snell
- Lung Transplant Service, Department of Respiratory Medicine, Alfred Health and Monash University, Melbourne, VIC 3004, Australia
| | - Anton Y Peleg
- Department of Infectious Diseases, Alfred Health and Monash University, Melbourne, VIC 3004, Australia
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC 3168, Australia
| | - Catherine Orla Morrissey
- Department of Infectious Diseases, Alfred Health and Monash University, Melbourne, VIC 3004, Australia
| |
Collapse
|
5
|
Comparison of Multi-locus Genotypes Detected in Aspergillus fumigatus Isolated from COVID Associated Pulmonary Aspergillosis (CAPA) and from Other Clinical and Environmental Sources. J Fungi (Basel) 2023; 9:jof9030298. [PMID: 36983466 PMCID: PMC10056896 DOI: 10.3390/jof9030298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/27/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
Background: Aspergillus fumigatus is a saprophytic fungus, ubiquitous in the environment and responsible for causing infections, some of them severe invasive infections. The high morbidity and mortality, together with the increasing burden of triazole-resistant isolates and the emergence of new risk groups, namely COVID-19 patients, have raised a crescent awareness of the need to better comprehend the dynamics of this fungus. The understanding of the epidemiology of this fungus, especially of CAPA isolates, allows a better understanding of the interactions of the fungus in the environment and the human body. Methods: In the present study, the M3 markers of the STRAf assay were used as a robust typing technique to understand the connection between CAPA isolates and isolates from different sources (environmental and clinical-human and animal). Results: Of 100 viable isolates that were analyzed, 85 genotypes were found, 77 of which were unique. Some isolates from different sources presented the same genotype. Microsatellite genotypes obtained from A. fumigatus isolates from COVID+ patients were all unique, not being found in any other isolates of the present study or even in other isolates deposited in a worldwide database; these same isolates were heterogeneously distributed among the other isolates. Conclusions: Isolates from CAPA patients revealed high heterogeneity of multi-locus genotypes. A genotype more commonly associated with COVID-19 infections does not appear to exist.
Collapse
|
6
|
Arastehfar A, Carvalho A, Houbraken J, Lombardi L, Garcia-Rubio R, Jenks J, Rivero-Menendez O, Aljohani R, Jacobsen I, Berman J, Osherov N, Hedayati M, Ilkit M, Armstrong-James D, Gabaldón T, Meletiadis J, Kostrzewa M, Pan W, Lass-Flörl C, Perlin D, Hoenigl M. Aspergillus fumigatus and aspergillosis: From basics to clinics. Stud Mycol 2021; 100:100115. [PMID: 34035866 PMCID: PMC8131930 DOI: 10.1016/j.simyco.2021.100115] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The airborne fungus Aspergillus fumigatus poses a serious health threat to humans by causing numerous invasive infections and a notable mortality in humans, especially in immunocompromised patients. Mould-active azoles are the frontline therapeutics employed to treat aspergillosis. The global emergence of azole-resistant A. fumigatus isolates in clinic and environment, however, notoriously limits the therapeutic options of mould-active antifungals and potentially can be attributed to a mortality rate reaching up to 100 %. Although specific mutations in CYP 51A are the main cause of azole resistance, there is a new wave of azole-resistant isolates with wild-type CYP 51A genotype challenging the efficacy of the current diagnostic tools. Therefore, applications of whole-genome sequencing are increasingly gaining popularity to overcome such challenges. Prominent echinocandin tolerance, as well as liver and kidney toxicity posed by amphotericin B, necessitate a continuous quest for novel antifungal drugs to combat emerging azole-resistant A. fumigatus isolates. Animal models and the tools used for genetic engineering require further refinement to facilitate a better understanding about the resistance mechanisms, virulence, and immune reactions orchestrated against A. fumigatus. This review paper comprehensively discusses the current clinical challenges caused by A. fumigatus and provides insights on how to address them.
Collapse
Affiliation(s)
- A. Arastehfar
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - A. Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - J. Houbraken
- Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands
| | - L. Lombardi
- UCD Conway Institute and School of Medicine, University College Dublin, Dublin 4, Ireland
| | - R. Garcia-Rubio
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - J.D. Jenks
- Department of Medicine, University of California San Diego, San Diego, CA, 92103, USA
- Clinical and Translational Fungal-Working Group, University of California San Diego, La Jolla, CA, 92093, USA
| | - O. Rivero-Menendez
- Medical Mycology Reference Laboratory, National Center for Microbiology, Instituto de Salud Carlos III, Madrid, 28222, Spain
| | - R. Aljohani
- Department of Infectious Diseases, Imperial College London, London, UK
| | - I.D. Jacobsen
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Jena, Germany
- Institute for Microbiology, Friedrich Schiller University, Jena, Germany
| | - J. Berman
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Jena, Germany
| | - N. Osherov
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine Ramat-Aviv, Tel-Aviv, 69978, Israel
| | - M.T. Hedayati
- Invasive Fungi Research Center/Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - M. Ilkit
- Division of Mycology, Department of Microbiology, Faculty of Medicine, Çukurova University, 01330, Adana, Turkey
| | | | - T. Gabaldón
- Life Sciences Programme, Supercomputing Center (BSC-CNS), Jordi Girona, Barcelona, 08034, Spain
- Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB), Barcelona, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010, Barcelona, Spain
| | - J. Meletiadis
- Clinical Microbiology Laboratory, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - W. Pan
- Medical Mycology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - C. Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - D.S. Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - M. Hoenigl
- Department of Medicine, University of California San Diego, San Diego, CA, 92103, USA
- Section of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Medical University of Graz, 8036, Graz, Austria
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, San Diego, CA 92093, USA
| |
Collapse
|
7
|
McLean SA, Cullen L, Gardam DJ, Schofield CJ, Laucirica DR, Sutanto EN, Ling KM, Stick SM, Peacock CS, Kicic A, Garratt LW. Cystic Fibrosis Clinical Isolates of Aspergillus fumigatus Induce Similar Muco-inflammatory Responses in Primary Airway Epithelial Cells. Pathogens 2021; 10:pathogens10081020. [PMID: 34451484 PMCID: PMC8399118 DOI: 10.3390/pathogens10081020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/03/2021] [Accepted: 08/11/2021] [Indexed: 11/16/2022] Open
Abstract
Aspergillus is increasingly associated with lung inflammation and mucus plugging in early cystic fibrosis (CF) disease during which conidia burden is low and strains appear to be highly diverse. It is unknown whether clinical Aspergillus strains vary in their capacity to induce epithelial inflammation and mucus production. We tested the hypothesis that individual colonising strains of Aspergillus fumigatus would induce different responses. Ten paediatric CF Aspergillus isolates were compared along with two systemically invasive clinical isolates and an ATCC reference strain. Isolates were first characterised by ITS gene sequencing and screened for antifungal susceptibility. Three clusters (A-C) of Aspergillus isolates were identified by ITS. Antifungal susceptibility was variable, particularly for itraconazole. Submerged CF and non-CF monolayers as well as differentiated primary airway epithelial cell cultures were incubated with conidia for 24 h to allow germination. None of the clinical isolates were found to significantly differ from one another in either IL-6 or IL-8 release or gene expression of secretory mucins. Clinical Aspergillus isolates appear to be largely homogenous in their mucostimulatory and immunostimulatory capacities and, therefore, only the antifungal resistance characteristics are likely to be clinically important.
Collapse
Affiliation(s)
- Samantha A. McLean
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Crawley 6009, Australia; (S.A.M.); (C.J.S.); (D.R.L.); (E.N.S.); (K.-M.L.); (S.M.S.); (A.K.)
| | - Leilani Cullen
- Faculty of Health and Medical Sciences, University of Western Australia, Crawley 6009, Australia; (L.C.); (C.S.P.)
| | - Dianne J. Gardam
- PathWest Laboratory Medicine WA, Fiona Stanley Hospital, Murdoch 6150, Australia;
| | - Craig J. Schofield
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Crawley 6009, Australia; (S.A.M.); (C.J.S.); (D.R.L.); (E.N.S.); (K.-M.L.); (S.M.S.); (A.K.)
| | - Daniel R. Laucirica
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Crawley 6009, Australia; (S.A.M.); (C.J.S.); (D.R.L.); (E.N.S.); (K.-M.L.); (S.M.S.); (A.K.)
- Faculty of Health and Medical Sciences, University of Western Australia, Crawley 6009, Australia; (L.C.); (C.S.P.)
| | - Erika N. Sutanto
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Crawley 6009, Australia; (S.A.M.); (C.J.S.); (D.R.L.); (E.N.S.); (K.-M.L.); (S.M.S.); (A.K.)
| | - Kak-Ming Ling
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Crawley 6009, Australia; (S.A.M.); (C.J.S.); (D.R.L.); (E.N.S.); (K.-M.L.); (S.M.S.); (A.K.)
- Faculty of Health and Medical Sciences, University of Western Australia, Crawley 6009, Australia; (L.C.); (C.S.P.)
| | - Stephen M. Stick
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Crawley 6009, Australia; (S.A.M.); (C.J.S.); (D.R.L.); (E.N.S.); (K.-M.L.); (S.M.S.); (A.K.)
- Faculty of Health and Medical Sciences, University of Western Australia, Crawley 6009, Australia; (L.C.); (C.S.P.)
- Department of Respiratory and Sleep Medicine, Perth Children’s Hospital, Nedlands 6009, Australia
| | - Christopher S. Peacock
- Faculty of Health and Medical Sciences, University of Western Australia, Crawley 6009, Australia; (L.C.); (C.S.P.)
| | - Anthony Kicic
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Crawley 6009, Australia; (S.A.M.); (C.J.S.); (D.R.L.); (E.N.S.); (K.-M.L.); (S.M.S.); (A.K.)
- Faculty of Health and Medical Sciences, University of Western Australia, Crawley 6009, Australia; (L.C.); (C.S.P.)
- Department of Respiratory and Sleep Medicine, Perth Children’s Hospital, Nedlands 6009, Australia
- Occupation and Environment, School of Public Health, Curtin University, Bentley 6102, Australia
| | - Luke W. Garratt
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Crawley 6009, Australia; (S.A.M.); (C.J.S.); (D.R.L.); (E.N.S.); (K.-M.L.); (S.M.S.); (A.K.)
- Correspondence:
| | | | | |
Collapse
|
8
|
Melo AM, Poester VR, Canabarro PL, Sampaio DA, Stevens DA, Veríssimo C, Sabino R, Xavier MO. Molecular epidemiology of aspergillosis in Magellanic penguins and susceptibility patterns of clinical isolates. Med Mycol 2021; 59:1076-1084. [PMID: 34320182 DOI: 10.1093/mmy/myab040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/14/2021] [Indexed: 11/14/2022] Open
Abstract
Aspergillus section Fumigati is reported in up to 99% of aspergillosis cases in penguins. So far, no data regarding molecular epidemiology and azole resistance are available for A. fumigatus isolates collected from Magellanic penguins. The aim of this work was to perform molecular identification of Aspergillus section Fumigati at species level, to genotype those isolates using microsatellite markers, to evaluate the in vitro susceptibility patterns of A. fumigatus sensu stricto, and to characterize the cyp51A gene in clinical A. fumigatus strains isolated from Magellanic penguins with proven aspergillosis. All 34 isolates included in the study were identified as A. fumigatus sensu stricto. Analyzing the genetic diversity of the isolates of A. fumigatus sensu stricto, we identified two possible outbreaks in the rehabilitation center and we also observed the maintenance of clonal strains through the years. One A. fumigatus sensu stricto isolate was resistant to posaconazole, but the mutations found in the cyp51A gene of this isolate have not been described as conferring phenotypic resistance, suggesting that other mechanisms of resistance could be involved in the resistance of this isolate. With this study we were able to understand the molecular diversity of Aspergillus fumigatus isolates collected from Magellanic penguins, to characterize them and to associate them with the described global population of Aspergillus fumigatus.
Collapse
Affiliation(s)
- Aryse Martins Melo
- Microbiology and Parasitology Post-Graduate Program, Institute of Biology, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil.,National Institute of Health, Dr. Ricardo Jorge, Av. Padre Cruz, 1649-016, Lisbon, Portugal
| | - Vanice Rodrigues Poester
- Health Sciences Post-Graduation Program, Medical College, Federal University of Rio Grande, Rio Grande, Rio Grande do Sul, Brazil
| | - Paula Lima Canabarro
- Rehabilitation Center for Marine Animals, Federal University of Rio Grande (CRAM-FURG), Rio Grande, Rio Grande do Sul, Brazil
| | - Daniel Ataíde Sampaio
- Technology and Innovation Unit, Department of Human Genetics, National Institute of Health, Lisbon, Portugal
| | - David A Stevens
- Division of Infectious Diseases and Geographic Medicine, Stanford University Medical School, Stanford, California, USA.,California Institute for Medical Research, San Jose, California, USA
| | - Cristina Veríssimo
- National Institute of Health, Dr. Ricardo Jorge, Av. Padre Cruz, 1649-016, Lisbon, Portugal
| | - Raquel Sabino
- National Institute of Health, Dr. Ricardo Jorge, Av. Padre Cruz, 1649-016, Lisbon, Portugal.,Instituto de Saúde Ambiental, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Melissa Orzechowski Xavier
- Microbiology and Parasitology Post-Graduate Program, Institute of Biology, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil.,Health Sciences Post-Graduation Program, Medical College, Federal University of Rio Grande, Rio Grande, Rio Grande do Sul, Brazil
| |
Collapse
|
9
|
Van Bang BN, Thanh Xuan N, Xuan Quang D, Ba Loi C, Thai Ngoc Minh N, Nhu Lam N, Ngoc Anh D, Thi Thu Hien T, Xuan Su H, Tran-Anh L. Prevalence, species distribution, and risk factors of fungal colonization and infection in patients at a burn intensive care unit in Vietnam. Curr Med Mycol 2021; 6:42-49. [PMID: 33834142 PMCID: PMC8018815 DOI: 10.18502/cmm.6.3.4664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background and Purpose : Burn patients are at a higher risk of infections caused by different organisms. This study aimed to address the prevalence, causative species, and factors related to fungal colonization or infection in patients with acute severe injuries admitted to the intensive care unit (ICU) of a burn hospital in northern Vietnam. Materials and Methods: This prospective study was conducted on 400 patients in a burn ICU between 2017 and 2019. Clinical samples were weekly collected and screened for fungi, and relevant clinical information was obtained from medical records. Results: According to the results, 90% of the patients were colonized with fungi. Out of this group, 12.75% of the cases had
invasive fungal infection (IFI). Eleven yeasts and six mold species were isolated from the patients, with the most
common species being Candida tropicalis (45.56%) and C. albicans (41.94%). Among the eleven species causing
fungal wound infection (FWI), the most common agents were Candida (66.7% of FWI patients) and Aspergillus (38.5%) species.
Three Candida species isolated from blood were C. tropicalis (66.7%), C. albicans (20.0%),
and C. parapsilosis (14.3%). No factors were found to expose the patients to a higher risk of fungal colonization.
However, hyperglycemia, prolonged ICU stay, and heavy Candida species colonization were found to be independently predictive of IFI. Conclusion: Burn patients are at the risk of fungal infection with Candida species (especially C. tropicalis)
and Aspergillus as the most frequently responsible agents. Continuous surveillance of fungi and appropriate management
of pathophysiological consequences are essential to prevent fungal infection in burn patients.
Collapse
Affiliation(s)
- Be Nguyen Van Bang
- Department of Hamatology, Toxicology, Radiation, and Occupational Diseases, Military Hospital 103, Vietnam Military Medical University, Ha Dong, Ha Noi, Vietnam
| | - Nguyen Thanh Xuan
- Department of Medical Education, Military Hospital 103, Vietnam Military Medical University, Ha Dong, Ha Noi, Vietnam
| | - Dinh Xuan Quang
- Department of Scientific and Training Management, National Institute of Malaria, Parasitology, and Entomology, Nam Tu Liem, Ha Noi, Vietnam
| | - Cao Ba Loi
- Department of Scientific and Training Management, National Institute of Malaria, Parasitology, and Entomology, Nam Tu Liem, Ha Noi, Vietnam
| | - Nguyen Thai Ngoc Minh
- Intensive Care Unit, National Hospital of Burn, Vietnam Military Medical University, Ha Dong, Ha Noi, Vietnam
| | - Nguyen Nhu Lam
- Intensive Care Unit, National Hospital of Burn, Vietnam Military Medical University, Ha Dong, Ha Noi, Vietnam
| | - Do Ngoc Anh
- Department of Parasitology, Vietnam Military Medical University, Ha Dong, Ha Noi, Vietnam
| | - Truong Thi Thu Hien
- Department of Microbiology, National Hospital of Burn, Vietnam Military Medical University, Ha Dong, Ha Noi, Vietnam
| | - Hoang Xuan Su
- Department of Microbiology and Pathogens, Institute of Biomedicine and Pharmacy, National Hospital of Burn, Vietnam Military Medical University, Ha Dong, Ha Noi, Vietnam These authors contributed equally to this work and acted as joint first authors
| | - Le Tran-Anh
- Department of Parasitology, Vietnam Military Medical University, Ha Dong, Ha Noi, Vietnam
| |
Collapse
|
10
|
Korfanty G, Stanley K, Lammers K, Fan Y, Xu J. Variations in sexual fitness among natural strains of the opportunistic human fungal pathogen Aspergillus fumigatus. INFECTION GENETICS AND EVOLUTION 2020; 87:104640. [PMID: 33246083 DOI: 10.1016/j.meegid.2020.104640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 10/05/2020] [Accepted: 11/21/2020] [Indexed: 10/22/2022]
Abstract
Aspergillus fumigatus is a ubiquitous ascomycete fungus, naturally inhabiting the soil and compost piles. Its conidia readily disperse into the atmosphere and cause opportunistic infections known as aspergillosis. With the emerging resistance to many antifungal drugs, our understanding of A. fumigatus epidemiology has become increasingly important for developing effective control and treatment strategies. As a pathogen capable of both sexual and asexual reproduction, mutations causing drug resistance and increased virulence could be spread rapidly in A. fumigatus populations. However, relatively little is known about the distributions of sexual reproductive fitness among natural strains of A. fumigatus. Here we investigated the formation of sexual reproductive structure (i.e. cleistothecia) and sexual spore viability among 60 natural strains of A. fumigatus. These strains were from six geographically distant countries (India, China, Canada, Cameroon, Saudi Arabia, and New Zealand), with 10 strains (including five MAT1-1 strains and five MAT1-2 strains) from each country. These strains were crossed in all combinations with strains of the opposite mating type. In addition, all 60 strains were crossed with either AFB62-1 (MAT1-1) or AFIR928 (MAT1-2), two reference supermater strains. Of the 900 crosses among the 60 natural strains, 136 crosses (15.1%) produced cleistothecia. Our analyses revealed that strains from China had the highest average ability to form cleistothecia, followed by those from New Zealand, Saudi Arabia, India, Canada, and Cameroon. Among the crosses that produced cleistothecia, about 40% produced viable ascospores, with the rate of ascospore germination varied significantly among crosses. Interestingly, neither the ability to form cleistothecia nor ascospore germination rate showed any distinct relationships with either geographic or genetic distance between parental strains. Our results suggest that genetic exchange among geographically and genetically divergent strains of A. fumigatus are possible. However, the rates of genetic exchange likely vary among strains and populations in nature.
Collapse
Affiliation(s)
- Greg Korfanty
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Kaitlin Stanley
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Kaitlyn Lammers
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - YuYing Fan
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
11
|
Ahangarkani F, Badali H, Abbasi K, Nabili M, Khodavaisy S, de Groot T, Meis JF. Clonal Expansion of Environmental Triazole Resistant Aspergillus fumigatus in Iran. J Fungi (Basel) 2020; 6:E199. [PMID: 33019714 PMCID: PMC7712205 DOI: 10.3390/jof6040199] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 02/08/2023] Open
Abstract
Azole-resistance in Aspergillus fumigatus is a worldwide medical concern complicating the management of aspergillosis (IA). Herein, we report the clonal spread of environmental triazole resistant A. fumigatus isolates in Iran. In this study, 63 A. fumigatus isolates were collected from 300 compost samples plated on Sabouraud dextrose agar supplemented with itraconazole (ITR) and voriconazole (VOR). Forty-four isolates had the TR34/L98H mutation and three isolates a TR46/Y121F/T289A resistance mechanism, while two isolates harbored a M172V substitution in cyp51A. Fourteen azole resistant isolates had no mutations in cyp51A. We found that 41 out of 44 A. fumigatus strains with the TR34/L98H mutation, isolated from compost in 13 different Iranian cities, shared the same allele across all nine examined microsatellite loci. Clonal expansion of triazole resistant A. fumigatus in this study emphasizes the importance of establishing antifungal resistance surveillance studies to monitor clinical Aspergillus isolates in Iran, as well as screening for azole resistance in environmental A. fumigatus isolates.
Collapse
Affiliation(s)
- Fatemeh Ahangarkani
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, 6532 SZ Nijmegen, The Netherlands; (F.A.); (T.d.G.)
- Antimicrobial Resistance Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, 4815733971 Sari, Iran
| | - Hamid Badali
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, 4815733971 Sari, Iran;
- Fungus Testing Laboratory, Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Kiana Abbasi
- Department of Microbiology, Zanjan Branch, Islamic Azad University, 4515658145 Zanjan, Iran;
| | - Mojtaba Nabili
- Department of Medical Sciences, Sari Branch, Islamic Azad University, 4815733971 Sari, Iran;
| | - Sadegh Khodavaisy
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, 1411734143 Tehran, Iran;
| | - Theun de Groot
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, 6532 SZ Nijmegen, The Netherlands; (F.A.); (T.d.G.)
| | - Jacques F. Meis
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, 6532 SZ Nijmegen, The Netherlands; (F.A.); (T.d.G.)
- ECMM Excellence Center for Medical Mycology, Centre of Expertise in Mycology Radboudumc, Canisius-Wilhelmina Hospital, 6532 SZ Nijmegen, The Netherlands
- Bioprocess Engineering and Biotechnology Graduate Program, Federal University of Paraná, 80010 Curitiba, Paraná, Brazil
| |
Collapse
|
12
|
Loeffert ST, Melloul E, Gustin MP, Hénaff L, Guillot C, Dupont D, Wallon M, Cassier P, Dananché C, Bénet T, Botterel F, Guillot J, Vanhems P. Investigation of the Relationships Between Clinical and Environmental Isolates of Aspergillus fumigatus by Multiple-locus Variable Number Tandem Repeat Analysis During Major Demolition Work in a French Hospital. Clin Infect Dis 2020; 68:321-329. [PMID: 30247539 DOI: 10.1093/cid/ciy498] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 09/17/2018] [Indexed: 01/28/2023] Open
Abstract
Background Genotyping is needed to explore the link between clinical cases from colonization of invasive aspergillosis (IA) and major building construction. Attempts to correlate Aspergillus fumigatus strains from clinical infection or colonization with those found in the environment remain controversial due to the lack of a large prospective study. Our aim in this study was to compare the genetic diversity of clinical and environmental A. fumigatus isolates during a demolition period. Methods Fungal contamination was monitored daily for 11 months in 2015. Environmental surveillance was undertaken indoors and outdoors at 8 locations with automatic agar samplers. IA infection cases were investigated according to European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group criteria. Isolates were identified by amplification and sequencing of the β- tubulin gene. They were genotyped by multiple-locus variable number tandem repeat analysis (MLVA). The phylogenetic relationships between isolates were assessed by generating a minimum spanning tree. Results Based on 3885 samples, 394 A. fumigatus isolates (383 environmental and 11 clinical) were identified and genotyped using MLVA. Clinical isolates were collected from patients diagnosed as having probable IA (n = 2), possible IA (n = 1), or bronchial colonization (n = 6). MLVA generated 234 genotypes. Seven clinical isolates shared genotypes identical to environmental isolates. Conclusions Among the diversity of genotypes described, similar genotypes were found in clinical and environmental isolates, indicating that A. fumigatus infection and colonization may originate from hospital environments.
Collapse
Affiliation(s)
- Sophie T Loeffert
- Equipe Epidémiologie et Santé Internationale, Laboratoire des Pathogènes Emergents-Fondation Mérieux, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon
| | - Elise Melloul
- EA 7380 Dynamyc, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est Créteil, Créteil
| | - Marie-Paule Gustin
- Département de Santé Publique, Institut des Sciences Pharmaceutiques et Biologiques-Faculté de Pharmacie, Université Claude Bernard Lyon 1
| | - Laetitia Hénaff
- Equipe Epidémiologie et Santé Internationale, Laboratoire des Pathogènes Emergents-Fondation Mérieux, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon
| | - Chloé Guillot
- EA 7380 Dynamyc, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est Créteil, Créteil
| | - Damien Dupont
- Institut de Parasitologie et de Mycologie Médicale, Hôpital de la Croix Rousse, Lyon
| | - Martine Wallon
- Institut de Parasitologie et de Mycologie Médicale, Hôpital de la Croix Rousse, Lyon
| | - Pierre Cassier
- Laboratoire de Biologie Sécurité Environnement, Groupement Hospitalier Centre, Hospices Civils de Lyon
| | - Cédric Dananché
- Equipe Epidémiologie et Santé Internationale, Laboratoire des Pathogènes Emergents-Fondation Mérieux, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon.,Unité d'Hygiène, Epidémiologie et Prévention, Groupement Hospitalier Centre, Hospices Civils de Lyon, France
| | - Thomas Bénet
- Unité d'Hygiène, Epidémiologie et Prévention, Groupement Hospitalier Centre, Hospices Civils de Lyon, France
| | - Françoise Botterel
- EA 7380 Dynamyc, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est Créteil, Créteil
| | - Jacques Guillot
- EA 7380 Dynamyc, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est Créteil, Créteil
| | - Philippe Vanhems
- Equipe Epidémiologie et Santé Internationale, Laboratoire des Pathogènes Emergents-Fondation Mérieux, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon.,Unité d'Hygiène, Epidémiologie et Prévention, Groupement Hospitalier Centre, Hospices Civils de Lyon, France
| |
Collapse
|
13
|
Prevention of healthcare-associated invasive aspergillosis during hospital construction/renovation works. J Hosp Infect 2019; 103:1-12. [DOI: 10.1016/j.jhin.2018.12.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 12/31/2018] [Indexed: 01/10/2023]
|
14
|
de Groot T, Meis JF. Microsatellite Stability in STR Analysis Aspergillus fumigatus Depends on Number of Repeat Units. Front Cell Infect Microbiol 2019; 9:82. [PMID: 30984630 PMCID: PMC6449440 DOI: 10.3389/fcimb.2019.00082] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/11/2019] [Indexed: 01/02/2023] Open
Abstract
More than a decade ago a short tandem repeat-based typing method was developed for the fungus Aspergillus fumigatus. This STRAf assay is based on the analysis of nine short tandem repeat markers. Interpretation of this STRAf assay is complicated when there are only one or two differences in tandem repeat markers between isolates, as the stability of these markers is unknown. To determine the stability of these nine markers, a STRAf assay was performed on 73–100 successive generations of five clonally expanded A. fumigatus isolates. In a total of 473 generations we found five times an increase of one tandem repeat unit. Three changes were found in the trinucleotide repeat marker STRAf 3A, while the other two were found in the trinucleotide repeat marker STRAf 3C. The di- or tetranucleotide repeats were not altered. The altered STRAf markers 3A and 3C demonstrated the highest number of repeat units (≥50) as compared to the other markers (≤26). Altogether, we demonstrated that 7 of 9 STRAf markers remain stable for 473 generations and that the frequency of alterations in tandem repeats is positively correlated with the number of repeats. The potential low level instability of STRAf markers 3A and 3C should be taken into account when interpreting STRAf data during an outbreak.
Collapse
Affiliation(s)
- Theun de Groot
- Department of Medical Microbiology and Infectious Diseases, Canisius Wilhelmina Hospital (CWZ), Nijmegen, Netherlands
| | - Jacques F Meis
- Department of Medical Microbiology and Infectious Diseases, Canisius Wilhelmina Hospital (CWZ), Nijmegen, Netherlands.,Centre of Expertise in Mycology, Radboudumc/CWZ, Nijmegen, Netherlands.,Department of Medical Microbiology, Radboudumc, Nijmegen, Netherlands
| |
Collapse
|
15
|
Que A–T, Nguyen NMT, Do N–A, Nguyen NL, Tran N–D, Le T–A. Infection of burn wound by Aspergillus fumigatus with gross appearance of fungal colonies. Med Mycol Case Rep 2019; 24:30-32. [PMID: 30949425 PMCID: PMC6429549 DOI: 10.1016/j.mmcr.2019.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/01/2019] [Accepted: 03/12/2019] [Indexed: 11/19/2022] Open
Abstract
The morbidity of invasive aspergillosis in burn patients is low but the diagnosis is difficult and the mortality rate is high. A severe burned patient at the Vietnam National Institute of Burn was suspected of fungal wound infection (FWI) with fungal growth on the wound. The diagnosis of FWI caused by Aspergillus fumigatus was made by isolation and histological examination. This may be the first reported case of FWI caused by Aspergillus fumigatus in Vietnam.
Collapse
Affiliation(s)
- Anh – Tram Que
- Department of Tropical Disease, Vinh Hospital of Friendship General, Lenin Boulevard, Vinh, Nghe An, Viet Nam
| | | | - Ngoc – Anh Do
- Department of Parasitology, Vietnam Military Medical University, 160 Phung Hung, Ha Dong, Ha Noi, Viet Nam
| | - Nhu-Lam Nguyen
- Intensive Care Unit, National Institute of Burn, 263 Phung Hung, Ha Dong, Ha Noi, Viet Nam
| | - Ngoc – Dung Tran
- Department of Pathology, Hospital 103, Vietnam Military Medical University, 261 Phung Hung, Ha Dong, Ha Noi, Viet Nam
| | - Tran – Anh Le
- Department of Parasitology, Vietnam Military Medical University, 160 Phung Hung, Ha Dong, Ha Noi, Viet Nam
- Corresponding author.
| |
Collapse
|
16
|
Echeverri GJ, Caicedo LA, Delgado A, Thomas LS, Garcia VH, Gomez C, Aristizabal AM, Arrunátegui AM, Rosso F. Aspergillus hepatic artery thrombosis in liver transplantation. Med Mycol Case Rep 2018; 22:27-29. [PMID: 30101055 PMCID: PMC6083899 DOI: 10.1016/j.mmcr.2018.07.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/13/2018] [Accepted: 07/17/2018] [Indexed: 02/07/2023] Open
Abstract
We present the first cirrhotic patient who underwent liver transplantation (LT) and presented a hepatic artery thrombosis of the graft due to Aspergillus fumigatus, within the first month of LT. This culminated in graft loss, re-transplant with multiple biliary and infectious complications. To our knowledge, this is a case report of an early hepatic artery thrombosis due to Aspergillus fumigatus in an infection-free patient.
Collapse
Affiliation(s)
- Gabriel J Echeverri
- Transplant Surgery Department, Fundación Valle de Lilí, Carrera 98 # 18-49, Cali 760032, Colombia.,Clinical Research Center, Fundación Valle de Lilí, Carrera 98 # 18-49, Cali 760032, Colombia.,Centre for Research on Advanced Surgery and Transplants (CICAT), Universidad Icesi, Cl. 18 #122-135, Cali 76008, Colombia
| | - Luis-Armando Caicedo
- Transplant Surgery Department, Fundación Valle de Lilí, Carrera 98 # 18-49, Cali 760032, Colombia.,Clinical Research Center, Fundación Valle de Lilí, Carrera 98 # 18-49, Cali 760032, Colombia
| | - Alejandro Delgado
- Transplant Surgery Department, Fundación Valle de Lilí, Carrera 98 # 18-49, Cali 760032, Colombia.,Clinical Research Center, Fundación Valle de Lilí, Carrera 98 # 18-49, Cali 760032, Colombia.,Centre for Research on Advanced Surgery and Transplants (CICAT), Universidad Icesi, Cl. 18 #122-135, Cali 76008, Colombia
| | - Laura-Sofia Thomas
- Transplant Surgery Department, Fundación Valle de Lilí, Carrera 98 # 18-49, Cali 760032, Colombia.,Clinical Research Center, Fundación Valle de Lilí, Carrera 98 # 18-49, Cali 760032, Colombia.,Centre for Research on Advanced Surgery and Transplants (CICAT), Universidad Icesi, Cl. 18 #122-135, Cali 76008, Colombia
| | - Victor H Garcia
- Transplant Surgery Department, Fundación Valle de Lilí, Carrera 98 # 18-49, Cali 760032, Colombia.,Clinical Research Center, Fundación Valle de Lilí, Carrera 98 # 18-49, Cali 760032, Colombia.,Centre for Research on Advanced Surgery and Transplants (CICAT), Universidad Icesi, Cl. 18 #122-135, Cali 76008, Colombia
| | - Catalina Gomez
- Transplant Surgery Department, Fundación Valle de Lilí, Carrera 98 # 18-49, Cali 760032, Colombia.,Clinical Research Center, Fundación Valle de Lilí, Carrera 98 # 18-49, Cali 760032, Colombia.,Centre for Research on Advanced Surgery and Transplants (CICAT), Universidad Icesi, Cl. 18 #122-135, Cali 76008, Colombia
| | - Ana M Aristizabal
- Transplant Surgery Department, Fundación Valle de Lilí, Carrera 98 # 18-49, Cali 760032, Colombia.,Clinical Research Center, Fundación Valle de Lilí, Carrera 98 # 18-49, Cali 760032, Colombia.,Centre for Research on Advanced Surgery and Transplants (CICAT), Universidad Icesi, Cl. 18 #122-135, Cali 76008, Colombia
| | - Ana M Arrunátegui
- Transplant Surgery Department, Fundación Valle de Lilí, Carrera 98 # 18-49, Cali 760032, Colombia.,Clinical Research Center, Fundación Valle de Lilí, Carrera 98 # 18-49, Cali 760032, Colombia.,Pathology department, Fundación Valle de Lilí, Carrera 98 # 18-49, Cali 760032, Colombia
| | - Fernando Rosso
- Transplant Surgery Department, Fundación Valle de Lilí, Carrera 98 # 18-49, Cali 760032, Colombia.,Clinical Research Center, Fundación Valle de Lilí, Carrera 98 # 18-49, Cali 760032, Colombia.,Infectious disease department, Fundación Valle de Lilí, Carrera 98 # 18-49, Cali 760032, Colombia
| |
Collapse
|
17
|
Garcia-Rubio R, Escribano P, Gomez A, Guinea J, Mellado E. Comparison of Two Highly Discriminatory Typing Methods to Analyze Aspergillus fumigatus Azole Resistance. Front Microbiol 2018; 9:1626. [PMID: 30079058 PMCID: PMC6062602 DOI: 10.3389/fmicb.2018.01626] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 06/28/2018] [Indexed: 11/24/2022] Open
Abstract
Aspergillus fumigatus molecular typing has become increasingly more important for detecting outbreaks as well as for local and global epidemiological investigations and surveillance. Over the years, many different molecular methods have been described for genotyping this species. Some outstanding approaches are based on microsatellite markers (STRAf assay, which is the current gold standard), or based on sequencing data (TRESP typing improved in this work with a new marker and was renamed TRESPERG). Both methodologies were used to type a collection of 212 A. fumigatus isolates that included 70 azole resistant strains with diverse resistance mechanisms from different geographic locations. Our results showed that both methods are totally reliable for epidemiological investigations showing similar stratification of the A. fumigatus population. STRAf assay offered higher discriminatory power (D = 0.9993) than the TRESPERG typing method (D = 0.9972), but the latter does not require specific equipment or skilled personnel, allowing for a prompt integration into any clinical microbiology laboratory. Among azole resistant isolates, two groups were differentiated considering their resistance mechanisms: cyp51A single point mutations (G54, M220, or G448), and promoter tandem repeat integrations with or without cyp51A modifications (TR34/L98H, TR46/Y121F/A289T, or TR53). The genotypic differences were assessed to explore the population structure as well as the genetic relationship between strains and their azole resistance profile. Genetic cluster analyses suggested that our A. fumigatus population was formed by 6–7 clusters, depending on the methodology. Also, the azole susceptible and resistance population showed different structure and organization. The combination of both methodologies resolved the population structure in a similar way to what has been described in whole-genome sequencing works.
Collapse
Affiliation(s)
- Rocio Garcia-Rubio
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Pilar Escribano
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Ana Gomez
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Jesus Guinea
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Department of Medicine, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Emilia Mellado
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
18
|
Ashu EE, Xu J. Strengthening the One Health Agenda: The Role of Molecular Epidemiology in Aspergillus Threat Management. Genes (Basel) 2018; 9:genes9070359. [PMID: 30029491 PMCID: PMC6071254 DOI: 10.3390/genes9070359] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/14/2018] [Accepted: 07/16/2018] [Indexed: 12/17/2022] Open
Abstract
The United Nations’ One Health initiative advocates the collaboration of multiple sectors within the global and local health authorities toward the goal of better public health management outcomes. The emerging global health threat posed by Aspergillus species is an example of a management challenge that would benefit from the One Health approach. In this paper, we explore the potential role of molecular epidemiology in Aspergillus threat management and strengthening of the One Health initiative. Effective management of Aspergillus at a public health level requires the development of rapid and accurate diagnostic tools to not only identify the infecting pathogen to species level, but also to the level of individual genotype, including drug susceptibility patterns. While a variety of molecular methods have been developed for Aspergillus diagnosis, their use at below-species level in clinical settings has been very limited, especially in resource-poor countries and regions. Here we provide a framework for Aspergillus threat management and describe how molecular epidemiology and experimental evolution methods could be used for predicting resistance through drug exposure. Our analyses highlight the need for standardization of loci and methods used for molecular diagnostics, and surveillance across Aspergillus species and geographic regions. Such standardization will enable comparisons at national and global levels and through the One Health approach, strengthen Aspergillus threat management efforts.
Collapse
Affiliation(s)
- Eta E Ashu
- Department of Biology, McMaster University, 1280 Main St. W, Hamilton, Ontario, ON L8S 4K1, Canada.
| | - Jianping Xu
- Department of Biology, McMaster University, 1280 Main St. W, Hamilton, Ontario, ON L8S 4K1, Canada.
- Public Research Laboratory, Hainan Medical University, Haikou, Hainan 571199, China.
| |
Collapse
|
19
|
Ullmann AJ, Aguado JM, Arikan-Akdagli S, Denning DW, Groll AH, Lagrou K, Lass-Flörl C, Lewis RE, Munoz P, Verweij PE, Warris A, Ader F, Akova M, Arendrup MC, Barnes RA, Beigelman-Aubry C, Blot S, Bouza E, Brüggemann RJM, Buchheidt D, Cadranel J, Castagnola E, Chakrabarti A, Cuenca-Estrella M, Dimopoulos G, Fortun J, Gangneux JP, Garbino J, Heinz WJ, Herbrecht R, Heussel CP, Kibbler CC, Klimko N, Kullberg BJ, Lange C, Lehrnbecher T, Löffler J, Lortholary O, Maertens J, Marchetti O, Meis JF, Pagano L, Ribaud P, Richardson M, Roilides E, Ruhnke M, Sanguinetti M, Sheppard DC, Sinkó J, Skiada A, Vehreschild MJGT, Viscoli C, Cornely OA. Diagnosis and management of Aspergillus diseases: executive summary of the 2017 ESCMID-ECMM-ERS guideline. Clin Microbiol Infect 2018; 24 Suppl 1:e1-e38. [PMID: 29544767 DOI: 10.1016/j.cmi.2018.01.002] [Citation(s) in RCA: 898] [Impact Index Per Article: 128.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/02/2018] [Accepted: 01/03/2018] [Indexed: 02/06/2023]
Abstract
The European Society for Clinical Microbiology and Infectious Diseases, the European Confederation of Medical Mycology and the European Respiratory Society Joint Clinical Guidelines focus on diagnosis and management of aspergillosis. Of the numerous recommendations, a few are summarized here. Chest computed tomography as well as bronchoscopy with bronchoalveolar lavage (BAL) in patients with suspicion of pulmonary invasive aspergillosis (IA) are strongly recommended. For diagnosis, direct microscopy, preferably using optical brighteners, histopathology and culture are strongly recommended. Serum and BAL galactomannan measures are recommended as markers for the diagnosis of IA. PCR should be considered in conjunction with other diagnostic tests. Pathogen identification to species complex level is strongly recommended for all clinically relevant Aspergillus isolates; antifungal susceptibility testing should be performed in patients with invasive disease in regions with resistance found in contemporary surveillance programmes. Isavuconazole and voriconazole are the preferred agents for first-line treatment of pulmonary IA, whereas liposomal amphotericin B is moderately supported. Combinations of antifungals as primary treatment options are not recommended. Therapeutic drug monitoring is strongly recommended for patients receiving posaconazole suspension or any form of voriconazole for IA treatment, and in refractory disease, where a personalized approach considering reversal of predisposing factors, switching drug class and surgical intervention is also strongly recommended. Primary prophylaxis with posaconazole is strongly recommended in patients with acute myelogenous leukaemia or myelodysplastic syndrome receiving induction chemotherapy. Secondary prophylaxis is strongly recommended in high-risk patients. We strongly recommend treatment duration based on clinical improvement, degree of immunosuppression and response on imaging.
Collapse
Affiliation(s)
- A J Ullmann
- Department of Infectious Diseases, Haematology and Oncology, University Hospital Würzburg, Würzburg, Germany; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - J M Aguado
- Infectious Diseases Unit, University Hospital Madrid, Madrid, Spain; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - S Arikan-Akdagli
- Department of Medical Microbiology, Hacettepe University Medical School, Ankara, Turkey; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - D W Denning
- The National Aspergillosis Centre, Wythenshawe Hospital, Mycology Reference Centre Manchester, Manchester University NHS Foundation Trust, ECMM Excellence Centre of Medical Mycology, Manchester, UK; The University of Manchester, Manchester, UK; Manchester Academic Health Science Centre, Manchester, UK; European Confederation of Medical Mycology (ECMM)
| | - A H Groll
- Department of Paediatric Haematology/Oncology, Centre for Bone Marrow Transplantation, University Children's Hospital Münster, Münster, Germany; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - K Lagrou
- Department of Microbiology and Immunology, ECMM Excellence Centre of Medical Mycology, University Hospital Leuven, Leuven, Belgium; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - C Lass-Flörl
- Institute of Hygiene, Microbiology and Social Medicine, ECMM Excellence Centre of Medical Mycology, Medical University Innsbruck, Innsbruck, Austria; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - R E Lewis
- Infectious Diseases Clinic, Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy; ESCMID Fungal Infection Study Group (EFISG)
| | - P Munoz
- Department of Medical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; CIBER Enfermedades Respiratorias - CIBERES (CB06/06/0058), Madrid, Spain; Medicine Department, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - P E Verweij
- Department of Medical Microbiology, Radboud University Medical Centre, Centre of Expertise in Mycology Radboudumc/CWZ, ECMM Excellence Centre of Medical Mycology, Nijmegen, Netherlands; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - A Warris
- MRC Centre for Medical Mycology, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - F Ader
- Department of Infectious Diseases, Hospices Civils de Lyon, Lyon, France; Inserm 1111, French International Centre for Infectious Diseases Research (CIRI), Université Claude Bernard Lyon 1, Lyon, France; European Respiratory Society (ERS)
| | - M Akova
- Department of Medicine, Section of Infectious Diseases, Hacettepe University Medical School, Ankara, Turkey; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - M C Arendrup
- Department Microbiological Surveillance and Research, Statens Serum Institute, Copenhagen, Denmark; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - R A Barnes
- Department of Medical Microbiology and Infectious Diseases, Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK; European Confederation of Medical Mycology (ECMM)
| | - C Beigelman-Aubry
- Department of Diagnostic and Interventional Radiology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland; European Respiratory Society (ERS)
| | - S Blot
- Department of Internal Medicine, Ghent University, Ghent, Belgium; Burns, Trauma and Critical Care Research Centre, University of Queensland, Brisbane, Australia; European Respiratory Society (ERS)
| | - E Bouza
- Department of Medical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; CIBER Enfermedades Respiratorias - CIBERES (CB06/06/0058), Madrid, Spain; Medicine Department, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - R J M Brüggemann
- Radboud Centre for Infectious Diseases, Radboud University Medical Centre, Centre of Expertise in Mycology Radboudumc/CWZ, ECMM Excellence Centre of Medical Mycology, Nijmegen, Netherlands; ESCMID Fungal Infection Study Group (EFISG)
| | - D Buchheidt
- Medical Clinic III, University Hospital Mannheim, Mannheim, Germany; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - J Cadranel
- Department of Pneumology, University Hospital of Tenon and Sorbonne, University of Paris, Paris, France; European Respiratory Society (ERS)
| | - E Castagnola
- Infectious Diseases Unit, Istituto Giannina Gaslini Children's Hospital, Genoa, Italy; ESCMID Fungal Infection Study Group (EFISG)
| | - A Chakrabarti
- Department of Medical Microbiology, Postgraduate Institute of Medical Education & Research, Chandigarh, India; European Confederation of Medical Mycology (ECMM)
| | - M Cuenca-Estrella
- Instituto de Salud Carlos III, Madrid, Spain; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - G Dimopoulos
- Department of Critical Care Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece; European Respiratory Society (ERS)
| | - J Fortun
- Infectious Diseases Service, Ramón y Cajal Hospital, Madrid, Spain; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - J-P Gangneux
- Univ Rennes, CHU Rennes, Inserm, Irset (Institut de Recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - J Garbino
- Division of Infectious Diseases, University Hospital of Geneva, Geneva, Switzerland; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - W J Heinz
- Department of Infectious Diseases, Haematology and Oncology, University Hospital Würzburg, Würzburg, Germany; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - R Herbrecht
- Department of Haematology and Oncology, University Hospital of Strasbourg, Strasbourg, France; ESCMID Fungal Infection Study Group (EFISG)
| | - C P Heussel
- Diagnostic and Interventional Radiology, Thoracic Clinic, University Hospital Heidelberg, Heidelberg, Germany; European Confederation of Medical Mycology (ECMM)
| | - C C Kibbler
- Centre for Medical Microbiology, University College London, London, UK; European Confederation of Medical Mycology (ECMM)
| | - N Klimko
- Department of Clinical Mycology, Allergy and Immunology, North Western State Medical University, St Petersburg, Russia; European Confederation of Medical Mycology (ECMM)
| | - B J Kullberg
- Radboud Centre for Infectious Diseases, Radboud University Medical Centre, Centre of Expertise in Mycology Radboudumc/CWZ, ECMM Excellence Centre of Medical Mycology, Nijmegen, Netherlands; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - C Lange
- International Health and Infectious Diseases, University of Lübeck, Lübeck, Germany; Clinical Infectious Diseases, Research Centre Borstel, Leibniz Center for Medicine & Biosciences, Borstel, Germany; German Centre for Infection Research (DZIF), Tuberculosis Unit, Hamburg-Lübeck-Borstel-Riems Site, Lübeck, Germany; European Respiratory Society (ERS)
| | - T Lehrnbecher
- Division of Paediatric Haematology and Oncology, Hospital for Children and Adolescents, Johann Wolfgang Goethe-University, Frankfurt, Germany; European Confederation of Medical Mycology (ECMM)
| | - J Löffler
- Department of Infectious Diseases, Haematology and Oncology, University Hospital Würzburg, Würzburg, Germany; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - O Lortholary
- Department of Infectious and Tropical Diseases, Children's Hospital, University of Paris, Paris, France; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - J Maertens
- Department of Haematology, ECMM Excellence Centre of Medical Mycology, University Hospital Leuven, Leuven, Belgium; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - O Marchetti
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland; Department of Medicine, Ensemble Hospitalier de la Côte, Morges, Switzerland; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - J F Meis
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Centre of Expertise in Mycology Radboudumc/CWZ, ECMM Excellence Centre of Medical Mycology, Nijmegen, Netherlands; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - L Pagano
- Department of Haematology, Universita Cattolica del Sacro Cuore, Roma, Italy; European Confederation of Medical Mycology (ECMM)
| | - P Ribaud
- Quality Unit, Pôle Prébloc, Saint-Louis and Lariboisière Hospital Group, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - M Richardson
- The National Aspergillosis Centre, Wythenshawe Hospital, Mycology Reference Centre Manchester, Manchester University NHS Foundation Trust, ECMM Excellence Centre of Medical Mycology, Manchester, UK; The University of Manchester, Manchester, UK; Manchester Academic Health Science Centre, Manchester, UK; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - E Roilides
- Infectious Diseases Unit, 3rd Department of Paediatrics, Faculty of Medicine, Aristotle University School of Health Sciences, Thessaloniki, Greece; Hippokration General Hospital, Thessaloniki, Greece; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - M Ruhnke
- Department of Haematology and Oncology, Paracelsus Hospital, Osnabrück, Germany; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - M Sanguinetti
- Institute of Microbiology, Fondazione Policlinico Universitario A. Gemelli - Università Cattolica del Sacro Cuore, Rome, Italy; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - D C Sheppard
- Division of Infectious Diseases, Department of Medicine, Microbiology and Immunology, McGill University, Montreal, Canada; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - J Sinkó
- Department of Haematology and Stem Cell Transplantation, Szent István and Szent László Hospital, Budapest, Hungary; ESCMID Fungal Infection Study Group (EFISG)
| | - A Skiada
- First Department of Medicine, Laiko Hospital, National and Kapodistrian University of Athens, Athens, Greece; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - M J G T Vehreschild
- Department I of Internal Medicine, ECMM Excellence Centre of Medical Mycology, University Hospital of Cologne, Cologne, Germany; Centre for Integrated Oncology, Cologne-Bonn, University of Cologne, Cologne, Germany; German Centre for Infection Research (DZIF) partner site Bonn-Cologne, Cologne, Germany; European Confederation of Medical Mycology (ECMM)
| | - C Viscoli
- Ospedale Policlinico San Martino and University of Genova (DISSAL), Genova, Italy; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - O A Cornely
- First Department of Medicine, Laiko Hospital, National and Kapodistrian University of Athens, Athens, Greece; German Centre for Infection Research (DZIF) partner site Bonn-Cologne, Cologne, Germany; CECAD Cluster of Excellence, University of Cologne, Cologne, Germany; Clinical Trials Center Cologne, University Hospital of Cologne, Cologne, Germany; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM); ESCMID European Study Group for Infections in Compromised Hosts (ESGICH).
| |
Collapse
|
20
|
Elevated MIC Values of Imidazole Drugs against Aspergillus fumigatus Isolates with TR 34/L98H/S297T/F495I Mutation. Antimicrob Agents Chemother 2018; 62:AAC.01549-17. [PMID: 29507067 DOI: 10.1128/aac.01549-17] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 02/25/2018] [Indexed: 11/20/2022] Open
Abstract
The use of azole fungicides in agriculture is believed to be one of the main reasons for the emergence of azole resistance in Aspergillus fumigatus Though widely used in agriculture, imidazole fungicides have not been linked to resistance in A. fumigatus This study showed that elevated MIC values of imidazole drugs were observed against A. fumigatus isolates with TR34/L98H/S297T/F495I mutation, but not among isolates with TR34/L98H mutation. Short-tandem-repeat (STR) typing analysis of 580 A. fumigatus isolates from 20 countries suggested that the majority of TR34/L98H/S297T/F495I strains from China were genetically different from the predominant major clade comprising most of the azole-resistant strains and the strains with the same mutation from the Netherlands and Denmark. Alignments of sterol 14α-demethylase sequences suggested that F495I in A. fumigatus was orthologous to F506I in Penicillium digitatum and F489L in Pyrenophora teres, which have been reported to be associated with imidazole resistance. In vitro antifungal susceptibility testing of different recombinants with cyp51A mutations further confirmed the association of the F495I mutation with imidazole resistance. In conclusion, this study suggested that environmental use of imidazole fungicides might confer selection pressure for the emergence of azole resistance in A. fumigatus.
Collapse
|
21
|
Brandão IDSL, Oliveira-Moraes HMDS, Souza Motta CMD, Oliveira NTD, Magalhães OMC. Elastin increases biofilm and extracellular matrix production of Aspergillus fumigatus. Braz J Microbiol 2018; 49:675-682. [PMID: 29452851 PMCID: PMC6066782 DOI: 10.1016/j.bjm.2017.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 09/23/2017] [Accepted: 10/02/2017] [Indexed: 11/18/2022] Open
Abstract
Aspergillus fumigatus is an opportunistic saprobe fungus that accounts for 90% of cases of pulmonary aspergillosis in immunosuppressed patients and is known for its angiotropism. When it reaches the respiratory tract, A. fumigatus interacts with structural components and blood vessels of the lungs, such as elastin. To understand the effect of this structural component, we examined the effect of elastin on the production and development of the biofilm of A. fumigatus. In RPMI containing 10 mg/mL of elastin, a significant increase (absorbance p < 0.0001; dry weight p < 0.0001) in the production of biofilm was observed in comparison to when RPMI was used alone, reaching a maximum growth of 18.8 mg (dry weight) of biofilm in 72 h. In addition, elastin stimulates the production (p = 0.0042) of extracellular matrix (ECM) and decreases (p = 0.005) the hydrophobicity during the development of the biofilm. These results suggest that elastin plays an important role in the growth of A. fumigatus and that it participates in the formation of thick biofilm.
Collapse
Affiliation(s)
- Ildnay de Souza Lima Brandão
- Universidade Federal de Pernambuco, Centro de Ciências Biológicas, Departamento de Micologia, Cidade Universitária, PE, Brazil
| | | | - Cristina Maria de Souza Motta
- Universidade Federal de Pernambuco, Centro de Ciências Biológicas, Departamento de Micologia, Pernambuco, PE, Brazil
| | - Neiva Tinti de Oliveira
- Universidade Federal de Pernambuco, Centro de Ciências Biológicas, Departamento de Micologia, Pernambuco, PE, Brazil
| | - Oliane Maria Correia Magalhães
- Universidade Federal de Pernambuco, Centro de Ciências Biológicas, Departamento de Micologia, Cidade Universitária, PE, Brazil.
| |
Collapse
|
22
|
Loeffert ST, Melloul E, Dananché C, Hénaff L, Bénet T, Cassier P, Dupont D, Guillot J, Botterel F, Wallon M, Gustin MP, Vanhems P. Monitoring of clinical strains and environmental fungal aerocontamination to prevent invasive aspergillosis infections in hospital during large deconstruction work: a protocol study. BMJ Open 2017; 7:e018109. [PMID: 29175886 PMCID: PMC5719317 DOI: 10.1136/bmjopen-2017-018109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
INTRODUCTION Monitoring fungal aerocontamination is an essential measure to prevent severe invasive aspergillosis (IA) infections in hospitals. One central block among 32 blocks of Edouard Herriot Hospital (EHH) was entirely demolished in 2015, while care activities continued in surrounding blocks. The main objective was to undertake broad environmental monitoring and clinical surveillance of IA cases to document fungal dispersion during major deconstruction work and to assess clinical risk. METHODS AND ANALYSIS A daily environmental survey of fungal loads was conducted in eight wards located near the demolition site. Air was collected inside and outside selected wards by agar impact samplers. Daily spore concentrations were monitored continuously by volumetric samplers at a flow rate of 10 L.min-1. Daily temperature, wind direction and speed as well as relative humidity were recorded by the French meteorological station Meteociel. Aspergillus fumigatus strains stored will be genotyped by multiple-locus, variable-number, tandem-repeat analysis. Antifungal susceptibility will be assessed by E-test strips on Roswell Park Memorial Institute medium supplemented with agar. Ascertaining the adequacy of current environmental monitoring techniques in hospital is of growing importance, considering the rising impact of fungal infections and of curative antifungal costs. The present study could improve the daily management of IA risk during major deconstruction work and generate new data to ameliorate and redefine current guidelines. ETHICS AND DISSEMINATION This study was approved by the clinical research and ethics committees of EHH.
Collapse
Affiliation(s)
- Sophie Tiphaine Loeffert
- Laboratoire des Pathogènes Emergents-Fondation Mérieux, Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, Lyon, France
| | - Elise Melloul
- EA 7380 Dynamyc, EnvA, UPEC, Université Paris Est, Créteil, France
| | - Cédric Dananché
- Laboratoire des Pathogènes Emergents-Fondation Mérieux, Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, Lyon, France
- Unité d'hygiène, épidémiologie et prévention, Groupement Hospitalier Centre, Hospices Civils de Lyon, Lyon, France
| | - Laetitia Hénaff
- Laboratoire des Pathogènes Emergents-Fondation Mérieux, Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, Lyon, France
| | - Thomas Bénet
- Laboratoire des Pathogènes Emergents-Fondation Mérieux, Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, Lyon, France
- Unité d'hygiène, épidémiologie et prévention, Groupement Hospitalier Centre, Hospices Civils de Lyon, Lyon, France
| | - Pierre Cassier
- Laboratoire de Biologie Sécurité Environnement, Groupement Hospitalier Centre, Hospices Civils de Lyon, Lyon, France
| | - Damien Dupont
- Institut de Parasitologie et de Mycologie Médicale, Hôpital de la Croix Rousse, Lyon, France
| | - Jacques Guillot
- EA 7380 Dynamyc, EnvA, UPEC, Université Paris Est, Créteil, France
| | | | - Martine Wallon
- Institut de Parasitologie et de Mycologie Médicale, Hôpital de la Croix Rousse, Lyon, France
| | - Marie-Paule Gustin
- Laboratoire des Pathogènes Emergents-Fondation Mérieux, Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, Lyon, France
- Département de santé Publique, Institut des Sciences Pharmaceutiques et Biologiques (ISPB)-Faculté de Pharmacie, Université de Lyon, Lyon, France
| | - Philippe Vanhems
- Laboratoire des Pathogènes Emergents-Fondation Mérieux, Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, Lyon, France
- Unité d'hygiène, épidémiologie et prévention, Groupement Hospitalier Centre, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
23
|
Falahatinejad M, Vaezi A, Fakhim H, Abastabar M, Shokohi T, Zahedi N, Ansari S, Meis JF, Badali H. Use of cell surface protein typing for genotyping of azole-resistant and -susceptible Aspergillus fumigatus isolates in Iran. Mycoses 2017; 61:143-147. [PMID: 29064130 DOI: 10.1111/myc.12717] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 09/29/2017] [Accepted: 10/11/2017] [Indexed: 11/30/2022]
Abstract
Aspergillus fumigatus is the leading cause of mortality in severely immunocompromised individuals. Understanding pathogen dispersion and relatedness is essential for determining the epidemiology of nosocomial infections. Therefore, the aim of this study was to investigate the diversity and putative origins of clinical and environmental azole-susceptible and -resistant A. fumigatus isolates from Iran. In all, 79 isolates, including 64 azole-susceptible and 15 -resistant isolates, were genotyped using the cell surface protein (CSP) gene. Seven distinct repeat types (r01, r02, r03, r04, r05, r06 and r07) and 11 different CSP variants (t01, t02, t03, t04A, t06A, t06B, t08, t10, t18A, t18B and t22) were observed. Interestingly, t06B, t18A and t18B were exclusively present in azole-resistant isolates. The Simpson's index of diversity (D) was calculated at 0.78. Resistant isolates were genetically less diverse than azole-susceptible isolates. However, azole-resistant A. fumigatus without TR34 /L98H were more diverse than with TR34 /L98H. The limited CSP type diversity of the TR34 /L98H isolates versus azole-susceptible isolates suggests that repeated independent emergence of the TR34 /L98H mechanism is unlikely. It has been suggested that CSP types might have a common ancestor that developed locally and subsequently migrated worldwide.
Collapse
Affiliation(s)
- Mahsa Falahatinejad
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Afsane Vaezi
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Medical Mycology and Parasitology/Invasive Fungi Research Center (IFRC), School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hamed Fakhim
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.,Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Mahdi Abastabar
- Department of Medical Mycology and Parasitology/Invasive Fungi Research Center (IFRC), School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Tahereh Shokohi
- Department of Medical Mycology and Parasitology/Invasive Fungi Research Center (IFRC), School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nina Zahedi
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saham Ansari
- Department of Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jacques F Meis
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital (CWZ), Nijmegen, The Netherlands.,Centre of Expertise in Mycology Radboudumc/CWZ, Nijmegen, The Netherlands
| | - Hamid Badali
- Department of Medical Mycology and Parasitology/Invasive Fungi Research Center (IFRC), School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
24
|
Global Population Genetic Analysis of Aspergillus fumigatus. mSphere 2017; 2:mSphere00019-17. [PMID: 28168221 PMCID: PMC5288565 DOI: 10.1128/msphere.00019-17] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 01/13/2017] [Indexed: 01/17/2023] Open
Abstract
The genetic diversity and geographic structure of the human fungal pathogen A. fumigatus have been the subject of many studies. However, most previous studies had relatively limited sample ranges and sizes and/or used genetic markers with low-level polymorphisms. In this paper, we characterize a global collection of strains of A. fumigatus using a panel of 9 highly polymorphic microsatellite markers. Using these markers, we analyze 2,026 isolates, which is ~3 times the number of isolates reported so far in previous studies. Our analyses suggest that A. fumigatus contains historically differentiated genetic populations but that its evolution is significantly impacted by contemporary forces such as widespread gene flow and local antifungal drug pressure. In the wake of a global rise in resistance to azoles in fungal pathogens, our findings should aid in developing management strategies to mitigate current increases to azole resistance. Aspergillus fumigatus is a ubiquitous opportunistic fungal pathogen capable of causing invasive aspergillosis, a globally distributed disease with a mortality rate of up to 90% in high-risk populations. Effective control and prevention of this disease require a thorough understanding of its epidemiology. However, despite significant efforts, the global molecular epidemiology of A. fumigatus remains poorly understood. In this study, we analyzed 2,026 A. fumigatus isolates from 13 countries in four continents using nine highly polymorphic microsatellite markers. Genetic cluster analyses suggest that our global sample of A. fumigatus isolates belonged to eight genetic clusters, with seven of the eight clusters showing broad geographic distributions. We found common signatures of sexual recombination within individual genetic clusters and clear evidence of hybridization between several clusters. Limited but statistically significant genetic differentiations were found among geographic and ecological populations. However, there was abundant evidence for gene flow at the local, regional, and global scales. Interestingly, the triazole-susceptible and triazole-resistant populations showed different population structures, consistent with antifungal drug pressure playing a significant role in local adaptation. Our results suggest that global populations of A. fumigatus are shaped by historical differentiation, contemporary gene flow, sexual reproduction, and the localized antifungal drug selection that is driving clonal expansion of genotypes resistant to multiple triazole drugs. IMPORTANCE The genetic diversity and geographic structure of the human fungal pathogen A. fumigatus have been the subject of many studies. However, most previous studies had relatively limited sample ranges and sizes and/or used genetic markers with low-level polymorphisms. In this paper, we characterize a global collection of strains of A. fumigatus using a panel of 9 highly polymorphic microsatellite markers. Using these markers, we analyze 2,026 isolates, which is ~3 times the number of isolates reported so far in previous studies. Our analyses suggest that A. fumigatus contains historically differentiated genetic populations but that its evolution is significantly impacted by contemporary forces such as widespread gene flow and local antifungal drug pressure. In the wake of a global rise in resistance to azoles in fungal pathogens, our findings should aid in developing management strategies to mitigate current increases to azole resistance.
Collapse
|
25
|
Genotyping of Aspergillus fumigatus Reveals Compartmentalization of Genotypes in Disseminated Disease after Invasive Pulmonary Aspergillosis. J Clin Microbiol 2016; 55:331-333. [PMID: 27795351 DOI: 10.1128/jcm.02037-16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
26
|
Etienne KA, Roe CC, Smith RM, Vallabhaneni S, Duarte C, Escadon P, Castaneda E, Gomez BL, de Bedout C, López LF, Salas V, Hederra LM, Fernandez J, Pidal P, Hormazabel JC, Otaiza F, Vannberg FO, Gillece J, Lemmer D, Driebe EM, Englethaler DM, Litvintseva AP. Whole-Genome Sequencing to Determine Origin of Multinational Outbreak of Sarocladium kiliense Bloodstream Infections. Emerg Infect Dis 2016; 22:476-81. [PMID: 26891230 PMCID: PMC4766898 DOI: 10.3201/eid2203.151193] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Next-generation technologies and bioinformatics enabled source attribution and implementation of effective control strategies. We used whole-genome sequence typing (WGST) to investigate an outbreak of Sarocladium kiliense bloodstream infections (BSI) associated with receipt of contaminated antinausea medication among oncology patients in Colombia and Chile during 2013–2014. Twenty-five outbreak isolates (18 from patients and 7 from medication vials) and 11 control isolates unrelated to this outbreak were subjected to WGST to elucidate a source of infection. All outbreak isolates were nearly indistinguishable (<5 single-nucleotide polymorphisms), and >21,000 single-nucleotide polymorphisms were identified from unrelated control isolates, suggesting a point source for this outbreak. S. kiliense has been previously implicated in healthcare-related infections; however, the lack of available typing methods has precluded the ability to substantiate point sources. WGST for outbreak investigation caused by eukaryotic pathogens without reference genomes or existing genotyping methods enables accurate source identification to guide implementation of appropriate control and prevention measures.
Collapse
|
27
|
A New Aspergillus fumigatus Typing Method Based on Hypervariable Tandem Repeats Located within Exons of Surface Protein Coding Genes (TRESP). PLoS One 2016; 11:e0163869. [PMID: 27701437 PMCID: PMC5049851 DOI: 10.1371/journal.pone.0163869] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 09/15/2016] [Indexed: 11/19/2022] Open
Abstract
Aspergillus fumigatus is a saprotrophic mold fungus ubiquitously found in the environment and is the most common species causing invasive aspergillosis in immunocompromised individuals. For A. fumigatus genotyping, the short tandem repeat method (STRAf) is widely accepted as the first choice. However, difficulties associated with PCR product size and required technology have encouraged the development of novel typing techniques. In this study, a new genotyping method based on hypervariable tandem repeats within exons of surface protein coding genes (TRESP) was designed. A. fumigatus isolates were characterized by PCR amplification and sequencing with a panel of three TRESP encoding genes: cell surface protein A; MP-2 antigenic galactomannan protein; and hypothetical protein with a CFEM domain. The allele sequence repeats of each of the three targets were combined to assign a specific genotype. For the evaluation of this method, 126 unrelated A. fumigatus strains were analyzed and 96 different genotypes were identified, showing a high level of discrimination [Simpson’s index of diversity (D) 0.994]. In addition, 49 azole resistant strains were analyzed identifying 26 genotypes and showing a lower D value (0.890) among them. This value could indicate that these resistant strains are closely related and share a common origin, although more studies are needed to confirm this hypothesis. In summary, a novel genotyping method for A. fumigatus has been developed which is reproducible, easy to perform, highly discriminatory and could be especially useful for studying outbreaks.
Collapse
|
28
|
Azole-resistant Aspergillus fumigatus in Denmark: a laboratory-based study on resistance mechanisms and genotypes. Clin Microbiol Infect 2016; 22:570.e1-9. [PMID: 27091095 DOI: 10.1016/j.cmi.2016.04.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/28/2016] [Accepted: 04/05/2016] [Indexed: 11/22/2022]
Abstract
Azole-resistant Aspergillus fumigatus originating from the environment as well as induced during therapy are continuously emerging in Danish clinical settings. We performed a laboratory-based retrospective study (2010-2014) of azole resistance and genetic relationship of A. fumigatus at the national mycology reference laboratory of Denmark. A total of 1162 clinical and 133 environmental A. fumigatus isolates were identified by morphology, thermotolerance and/or β-tubulin sequencing. Screening for azole resistance was carried out using azole agar, and resistant isolates were susceptibility tested by the EUCAST (European Committee on Antimicrobial Susceptibility Testing) E.Def 9.2 reference method and CYP51A sequenced. Genotyping was performed for outbreak investigation and, when appropriate, short tandem repeat Aspergillus fumigatus microsatellite assay. All 133 environmental A. fumigatus isolates were azole susceptible. However, from 2010 to 2014, there was an increasing prevalence of azole resistance (from 1.4 to 6% isolates (p <0.001) and 1.8 to 4% patients (p <0.05)) among the clinical isolates, with the well-known environmental CYP51A variant TR34/L98H responsible for >50% of the azole resistance mechanisms. Among 184 Danish A. fumigatus isolates, 120 unique genotypes were identified and compared to a collection of 1822 international genotypes. Seven (5.8%) Danish genotypes were shared between isolates within Denmark but with different origin, 19 (15.8%) were shared with foreign genotypes, and two (11.8%) of 17 genotypes of isolates carrying the TR34/L98H resistance mechanisms were identical to two Dutch TR34/L98H isolates. Our findings underlines the demand for correct identification and susceptibility testing of clinical mould isolates. Furthermore, although complex, genotyping supported the hypotheses regarding clonal expansion and the potential of a single origin for the TR34/L98H clone.
Collapse
|
29
|
Aliyali M, Badali H, Shokohi T, Moazeni M, Nosrati A, Godazandeh G, Dolatabadi S, Nabili M. Coinfection of Pulmonary Hydatid Cyst and Aspergilloma: Case Report and Systematic Review. Mycopathologia 2015; 181:255-65. [DOI: 10.1007/s11046-015-9974-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 11/26/2015] [Indexed: 12/28/2022]
|
30
|
Bonnal C, Leleu C, Brugière O, Chochillon C, Porcher R, Boelle PY, Menotti J, Houze S, Lucet JC, Derouin F. Relationship between Fungal Colonisation of the Respiratory Tract in Lung Transplant Recipients and Fungal Contamination of the Hospital Environment. PLoS One 2015; 10:e0144044. [PMID: 26629994 PMCID: PMC4667873 DOI: 10.1371/journal.pone.0144044] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 11/12/2015] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Aspergillus colonisation is frequently reported after lung transplantation. The question of whether aspergillus colonisation is related to the hospital environment is crucial to prevention. METHOD To elucidate this question, a prospective study of aspergillus colonisation after lung transplantation, along with a mycological survey of the patient environment, was performed. RESULTS Forty-four consecutive patients were included from the day of lung transplantation and then examined weekly for aspergillus colonisation until hospital discharge. Environmental fungal contamination of each patient was followed weekly via air and surface sampling. Twelve patients (27%) had transient aspergillus colonisation, occurring 1-13 weeks after lung transplantation, without associated manifestation of aspergillosis. Responsible Aspergillus species were A. fumigatus (6), A. niger (3), A. sydowii (1), A. calidoustus (1) and Aspergillus sp. (1). In the environment, contamination by Penicillium and Aspergillus was predominant. Multivariate analysis showed a significant association between occurrence of aspergillus colonisation and fungal contamination of the patient's room, either by Aspergillus spp. in the air or by A.fumigatus on the floor. Related clinical and environmental isolates were genotyped in 9 cases of aspergillus colonisation. For A. fumigatus (4 cases), two identical microsatellite profiles were found between clinical and environmental isolates collected on distant dates or locations. For other Aspergillus species, isolates were different in 2 cases; in 3 cases of aspergillus colonisation by A. sydowii, A. niger and A. calidoustus, similarity between clinical and environmental internal transcribed spacer and tubulin sequences was >99%. CONCLUSION Taken together, these results support the hypothesis of environmental risk of hospital acquisition of aspergillus colonisation in lung transplant recipients.
Collapse
Affiliation(s)
- Christine Bonnal
- AP-HP, Bichat-Claude Bernard Hospital, Infection Control Unit, F-75018, Paris, France
| | - Christopher Leleu
- University Paris Diderot, Sorbonne Paris Cité, Paris, France
- University Pierre et Marie Curie-Paris 6, Paris, France
| | - Olivier Brugière
- AP-HP, Service de Pneumologie B, Unité de Transplantation Pulmonaire, Centre Hospitalier Universitaire Bichat-Claude Bernard, Paris, France
| | - Christian Chochillon
- AP-HP, Laboratory of Parasitology and Mycology, Bichat-Claude Bernard University Hospital, Paris, France
| | - Raphael Porcher
- Centre de Recherche Epidémiologie et Statistique Sorbonne Paris Cité, UMR 1153, Inserm, Université Paris Descartes, Paris, France
| | - Pierre-Yves Boelle
- University Paris Diderot, Sorbonne Paris Cité, Paris, France
- INSERM, Institut Pierre Louis d’Epidémiologie et de Santé Publique–U1136, Paris, France
| | - Jean Menotti
- AP-HP, Bichat-Claude Bernard Hospital, Infection Control Unit, F-75018, Paris, France
- AP-HP, Laboratory of Parasitology and Mycology, Saint-Louis University Hospital, Paris, France
| | - Sandrine Houze
- AP-HP, Laboratory of Parasitology and Mycology, Bichat-Claude Bernard University Hospital, Paris, France
- UMR 216, Mère et enfants face aux infections tropicales, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Paris, France
| | - Jean-Christophe Lucet
- University Pierre et Marie Curie-Paris 6, Paris, France
- Paris Diderot University, IAME, UMR 1137, F-75018 Paris, France
| | - Francis Derouin
- AP-HP, Bichat-Claude Bernard Hospital, Infection Control Unit, F-75018, Paris, France
- AP-HP, Laboratory of Parasitology and Mycology, Saint-Louis University Hospital, Paris, France
| |
Collapse
|
31
|
Hadrich I, Ranque S. Typing of Fungi in an Outbreak Setting: Lessons Learned. CURRENT FUNGAL INFECTION REPORTS 2015. [DOI: 10.1007/s12281-015-0245-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
32
|
Ashu EE, Xu J. The roles of sexual and asexual reproduction in the origin and dissemination of strains causing fungal infectious disease outbreaks. INFECTION GENETICS AND EVOLUTION 2015; 36:199-209. [PMID: 26394109 DOI: 10.1016/j.meegid.2015.09.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/16/2015] [Accepted: 09/18/2015] [Indexed: 12/15/2022]
Abstract
Sexual reproduction commonly refers to the reproductive process in which genomes from two sources are combined into a single cell through mating and then the zygote genomes are partitioned to progeny cells through meiosis. Reproduction in the absence of mating and meiosis is referred to as asexual or clonal reproduction. One major advantage of sexual reproduction is that it generates genetic variation among progeny which may allow for faster adaptation of the population to novel and/or stressful environments. However, adaptation to stressful or new environments can still occur through mutation, in the absence of sex. In this review, we analyzed the relative contributions of sexual and asexual reproduction in the origin and spread of strains causing fungal infectious diseases outbreaks. The necessity of sex and the ability of asexual fungi to initiate outbreaks are discussed. We propose a framework that relates the modes of reproduction to the origin and propagation of fungal disease outbreaks. Our analyses suggest that both sexual and asexual reproduction can play critical roles in the origin of outbreak strains and that the rapid spread of outbreak strains is often accomplished through asexual expansion.
Collapse
Affiliation(s)
- Eta Ebasi Ashu
- Department of Biology, McMaster University, 1280 Main St. W, Hamilton, ON L8S 4K1, Canada
| | - Jianping Xu
- Department of Biology, McMaster University, 1280 Main St. W, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
33
|
Bernhardt A, Seibold M, Rickerts V, Tintelnot K. Cluster analysis of Scedosporium boydii infections in a single hospital. Int J Med Microbiol 2015; 305:724-8. [PMID: 26330287 DOI: 10.1016/j.ijmm.2015.08.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Scedosporiosis is a rare, but often fatal mycotic infection occurring in immunosuppressed as well as in immunocompetent patients. Over a period of 14 months, Scedosporium boydii isolates were sent to our reference laboratory from six immunocompetent patients treated at a single hospital in Germany. In analogy to the EORTC/MSG criteria, four patients were classified as proven invasive scedosporiosis cases, and two patients as probable or possible cases. Of note, in five patients scedosporiosis was diagnosed between 1 and 14 months (median 5.0 months) after cardiac surgery. Despite antimycotic treatment two patients died, and three were lost for long-term follow-up. All clinical S. boydii isolates were characterized by molecular analysis using multilocus sequence typing (MLST). An identical MLST type was found in five patients who had been treated in the surgery unit, suggesting a link between these infections. The source of S. boydii has not been identified. Within an observation period of 2 years before and after this cluster of infections no further cases of scedosporiosis were reported from this hospital.
Collapse
Affiliation(s)
- Anne Bernhardt
- Robert Koch Institute, Division 16: Mycotic and Parasitic Agents and Mycobacteria, Consultant laboratory for Cryptococcosis, Scedosporiosis and Imported Systemic Mycoses, Berlin, Germany
| | - Michael Seibold
- Robert Koch Institute, Division 16: Mycotic and Parasitic Agents and Mycobacteria, Consultant laboratory for Cryptococcosis, Scedosporiosis and Imported Systemic Mycoses, Berlin, Germany
| | - Volker Rickerts
- Robert Koch Institute, Division 16: Mycotic and Parasitic Agents and Mycobacteria, Consultant laboratory for Cryptococcosis, Scedosporiosis and Imported Systemic Mycoses, Berlin, Germany
| | - Kathrin Tintelnot
- Robert Koch Institute, Division 16: Mycotic and Parasitic Agents and Mycobacteria, Consultant laboratory for Cryptococcosis, Scedosporiosis and Imported Systemic Mycoses, Berlin, Germany.
| |
Collapse
|
34
|
Affiliation(s)
- Anastasia P. Litvintseva
- Mycotic Diseases Branch, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- * E-mail:
| | - Mary E. Brandt
- Mycotic Diseases Branch, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Rajal K. Mody
- Mycotic Diseases Branch, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Shawn R. Lockhart
- Mycotic Diseases Branch, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| |
Collapse
|
35
|
|
36
|
Microsatellite (STRAf) genotyping cannot differentiate between invasive and colonizing Aspergillus fumigatus isolates. J Clin Microbiol 2014; 53:667-70. [PMID: 25411179 DOI: 10.1128/jcm.02636-14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We studied whether short tandem repeats of Aspergillus fumigatus (STRAf) can differentiate between invasive and colonizing genotypes of A. fumigatus. Of the 395 genotypes detected (n = 1,373 isolates), 50 were clusters and 24 (6% of all genotypes) involved the patients with invasive aspergillosis and those colonized with A. fumigatus, indicating that genotyping cannot discriminate between invasive and colonizing isolates.
Collapse
|
37
|
Muñoz P, Cerón I, Valerio M, Palomo J, Villa A, Eworo A, Fernández-Yáñez J, Guinea J, Bouza E. Invasive aspergillosis among heart transplant recipients: A 24-year perspective. J Heart Lung Transplant 2014; 33:278-88. [DOI: 10.1016/j.healun.2013.11.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 11/05/2013] [Accepted: 11/12/2013] [Indexed: 12/17/2022] Open
|
38
|
Alshareef F, Robson GD. Genetic and virulence variation in an environmental population of the opportunistic pathogen Aspergillus fumigatus. MICROBIOLOGY-SGM 2014; 160:742-751. [PMID: 24464798 DOI: 10.1099/mic.0.072520-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Environmental populations of the opportunistic pathogen Aspergillus fumigatus have been shown to be genotypically diverse and to contain a range of isolates with varying pathogenic potential. In this study, we combined two RAPD primers to investigate the genetic diversity of environmental isolates from Manchester collected monthly over 1 year alongside Dublin environmental isolates and clinical isolates from patients. RAPD analysis revealed a diverse genotype, but with three major clinical isolate clusters. When the pathogenicity of clinical and Dublin isolates was compared with a random selection of Manchester isolates in a Galleria mellonella larvae model, as a group, clinical isolates were significantly more pathogenic than environmental isolates. Moreover, when relative pathogenicity of individual isolates was compared, clinical isolates were the most pathogenic, Dublin isolates were the least pathogenic and Manchester isolates showed a range in pathogenicity. Overall, this suggests that the environmental population is genetically diverse, displaying a range in pathogenicity, and that the most pathogenic strains from the environment are selected during patient infection.
Collapse
Affiliation(s)
- Fadwa Alshareef
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Manchester M16 8QW, UK
| | - Geoffrey D Robson
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Manchester M16 8QW, UK
| |
Collapse
|
39
|
Caramalho R, Gusmão L, Lackner M, Amorim A, Araujo R. SNaPAfu: a novel single nucleotide polymorphism multiplex assay for aspergillus fumigatus direct detection, identification and genotyping in clinical specimens. PLoS One 2013; 8:e75968. [PMID: 24204585 PMCID: PMC3799902 DOI: 10.1371/journal.pone.0075968] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 08/16/2013] [Indexed: 12/01/2022] Open
Abstract
Objective Early diagnosis of invasive aspergillosis is essential for positive patient outcome. Likewise genotyping of fungal isolates is desirable for outbreak control in clinical setting. We designed a molecular assay that combines detection, identification, and genotyping of Aspergillus fumigatus in a single reaction. Methods To this aim we combined 20 markers in a multiplex reaction and the results were seen following mini-sequencing readings. Pure culture extracts were firstly tested. Thereafter, Aspergillus-DNA samples obtained from clinical specimens of patients with possible, probable, or proven aspergillosis according to European Organization for the Research and Treatment of Cancer/Mycoses Study Group (EORTC/MSG) criteria. Results A new set of designed primers allowed multilocus sequence typing (MLST) gene amplification in a single multiplex reaction. The newly proposed SNaPAfu assay had a specificity of 100%, a sensitivity of 89% and detection limit of 1 ITS copy/mL (∼0.5 fg genomic Aspergillus-DNA/mL). The marker A49_F was detected in 89% of clinical samples. The SNaPAfu assay was accurately performed on clinical specimens using only 1% of DNA extract (total volume 50 µL) from 1 mL of used bronchoalveolar lavage. Conclusions The first highly sensitive and specific, time- and cost-economic multiplex assay was implemented that allows detection, identification, and genotyping of A. fumigatus strains in a single amplification followed by mini-sequencing reaction. The new test is suitable to clinical routine and will improve patient management.
Collapse
Affiliation(s)
- Rita Caramalho
- Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Faculty of Sciences, University of Porto, Porto, Portugal
| | - Leonor Gusmão
- Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- DNA Diagnostic Laboratory, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Michaela Lackner
- Division of Hygiene and Medical Microbiology, Innsbruck Medical University, Innsbruck, Austria
| | - António Amorim
- Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Faculty of Sciences, University of Porto, Porto, Portugal
| | - Ricardo Araujo
- Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Faculty of Sciences, University of Porto, Porto, Portugal
- * E-mail:
| |
Collapse
|
40
|
|
41
|
Gao LJ, Sun Y, Wan Z, Li RY, Yu J. CSP typing of Chinese Aspergillus fumigatus isolates: identification of additional CSP types. Med Mycol 2013; 51:683-7. [PMID: 23506321 DOI: 10.3109/13693786.2013.770609] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cell surface protein (CSP) typing is a typing strategy that employs comparative DNA sequence analysis of the 12-mer tandem repeat region of the AFUA_3G08890 gene. The CSP typing scheme and modified nomenclature was applied to a collection of 162 clinical Aspergillus fumigatus isolates from China. A total of 16 CSP variants were observed, including five that were newly reported, indicating that phylogeographic differences may exist between the Chinese and the previously studied Australian, European and North American A. fumigatus populations. However, the most common CSP variants observed in this study are consistent with those in previous studies.
Collapse
Affiliation(s)
- Lu-Juan Gao
- Department of Dermatology, Peking University First Hospital, Research Centre for Medical Mycology, Peking University , Beijing , P. R. China
| | | | | | | | | |
Collapse
|
42
|
Pelaez T, Munoz P, Guinea J, Valerio M, Giannella M, Klaassen CHW, Bouza E. Outbreak of Invasive Aspergillosis After Major Heart Surgery Caused by Spores in the Air of the Intensive Care Unit. Clin Infect Dis 2012; 54:e24-31. [DOI: 10.1093/cid/cir771] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|