1
|
Vannachone S, Luangraj M, Dance D, Chantratita N, Saiprom N, Seng R, Tandhavanant S, Rattanavong S, Simpson A, Roberts T. Case Report: Soft tissue infection with Burkholderia thailandensis capsular variant: case report from the Lao PDR. Wellcome Open Res 2024; 9:421. [PMID: 39246519 PMCID: PMC11377925 DOI: 10.12688/wellcomeopenres.22706.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2024] [Indexed: 09/10/2024] Open
Abstract
Background Burkholderia thailandensis is an environmental bacteria closely related to Burkholderia pseudomallei that rarely causes infection in humans. Some environmental isolates have shown to express a capsular polysaccharide known as B. thailandensis capsular variant (BTCV), but human infection has not previously been reported. Although B. thailandednisis has been identified in environmental samples in Laos before, there have not been any human cases reported. Case A 44-year-old man presented to a district hospital in Laos with a short history of fever and pain in his left foot. Physical examination identified a deep soft-tissue abscess in his left foot and an elevated white blood count. A deep pus sample was taken and melioidosis was suspected from preliminary laboratory tests. The patient was initially started on cloxacillin, ceftriaxone and metronidazole, and was then changed to ceftazidime treatment following local melioidosis treatment guidelines. Laboratory methods A deep pus sample was sent to Mahosot Hospital microbiology laboratory where a mixed infection was identified including Burkholderia sp. Conventional identification tests and API 20NE were inconclusive, and the B. pseudomallei-specific latex agglutination was positive. The isolate then underwent a Burkholderia species specific PCR which identified the isolate as B. thailandensis. The isolate was sent for sequencing on the Illumina NovaSeq 6000 system and multi-locus sequence typing analysis identified the isolate had the same sequence type (ST696) as B. thailandensis E555, a strain which expresses a B. pseudomallei-like capsular polysaccharide. Conclusion This is the first report of human infection with B. thailandensis in Laos, and the first report of any human infection with the B. thailandensis capsular variant. Due to the potential for laboratory tests to incorrectly identify this bacteria, staff in endemic areas for B. thailandensis and B. pseudomallei should be aware and ensure that appropriate confirmatory methods are used to differentiate between the species.
Collapse
Affiliation(s)
- Souphaphone Vannachone
- Lao-Oxford-Mahosot Hospital Wellcome Trust Research Unit, Vientiane, Vientiane Capital, 0100, Lao People's Democratic Republic
| | - Manophab Luangraj
- Lao-Oxford-Mahosot Hospital Wellcome Trust Research Unit, Vientiane, Vientiane Capital, 0100, Lao People's Democratic Republic
| | - David Dance
- Lao-Oxford-Mahosot Hospital Wellcome Trust Research Unit, Vientiane, Vientiane Capital, 0100, Lao People's Democratic Republic
- Nuffield Department of Medicine, Centre for Tropical Medicine & Global Health, University of Oxford, Oxford, UK
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Narisara Chantratita
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Faculty of Tropical Medicine, Mahidol University, Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand
| | - Natnaree Saiprom
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Rathanin Seng
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sarunporn Tandhavanant
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sayaphet Rattanavong
- Lao-Oxford-Mahosot Hospital Wellcome Trust Research Unit, Vientiane, Vientiane Capital, 0100, Lao People's Democratic Republic
| | - Andrew Simpson
- Lao-Oxford-Mahosot Hospital Wellcome Trust Research Unit, Vientiane, Vientiane Capital, 0100, Lao People's Democratic Republic
- Nuffield Department of Medicine, Centre for Tropical Medicine & Global Health, University of Oxford, Oxford, UK
| | - Tamalee Roberts
- Lao-Oxford-Mahosot Hospital Wellcome Trust Research Unit, Vientiane, Vientiane Capital, 0100, Lao People's Democratic Republic
- Nuffield Department of Medicine, Centre for Tropical Medicine & Global Health, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Burtnick MN, Dance DAB, Vongsouvath M, Newton PN, Dittrich S, Sendouangphachanh A, Woods K, Davong V, Kenna DTD, Saiprom N, Sengyee S, Hantrakun V, Wuthiekanun V, Limmathurotsakul D, Chantratita N, Brett PJ. Identification of Burkholderia cepacia strains that express a Burkholderia pseudomallei-like capsular polysaccharide. Microbiol Spectr 2024; 12:e0332123. [PMID: 38299821 PMCID: PMC10913486 DOI: 10.1128/spectrum.03321-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/10/2023] [Indexed: 02/02/2024] Open
Abstract
Burkholderia pseudomallei and Burkholderia cepacia are Gram-negative, soil-dwelling bacteria that are found in a wide variety of environmental niches. While B. pseudomallei is the causative agent of melioidosis in humans and animals, members of the B. cepacia complex typically only cause disease in immunocompromised hosts. In this study, we report the identification of B. cepacia strains isolated from either patients or soil in Laos and Thailand that express a B. pseudomallei-like 6-deoxyheptan capsular polysaccharide (CPS). These B. cepacia strains were initially identified based on their positive reactivity in a latex agglutination assay that uses the CPS-specific monoclonal antibody (mAb) 4B11. Mass spectrometry and recA sequencing confirmed the identity of these isolates as B. cepacia (formerly genomovar I). Total carbohydrates extracted from B. cepacia cell pellets reacted with B. pseudomallei CPS-specific mAbs MCA147, 3C5, and 4C4, but did not react with the B. pseudomallei lipopolysaccharide-specific mAb Pp-PS-W. Whole genome sequencing of the B. cepacia isolates revealed the presence of genes demonstrating significant homology to those comprising the B. pseudomallei CPS biosynthetic gene cluster. Collectively, our results provide compelling evidence that B. cepacia strains expressing the same CPS as B. pseudomallei co-exist in the environment alongside B. pseudomallei. Since CPS is a target that is often used for presumptive identification of B. pseudomallei, it is possible that the occurrence of these unique B. cepacia strains may complicate the diagnosis of melioidosis.IMPORTANCEBurkholderia pseudomallei, the etiologic agent of melioidosis, is an important cause of morbidity and mortality in tropical and subtropical regions worldwide. The 6-deoxyheptan capsular polysaccharide (CPS) expressed by this bacterial pathogen is a promising target antigen that is useful for rapidly diagnosing melioidosis. Using assays incorporating CPS-specific monoclonal antibodies, we identified both clinical and environmental isolates of Burkholderia cepacia that express the same CPS antigen as B. pseudomallei. Because of this, it is important that staff working in melioidosis-endemic areas are aware that these strains co-exist in the same niches as B. pseudomallei and do not solely rely on CPS-based assays such as latex-agglutination, AMD Plus Rapid Tests, or immunofluorescence tests for the definitive identification of B. pseudomallei isolates.
Collapse
Affiliation(s)
- Mary N. Burtnick
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - David A. B. Dance
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Laos
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Manivanh Vongsouvath
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Laos
| | - Paul N. Newton
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Laos
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Sabine Dittrich
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Laos
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
- Deggendorf Institut of Technology, European Campus Rottal Inn, Pfarrkirchen, Germany
| | - Amphone Sendouangphachanh
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Laos
| | - Kate Woods
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Laos
| | - Viengmon Davong
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Laos
| | - Dervla T. D. Kenna
- Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, Public Health Microbiology Division, Specialised Microbiology & Laboratories Directorate, UK Health Security Agency, London, United Kingdom
| | - Natnaree Saiprom
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sineenart Sengyee
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Viriya Hantrakun
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Vanaporn Wuthiekanun
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Direk Limmathurotsakul
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Narisara Chantratita
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Paul J. Brett
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
3
|
Zhang JX, Xu JH, Yuan B, Wang XD, Mao XH, Wang JL, Zhang XLL, Yuan Y. Detection of Burkholderia pseudomallei with CRISPR-Cas12a based on specific sequence tags. Front Public Health 2023; 11:1153352. [PMID: 37250090 PMCID: PMC10211466 DOI: 10.3389/fpubh.2023.1153352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 04/07/2023] [Indexed: 05/31/2023] Open
Abstract
Melioidosis is a bacterial infection caused by Burkholderia pseudomallei (B. pseudomallei), posing a significant threat to public health. Rapid and accurate detection of B. pseudomallei is crucial for preventing and controlling melioidosis. However, identifying B. pseudomallei is challenging due to its high similarity to other species in the same genus. To address this issue, this study proposed a dual-target method that can specifically identify B. pseudomallei in less than 40 min. We analyzed 1722 B. pseudomallei genomes to construct large-scale pan-genomes and selected specific sequence tags in their core genomes that effectively distinguish B. pseudomallei from its closely related species. Specifically, we selected two specific tags, LC1 and LC2, which we combined with the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR associated proteins (Cas12a) system and recombinase polymerase amplification (RPA) pre-amplification. Our analysis showed that the dual-target RPA-CRISPR/Cas12a assay has a sensitivity of approximately 0.2 copies/reaction and 10 fg genomic DNA for LC1, and 2 copies/reaction and 20 fg genomic DNA for LC2. Additionally, our method can accurately and rapidly detect B. pseudomallei in human blood and moist soil samples using the specific sequence tags mentioned above. In conclusion, the dual-target RPA-CRISPR/Cas12a method is a valuable tool for the rapid and accurate identification of B. pseudomallei in clinical and environmental samples, aiding in the prevention and control of melioidosis.
Collapse
Affiliation(s)
- Jia-Xin Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jian-Hao Xu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Bing Yuan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiao-Dong Wang
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xu-hu Mao
- Department of Clinical Microbiology and Immunology, The Third Military Medical University, Chongqing, China
| | - Jing-Lin Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiang-Li-Lan Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yuan Yuan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
4
|
Wang X, Wang L, Zhu H, Wang C, Zhu X. Reliable detection of Burkholderia pseudomallei using multiple cross displacement amplification label-based biosensor. BMC Microbiol 2022; 22:72. [PMID: 35272632 PMCID: PMC8908694 DOI: 10.1186/s12866-022-02485-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/28/2022] [Indexed: 11/16/2022] Open
Abstract
Background Burkholderia pseudomallei (B. pseudomallei), as a highly pathogenic organism, causes melioidosis, which is a disease of public health importance in many tropical developing countries. Here, we present and validate a novel detection technique, termed multiple cross displacement amplification combined with nanoparticles-based lateral flow biosensor (MCDA-NB), for identifying B. pseudomallei and diagnosing melioidosis. Results B. pseudomallei-MCDA targets the TTS1 (Type III secretion system gene cluster 1) to specifically design ten MCDA primers. The nanoparticles-based biosensor (NB) can be combined with B. pseudomallei-MCDA for visually, objective, simply and rapidly reporting reaction results. The optimal amplification conditions of B. pseudomallei-MCDA were 66 °C for 30 min. Assay’s sensitivity was 100 fg of genomic DNA in the pure cultures, and the analytical specificity was 100% by the examination of 257 strains, including 228 B. pseudomallei and 29 non-B. pseudomallei. As a result, the whole detection procedure was completed within 50 min, including 15 min for genomic DNA preparation, 30 min for l MCDA reaction, and 2 min for the interpretation of the results visually by biosensor. Conclusions B. pseudomallei-MCDA assay is a rapid, sensitive and specific method for the detection of B. pseudomallei, and can be used as a potential tool for melioidosis diagnose in basic, field and clinical laboratories. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02485-2.
Collapse
Affiliation(s)
- Xiaoxia Wang
- Central & Clinical Laboratory of Sanya People's Hospital, Hainan, 572000, Sanya, P. R. China
| | - Licheng Wang
- Central & Clinical Laboratory of Sanya People's Hospital, Hainan, 572000, Sanya, P. R. China
| | - Huaxiong Zhu
- Central & Clinical Laboratory of Sanya People's Hospital, Hainan, 572000, Sanya, P. R. China
| | - Chongzhen Wang
- Central & Clinical Laboratory of Sanya People's Hospital, Hainan, 572000, Sanya, P. R. China
| | - Xiong Zhu
- Central & Clinical Laboratory of Sanya People's Hospital, Hainan, 572000, Sanya, P. R. China.
| |
Collapse
|
5
|
Nozaki Y, Ono D, Yamamoto K, Mimura K, Sasaki M, Horino A, Ohno H, Oka H. A case of renal abscess and bacteremia caused by Burkholderia pseudomallei that was first unidentifiable by matrix-assisted laser desorption ionization-time of flight mass spectrometry in a Japanese-man. J Infect Chemother 2021; 27:1653-1657. [PMID: 34147356 DOI: 10.1016/j.jiac.2021.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 10/21/2022]
Abstract
Melioidosis, an infectious disease caused by Burkholderia pseudomallei, is endemic in specific regions, including Southeast Asia and Northern Australia. In Japan, where no autochthonous has been reported to date, melioidosis is a rare infectious disease. Herein, we report a case of melioidosis in a 68-year-old Japanese man with renal abscess and bacteremia, but without pneumonia. The patient presented to our hospital and was admitted for fever and chills that have persisted for two months. It was speculated that he was infected in Thailand, where his family lives because he shuttled between Thailand and Japan. Blood cultures on admission identified Burkholderia species; however, the species was unidentifiable by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Further re-examination, including culture, loop-mediated isothermal amplification, and multiplex polymerase chain reaction methods, finally identified Burkholderia pseudomallei. We treated the patient with intravenous ceftazidime for four weeks. In addition to the antibiotics administration, puncture drainage of the renal abscess was performed, and he gradually became afebrile. Intravenous ceftazidime was switched to oral sulfamethoxazole/trimethoprim on post-admission day 32, and he was discharged. After five months of oral sulfamethoxazole/trimethoprim, no recurrence was observed one year after discharge. To diagnose melioidosis, especially in non-endemic areas, a precise and thorough understanding of its epidemiology, presentation, and identification methods is necessary.
Collapse
Affiliation(s)
- Yujin Nozaki
- Department of General Internal Medicine, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Daisuke Ono
- Department of Infectious Diseases and Infection Control, Saitama Medical Center, Saitama Medical University, Saitama, Japan.
| | - Kei Yamamoto
- Department of General Internal Medicine, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Kazuyuki Mimura
- Department of General Internal Medicine, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Masakazu Sasaki
- Department of Clinical Laboratories, Toho University Omori Medical Center, Tokyo, Japan
| | - Atsuko Horino
- Department of Bacteriology II, National Institute of Infectious Diseases, Japan
| | - Hideaki Ohno
- Department of Infectious Diseases and Infection Control, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Hideaki Oka
- Department of General Internal Medicine, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| |
Collapse
|
6
|
Gassiep I, Burnard D, Bauer MJ, Norton RE, Harris PN. Diagnosis of melioidosis: the role of molecular techniques. Future Microbiol 2021; 16:271-288. [PMID: 33595347 DOI: 10.2217/fmb-2020-0202] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Melioidosis is an emerging infectious disease with an estimated global burden of 4.64 million disability-adjusted life years per year. A major determinant related to poor disease outcomes is delay to diagnosis due to the fact that identification of the causative agent Burkholderia pseudomallei may be challenging. Over the last 25 years, advances in molecular diagnostic techniques have resulted in the potential for rapid and accurate organism detection and identification direct from clinical samples. While these methods are not yet routine in clinical practice, laboratory diagnosis of infectious diseases is transitioning to culture-independent techniques. This review article aims to evaluate molecular methods for melioidosis diagnosis direct from clinical samples and discuss current and future utility and limitations.
Collapse
Affiliation(s)
- Ian Gassiep
- University of Queensland Centre for Clinical Research, Royal Brisbane and Woman's Hospital, Herston, Queensland, 4029, Australia.,Department of Infectious Diseases, Mater Hospital Brisbane, South Brisbane, Queensland, 4101, Australia
| | - Delaney Burnard
- University of Queensland Centre for Clinical Research, Royal Brisbane and Woman's Hospital, Herston, Queensland, 4029, Australia
| | - Michelle J Bauer
- University of Queensland Centre for Clinical Research, Royal Brisbane and Woman's Hospital, Herston, Queensland, 4029, Australia
| | - Robert E Norton
- Pathology Queensland, Townsville University Hospital, Townsville, Queensland, 4814, Australia
| | - Patrick N Harris
- University of Queensland Centre for Clinical Research, Royal Brisbane and Woman's Hospital, Herston, Queensland, 4029, Australia.,Pathology Queensland, Royal Brisbane & Women's Hospital, Herston, Queensland, 4029, Australia
| |
Collapse
|
7
|
Detection and differentiation of Burkholderia species with pathogenic potential in environmental soil samples. PLoS One 2021; 16:e0245175. [PMID: 33411797 PMCID: PMC7790303 DOI: 10.1371/journal.pone.0245175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/22/2020] [Indexed: 01/12/2023] Open
Abstract
The Burkholderia pseudomallei phylogenetic cluster includes B. pseudomallei, B. mallei, B. thailandensis, B. oklahomensis, B. humptydooensis and B. singularis. Regarded as the only pathogenic members of this group, B. pseudomallei and B. mallei cause the diseases melioidosis and glanders, respectively. Additionally, variant strains of B. pseudomallei and B. thailandensis exist that include the geographically restricted B. pseudomallei that express a B. mallei-like BimA protein (BPBM), and B. thailandensis that express a B. pseudomallei-like capsular polysaccharide (BTCV). To establish a PCR-based assay for the detection of pathogenic Burkholderia species or their variants, five PCR primers were designed to amplify species-specific sequences within the bimA (Burkholderiaintracellular motility A) gene. Our multiplex PCR assay could distinguish pathogenic B. pseudomallei and BPBM from the non-pathogenic B. thailandensis and the BTCV strains. A second singleplex PCR successfully discriminated the BTCV from B. thailandensis. Apart from B. humptydooensis, specificity testing against other Burkholderia spp., as well as other Gram-negative and Gram-positive bacteria produced a negative result. The detection limit of the multiplex PCR in soil samples artificially spiked with known quantities of B. pseudomallei and B. thailandensis were 5 and 6 CFU/g soil, respectively. Furthermore, comparison between standard bacterial culture and the multiplex PCR to detect B. pseudomallei from 34 soil samples, collected from an endemic area of melioidosis, showed high sensitivity and specificity. This robust, sensitive, and specific PCR assay will be a useful tool for epidemiological study of B. pseudomallei and closely related members with pathogenic potential in soil.
Collapse
|
8
|
A Phylogeny-Informed Proteomics Approach for Species Identification within the Burkholderia cepacia Complex. J Clin Microbiol 2020; 58:JCM.01741-20. [PMID: 32878952 DOI: 10.1128/jcm.01741-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/26/2020] [Indexed: 01/17/2023] Open
Abstract
Ancestral genetic exchange between members of many important bacterial pathogen groups has resulted in phylogenetic relationships better described as networks than as bifurcating trees. In certain cases, these reticulated phylogenies have resulted in phenotypic and molecular overlap that challenges the construction of practical approaches for species identification in the clinical microbiology laboratory. Burkholderia cepacia complex (Bcc), a betaproteobacteria species group responsible for significant morbidity in persons with cystic fibrosis and chronic granulomatous disease, represents one such group where network-structured phylogeny has hampered the development of diagnostic methods for species-level discrimination. Here, we present a phylogeny-informed proteomics approach to facilitate diagnostic classification of pathogen groups with reticulated phylogenies, using Bcc as an example. Starting with a set of more than 800 Bcc and Burkholderia gladioli whole-genome assemblies, we constructed phylogenies with explicit representation of inferred interspecies recombination. Sixteen highly discriminatory peptides were chosen to distinguish B. cepacia, Burkholderia cenocepacia, Burkholderia multivorans, and B. gladioli and multiplexed into a single, rapid liquid chromatography-tandem mass spectrometry multiple reaction monitoring (LC-MS/MS MRM) assay. Testing of a blinded set of isolates containing these four Burkholderia species demonstrated 50/50 correct automatic negative calls (100% accuracy with a 95% confidence interval [CI] of 92.9 to 100%), and 70/70 correct automatic species-level positive identifications (100% accuracy with 95% CI 94.9 to 100%) after accounting for a single initial incorrect identification due to a preanalytic error, correctly identified on retesting. The approach to analysis described here is applicable to other pathogen groups for which development of diagnostic classification methods is complicated by interspecies recombination.
Collapse
|
9
|
Yip CCY, Ho CC, Chan JFW, To KKW, Chan HSY, Wong SCY, Leung KH, Fung AYF, Ng ACK, Zou Z, Tam AR, Chung TWH, Chan KH, Hung IFN, Cheng VCC, Tsang OTY, Tsui SKW, Yuen KY. Development of a Novel, Genome Subtraction-Derived, SARS-CoV-2-Specific COVID-19-nsp2 Real-Time RT-PCR Assay and Its Evaluation Using Clinical Specimens. Int J Mol Sci 2020; 21:E2574. [PMID: 32276333 PMCID: PMC7177594 DOI: 10.3390/ijms21072574] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/04/2020] [Accepted: 04/06/2020] [Indexed: 01/02/2023] Open
Abstract
The pandemic novel coronavirus infection, Coronavirus Disease 2019 (COVID-19), has affected at least 190 countries or territories, with 465,915 confirmed cases and 21,031 deaths. In a containment-based strategy, rapid, sensitive and specific testing is important in epidemiological control and clinical management. Using 96 SARS-CoV-2 and 104 non-SARS-CoV-2 coronavirus genomes and our in-house program, GolayMetaMiner, four specific regions longer than 50 nucleotides in the SARS-CoV-2 genome were identified. Primers were designed to target the longest and previously untargeted nsp2 region and optimized as a probe-free real-time reverse transcription-polymerase chain reaction (RT-PCR) assay. The new COVID-19-nsp2 assay had a limit of detection (LOD) of 1.8 TCID50/mL and did not amplify other human-pathogenic coronaviruses and respiratory viruses. Assay reproducibility in terms of cycle threshold (Cp) values was satisfactory, with the total imprecision (% CV) values well below 5%. Evaluation of the new assay using 59 clinical specimens from 14 confirmed cases showed 100% concordance with our previously developed COVID-19-RdRp/Hel reference assay. A rapid, sensitive, SARS-CoV-2-specific real-time RT-PCR assay, COVID-19-nsp2, was developed.
Collapse
Affiliation(s)
- Cyril Chik-Yan Yip
- Department of Microbiology, Queen Mary Hospital, HKSAR, Hong Kong, China; (C.C.-Y.Y.); (T.W.-H.C.); (V.C.-C.C.)
| | - Chi-Chun Ho
- Genomics and Bioinformatics Programme, The Chinese University of Hong Kong, HKSAR, Hong Kong, China;
| | - Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, HKSAR, Hong Kong, China; (J.F.-W.C.); (K.K.-W.T.); (K.-H.C.)
- Department of Microbiology, The University of Hong Kong, HKSAR, Hong Kong, China; (K.-H.L.); (A.Y.-F.F.); (A.C.-K.N.); (Z.Z.)
- Department of Clinical Microbiology and Infection, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
- Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, HKSAR, Hong Kong, China
| | - Kelvin Kai-Wang To
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, HKSAR, Hong Kong, China; (J.F.-W.C.); (K.K.-W.T.); (K.-H.C.)
- Department of Microbiology, The University of Hong Kong, HKSAR, Hong Kong, China; (K.-H.L.); (A.Y.-F.F.); (A.C.-K.N.); (Z.Z.)
- Department of Clinical Microbiology and Infection, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
- Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, HKSAR, Hong Kong, China
| | | | | | - Kit-Hang Leung
- Department of Microbiology, The University of Hong Kong, HKSAR, Hong Kong, China; (K.-H.L.); (A.Y.-F.F.); (A.C.-K.N.); (Z.Z.)
| | - Agnes Yim-Fong Fung
- Department of Microbiology, The University of Hong Kong, HKSAR, Hong Kong, China; (K.-H.L.); (A.Y.-F.F.); (A.C.-K.N.); (Z.Z.)
| | - Anthony Chin-Ki Ng
- Department of Microbiology, The University of Hong Kong, HKSAR, Hong Kong, China; (K.-H.L.); (A.Y.-F.F.); (A.C.-K.N.); (Z.Z.)
| | - Zijiao Zou
- Department of Microbiology, The University of Hong Kong, HKSAR, Hong Kong, China; (K.-H.L.); (A.Y.-F.F.); (A.C.-K.N.); (Z.Z.)
| | | | - Tom Wai-Hin Chung
- Department of Microbiology, Queen Mary Hospital, HKSAR, Hong Kong, China; (C.C.-Y.Y.); (T.W.-H.C.); (V.C.-C.C.)
| | - Kwok-Hung Chan
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, HKSAR, Hong Kong, China; (J.F.-W.C.); (K.K.-W.T.); (K.-H.C.)
- Department of Microbiology, The University of Hong Kong, HKSAR, Hong Kong, China; (K.-H.L.); (A.Y.-F.F.); (A.C.-K.N.); (Z.Z.)
- Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, HKSAR, Hong Kong, China
| | - Ivan Fan-Ngai Hung
- Department of Medicine, The University of Hong Kong, HKSAR, Hong Kong, China;
| | - Vincent Chi-Chung Cheng
- Department of Microbiology, Queen Mary Hospital, HKSAR, Hong Kong, China; (C.C.-Y.Y.); (T.W.-H.C.); (V.C.-C.C.)
| | - Owen Tak-Yin Tsang
- Department of Medicine and Geriatrics, Princess Margaret Hospital, HKSAR, Hong Kong, China;
| | - Stephen Kwok Wing Tsui
- School of Biomedical Sciences, The Chinese University of Hong Kong, HKSAR, Hong Kong, China;
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, HKSAR, Hong Kong, China; (J.F.-W.C.); (K.K.-W.T.); (K.-H.C.)
- Department of Microbiology, The University of Hong Kong, HKSAR, Hong Kong, China; (K.-H.L.); (A.Y.-F.F.); (A.C.-K.N.); (Z.Z.)
- Department of Clinical Microbiology and Infection, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
- Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, HKSAR, Hong Kong, China
| |
Collapse
|
10
|
Small Noncoding Regulatory RNAs from Pseudomonas aeruginosa and Burkholderia cepacia Complex. Int J Mol Sci 2018; 19:ijms19123759. [PMID: 30486355 PMCID: PMC6321483 DOI: 10.3390/ijms19123759] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/22/2018] [Accepted: 11/23/2018] [Indexed: 12/13/2022] Open
Abstract
Cystic fibrosis (CF) is the most life-limiting autosomal recessive disorder in Caucasians. CF is characterized by abnormal viscous secretions that impair the function of several tissues, with chronic bacterial airway infections representing the major cause of early decease of these patients. Pseudomonas aeruginosa and bacteria from the Burkholderia cepacia complex (Bcc) are the leading pathogens of CF patients’ airways. A wide array of virulence factors is responsible for the success of infections caused by these bacteria, which have tightly regulated responses to the host environment. Small noncoding RNAs (sRNAs) are major regulatory molecules in these bacteria. Several approaches have been developed to study P. aeruginosa sRNAs, many of which were characterized as being involved in the virulence. On the other hand, the knowledge on Bcc sRNAs remains far behind. The purpose of this review is to update the knowledge on characterized sRNAs involved in P. aeruginosa virulence, as well as to compile data so far achieved on sRNAs from the Bcc and their possible roles on bacteria virulence.
Collapse
|
11
|
Zimmermann RE, Ribolzi O, Pierret A, Rattanavong S, Robinson MT, Newton PN, Davong V, Auda Y, Zopfi J, Dance DAB. Rivers as carriers and potential sentinels for Burkholderia pseudomallei in Laos. Sci Rep 2018; 8:8674. [PMID: 29875361 PMCID: PMC5989208 DOI: 10.1038/s41598-018-26684-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/17/2018] [Indexed: 01/28/2023] Open
Abstract
Burkholderia pseudomallei, causative agent of the often fatal disease melioidosis, dwells in tropical soils and has been found in freshwater bodies. To investigate whether rivers are potential habitats or carriers for B. pseudomallei and to assess its geographical distribution in Laos, we studied 23 rivers including the Mekong, applying culture-based detection methods and PCR to water filters and streambed sediments. B. pseudomallei was present in 9% of the rivers in the dry season and in 57% in the rainy season. We found the pathogen exclusively in Southern and Central Laos, and mainly in turbid river water, while sediments were positive in 35% of the B. pseudomallei-positive sites. Our results provide evidence for a heterogeneous temporal and spatial distribution of B. pseudomallei in rivers in Laos with a clear north-south contrast. The seasonal dynamics and predominant occurrence of B. pseudomallei in particle-rich water suggest that this pathogen is washed out with eroded soil during periods of heavy rainfall and transported by rivers, while river sediments do not seem to be permanent habitats for B. pseudomallei. Rivers may thus be useful to assess the distribution and aquatic dispersal of B. pseudomallei and other environmental pathogens in their catchment area and beyond.
Collapse
Affiliation(s)
- Rosalie E Zimmermann
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Laos. .,Department of Environmental Sciences, University of Basel, Basel, Switzerland. .,Swiss Tropical and Public Health Institute, University of Basel, Basel, Switzerland.
| | - Olivier Ribolzi
- GET, Université de Toulouse, IRD, CNRS, UPS, Toulouse, France
| | - Alain Pierret
- iEES-Paris (IRD, Sorbonne Universités, UPMC Univ Paris 06, CNRS, INRA, UPEC, 10 Université Paris Diderot), c/o Department of Agricultural Land Management (DALaM), Vientiane, Laos
| | - Sayaphet Rattanavong
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Laos
| | - Matthew T Robinson
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Laos.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Paul N Newton
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Laos.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Viengmon Davong
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Laos
| | - Yves Auda
- GET, Université de Toulouse, IRD, CNRS, UPS, Toulouse, France
| | - Jakob Zopfi
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - David A B Dance
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Laos.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.,Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
12
|
Feau N, Beauseigle S, Bergeron MJ, Bilodeau GJ, Birol I, Cervantes-Arango S, Dhillon B, Dale AL, Herath P, Jones SJ, Lamarche J, Ojeda DI, Sakalidis ML, Taylor G, Tsui CK, Uzunovic A, Yueh H, Tanguay P, Hamelin RC. Genome-Enhanced Detection and Identification (GEDI) of plant pathogens. PeerJ 2018; 6:e4392. [PMID: 29492338 PMCID: PMC5825881 DOI: 10.7717/peerj.4392] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/29/2018] [Indexed: 12/17/2022] Open
Abstract
Plant diseases caused by fungi and Oomycetes represent worldwide threats to crops and forest ecosystems. Effective prevention and appropriate management of emerging diseases rely on rapid detection and identification of the causal pathogens. The increase in genomic resources makes it possible to generate novel genome-enhanced DNA detection assays that can exploit whole genomes to discover candidate genes for pathogen detection. A pipeline was developed to identify genome regions that discriminate taxa or groups of taxa and can be converted into PCR assays. The modular pipeline is comprised of four components: (1) selection and genome sequencing of phylogenetically related taxa, (2) identification of clusters of orthologous genes, (3) elimination of false positives by filtering, and (4) assay design. This pipeline was applied to some of the most important plant pathogens across three broad taxonomic groups: Phytophthoras (Stramenopiles, Oomycota), Dothideomycetes (Fungi, Ascomycota) and Pucciniales (Fungi, Basidiomycota). Comparison of 73 fungal and Oomycete genomes led the discovery of 5,939 gene clusters that were unique to the targeted taxa and an additional 535 that were common at higher taxonomic levels. Approximately 28% of the 299 tested were converted into qPCR assays that met our set of specificity criteria. This work demonstrates that a genome-wide approach can efficiently identify multiple taxon-specific genome regions that can be converted into highly specific PCR assays. The possibility to easily obtain multiple alternative regions to design highly specific qPCR assays should be of great help in tackling challenging cases for which higher taxon-resolution is needed.
Collapse
Affiliation(s)
- Nicolas Feau
- Department of Forest and Conservation Sciences, Forest Sciences Centre, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | - Inanc Birol
- BC Cancer agency, Genome Sciences Centre, Vancouver, BC, Canada
| | - Sandra Cervantes-Arango
- Department of Forest and Conservation Sciences, Forest Sciences Centre, University of British Columbia, Vancouver, BC, Canada
| | - Braham Dhillon
- Department of Plant Pathology, University of Arkansas at Fayetteville, Fayetteville, AR, United States of America
| | - Angela L. Dale
- Department of Forest and Conservation Sciences, Forest Sciences Centre, University of British Columbia, Vancouver, BC, Canada
- FPInnovations, Vancouver, BC, Canada
| | - Padmini Herath
- Department of Forest and Conservation Sciences, Forest Sciences Centre, University of British Columbia, Vancouver, BC, Canada
| | - Steven J.M. Jones
- BC Cancer agency, Genome Sciences Centre, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Josyanne Lamarche
- Canadian Forest Service, Natural Resources Canada, Quebec city, Quebec, Canada
| | - Dario I. Ojeda
- Department of Biology Unit of Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Monique L. Sakalidis
- Department of Plant, Soil & Microbial Sciences and Department of Forestry, Michigan State University, East Lansing, MI, United States of America
| | - Greg Taylor
- BC Cancer agency, Genome Sciences Centre, Vancouver, BC, Canada
| | - Clement K.M. Tsui
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | - Hesther Yueh
- Department of Forest and Conservation Sciences, Forest Sciences Centre, University of British Columbia, Vancouver, BC, Canada
| | - Philippe Tanguay
- Canadian Forest Service, Natural Resources Canada, Quebec city, Quebec, Canada
| | - Richard C. Hamelin
- Department of Forest and Conservation Sciences, Forest Sciences Centre, University of British Columbia, Vancouver, BC, Canada
- Foresterie et géomatique, Institut de Biologie Intégrative des Systèmes, Laval University, Quebec city, Quebec, Canada
| |
Collapse
|
13
|
Khan IUH, Cloutier M, Libby M, Lapen DR, Wilkes G, Topp E. Enhanced Single-tube Multiplex PCR Assay for Detection and Identification of Six Arcobacter Species. J Appl Microbiol 2017; 123:1522-1532. [PMID: 28960631 DOI: 10.1111/jam.13597] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 09/14/2017] [Accepted: 09/20/2017] [Indexed: 11/30/2022]
Abstract
AIM A single-tube multiplex PCR (mPCR) assay was developed for rapid, sensitive and simultaneous detection and identification of six Arcobacter species including two new species, A. lanthieri and A. faecis, along with A. butzleri, A. cibarius, A. cryaerophilus and A. skirrowii on the basis of differences in the lengths of their PCR products. Previously designed monoplex, mPCR and RFLP assays do not detect or differentiate A. faecis and A. lanthieri from other closely related known Arcobacter spp. METHODS AND RESULTS Primer pairs for each target species (except A. skirrowii) and mPCR protocol were newly designed and optimized using variable regions of housekeeping including cpn60, gyrA, gyrB and rpoB genes. The accuracy and specificity of the mPCR assay was assessed using DNA templates from six targets and 11 other Arcobacter spp. as well as 50 other bacterial reference species and strains. Tests on the DNA templates of target Arcobacter spp. were appropriately identified, whereas all 61 other DNA templates from other bacterial species and strains were not amplified. Sensitivity and specificity of the mPCR assay was 10 pg μl-1 of DNA concentration per target species. The optimized assay was further evaluated, validated and compared with other mPCR assays by testing Arcobacter cultures isolated from various faecal and water sources. CONCLUSIONS Study results confirm that the newly developed mPCR assay is rapid, accurate, reliable, simple, and valuable for the simultaneous detection and routine diagnosis of six human- and animal-associated Arcobacter spp. SIGNIFICANCE AND IMPACT OF THE STUDY The new mPCR assay is useful not only for pure but also mixed cultures. Moreover, it has the ability to rapidly detect six species which enhances the value of this technology for aetiological and epidemiological studies.
Collapse
Affiliation(s)
- I U H Khan
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - M Cloutier
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - M Libby
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - D R Lapen
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - G Wilkes
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - E Topp
- London Research and Development Centre (LRDC), Agriculture and Agri-Food Canada, London, ON, Canada
| |
Collapse
|
14
|
Zakharova I, Teteryatnikova N, Toporkov A, Viktorov D. Development of a multiplex PCR assay for the detection and differentiation of Burkholderia pseudomallei, Burkholderia mallei, Burkholderia thailandensis, and Burkholderia cepacia complex. Acta Trop 2017. [PMID: 28634144 DOI: 10.1016/j.actatropica.2017.06.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two species of Burkholderia pseudomallei complex (Bpc), B. pseudomallei and B. mallei, can cause severe life-threatening infections. Rapidly discerning individual species within the group and separating them from other opportunistic pathogens of the Burkholderia cepacia complex (Bcc) is essential to establish a correct diagnosis and for epidemiological surveillance. In this study, a multiplex PCR assay based on the detection of an individual set of chromosomal beta-lactamase genes for single-step identification and differentiation of B. pseudomallei, B. mallei, B. thailandensis, and Bcc was developed. Two pairs of primers specific to a distinct class of B metallo-beta-lactamase genes and a pair of primers specific to the oxacillin-hydrolyzing class D beta-lactamase gene were demonstrated to successfully discriminate species within Bpc and from Bcc. The assay sensitivity was 9561 genomic equivalents (GE) for B. pseudomallei, 7827 GE for B. mallei, 8749 GE for B. thailandensis and 6023 GE for B. cepacia.
Collapse
Affiliation(s)
- Irina Zakharova
- Department of Microbiology, Volgograd Plague Control Research Institute, Volgograd, 400131, Russian Federation.
| | - Natalya Teteryatnikova
- Department of Microbiology, Volgograd Plague Control Research Institute, Volgograd, 400131, Russian Federation
| | - Andrey Toporkov
- Department of Microbiology, Volgograd Plague Control Research Institute, Volgograd, 400131, Russian Federation
| | - Dmitry Viktorov
- Department of Microbiology, Volgograd Plague Control Research Institute, Volgograd, 400131, Russian Federation
| |
Collapse
|
15
|
Lowe CW, Satterfield BA, Nelson DB, Thiriot JD, Heder MJ, March JK, Drake DS, Lew CS, Bunnell AJ, Moore ES, O'Neill KL, Robison RA. A Quadruplex Real-Time PCR Assay for the Rapid Detection and Differentiation of the Most Relevant Members of the B. pseudomallei Complex: B. mallei, B. pseudomallei, and B. thailandensis. PLoS One 2016; 11:e0164006. [PMID: 27736903 PMCID: PMC5063335 DOI: 10.1371/journal.pone.0164006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 09/19/2016] [Indexed: 11/24/2022] Open
Abstract
The Burkholderia pseudomallei complex classically consisted of B. mallei, B. pseudomallei, and B. thailandensis, but has now expanded to include B. oklahomensis, B. humptydooensis, and three unassigned Burkholderia clades. Methods for detecting and differentiating the B. pseudomallei complex has been the topic of recent research due to phenotypic and genotypic similarities of these species. B. mallei and B. pseudomallei are recognized as CDC Tier 1 select agents, and are the causative agents of glanders and melioidosis, respectively. Although B. thailandensis and B. oklahomensis are generally avirulent, both display similar phenotypic characteristics to that of B. pseudomallei. B. humptydooensis and the Burkholderia clades are genetically similar to the B. pseudomallei complex, and are not associated with disease. Optimal identification of these species remains problematic, and PCR-based methods can resolve issues with B. pseudomallei complex detection and differentiation. Currently, no PCR assay is available that detects the major species of the B. pseudomallei complex. A real-time PCR assay in a multiplex single-tube format was developed to simultaneously detect and differentiate B. mallei, B. pseudomallei, and B. thailandensis, and a common sequence found in B. pseudomallei, B. mallei, B. thailandensis, and B. oklahomensis. A total of 309 Burkholderia isolates and 5 other bacterial species were evaluated. The assay was 100% sensitive and specific, demonstrated sensitivity beyond culture and GC methods for the isolates tested, and is completed in about an hour with a detection limit between 2.6pg and 48.9pg of gDNA. Bioinformatic analyses also showed the assay is likely 100% specific and sensitive for all 84 fully sequenced B. pseudomallei, B. mallei, B. thailandensis, and B. oklahomensis strains currently available in GenBank. For these reasons, this assay could be a rapid and sensitive tool in the detection and differentiation for those species of the B. pseudomallei complex with recognized clinical and practical significance.
Collapse
Affiliation(s)
- Chinn-Woan Lowe
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, 84602, United States of America
| | - Benjamin A. Satterfield
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, 84602, United States of America
| | - Daniel B. Nelson
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, 84602, United States of America
| | - Joseph D. Thiriot
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, 84602, United States of America
| | - Michael J. Heder
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, 84602, United States of America
| | - Jordon K. March
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, 84602, United States of America
| | - David S. Drake
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, 84602, United States of America
| | - Cynthia S. Lew
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, 84602, United States of America
| | - Annette J. Bunnell
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, 84602, United States of America
| | - Emily S. Moore
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, 84602, United States of America
| | - Kim L. O'Neill
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, 84602, United States of America
| | - Richard A. Robison
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, 84602, United States of America
- * E-mail:
| |
Collapse
|
16
|
Katanami Y, Kutsuna S, Horino A, Hashimoto T, Mutoh Y, Yamamoto K, Takeshita N, Hayakawa K, Kanagawa S, Kato Y, Ohmagari N. A fatal case of melioidosis with pancytopenia in a traveler from Indonesia. J Infect Chemother 2016; 23:241-244. [PMID: 27720346 DOI: 10.1016/j.jiac.2016.08.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 08/27/2016] [Accepted: 08/29/2016] [Indexed: 10/20/2022]
Abstract
Melioidosis, an infectious disease with high mortality, caused by Burkholderia pseudomallei, is endemic in southeast Asia and northern Australia. In Indonesia, autochthonous cases have been rarely reported, with most cases being sporadic and occurring in travelers. Herein, we report a fatal case of neurological melioidosis in a traveler from Indonesia presenting with septic shock.
Collapse
Affiliation(s)
- Yuichi Katanami
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Japan.
| | - Satoshi Kutsuna
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Japan
| | - Atsuko Horino
- Department of Bacterial Pathogenesis and Infection Control, National Institute of Infectious Diseases, Japan
| | - Takehiro Hashimoto
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Japan
| | - Yoshikazu Mutoh
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Japan
| | - Kei Yamamoto
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Japan
| | - Nozomi Takeshita
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Japan
| | - Kayoko Hayakawa
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Japan
| | - Shuzo Kanagawa
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Japan
| | - Yasuyuki Kato
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Japan
| | - Norio Ohmagari
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Japan
| |
Collapse
|
17
|
The Effects of Signal Erosion and Core Genome Reduction on the Identification of Diagnostic Markers. mBio 2016; 7:mBio.00846-16. [PMID: 27651357 PMCID: PMC5030356 DOI: 10.1128/mbio.00846-16] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Whole-genome sequence (WGS) data are commonly used to design diagnostic targets for the identification of bacterial pathogens. To do this effectively, genomics databases must be comprehensive to identify the strict core genome that is specific to the target pathogen. As additional genomes are analyzed, the core genome size is reduced and there is erosion of the target-specific regions due to commonality with related species, potentially resulting in the identification of false positives and/or false negatives. A comparative analysis of 1,130 Burkholderia genomes identified unique markers for many named species, including the human pathogens B. pseudomallei and B. mallei. Due to core genome reduction and signature erosion, only 38 targets specific to B. pseudomallei/mallei were identified. By using only public genomes, a larger number of markers were identified, due to undersampling, and this larger number represents the potential for false positives. This analysis has implications for the design of diagnostics for other species where the genomic space of the target and/or closely related species is not well defined.
Collapse
|
18
|
Cui Z, Ojaghian M, Tao Z, Kakar K, Zeng J, Zhao W, Duan Y, Vera Cruz C, Li B, Zhu B, Xie G. Multiplex PCR assay for simultaneous detection of six major bacterial pathogens of rice. J Appl Microbiol 2016; 120:1357-67. [DOI: 10.1111/jam.13094] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 02/04/2016] [Accepted: 02/04/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Z. Cui
- State Key Laboratory of Rice Biology; Institute of Biotechnology; Zhejiang University; Hangzhou China
| | - M.R. Ojaghian
- State Key Laboratory of Rice Biology; Institute of Biotechnology; Zhejiang University; Hangzhou China
| | - Z. Tao
- State Key Laboratory of Rice Biology; Institute of Biotechnology; Zhejiang University; Hangzhou China
| | - K.U. Kakar
- State Key Laboratory of Rice Biology; Institute of Biotechnology; Zhejiang University; Hangzhou China
| | - J. Zeng
- State Key Laboratory of Rice Biology; Institute of Biotechnology; Zhejiang University; Hangzhou China
| | - W. Zhao
- Chinese Academy of Inspection and Quarantine; Beijing China
| | - Y. Duan
- USDA-ARS-USHRL; Fort Pierce FL USA
| | - C.M. Vera Cruz
- Plant Breeding, Genetics and Biotechnology Division; International Rice Research Institute; Metro Manila Philippines
| | - B. Li
- State Key Laboratory of Rice Biology; Institute of Biotechnology; Zhejiang University; Hangzhou China
| | - B. Zhu
- State Key Laboratory of Rice Biology; Institute of Biotechnology; Zhejiang University; Hangzhou China
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation; College of Life Science; Zhejiang Sci-Tech University; Hangzhou China
| | - G. Xie
- State Key Laboratory of Rice Biology; Institute of Biotechnology; Zhejiang University; Hangzhou China
| |
Collapse
|
19
|
Lau SKP, Lee KC, Lo GCS, Ding VSY, Chow WN, Ke TYH, Curreem SOT, To KKW, Ho DTY, Sridhar S, Wong SCY, Chan JFW, Hung IFN, Sze KH, Lam CW, Yuen KY, Woo PCY. Metabolomic Profiling of Plasma from Melioidosis Patients Using UHPLC-QTOF MS Reveals Novel Biomarkers for Diagnosis. Int J Mol Sci 2016; 17:307. [PMID: 26927094 PMCID: PMC4813170 DOI: 10.3390/ijms17030307] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 02/15/2016] [Accepted: 02/22/2016] [Indexed: 12/22/2022] Open
Abstract
To identify potential biomarkers for improving diagnosis of melioidosis, we compared plasma metabolome profiles of melioidosis patients compared to patients with other bacteremia and controls without active infection, using ultra-high-performance liquid chromatography-electrospray ionization-quadruple time-of-flight mass spectrometry. Principal component analysis (PCA) showed that the metabolomic profiles of melioidosis patients are distinguishable from bacteremia patients and controls. Using multivariate and univariate analysis, 12 significant metabolites from four lipid classes, acylcarnitine (n = 6), lysophosphatidylethanolamine (LysoPE) (n = 3), sphingomyelins (SM) (n = 2) and phosphatidylcholine (PC) (n = 1), with significantly higher levels in melioidosis patients than bacteremia patients and controls, were identified. Ten of the 12 metabolites showed area-under-receiver operating characteristic curve (AUC) >0.80 when compared both between melioidosis and bacteremia patients, and between melioidosis patients and controls. SM(d18:2/16:0) possessed the largest AUC when compared, both between melioidosis and bacteremia patients (AUC 0.998, sensitivity 100% and specificity 91.7%), and between melioidosis patients and controls (AUC 1.000, sensitivity 96.7% and specificity 100%). Our results indicate that metabolome profiling might serve as a promising approach for diagnosis of melioidosis using patient plasma, with SM(d18:2/16:0) representing a potential biomarker. Since the 12 metabolites were related to various pathways for energy and lipid metabolism, further studies may reveal their possible role in the pathogenesis and host response in melioidosis.
Collapse
Affiliation(s)
- Susanna K P Lau
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong, China.
- Research Centre of Infection and Immunology, The University of Hong Kong, Pokfulam, Hong Kong, China.
- Carol Yu Centre for Infection, The University of Hong Kong, Pokfulam, Hong Kong, China.
- Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Kim-Chung Lee
- Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - George C S Lo
- Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Vanessa S Y Ding
- Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Wang-Ngai Chow
- Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Tony Y H Ke
- Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Shirly O T Curreem
- Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Kelvin K W To
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong, China.
- Research Centre of Infection and Immunology, The University of Hong Kong, Pokfulam, Hong Kong, China.
- Carol Yu Centre for Infection, The University of Hong Kong, Pokfulam, Hong Kong, China.
- Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Deborah T Y Ho
- Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Siddharth Sridhar
- Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Sally C Y Wong
- Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Jasper F W Chan
- Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Ivan F N Hung
- Research Centre of Infection and Immunology, The University of Hong Kong, Pokfulam, Hong Kong, China.
- Department of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Kong-Hung Sze
- Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Ching-Wan Lam
- Department of Pathology, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong, China.
- Research Centre of Infection and Immunology, The University of Hong Kong, Pokfulam, Hong Kong, China.
- Carol Yu Centre for Infection, The University of Hong Kong, Pokfulam, Hong Kong, China.
- Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Patrick C Y Woo
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong, China.
- Research Centre of Infection and Immunology, The University of Hong Kong, Pokfulam, Hong Kong, China.
- Carol Yu Centre for Infection, The University of Hong Kong, Pokfulam, Hong Kong, China.
- Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong, China.
| |
Collapse
|
20
|
Rouli L, Merhej V, Fournier PE, Raoult D. The bacterial pangenome as a new tool for analysing pathogenic bacteria. New Microbes New Infect 2015; 7:72-85. [PMID: 26442149 PMCID: PMC4552756 DOI: 10.1016/j.nmni.2015.06.005] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 06/16/2015] [Indexed: 01/18/2023] Open
Abstract
The bacterial pangenome was introduced in 2005 and, in recent years, has been the subject of many studies. Thanks to progress in next-generation sequencing methods, the pangenome can be divided into two parts, the core (common to the studied strains) and the accessory genome, offering a large panel of uses. In this review, we have presented the analysis methods, the pangenome composition and its application as a study of lifestyle. We have also shown that the pangenome may be used as a new tool for redefining the pathogenic species. We applied this to the Escherichia coli and Shigella species, which have been a subject of controversy regarding their taxonomic and pathogenic position. Pangenome is a new way of studying pathogenic bacteria. Pangenome can be used as a taxonomic tool. This review describes pangenome in the world of pathogenic bacteria.
Collapse
Affiliation(s)
- L Rouli
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, 13005 Marseille, France
| | - V Merhej
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, 13005 Marseille, France
| | - P-E Fournier
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, 13005 Marseille, France
| | - D Raoult
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, 13005 Marseille, France
| |
Collapse
|
21
|
Lau SKP, Lam CW, Curreem SOT, Lee KC, Chow WN, Lau CCY, Sridhar S, Wong SCY, Martelli P, Hui SW, Yuen KY, Woo PCY. Metabolomic profiling of Burkholderia pseudomallei using UHPLC-ESI-Q-TOF-MS reveals specific biomarkers including 4-methyl-5-thiazoleethanol and unique thiamine degradation pathway. Cell Biosci 2015; 5:26. [PMID: 26097677 PMCID: PMC4475313 DOI: 10.1186/s13578-015-0018-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 05/22/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Burkholderia pseudomallei is an emerging pathogen that causes melioidosis, a serious and potentially fatal disease which requires prolonged antibiotics to prevent relapse. However, diagnosis of melioidosis can be difficult, especially in culture-negative cases. While metabolomics represents an uprising tool for studying infectious diseases, there were no reports on its applications to B. pseudomallei. To search for potential specific biomarkers, we compared the metabolomics profiles of culture supernatants of B. pseudomallei (15 strains), B. thailandensis (3 strains), B. cepacia complex (14 strains), P. aeruginosa (4 strains) and E. coli (3 strains), using ultra-high performance liquid chromatography-electrospray ionization-quadruple time-of-flight mass spectrometry (UHPLC-ESI-Q-TOF-MS). Multi- and univariate analyses were used to identify specific metabolites in B. pseudomallei. RESULTS Principal component and partial-least squares discrimination analysis readily distinguished the metabolomes between B. pseudomallei and other bacterial species. Using multi-variate and univariate analysis, eight metabolites with significantly higher levels in B. pseudomallei were identified. Three of the eight metabolites were identified by MS/MS, while five metabolites were unidentified against database matching, suggesting that they may be potentially novel compounds. One metabolite, m/z 144.048, was identified as 4-methyl-5-thiazoleethanol, a degradation product of thiamine (vitamin B1), with molecular formula C6H9NOS by database searches and confirmed by MS/MS using commercially available authentic chemical standard. Two metabolites, m/z 512.282 and m/z 542.2921, were identified as tetrapeptides, Ile-His-Lys-Asp with molecular formula C22H37N7O7 and Pro-Arg-Arg-Asn with molecular formula C21H39N11O6, respectively. To investigate the high levels of 4-methyl-5-thiazoleethanol in B. pseudomallei, we compared the thiamine degradation pathways encoded in genomes of B. pseudomallei and B. thailandensis. While both B. pseudomallei and B. thailandensis possess thiaminase I which catalyzes degradation of thiamine to 4-methyl-5-thiazoleethanol, thiM, which encodes hydroxyethylthiazole kinase responsible for degradation of 4-methyl-5-thiazoleethanol, is present and expressed in B. thailandensis as detected by PCR/RT-PCR, but absent or not expressed in all B. pseudomallei strains. This suggests that the high 4-methyl-5-thiazoleethanol level in B. pseudomallei is likely due to the absence of hydroxyethylthiazole kinase and hence reduced downstream degradation. CONCLUSION Eight novel biomarkers, including 4-methyl-5-thiazoleethanol and two tetrapeptides, were identified in the culture supernatant of B. pseudomallei.
Collapse
Affiliation(s)
- Susanna K P Lau
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Room 423, University Pathology Building, Queen Mary Hospital, Pok Fu Lam, Hong Kong ; Research Centre of Infection and Immunology, The University of Hong Kong, Pok Fu Lam, Hong Kong ; Carol Yu Centre for Infection, The University of Hong Kong, Pok Fu Lam, Hong Kong ; Department of Microbiology, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Ching-Wan Lam
- Department of Pathology, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Shirly O T Curreem
- Department of Microbiology, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Kim-Chung Lee
- Department of Microbiology, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Wang-Ngai Chow
- Department of Microbiology, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Candy C Y Lau
- Department of Microbiology, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Siddharth Sridhar
- Department of Microbiology, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Sally C Y Wong
- Department of Microbiology, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | | | - Suk-Wai Hui
- Ocean Park Corporation, Aqua City, Hong Kong
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Room 423, University Pathology Building, Queen Mary Hospital, Pok Fu Lam, Hong Kong ; Research Centre of Infection and Immunology, The University of Hong Kong, Pok Fu Lam, Hong Kong ; Carol Yu Centre for Infection, The University of Hong Kong, Pok Fu Lam, Hong Kong ; Department of Microbiology, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Patrick C Y Woo
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Room 423, University Pathology Building, Queen Mary Hospital, Pok Fu Lam, Hong Kong ; Research Centre of Infection and Immunology, The University of Hong Kong, Pok Fu Lam, Hong Kong ; Carol Yu Centre for Infection, The University of Hong Kong, Pok Fu Lam, Hong Kong ; Department of Microbiology, The University of Hong Kong, Pok Fu Lam, Hong Kong
| |
Collapse
|
22
|
Lau SKP, Sridhar S, Ho CC, Chow WN, Lee KC, Lam CW, Yuen KY, Woo PCY. Laboratory diagnosis of melioidosis: past, present and future. Exp Biol Med (Maywood) 2015; 240:742-51. [PMID: 25908634 DOI: 10.1177/1535370215583801] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Melioidosis is an emerging, potentially fatal disease caused by Burkholderia pseudomallei, which requires prolonged antibiotic treatment to prevent disease relapse. However, difficulties in laboratory diagnosis of melioidosis may delay treatment and affect disease outcomes. Isolation of B. pseudomallei from clinical specimens has been improved with the use of selective media. However, even with positive cultures, identification of B. pseudomallei can be difficult in clinical microbiology laboratories, especially in non-endemic areas where clinical suspicion is low. Commercial identification systems may fail to distinguish between B. pseudomallei and closely related species such as Burkholderia thailandensis. Genotypic identification of suspected isolates can be achieved by sequencing of gene targets such as groEL which offer higher discriminative power than 16S rRNA. Specific PCR-based identification of B. pseudomallei has also been developed using B. pseudomallei-specific gene targets such as Type III secretion system and Tat-domain protein. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry, a revolutionary technique for pathogen identification, has been shown to be potentially useful for rapid identification of B. pseudomallei, although existing databases require optimization by adding reference spectra for B. pseudomallei. Despite these advances in bacterial identification, diagnostic problems encountered in culture-negative cases remain largely unresolved. Although various serological tests have been developed, they are generally unstandardized "in house" assays and have low sensitivities and specificities. Although specific PCR assays have been applied to direct clinical and environmental specimens, the sensitivities for diagnosis remain to be evaluated. Metabolomics is an uprising tool for studying infectious diseases and may offer a novel approach for exploring potential diagnostic biomarkers. The metabolomics profiles of B. pseudomallei culture supernatants can be potentially distinguished from those of related bacterial species including B. thailandensis . Further studies using bacterial cultures and direct patient samples are required to evaluate the potential of metabolomics for improving diagnosis of melioidosis.
Collapse
Affiliation(s)
- Susanna K P Lau
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Siddharth Sridhar
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Chi-Chun Ho
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Wang-Ngai Chow
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Kim-Chung Lee
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Ching-Wan Lam
- Department of Pathology, The University of Hong Kong, Hong Kong, China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Patrick C Y Woo
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China Department of Microbiology, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
23
|
Evaluation of Molecular Methods To Improve the Detection of Burkholderia pseudomallei in Soil and Water Samples from Laos. Appl Environ Microbiol 2015; 81:3722-7. [PMID: 25819969 PMCID: PMC4421066 DOI: 10.1128/aem.04204-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 03/16/2015] [Indexed: 11/26/2022] Open
Abstract
Burkholderia pseudomallei is the cause of melioidosis, a severe and potentially fatal disease of humans and animals. It is endemic in northern Australia and Southeast Asia and is found in soil and surface water. The environmental distribution of B. pseudomallei worldwide and within countries where it is endemic, such as the Lao People's Democratic Republic (Laos), remains unclear. However, this knowledge is important to our understanding of the ecology and epidemiology of B. pseudomallei and to facilitate public health interventions. Sensitive and specific methods to detect B. pseudomallei in environmental samples are therefore needed. The aim of this study was to compare molecular and culture-based methods for the detection of B. pseudomallei in soil and surface water in order to identify the optimal approach for future environmental studies in Laos. Molecular detection by quantitative real-time PCR (qPCR) was attempted after DNA extraction directly from soil or water samples or after an overnight enrichment step. The positivity rates obtained by qPCR were compared to those obtained by different culture techniques. The rate of detection from soil samples by qPCR following culture enrichment was significantly higher (84/100) than that by individual culture methods and all culture methods combined (44/100; P < 0.001). Similarly, qPCR following enrichment was the most sensitive method for filtered river water compared with the sensitivity of the individual methods and all individual methods combined. In conclusion, molecular detection following an enrichment step has proven to be a sensitive and reliable approach for B. pseudomallei detection in Lao environmental samples and is recommended as the preferred method for future surveys.
Collapse
|
24
|
|
25
|
Analysis of changes in diversity and abundance of the microbial community in a cystic fibrosis patient over a multiyear period. J Clin Microbiol 2014; 53:237-47. [PMID: 25392361 DOI: 10.1128/jcm.02555-14] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The evolution of pulmonary disease in cystic fibrosis (CF) usually begins when bacteria get trapped in mucus in the lungs and become established as a chronic infection. While most CF patients experience periods of stability, pulmonary exacerbations (PEs) can occur multiple times per year and result in permanent damage to the lungs. Little is known of the shift from a period of stability to a PE, but this shift is likely to be attributed to changes in the bacterial community. Here, we identified changes in the lung microbiota to determine if they reflect patient health, indicate the onset of exacerbations, or are related to antibiotic treatment. In contrast to most bacterial studies on CF, we collected weekly samples from an adult CF patient over a period of 3 years and performed quantitative PCR (qPCR) and Illumina sequencing on those samples. While many DNA-based studies have shown the CF microbiota to be relatively stable, we observed an increase in the total bacterial abundance over time (P < 0.001), while the number of different taxa (bacterial richness) and the number of different taxa and their abundances (diversity) significantly decreased over time (P < 0.03), which was likely due to repeated antibiotic exposure. Using genus-specific primers with qPCR, we observed an increase in the abundance of Burkholderia multivorans, a CF-associated pathogen, prior to the occurrence of a PE (P = 0.006). Combining these DNA-based techniques with frequent sampling identified a potential initiator for exacerbations and described a response of the CF microbiota to time and antibiotic treatment not observed in previous CF microbiota studies.
Collapse
|
26
|
Burkholderia pseudomallei in soil samples from an oceanarium in Hong Kong detected using a sensitive PCR assay. Emerg Microbes Infect 2014; 3:e69. [PMID: 26038496 PMCID: PMC4217092 DOI: 10.1038/emi.2014.69] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 08/05/2014] [Accepted: 08/11/2014] [Indexed: 12/18/2022]
Abstract
Melioidosis, caused by Burkholderia pseudomallei, is an emerging infectious disease with an expanding geographical distribution. Although assessment of the environmental load of B. pseudomallei is important for risk assessment in humans or animals in endemic areas, traditional methods of bacterial culture for isolation have low sensitivities and are labor-intensive. Using a specific polymerase chain reaction (PCR) assay targeting a Tat domain protein in comparison with a bacterial culture method, we examined the prevalence of B. pseudomallei in soil samples from an oceanarium in Hong Kong where captive marine mammals and birds have contracted melioidosis. Among 1420 soil samples collected from various sites in the oceanarium over a 15-month period, B. pseudomallei was detected in nine (0.6%) soil samples using bacterial culture, whereas it was detected in 96 (6.8%) soil samples using the specific PCR assay confirmed by sequencing. The PCR-positive samples were detected during various months, with higher detection rates observed during summer months. Positive PCR detection was significantly correlated with ambient temperature (P<0.0001) and relative humidity (P=0.011) but not with daily rainfall (P=0.241) or a recent typhoon (P=0.787). PCR-positive samples were obtained from all sampling locations, with the highest detection rate in the valley. Our results suggest that B. pseudomallei is prevalent and endemic in the oceanarium. The present PCR assay is more sensitive than the bacterial culture method, and it may be used to help better assess the transmission of melioidosis and to design infection control measures for captive animals in this unique and understudied environment.
Collapse
|
27
|
Tonpitak W, Sornklien C, Chawanit M, Pavasutthipaisit S, Wuthiekanun V, Hantrakun V, Amornchai P, Thaipadungpanit J, Day NPJ, Yingst S, Peacock SJ, Limmathurotsakul D. Fatal melioidosis in goats in Bangkok, Thailand. Am J Trop Med Hyg 2014; 91:287-290. [PMID: 24891468 PMCID: PMC4125250 DOI: 10.4269/ajtmh.14-0115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Bangkok, Thailand, is a city considered to be at low risk for melioidosis. We describe 10 goats that died of melioidosis in Bangkok. Half of them were born and reared in the city. Multilocus sequence typing ruled out an outbreak. This finding challenges the assumption that melioidosis is rarely acquired in central Thailand.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Direk Limmathurotsakul
- *Address correspondence to Direk Limmathurotsakul, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithee Road, Bangkok 10400, Thailand. E-mail:
| |
Collapse
|
28
|
Frickmann H, Neubauer H, Loderstaedt U, Derschum H, Hagen RM. rpsU-based discrimination within the genus Burkholderia. Eur J Microbiol Immunol (Bp) 2014; 4:106-16. [PMID: 24883196 DOI: 10.1556/eujmi.4.2014.2.3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 04/08/2014] [Indexed: 11/19/2022] Open
Abstract
Sequencing of the gene rpsU reliably delineates saprophytic Burkholderia (B.) thailandensis from highly pathogenic B. mallei and B. pseudomallei. We analyzed the suitability of this technique for the delineation of the B. pseudomallei complex from other Burkholderia species. Both newly recorded and previously deposited sequences of well-characterized or reference strains (n = 84) of Azoarcus spp., B. ambifaria, B. anthina, B. caledonica, B. caribensis, B. caryophylli, B. cenocepacia, B. cepacia, B. cocovenenans, B. dolosa, B. fungorum, B. gladioli, B. glathei, B. glumae, B. graminis, B. hospita, B. kururensis, B. mallei, B. multivorans, B. phenazinium, B. phenoliruptrix, B. phymatum, B. phytofirmans, B. plantarii, B. pseudomallei, B. pyrrocinia, B. stabilis, B. thailandensis, B. ubonensis, B. vietnamiensis, B. xenovorans, not further defined Burkholderia spp., and the outliers Cupriavidus metallidurans, Laribacter hongkongensis, Pandorea norimbergensis, and Ralstonia pickettii were included in a multiple sequence analysis. Multiple sequence alignments led to the delineation of four major clusters, rpsU-I to rpsU-IV, with a sequence homology >92%. The B. pseudomallei complex formed the complex rpsU-II. Several Burkholderia species showed 100% sequence homology. This procedure is useful for the molecular confirmation or exclusion of glanders or melioidosis from primary patient material. Further discrimination within the Burkholderia genus requires other molecular approaches.
Collapse
|
29
|
Eu LC, Ong KC, Hiu J, Vadivelu J, Nathan S, Wong KT. In situ hybridization to detect and identify Burkholderia pseudomallei in human melioidosis. Mod Pathol 2014; 27:657-64. [PMID: 24186135 DOI: 10.1038/modpathol.2013.184] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 08/28/2013] [Accepted: 08/29/2013] [Indexed: 11/10/2022]
Abstract
Burkholderia pseudomallei causes a potentially fatal infection called melioidosis. We have developed a nonfluorescent, colorimetric in situ hybridization assay using a specific probe to target 16s rRNA of B. pseudomallei in formalin-fixed, paraffin-embedded infected tissues for diagnostic purposes and to study infectious disease pathology. A 63-base pair DNA probe was synthesized and labeled with digoxigenin by PCR. Probe specificity was confirmed by BLAST analysis and by testing on appropriate microbial controls. The in situ hybridization assay was specifically and consistently positive for B. pseudomallei, showing strongly and crisply stained, single bacillus and bacilli clusters in mainly inflamed tissues in seven human acute melioidosis cases and experimentally infected mouse tissues. Intravascular and extravascular bacilli were detected in both intracellular and extracellular locations in various human organs, including lung, spleen, kidney, liver, bone marrow, and aortic mycotic aneurysm, particularly in the inflamed areas. Intravascular, intracellular bacteria in melioidosis have not been previously reported. Although the identity of infected intravascular leukocytes has to be confirmed, extravascular, intracellular bacilli appear to be found mainly within macrophages and neutrophils. Rarely, large intravascular, extracellular bacillary clusters/emboli could be detected in both human and mouse tissues. B. cepacia and non-Burkholderia pathogens (16 microbial species) all tested negative. Nonpathogenic B. thailandensis showed some cross-hybridization but signals were less intense. This in situ hybridization assay could be usefully adapted for B. pseudomallei identification in other clinical specimens such as pus and sputum.
Collapse
Affiliation(s)
- Lin Chuan Eu
- Department of Pathology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kien Chai Ong
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Jessie Hiu
- Forensic Department, Queen Elizabeth Hospital, Sabah, Malaysia
| | - Jamunarani Vadivelu
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Sheila Nathan
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Kum Thong Wong
- Department of Pathology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
30
|
Abstract
Sputum obtained from patients with cystic fibrosis (CF) is highly viscous and often heterogeneous in bacterial distribution. Adding dithiothreitol (DTT) is the standard method for liquefaction prior to processing sputum for molecular detection assays. To determine if DTT treatment homogenizes the bacterial distribution within sputum, we measured the difference in mean total bacterial abundance and abundance of Burkholderia multivorans between aliquots of DTT-treated sputum samples with and without a mechanical homogenization (MH) step using a high-speed dispersing element. Additionally, we measured the effect of MH on bacterial abundance. We found a significant difference between the mean bacterial abundances in aliquots that were subjected to only DTT treatment and those of the aliquots which included an MH step (all bacteria, P = 0.04; B. multivorans, P = 0.05). There was no significant effect of MH on bacterial abundance in sputum. Although our results are from a single CF patient, they indicate that mechanical homogenization increases the homogeneity of bacteria in sputum.
Collapse
|
31
|
An efficient alternative marker for specific identification of Mycobacterium tuberculosis. World J Microbiol Biotechnol 2014; 30:2189-97. [DOI: 10.1007/s11274-014-1638-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Accepted: 03/14/2014] [Indexed: 11/24/2022]
|
32
|
Jakupciak JP, Wells JM, Karalus RJ, Pawlowski DR, Lin JS, Feldman AB. Population-Sequencing as a Biomarker of Burkholderia mallei and Burkholderia pseudomallei Evolution through Microbial Forensic Analysis. J Nucleic Acids 2013; 2013:801505. [PMID: 24455204 PMCID: PMC3877622 DOI: 10.1155/2013/801505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 10/01/2013] [Accepted: 10/02/2013] [Indexed: 11/18/2022] Open
Abstract
Large-scale genomics projects are identifying biomarkers to detect human disease. B. pseudomallei and B. mallei are two closely related select agents that cause melioidosis and glanders. Accurate characterization of metagenomic samples is dependent on accurate measurements of genetic variation between isolates with resolution down to strain level. Often single biomarker sensitivity is augmented by use of multiple or panels of biomarkers. In parallel with single biomarker validation, advances in DNA sequencing enable analysis of entire genomes in a single run: population-sequencing. Potentially, direct sequencing could be used to analyze an entire genome to serve as the biomarker for genome identification. However, genome variation and population diversity complicate use of direct sequencing, as well as differences caused by sample preparation protocols including sequencing artifacts and mistakes. As part of a Department of Homeland Security program in bacterial forensics, we examined how to implement whole genome sequencing (WGS) analysis as a judicially defensible forensic method for attributing microbial sample relatedness; and also to determine the strengths and limitations of whole genome sequence analysis in a forensics context. Herein, we demonstrate use of sequencing to provide genetic characterization of populations: direct sequencing of populations.
Collapse
Affiliation(s)
| | | | | | | | - Jeffrey S. Lin
- The Johns Hopkins University, Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723, USA
| | - Andrew B. Feldman
- The Johns Hopkins University, Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723, USA
| |
Collapse
|
33
|
Stokell JR, Gharaibeh RZ, Steck TR. Rapid emergence of a ceftazidime-resistant Burkholderia multivorans strain in a Cystic Fibrosis patient. J Cyst Fibros 2013; 12:812-6. [DOI: 10.1016/j.jcf.2013.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Revised: 01/30/2013] [Accepted: 01/31/2013] [Indexed: 10/27/2022]
|
34
|
Teng JLL, Ho TCC, Yeung RSY, Wong AYP, Wang H, Chen C, Fung KSC, Lau SKP, Woo PCY. Evaluation of 16SpathDB 2.0, an automated 16S rRNA gene sequence database, using 689 complete bacterial genomes. Diagn Microbiol Infect Dis 2013; 78:105-15. [PMID: 24295571 DOI: 10.1016/j.diagmicrobio.2013.10.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 10/21/2013] [Accepted: 10/27/2013] [Indexed: 02/04/2023]
Abstract
Interpretation of 16S rRNA sequences is a difficult problem faced by clinical microbiologists and technicians. In this study, we evaluated the updated 16SpathDB 2.0 database, using 689 16S rRNA sequences from 689 complete genomes of medically important bacteria. Among these 689 16S rRNA sequences, none was wrongly identified, with 35.8% reported as a single bacterial species having >98% identity with the query sequence (category 1), 63.9% reported as more than 1 bacterial species having >98% identity with the query sequence (category 2), 0.3% reported to the genus level (category 3), and none reported as no match (category 4). For the 16S rRNA sequences of non-duplicated bacterial species reported as category 1 or 2, the percentage of bacterial species reported as category 1 was significantly higher for anaerobic Gram-positive/Gram-negative bacteria than aerobic/facultative anaerobic Gram-positive/Gram-negative bacteria. 16SpathDB 2.0 is a user-friendly and accurate database for 16S rRNA sequence interpretation in clinical laboratories.
Collapse
Affiliation(s)
- Jade L L Teng
- Department of Microbiology, The University of Hong Kong, Hong Kong, China; Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China
| | - Tom C C Ho
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Ronald S Y Yeung
- Department of Microbiology, The University of Hong Kong, Hong Kong, China; Department of Pathology, United Christian Hospital, Hong Kong, China
| | - Annette Y P Wong
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Haiyin Wang
- National Institute for Communicable Disease Control and Prevention, Center for Disease Control and Prevention/State Key Laboratory for Infectious Disease Prevention and Control, Beijing, China
| | - Chen Chen
- National Institute for Communicable Disease Control and Prevention, Center for Disease Control and Prevention/State Key Laboratory for Infectious Disease Prevention and Control, Beijing, China
| | - Kitty S C Fung
- Department of Pathology, United Christian Hospital, Hong Kong, China
| | - Susanna K P Lau
- Department of Microbiology, The University of Hong Kong, Hong Kong, China; Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China; State Key Laboratory of Emerging Infectious Diseases, Hong Kong, China; Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China.
| | - Patrick C Y Woo
- Department of Microbiology, The University of Hong Kong, Hong Kong, China; Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China; State Key Laboratory of Emerging Infectious Diseases, Hong Kong, China; Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
35
|
Koh SF, Tay ST, Sermswan R, Wongratanacheewin S, Chua KH, Puthucheary SD. Development of a multiplex PCR assay for rapid identification of Burkholderia pseudomallei, Burkholderia thailandensis, Burkholderia mallei and Burkholderia cepacia complex. J Microbiol Methods 2012; 90:305-8. [DOI: 10.1016/j.mimet.2012.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 06/04/2012] [Accepted: 06/04/2012] [Indexed: 11/27/2022]
|
36
|
Matrix-assisted laser desorption ionization-time of flight mass spectrometry for rapid identification of Burkholderia pseudomallei: importance of expanding databases with pathogens endemic to different localities. J Clin Microbiol 2012; 50:3142-3. [PMID: 22718946 DOI: 10.1128/jcm.01349-12] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
37
|
Frickmann H, Chantratita N, Gauthier YP, Neubauer H, Hagen RM. DISCRIMINATION OF Burkholderia mallei/pseudomallei FROM Burkholderia thailandensis BY SEQUENCE COMPARISON OF A FRAGMENT OF THE RIBOSOMAL PROTEIN S21 (RPSU) GENE. Eur J Microbiol Immunol (Bp) 2012; 2:148-156. [PMID: 23227305 DOI: 10.1556/eujmi.2.2012.2.8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Discrimination of Burkholderia (B.) pseudomallei and B. mallei from environmental B. thailandensis is challenging. We describe a discrimination method based on sequence comparison of the ribosomal protein S21 (rpsU) gene.The rpsU gene was sequenced in ten B. pseudomallei, six B. mallei, one B. thailandensis reference strains, six isolates of B. pseudomallei, and 37 of B. thailandensis. Further rpsU sequences of six B. pseudomallei, three B. mallei, and one B. thailandensis were identified via NCBI GenBank. Three to four variable base-positions were identified within a 120-base-pair fragment, allowing discrimination of the B. pseudomallei/mallei-cluster from B. thailandensis, whose sequences clustered identically. All B. mallei and three B. pseudomallei sequences were identical, while 17/22 B. pseudomallei strains differed in one nucleotide (78A>C). Sequences of the rpsU fragment of 'out-stander' reference strains of B. cepacia, B. gladioli, B. plantarii, and B. vietnamensis clustered differently.Sequence comparison of the described rpsU gene fragment can be used as a supplementary diagnostic procedure for the discrimination of B. mallei/pseudomallei from B. thailandensis as well as from other species of the genus Burkholderia, keeping in mind that it does not allow for a differentiation between B. mallei and B. pseudomallei.
Collapse
Affiliation(s)
- H Frickmann
- Department of Tropical Medicine at the Bernhard Nocht Institute, German Armed Forces Hospital Hamburg, Germany ; Institute for Medical Microbiology, Virology and Hygiene, University of Rostock Hospital, Rostock, Germany
| | | | | | | | | |
Collapse
|
38
|
Automated pangenomic analysis in target selection for PCR detection and identification of bacteria by use of ssGeneFinder Webserver and its application to Salmonella enterica serovar Typhi. J Clin Microbiol 2012; 50:1905-11. [PMID: 22442318 DOI: 10.1128/jcm.06843-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
With the advent of high-throughput DNA sequencing, more than 4,000 bacterial genomes have been sequenced and are publicly available. We report a user-friendly web platform, ssGeneFinder Webserver (http://147.8.74.24/ssGeneFinder/), which is updated weekly for the automated pangenomic selection of specific targets for direct PCR detection and the identification of clinically important bacteria without the need of gene sequencing. To apply the ssGeneFinder Webserver for identifying specific targets for Salmonella enterica serovar Typhi, we analyzed 11 S. Typhi genomes, generated two specific targets, and validated them using 40 S. Typhi, 110 non-Typhi Salmonella serovars (serovar Paratyphi A, n = 4; Paratyphi B, n = 1; Typhimurium, n = 5; Enteritidis, n = 12; non-Paratyphi group A, n = 6; non-Paratyphi group B, n = 29; non-Paratyphi group C, n = 12; non-Typhi group D, n = 35; group E and others, n = 6), 115 Enterobacteriaceae isolates (Escherichia, n = 78; Shigella, n = 2; Klebsiella, n = 13; Enterobacter, n = 9; others, n = 13), and 66 human stool samples that were culture negative for S. Typhi. Both targets successfully detected all typical and atypical S. Typhi isolates, including an H1-j flagellin gene mutant, an aflagellated mutant which reacted with 2O Salmonella antiserum, and the Vi-negative attenuated vaccine strain Ty21a. No false positive was detected from any of the bacterial isolates and stool samples. DNA sequencing confirmed the identity of all positive amplicons. The PCR assays have detection limits as low as 100 CFU per reaction and were tested using spiked stool samples. Using a pangenomic approach, ssGeneFinder Webserver generated targets specific to S. Typhi. These and other validated targets should be applicable to the identification and direct PCR detection of bacterial pathogens from uncultured, mixed, and environmental samples.
Collapse
|
39
|
Wong SS, Ngan AH, Riggs CM, Teng JL, Choi GK, Poon RW, Hui JJ, Low FJ, Luk A, Yuen KY. Brittle tail syndrome is an emerging infection in horses caused by a keratinolytic fungus Equicapillimyces hongkongensis gen. nov., sp. nov. Vet Microbiol 2012; 155:399-408. [DOI: 10.1016/j.vetmic.2011.09.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 09/17/2011] [Accepted: 09/21/2011] [Indexed: 11/26/2022]
|
40
|
Ho CC, Yuen KY, Lau SKP, Woo PCY. Rapid identification and validation of specific molecular targets for detection of Escherichia coli O104:H4 outbreak strain by use of high-throughput sequencing data from nine genomes. J Clin Microbiol 2011; 49:3714-6. [PMID: 21880963 PMCID: PMC3187292 DOI: 10.1128/jcm.05062-11] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 08/17/2011] [Indexed: 11/20/2022] Open
Affiliation(s)
| | | | - Susanna K. P. Lau
- Phone: (852) 22554892 Fax: (852) 28551241 E-mail for Susanna K. P. Lau: E-mail for Patrick C. Y. Woo:
| | - Patrick C. Y. Woo
- Department of Microbiology The University of Hong Kong Queen Mary Hospital Hong Kong
| |
Collapse
|
41
|
Hagen RM, Frickmann H, Elschner M, Melzer F, Neubauer H, Gauthier YP, Racz P, Poppert S. Rapid identification of Burkholderia pseudomallei and Burkholderia mallei by fluorescence in situ hybridization (FISH) from culture and paraffin-embedded tissue samples. Int J Med Microbiol 2011; 301:585-90. [PMID: 21658996 DOI: 10.1016/j.ijmm.2011.04.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 04/12/2011] [Accepted: 04/20/2011] [Indexed: 11/18/2022] Open
Abstract
We evaluated newly developed probes for rapid identification of Burkholderia (B.) pseudomallei and B. mallei and differentiation from B. thailandensis by fluorescence in situ hybridization (FISH). FISH correctly identified 100% of the tested B. pseudomallei (11), B. mallei (11), and B. thailandensis (1) strains, excluded 100% of all tested negative controls (61), and allowed demonstration of B. pseudomallei infection in a paraffin-embedded spleen tissue sample of an experimentally infected mouse.
Collapse
Affiliation(s)
- Ralf M Hagen
- Department for Tropical Medicine at the Bernhard Nocht Institute, Bundeswehr Hospital Hamburg, Bernhard-Nocht-Strasse, Germany.
| | | | | | | | | | | | | | | |
Collapse
|