1
|
Girault G, Freddi L, Jay M, Perrot L, Dremeau A, Drapeau A, Delannoy S, Fach P, Ferreira Vicente A, Mick V, Ponsart C, Djokic V. Combination of in silico and molecular techniques for discrimination and virulence characterization of marine Brucella ceti and Brucella pinnipedialis. Front Microbiol 2024; 15:1437408. [PMID: 39360323 PMCID: PMC11444999 DOI: 10.3389/fmicb.2024.1437408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/23/2024] [Indexed: 10/04/2024] Open
Abstract
Introduction Mammals are the main hosts for Brucella sp., agents of worldwide zoonosis. Marine cetaceans and pinnipeds can be infected by Brucella ceti and B. pinnipedialis, respectively. Besides classical bacteriological typing, molecular approaches such as MLVA, MLSA, and whole-genome sequencing (WGS) can differentiate these species but are cumbersome to perform. Methods We compared the DNA and genome sequences of 12 strains isolated from nine marine mammals, with highly zoonotic B. melitensis, B. abortus, and B. suis, and the publicly available genomes of B. ceti and B. pinnipedialis. In silico pipelines were used to detect the antimicrobial resistance (AMR), plasmid, and virulence genes (VGs) by screening six open-source and one home-made library. Results and discussion Our results show that easier-to-use HRM-PCR, Bruce-ladder, and Suis-ladder can separate marine Brucella sp., and the results are fully concordant with other molecular methods, such as WGS. However, the restriction fragment length polymorphism (RFLP) method cannot discriminate between B. pinnipedialis and B. ceti B1-94-like isolates. MLVA-16 results divided the investigated strains into three clades according to their preferred host, which was confirmed in WGS. In silico analysis did not find any AMR and plasmid genes, suggesting antimicrobial susceptibility of marine Brucella, while the presence of the VGs btpA gene was variable dependent on the clade. Conclusion The HRM-PCR and Suis-ladder are quick, easy, and cost-effective methods to identify marine Brucella sp. Moreover, in silico genome analyses can give useful insights into the genetic virulence and pathogenicity potential of marine Brucella strains.
Collapse
Affiliation(s)
- Guillaume Girault
- Animal Health Laboratory, EU/WOAH and National Reference Laboratory for Brucellosis, Anses/Paris-Est University, Maisons-Alfort, France
| | - Luca Freddi
- Animal Health Laboratory, EU/WOAH and National Reference Laboratory for Brucellosis, Anses/Paris-Est University, Maisons-Alfort, France
| | - Maryne Jay
- Animal Health Laboratory, EU/WOAH and National Reference Laboratory for Brucellosis, Anses/Paris-Est University, Maisons-Alfort, France
| | - Ludivine Perrot
- Animal Health Laboratory, EU/WOAH and National Reference Laboratory for Brucellosis, Anses/Paris-Est University, Maisons-Alfort, France
| | - Alexandre Dremeau
- Animal Health Laboratory, EU/WOAH and National Reference Laboratory for Brucellosis, Anses/Paris-Est University, Maisons-Alfort, France
| | - Antoine Drapeau
- Animal Health Laboratory, EU/WOAH and National Reference Laboratory for Brucellosis, Anses/Paris-Est University, Maisons-Alfort, France
| | - Sabine Delannoy
- IdentyPath Genomics Platform, Food Safety Laboratory, ANSES, Maisons-Alfort, France
| | - Patrick Fach
- IdentyPath Genomics Platform, Food Safety Laboratory, ANSES, Maisons-Alfort, France
| | - Acacia Ferreira Vicente
- Animal Health Laboratory, EU/WOAH and National Reference Laboratory for Brucellosis, Anses/Paris-Est University, Maisons-Alfort, France
| | - Virginie Mick
- Animal Health Laboratory, EU/WOAH and National Reference Laboratory for Brucellosis, Anses/Paris-Est University, Maisons-Alfort, France
| | - Claire Ponsart
- Animal Health Laboratory, EU/WOAH and National Reference Laboratory for Brucellosis, Anses/Paris-Est University, Maisons-Alfort, France
| | - Vitomir Djokic
- Animal Health Laboratory, EU/WOAH and National Reference Laboratory for Brucellosis, Anses/Paris-Est University, Maisons-Alfort, France
| |
Collapse
|
2
|
Elbehiry A, Aldubaib M, Marzouk E, Abalkhail A, Almuzaini AM, Rawway M, Alghamdi A, Alqarni A, Aldawsari M, Draz A. The Development of Diagnostic and Vaccine Strategies for Early Detection and Control of Human Brucellosis, Particularly in Endemic Areas. Vaccines (Basel) 2023; 11:654. [PMID: 36992237 PMCID: PMC10054502 DOI: 10.3390/vaccines11030654] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Brucellosis is considered one of the most serious zoonotic diseases worldwide. This disease affects both human and animal health, in addition to being one of the most widespread zoonotic illnesses in the Middle East and Northern Africa. Human brucellosis generally presents in a diverse and non-specific manner, making laboratory confirmation of the diagnosis critical to the patient's recovery. A coordinated strategy for diagnosing and controlling brucellosis throughout the Middle East is required, as this disease cannot be known to occur without reliable microbiological, molecular, and epidemiological evidence. Consequently, the current review focuses on the current and emerging microbiological diagnostic tools for the early detection and control of human brucellosis. Laboratory assays such as culturing, serology, and molecular analysis can frequently be used to diagnose brucellosis. Although serological markers and nucleic acid amplification techniques are extremely sensitive, and extensive experience has been gained with these techniques in the laboratory diagnosis of brucellosis, a culture is still considered to be the "gold standard" due to the importance of this aspect of public health and clinical care. In endemic regions, however, serological tests remain the primary method of diagnosis due to their low cost, user-friendliness, and strong ability to provide a negative prediction, so they are commonly used. A nucleic acid amplification assay, which is highly sensitive, specific, and safe, is capable of enabling rapid disease diagnosis. Patients who have reportedly fully healed may continue to have positive molecular test results for a long time. Therefore, cultures and serological methods will continue to be the main tools for diagnosing and following up on human brucellosis for as long as no commercial tests or studies demonstrate adequate interlaboratory reproducibility. As there is no approved vaccine that prevents human brucellosis, vaccination-based control of animal brucellosis has become an important part of the management of human brucellosis. Over the past few decades, several studies have been conducted to develop Brucella vaccines, but the problem of controlling brucellosis in both humans and animals remains challenging. Therefore, this review also aims to present an updated overview of the different types of brucellosis vaccines that are currently available.
Collapse
Affiliation(s)
- Ayman Elbehiry
- Department of Public Health, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah 52741, Saudi Arabia
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32511, Egypt
| | - Musaad Aldubaib
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 52571, Saudi Arabia
| | - Eman Marzouk
- Department of Public Health, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah 52741, Saudi Arabia
| | - Adil Abalkhail
- Department of Public Health, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah 52741, Saudi Arabia
| | - Abdulaziz M. Almuzaini
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 52571, Saudi Arabia
| | - Mohammed Rawway
- Biology Department, College of Science, Jouf University, Sakaka 42421, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Ali Alghamdi
- Department of Optometry, King Fahad Armed Hospital, Jeddah 23311, Saudi Arabia
| | - Abdullah Alqarni
- Department of Family Medicine, King Fahad Armed Hospital, Jeddah 23311, Saudi Arabia
| | - Mohammed Aldawsari
- Department of Medical services, Ministry of Defense, Riyadh 12426, Saudi Arabia
| | - Abdelmaged Draz
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 52571, Saudi Arabia
| |
Collapse
|
3
|
Santos RGD, Seyffert N, Dorneles EMS, Aguiar ERGR, Ramos CP, Haas DJ, Assis GBN, Portela RD, Goes-Neto A, Pacheco LGC, Figueiredo HCP, Sousa TDJ, Tiwari S, Jaiswal AK, Lage AP, Castro TLP, Azevedo V. Exploring the MALDI Biotyper for the Identification of Corynebacterium pseudotuberculosis biovar Ovis and Equi. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:2055-2062. [PMID: 36239433 DOI: 10.1021/jasms.2c00174] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Biochemical, serological, and molecular methods have been developed for the laboratory diagnosis of diseases caused by C. pseudotuberculosis (CP), but the identification of the pathogen and biovars differentiation may be time-consuming, expensive, and confusing compared with other bacteria. This study aimed to evaluate MALDI Biotyper and Overall Genome Relatedness Index (OGRI) analysis to optimize the identification and differentiation of biovars of C. pseudotuberculosis. Out of 230 strains isolated from several hosts and countries, 202 (87.8%) were precisely classified using MALDI Biotyper and the BioNumerics platform. The classification accuracies for the Ovis and Equi biovars were 80 (88.75%) and 82 (92.68%), respectively. When analyzing a sampling of these strains by Average Nucleotide Identity based on BLAST and TETRA analyses using genomic sequence data, it was possible to differentiate 100% of the strains in Equi and Ovis. Our data show that MALDI Biotyper and OGRI analysis help identify C. pseudotuberculosis at the species and biovar levels.
Collapse
Affiliation(s)
| | - Nubia Seyffert
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
- Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador 40231-300, Brazil
| | - Elaine M S Dorneles
- Departamento de Medicina Veterinária, Universidade Federal de Lavras, Lavras 37200-000, Brazil
| | - Eric R G R Aguiar
- Centro de Biotecnologia e Genética, Universidade Estadual de Santa Cruz, Ilhéus 45662-900, Brazil
| | - Carolina P Ramos
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Dionei J Haas
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Gabriella B N Assis
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Ricardo Dias Portela
- Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador 40231-300, Brazil
| | - Aristóteles Goes-Neto
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Luis G C Pacheco
- Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador 40231-300, Brazil
| | - Henrique C P Figueiredo
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Thiago de Jesus Sousa
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Sandeep Tiwari
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Arun Kumar Jaiswal
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Andrey P Lage
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Thiago L P Castro
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
- Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador 40231-300, Brazil
| | - Vasco Azevedo
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| |
Collapse
|
4
|
Hamidi H, Bagheri Nejad R, Es-Haghi A, Ghassempour A. A Combination of MALDI-TOF MS Proteomics and Species-Unique Biomarkers' Discovery for Rapid Screening of Brucellosis. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1530-1540. [PMID: 35816556 DOI: 10.1021/jasms.2c00110] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Brucellosis is considered to be a zoonotic infection with a predominant incidence in most parts of Iran that may even simply involve diagnostic laboratory personnel. In the present study, we apply matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS) for rapid and reliable discrimination of Brucella abortus and Brucella melitensis, based on proteomic mass patterns from chemically treated whole-cell analyses. Biomarkers of the low molecular weight proteome in the MALDI-TOF MS spectra were assigned to conserved ribosomal and structural protein families that were found in genome assemblies of B. abortus and B. melitensis in the NCBI database. Significant protein mass signals successfully mapped to ribosomal proteins and structural proteins, such as integration host factor subunit alpha, cold-shock proteins, HU family DNA-binding protein, ATP synthase subunit C, and GNAT family N-acetyltransferase, with specific biomarker peaks that have been identified for each virulent and vaccine strain. Web-accessible bioinformatics algorithms, with a robust data analysis workflow, followed by ribosomal and structural protein mapping, significantly enhanced the reliable assignment of key proteins and accurate identification of Brucella species. Furthermore, clinical samples were analyzed to confirm the most dominant protein biomarker candidates and their relevance for the identifications of B. melitensis and B. abortus. With proper optimization, we envision that the presented MALDI-TOF MS proteomics analyses, coupled with special usage of bioinformatics, could be used as a cost-efficient strategy for the diagnostics of brucellosis and introduce a reliable identification protocol for species of dangerous bacteria.
Collapse
Affiliation(s)
- Hamideh Hamidi
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, 19839-69411 Tehran, Iran
| | - Ramin Bagheri Nejad
- Department of Physico Chemistry, Razi Vaccine & Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), 31975/148 Karaj, Iran
| | - Ali Es-Haghi
- Department of Physico Chemistry, Razi Vaccine & Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), 31975/148 Karaj, Iran
| | - Alireza Ghassempour
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, 19839-69411 Tehran, Iran
| |
Collapse
|
5
|
Elmonir W, Abdel-Hamid NH, Hamdy MER, Beleta EIM, El-Diasty M, Melzer F, Wareth G, Neubauer H. Isolation and molecular confirmation of Brucella suis biovar 2 from slaughtered pigs: an unanticipated biovar from domestic pigs in Egypt. BMC Vet Res 2022; 18:224. [PMID: 35698071 PMCID: PMC9195200 DOI: 10.1186/s12917-022-03332-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/11/2022] [Indexed: 11/10/2022] Open
Abstract
Background Brucella suis is a zoonotic pathogen with a serious impact on public health and the pig industry worldwide. Information regarding B. suis in pigs in Egypt is scarce. This study aimed to investigate the prevalence of B. suis in slaughtered domestic pigs at El-Basatin abattoir in Cairo, Egypt. A total of 1,116 domestic pigs slaughtered in 2020 were sampled for Brucella isolation and identification. Identified Brucella isolates were molecularly confirmed at species, and biovar levels using Bruce ladder PCR and Suis ladder multiplex PCR. Additionally, high-risk practices of 16 abattoir workers (4 veterinarians, 10 butchering and evisceration workers, and 2 scalding workers) were investigated using a pre-piloted structured questionnaire. Results Brucella isolates were recovered from 1.3% of examined pigs (n = 14) at consistently low rates (1.1—2.9%) across the year of sampling from February to December 2020. All isolates were confirmed as B. suis biovar (bv) 2. Remarkably, 92.9% (13/14) of isolates showed atypical ability to produce H2S and hence were considered as B. suis bv2 atypical phenotype. The prevalence was higher in males (1.8%) than in females (0.9). However, this difference was not significant (Odds ratio = 1.9; CI 95% 0.7 – 5.7; P = 0.2). No detectable pathological lesions were associated with B. suis bv2 infection in examined pigs. All strains were isolated from cervical lymph nodes, highlighting a potential oral transmission. High-risk practices were recorded among swine abattoir workers in this study: 75% do not wear gloves or disinfect their knives daily, and 18.8% were willing to work with open wound injuries. Conclusions To the best of our knowledge, this is the first isolation of B. suis bv2 in Egypt. Detection of H2S producing B. suis bv2 atypical phenotype is alarming as it may result in misinterpretation of these isolates as highly human pathogenic B. suis bv1 in Egypt and possibly elsewhere. Further epidemiological tracing studies are crucial for the detection of the origin of this biovar. Including pigs in the national surveillance program of brucellosis, and an education program for swine abattoir workers about occupational risk of B. suis is a need in Egypt. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03332-2.
Collapse
Affiliation(s)
- Walid Elmonir
- Department of Hygiene and Preventive Medicine (Zoonoses), Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Nour H Abdel-Hamid
- Agricultural Research Center, Animal Health Research Institute, P.O. Box 264-Giza, Cairo, 12618, Egypt
| | - Mahmoud E R Hamdy
- Agricultural Research Center, Animal Health Research Institute, P.O. Box 264-Giza, Cairo, 12618, Egypt
| | - Eman I M Beleta
- Agricultural Research Center, Animal Health Research Institute, P.O. Box 264-Giza, Cairo, 12618, Egypt
| | - Mohamed El-Diasty
- Agricultural Research Center, Animal Health Research Institute, P.O. Box 264-Giza, Cairo, 12618, Egypt
| | - Falk Melzer
- Institute of Bacterial Infections and Zoonosis, Friedrich-Loeffler Institut, Naumburger Str. 96a, 07743, Jena, Germany
| | - Gamal Wareth
- Institute of Bacterial Infections and Zoonosis, Friedrich-Loeffler Institut, Naumburger Str. 96a, 07743, Jena, Germany. .,Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Benha University, PO Box 13736, Toukh, Moshtohor, Egypt.
| | - Heinrich Neubauer
- Institute of Bacterial Infections and Zoonosis, Friedrich-Loeffler Institut, Naumburger Str. 96a, 07743, Jena, Germany
| |
Collapse
|
6
|
Elbehiry A, Aldubaib M, Al Rugaie O, Marzouk E, Abaalkhail M, Moussa I, El-Husseiny MH, Abalkhail A, Rawway M. Proteomics-based screening and antibiotic resistance assessment of clinical and sub-clinical Brucella species: An evolution of brucellosis infection control. PLoS One 2022; 17:e0262551. [PMID: 35025975 PMCID: PMC8757992 DOI: 10.1371/journal.pone.0262551] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 12/27/2021] [Indexed: 11/18/2022] Open
Abstract
Brucellae are intracellular sneaky bacteria and they can elude the host's defensive mechanisms, resulting in therapeutic failure. Therefore, the goal of this investigation was to rapid identification of Brucella species collected from animals and humans in Saudi Arabia, as well as to evaluate their resistance to antibiotics. On selective media, 364 animal samples as well as 70 human blood samples were cultured. Serological and biochemical approaches were initially used to identify a total of 25 probable cultured isolates. The proteomics of Brucella species were identified using the MALDI Biotyper (MBT) system, which was subsequently verified using real-time polymerase chain reaction (real-time PCR) and microfluidic electrophoresis assays. Both Brucella melitensis (B. melitensis) and Brucella abortus (B. abortus) were tested for antimicrobial susceptibility using Kirby Bauer method and the E-test. In total, 25 samples were positive for Brucella and included 11 B. melitensis and 14 B. abortus isolates. Twenty-two out of 25 (88%) and 24/25 (96%) of Brucella strains were recognized through the Vitek 2 Compact system. While MBT was magnificently identified 100% of the strains at the species level with a score value more than or equal to 2.00. Trimethoprim-sulfamethoxazole, rifampin, ampicillin-sulbactam, and ampicillin resistance in B. melitensis was 36.36%, 31.82%, 27.27%, and 22.70%, respectively. Rifampin, trimethoprim-sulfamethoxazole, ampicillin, and ampicillin-sulbactam resistance was found in 35.71%, 32.14%, 32.14%, and 28.57% of B. abortus isolates, correspondingly. MBT confirmed by microfluidic electrophoresis is a successful approach for identifying Brucella species at the species level. The resistance of B. melitensis and B. abortus to various antibiotics should be investigated in future studies.
Collapse
Affiliation(s)
- Ayman Elbehiry
- Department of Public Health, College of Public Health and Health Informatics, Qassim University, Al-Bukairiyah, Saudi Arabia
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Musaad Aldubaib
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Qassim, Saudi Arabia
| | - Osamah Al Rugaie
- Department of Basic Medical Sciences, College of Medicine and Medical Sciences, Qassim University, Unaizah, Qassim, Saudi Arabia
| | - Eman Marzouk
- Department of Public Health, College of Public Health and Health Informatics, Qassim University, Al-Bukairiyah, Saudi Arabia
| | - Marwan Abaalkhail
- Department of Clinical Microbiology, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Ihab Moussa
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | | | - Adil Abalkhail
- Department of Public Health, College of Public Health and Health Informatics, Qassim University, Al-Bukairiyah, Saudi Arabia
| | - Mohammed Rawway
- Biology Department, College of Science, Jouf University, Sakaka, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, AL-Azhar University, Assiut, Egypt
| |
Collapse
|
7
|
Microbiological Laboratory Diagnosis of Human Brucellosis: An Overview. Pathogens 2021; 10:pathogens10121623. [PMID: 34959578 PMCID: PMC8709366 DOI: 10.3390/pathogens10121623] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 11/16/2022] Open
Abstract
Brucella spp. are Gram-negative, non-motile, non-spore-forming, slow-growing, facultative intracellular bacteria causing brucellosis. Brucellosis is an endemic of specific geographic areas and, although underreported, represents the most common zoonotic infection, with an annual global incidence of 500,000 cases among humans. Humans represent an occasional host where the infection is mainly caused by B. melitensis, which is the most virulent; B. abortus; B. suis; and B. canis. A microbiological analysis is crucial to identifying human cases because clinical symptoms of human brucellosis are variable and aspecific. The laboratory diagnosis is based on three different microbiological approaches: (i) direct diagnosis by culture, (ii) indirect diagnosis by serological tests, and (iii) direct rapid diagnosis by molecular PCR-based methods. Despite the established experience with serological tests and highly sensitive nucleic acid amplification tests (NAATs), a culture is still considered the “gold standard” in the laboratory diagnosis of brucellosis due to its clinical and epidemiological relevance. Moreover, the automated BC systems now available have increased the sensitivity of BCs and shortened the time to detection of Brucella species. The main limitations of serological tests are the lack of common interpretative criteria, the suboptimal specificity due to interspecies cross-reactivity, and the low sensitivity during the early stage of disease. Despite that, serological tests remain the main diagnostic tool, especially in endemic areas because they are inexpensive, user friendly, and have high negative predictive value. Promising serological tests based on new synthetic antigens have been recently developed together with novel point-of-care tests without the need for dedicated equipment and expertise. NAATs are rapid tests that can help diagnose brucellosis in a few hours with high sensitivity and specificity. Nevertheless, the interpretation of NAAT-positive results requires attention because it may not necessarily indicate an active infection but rather a low bacterial inoculum, DNA from dead bacteria, or a patient that has recovered. Refined NAATs should be developed, and their performances should be compared with those of commercial and home-made molecular tests before being commercialized for the diagnosis of brucellosis. Here, we review and report the most common and updated microbiological diagnostic methods currently available for the laboratory diagnosis of brucellosis.
Collapse
|
8
|
Wareth G, El-Diasty M, Abdel-Hamid NH, Holzer K, Hamdy ME, Moustafa S, Shahein MA, Melzer F, Beyer W, Pletz MW, Neubauer H. Molecular characterization and antimicrobial susceptibility testing of clinical and non-clinical Brucella melitensis and Brucella abortus isolates from Egypt. One Health 2021; 13:100255. [PMID: 34027005 PMCID: PMC8122161 DOI: 10.1016/j.onehlt.2021.100255] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/23/2021] [Accepted: 04/25/2021] [Indexed: 12/16/2022] Open
Abstract
Brucellosis is a highly contagious and incapacitating disease of humans, livestock and wildlife species globally. Treatment of brucellosis in animals is not recommended, and in humans, combinations of antibiotics recommended by the World Health Organization are used. However, sporadic antimicrobial-resistant (AMR) isolates and relapse cases have been reported from different endemic regions. In the current study, molecular characterization and antibiotic susceptibility testing using the microdilution method for 35 B. abortus and B. melitensis strains isolated from humans, milk and animal were carried out. Additionally, Next-Generation-Sequencing (NGS) technology was applied to confirm Brucella at the species level and investigate AMR and pathogenicity-associated determinants. MALDI-TOF seemed to be a rapid and reliable tool for routine identification of brucellae to the genus level; however, DNA-based identification is indispensable for accurate species identification. Brucella abortus strains were isolated from two human cases and a sheep. Such infections are uncommon in Egypt. Egyptian Brucella strains are still in-vitro susceptible to doxycycline, tetracyclines, gentamicin, ciprofloxacin, levofloxacin, chloramphenicol, streptomycin, trimethoprim/sulfamethoxazole and tigecycline. Probable (no CLSI/EUCAST breakpoints have been defined yet) in-vitro resistance to rifampicin and azithromycin was observed. WGS failed to determine classical AMR genes, and no difference in the distribution of virulence-associated genes in all isolates was found. Isolates of human and non-human origins were still susceptible to the majority of antibiotics used for treatment in humans. The absence of classical AMR genes in genomes of "resistant" Brucella strains may reflect a lack of information in databases, or resistance might not be encoded by single resistance genes. The One Health approach is necessary for tackling brucellosis. Continuous susceptibility testing, updating of breakpoints, assessing mutations that lead to resistance are needed.
Collapse
Affiliation(s)
- Gamal Wareth
- Friedrich-Loeffler-Institut, Institute of Bacterial Infections and Zoonoses, Naumburger Str. 96a, 07743 Jena, Germany
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
- Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh 13736, Egypt
| | - Mohamed El-Diasty
- Animal Health Research Institute, Agricultural Research Center, P.O. Box 264-Giza, Cairo 12618, Egypt
| | - Nour H. Abdel-Hamid
- Animal Health Research Institute, Agricultural Research Center, P.O. Box 264-Giza, Cairo 12618, Egypt
| | - Katharina Holzer
- Institute of Animal Science, Department of Livestock Infectiology and Environmental Hygiene, University of Hohenheim, 70599 Stuttgart, Germany
| | - Mahmoud E.R. Hamdy
- Animal Health Research Institute, Agricultural Research Center, P.O. Box 264-Giza, Cairo 12618, Egypt
| | - Shawky Moustafa
- Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh 13736, Egypt
| | - Momtaz A. Shahein
- Animal Health Research Institute, Agricultural Research Center, P.O. Box 264-Giza, Cairo 12618, Egypt
| | - Falk Melzer
- Friedrich-Loeffler-Institut, Institute of Bacterial Infections and Zoonoses, Naumburger Str. 96a, 07743 Jena, Germany
| | - Wolfgang Beyer
- Institute of Animal Science, Department of Livestock Infectiology and Environmental Hygiene, University of Hohenheim, 70599 Stuttgart, Germany
| | - Mathias W. Pletz
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Heinrich Neubauer
- Friedrich-Loeffler-Institut, Institute of Bacterial Infections and Zoonoses, Naumburger Str. 96a, 07743 Jena, Germany
| |
Collapse
|
9
|
Kornspan D, Brendebach H, Hofreuter D, Mathur S, Blum SE, Fleker M, Bardenstein S, Al Dahouk S. Protein Biomarker Identification for the Discrimination of Brucella melitensis Field Isolates From the Brucella melitensis Rev.1 Vaccine Strain by MALDI-TOF MS. Front Microbiol 2021; 12:712601. [PMID: 34745025 PMCID: PMC8569450 DOI: 10.3389/fmicb.2021.712601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
Brucella melitensis Rev.1 is a live attenuated vaccine strain that is widely used to control brucellosis in small ruminants. For successful surveillance and control programs, rapid identification and characterization of Brucella isolates and reliable differentiation of vaccinated and naturally infected animals are essential prerequisites. Although MALDI-TOF MS is increasingly applied in clinical microbiology laboratories for the diagnosis of brucellosis, species or even strain differentiation by this method remains a challenge. To detect biomarkers, which enable to distinguish the B. melitensis Rev.1 vaccine strain from B. melitensis field isolates, we initially searched for unique marker proteins by in silico comparison of the B. melitensis Rev.1 and 16M proteomes. We found 113 protein sequences of B. melitensis 16M that revealed a homologous sequence in the B. melitensis Rev.1 annotation and 17 of these sequences yielded potential biomarker pairs. MALDI-TOF MS spectra of 18 B. melitensis Rev.1 vaccine and 183 Israeli B. melitensis field isolates were subsequently analyzed to validate the identified marker candidates. This approach detected two genus-wide unique biomarkers with properties most similar to the ribosomal proteins L24 and S12. These two proteins clearly discriminated B. melitensis Rev.1 from the closely related B. melitensis 16M and the Israeli B. melitensis field isolates. In addition, we verified their discriminatory power using a set of B. melitensis strains from various origins and of different MLVA types. Based on our results, we propose MALDI-TOF MS profiling as a rapid, cost-effective alternative to the traditional, time-consuming approach to differentiate certain B. melitensis isolates on strain level.
Collapse
Affiliation(s)
- David Kornspan
- Department of Bacteriology, Kimron Veterinary Institute (KVI), Bet Dagan, Israel
| | - Holger Brendebach
- Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Dirk Hofreuter
- Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Shubham Mathur
- Department of Bacteriology, Kimron Veterinary Institute (KVI), Bet Dagan, Israel
| | - Shlomo Eduardo Blum
- Department of Bacteriology, Kimron Veterinary Institute (KVI), Bet Dagan, Israel
| | - Marcelo Fleker
- Department of Bacteriology, Kimron Veterinary Institute (KVI), Bet Dagan, Israel
| | | | - Sascha Al Dahouk
- Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| |
Collapse
|
10
|
Grützke J, Gwida M, Deneke C, Brendebach H, Projahn M, Schattschneider A, Hofreuter D, El-Ashker M, Malorny B, Al Dahouk S. Direct identification and molecular characterization of zoonotic hazards in raw milk by metagenomics using Brucella as a model pathogen. Microb Genom 2021; 7. [PMID: 33945456 PMCID: PMC8209726 DOI: 10.1099/mgen.0.000552] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Metagenomics is a valuable diagnostic tool for enhancing microbial food safety because (i) it enables the untargeted detection of pathogens, (ii) it is fast since primary isolation of micro-organisms is not required, and (iii) it has high discriminatory power allowing for a detailed molecular characterization of pathogens. For shotgun metagenomics, total nucleic acids (NAs) are isolated from complex samples such as foodstuff. Along with microbial NAs, high amounts of matrix NAs are extracted that might outcompete microbial NAs during next-generation sequencing and compromise sensitivity for the detection of low abundance micro-organisms. Sensitive laboratory methods are indispensable for detecting highly pathogenic foodborne bacteria like Brucella spp., because a low infectious dose is sufficient to cause human disease through the consumption of contaminated dairy or meat products. In our study, we applied shotgun metagenomic sequencing for the identification and characterization of Brucella spp. in artificially and naturally contaminated raw milk from various ruminant species. With the depletion of eukaryotic cells prior to DNA extraction, Brucella was detectable at 10 bacterial cells ml−1, while at the same time microbiological culture and isolation of the fastidious bacteria commonly failed. Moreover, we were able to retrieve the genotype of a Brucella isolate from a metagenomic dataset, indicating the potential of metagenomics for outbreak investigations using SNPs and core-genome multilocus sequence typing (cgMLST). To improve diagnostic applications, we developed a new bioinformatics approach for strain prediction based on SNPs to identify the correct species and define a certain strain with only low numbers of genus-specific reads per sample. This pipeline turned out to be more sensitive and specific than Mash Screen. In raw milk samples, we simultaneously detected numerous other zoonotic pathogens, antimicrobial resistance genes and virulence factors. Our study showed that metagenomics is a highly sensitive tool for biological risk assessment of foodstuffs, particularly when pathogen isolation is hazardous or challenging.
Collapse
Affiliation(s)
- Josephine Grützke
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Mayada Gwida
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Carlus Deneke
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Holger Brendebach
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Michaela Projahn
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | | | - Dirk Hofreuter
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Maged El-Ashker
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Burkhard Malorny
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Sascha Al Dahouk
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany.,Department of Internal Medicine III, RWTH Aachen University Hospital, Aachen, Germany
| |
Collapse
|
11
|
MALDI-TOF MS and genomic analysis can make the difference in the clarification of canine brucellosis outbreaks. Sci Rep 2020; 10:19246. [PMID: 33159111 PMCID: PMC7648634 DOI: 10.1038/s41598-020-75960-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 10/13/2020] [Indexed: 12/16/2022] Open
Abstract
Brucellosis is one of the most common bacterial zoonoses worldwide affecting not only livestock and wildlife but also pets. Canine brucellosis is characterized by reproductive failure in dogs. Human Brucella canis infections are rarely reported but probably underestimated due to insufficient diagnostic surveillance. To improve diagnostics, we investigated dogs in a breeding kennel that showed clinical manifestations of brucellosis and revealed positive blood cultures. As an alternative to the time-consuming and hazardous classical identification procedures, a newly developed species-specific intact-cell matrix-assisted laser desorption/ionization–time of flight mass spectrometry analysis was applied, which allowed for rapid identification of B. canis and differentiation from closely related B. suis biovar 1. High-throughput sequencing and comparative genomics using single nucleotide polymorphism analysis clustered our isolates together with canine and human strains from various Central and South American countries in a distinct sub-lineage. Hence, molecular epidemiology clearly defined the outbreak cluster and demonstrated the endemic situation in South America. Our study illustrates that MALDI-TOF MS analysis using a validated in-house reference database facilitates rapid B. canis identification at species level. Additional whole genome sequencing provides more detailed outbreak information and leads to a deeper understanding of the epidemiology of canine brucellosis.
Collapse
|
12
|
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry-based identification of security-sensitive bacteria: Considerations for Canadian Bruker users. ACTA ACUST UNITED AC 2020; 46:333-338. [PMID: 33315990 DOI: 10.14745/ccdr.v46i10a04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Background The use of matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) systems for bacterial identification has rapidly become a front line tool for diagnostic laboratories, superseding classical microbiological methods that previously triggered the identification of higher risk pathogens. Unknown Risk Group 3 isolates have been misidentified as less pathogenic species due to spectral library availability, content and quality. Consequently, exposure to higher risk pathogens has been reported within Canadian laboratory staff following the implementation of MALDI-TOF MS. This overview aims to communicate the potential risk to laboratory staff of inaccurate identification of security-sensitive biological agents (SSBA) bacteria and to provide suggestions to mitigate. Methods Cultures were manipulated in a Biosafety Level 3 laboratory, prepared for MALDI-TOF MS analysis via full chemical extraction and analysed on a Bruker Microflex LT instrument. Data were analyzed with Biotyper software; comparing raw spectra against MS profiles in three libraries: Bruker Taxonomy; Bruker Security-Restricted; and National Microbiology Laboratory (NML) SSBA libraries. Four years of Bruker MALDI-TOF MS data acquired in-house were reviewed. Results In general, the Bruker MS spectral libraries were less successful in identifying the SSBA bacteria. More successful was the NML library. For example, using a high score cut-off (greater than 2.0), the Bruker SR library was unable to identify 52.8% of our Risk Group 3 agents and near neighbours to the species-level with confidence, whereas the custom NML library was unable to identify only 20.3% of the samples. Conclusion The last four years of data demonstrated both the importance of library selection and the limitations of the various spectral libraries. Enhanced standard operating procedures are advised to reduce laboratory exposure to SSBAs when using MALDI-TOF MS as a front line identification tool.
Collapse
|
13
|
Wareth G, El-Diasty M, Melzer F, Schmoock G, Moustafa SA, El-Beskawy M, Khater DF, Hamdy ME, Zaki HM, Ferreira AC, Ekateriniadou LV, Boukouvala E, Abdel-Glil MY, Menshawy AM, Sancho MP, Sakhria S, Pletz MW, Neubauer H. MLVA-16 Genotyping of Brucella abortus and Brucella melitensis Isolates from Different Animal Species in Egypt: Geographical Relatedness and the Mediterranean Lineage. Pathogens 2020; 9:pathogens9060498. [PMID: 32580472 PMCID: PMC7350383 DOI: 10.3390/pathogens9060498] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 01/16/2023] Open
Abstract
Brucellosis is a common zoonotic disease in Egypt. However, there are limited data available on the genetic diversity of brucellae circulating in Egypt and other Mediterranean areas. One hundred and nine Brucella (B.) strains were isolated from different animal species in thirteen Egyptian governorates. Multi-locus variable number tandem repeats (VNTRs) analysis (MLVA-16) was employed to determine the geographical relatedness and the genetic diversity of a panel of selected Egyptian strains (n = 69), with strains originating from Italy (n = 49), Portugal (n = 52), Greece (n = 63), and Tunisia (n = 4). Egyptian B. melitensis strains clustered into two main clusters containing 21 genotypes. Egyptian B. abortus strains clustered into three main clusters containing nine genotypes. The genotypes were irregularly distributed over time and space in the study area. Egyptian strains of B. melitensis showed MLVA-16 patterns closer to that of Italian strains. Egyptian B. abortus strains isolated from cattle share the same genotype with strains from Portugal and similar to strains from Italy with low genetic diversity. Strains with similar MLVA patterns isolated from different governorates highlight the movement of the pathogen among governorates. Hence, it may also reflect the long endemicity of brucellosis in Egypt with earlier dispersal of types and great local genetic diversity. Open markets may contribute to cross-species transmission and dissemination of the new types nationwide. The presence of West Mediterranean lineages of B. melitensis and relatedness of B. abortus strains from the studied countries is a result of the socio-historical connections among the Mediterranean countries. Transnational eradication of brucellosis in the Mediterranean basin is highly demanded.
Collapse
Affiliation(s)
- Gamal Wareth
- Friedrich-Loeffler-Institut, Institute of Bacterial Infections and Zoonoses, Naumburger Str. 96a, 07743 Jena, Germany; (F.M.); (G.S.); (M.Y.A.-G.); (H.N.)
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany;
- Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh 13736, Egypt;
- Correspondence: ; Tel.: +4936418042296
| | - Mohamed El-Diasty
- Department of Brucellosis, Animal Health Research Institute, P.O. Box 264-Giza, Cairo 12618, Egypt; (M.E.-D.); (D.F.K.); (H.M.Z.)
| | - Falk Melzer
- Friedrich-Loeffler-Institut, Institute of Bacterial Infections and Zoonoses, Naumburger Str. 96a, 07743 Jena, Germany; (F.M.); (G.S.); (M.Y.A.-G.); (H.N.)
| | - Gernot Schmoock
- Friedrich-Loeffler-Institut, Institute of Bacterial Infections and Zoonoses, Naumburger Str. 96a, 07743 Jena, Germany; (F.M.); (G.S.); (M.Y.A.-G.); (H.N.)
| | - Shawky A. Moustafa
- Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh 13736, Egypt;
| | - Mohamed El-Beskawy
- Department of Animal Medicine, Faculty of Veterinary Medicine, Matrouh University, Matrouh 51744, Egypt;
| | - Dali F. Khater
- Department of Brucellosis, Animal Health Research Institute, P.O. Box 264-Giza, Cairo 12618, Egypt; (M.E.-D.); (D.F.K.); (H.M.Z.)
| | - Mahmoud E.R. Hamdy
- Department of Brucellosis, Animal Health Research Institute, P.O. Box 264-Giza, Cairo 12618, Egypt; (M.E.-D.); (D.F.K.); (H.M.Z.)
| | - Hoda M. Zaki
- Department of Brucellosis, Animal Health Research Institute, P.O. Box 264-Giza, Cairo 12618, Egypt; (M.E.-D.); (D.F.K.); (H.M.Z.)
| | - Ana Cristina Ferreira
- National Reference Laboratory for Brucellosis, National Institute of Agrarian and Veterinary Research (INIAV, IP), 157 Oeiras, Portugal;
- Faculdade de Ciências, Universidade de Lisboa, Biosystems and Integrative Sciences Institute (BioISI), Edificio TecLabs, Campus da FCUL, Campo Grande, 1749-016 Lisbon, Portugal
| | - Loukia V. Ekateriniadou
- Veterinary Research Institute, Hellenic Agricultural Organization- DEMETER, 54124 Thessaloniki, Greece; (L.V.E.); (E.B.)
| | - Evridiki Boukouvala
- Veterinary Research Institute, Hellenic Agricultural Organization- DEMETER, 54124 Thessaloniki, Greece; (L.V.E.); (E.B.)
| | - Mostafa Y. Abdel-Glil
- Friedrich-Loeffler-Institut, Institute of Bacterial Infections and Zoonoses, Naumburger Str. 96a, 07743 Jena, Germany; (F.M.); (G.S.); (M.Y.A.-G.); (H.N.)
| | - Ahmed M.S. Menshawy
- Faculty of Veterinary Medicine, Beni-Suef University, Shamlaa Street, Beni-Suef 62511, Egypt;
| | - Marta Pérez Sancho
- Centro VISAVET, Universidad Complutense de Madrid, Avenida Puerta de Hierro, s/n, PC 28040 Madrid, Spain;
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Sonia Sakhria
- Institute of Veterinary Research of Tunisia, University of Tunis El Manar, Tunis 1006, Tunisia;
| | - Mathias W. Pletz
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany;
| | - Heinrich Neubauer
- Friedrich-Loeffler-Institut, Institute of Bacterial Infections and Zoonoses, Naumburger Str. 96a, 07743 Jena, Germany; (F.M.); (G.S.); (M.Y.A.-G.); (H.N.)
| |
Collapse
|
14
|
Wareth G, Pletz MW, Neubauer H, Murugaiyan J. Proteomics of Brucella: Technologies and Their Applications for Basic Research and Medical Microbiology. Microorganisms 2020; 8:microorganisms8050766. [PMID: 32443785 PMCID: PMC7285364 DOI: 10.3390/microorganisms8050766] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 12/26/2022] Open
Abstract
Brucellosis is a global zoonosis caused by Gram-negative, facultative intracellular bacteria of the genus Brucella (B.). Proteomics has been used to investigate a few B. melitensis and B. abortus strains, but data for other species and biovars are limited. Hence, a comprehensive analysis of proteomes will significantly contribute to understanding the enigmatic biology of brucellae. For direct identification and typing of Brucella, matrix-assisted laser desorption ionization - time of flight mass spectrometry (MALDI - TOF MS) has become a reliable tool for routine diagnosis due to its ease of handling, price and sensitivity highlighting the potential of proteome-based techniques. Proteome analysis will also help to overcome the historic but still notorious Brucella obstacles of infection medicine, the lack of safe and protective vaccines and sensitive serologic diagnostic tools by identifying the most efficient protein antigens. This perspective summarizes past and recent developments in Brucella proteomics with a focus on species identification and serodiagnosis. Future applications of proteomics in these fields are discussed.
Collapse
Affiliation(s)
- Gamal Wareth
- Friedrich-Loeffler-Institut, Institute of Bacterial Infections and Zoonoses, Naumburger Str. 96a, 07743 Jena, Germany;
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany;
- Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh 13736, Egypt
- Correspondence: ; Tel.: +49-364-1804-2296
| | - Mathias W. Pletz
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany;
| | - Heinrich Neubauer
- Friedrich-Loeffler-Institut, Institute of Bacterial Infections and Zoonoses, Naumburger Str. 96a, 07743 Jena, Germany;
| | - Jayaseelan Murugaiyan
- Institute of Animal Hygiene and Environmental Health, Centre for Infectious Medicine, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany;
- Department of Biotechnology, SRM University AP, Neerukonda, Mangalagiri, Andhra Pradesh 522502, India
| |
Collapse
|
15
|
Abstract
The clinical presentation of brucellosis in humans is variable and unspecific, and thus, laboratory corroboration of the diagnosis is essential for the patient's proper treatment. The diagnosis of brucellar infections can be made by culture, serological tests, and nucleic acid amplification assays. Modern automated blood culture systems enable detection of acute cases of brucellosis within the routine 5- to 7-day incubation protocol employed in clinical microbiology laboratories, although a longer incubation and performance of blind subcultures may be needed for protracted cases. Serological tests, though they lack specificity and provide results that may be difficult to interpret in individuals repeatedly exposed to Brucella organisms, nevertheless remain a diagnostic cornerstone in resource-poor countries. Nucleic acid amplification assays combine exquisite sensitivity, specificity, and safety and enable rapid diagnosis of the disease. However, long-term persistence of positive molecular test results in patients that have apparently fully recovered is common and has unclear clinical significance and therapeutic implications. Therefore, as long as there are no sufficiently validated commercial tests or studies that demonstrate an adequate interlaboratory reproducibility of the different homemade PCR assays, cultures and serological methods will remain the primary tools for the diagnosis and posttherapeutic follow-up of human brucellosis.
Collapse
Affiliation(s)
- Pablo Yagupsky
- Clinical Microbiology Laboratory, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Pilar Morata
- Biochemistry and Molecular Biology Department, Faculty of Medicine, University of Málaga, Málaga, Spain
- IBIMA, Málaga, Spain
| | - Juan D Colmenero
- Infectious Diseases Service, University Regional Hospital, Málaga, Spain
- IBIMA, Málaga, Spain
| |
Collapse
|
16
|
Khan AU, Shell WS, Melzer F, Sayour AE, Ramadan ES, Elschner MC, Moawad AA, Roesler U, Neubauer H, El-Adawy H. Identification, Genotyping and Antimicrobial Susceptibility Testing of Brucella spp. Isolated from Livestock in Egypt. Microorganisms 2019; 7:microorganisms7120603. [PMID: 31766725 PMCID: PMC6955977 DOI: 10.3390/microorganisms7120603] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/14/2019] [Accepted: 11/16/2019] [Indexed: 02/07/2023] Open
Abstract
Brucellosis is a highly contagious zoonosis worldwide with economic and public health impacts. The aim of the present study was to identify Brucella (B.) spp. isolated from animal populations located in different districts of Egypt and to determine their antimicrobial resistance. In total, 34-suspected Brucella isolates were recovered from lymph nodes, milk, and fetal abomasal contents of infected cattle, buffaloes, sheep, and goats from nine districts in Egypt. The isolates were identified by microbiological methods and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Differentiation and genotyping were confirmed using multiplex PCR for B. abortus, Brucella melitensis, Brucella ovis, and Brucella suis (AMOS) and Bruce-ladder PCR. Antimicrobial susceptibility testing against clinically used antimicrobial agents (chloramphenicol, ciprofloxacin, erythromycin, gentamicin, imipenem, rifampicin, streptomycin, and tetracycline) was performed using E-Test. The antimicrobial resistance-associated genes and mutations in Brucella isolates were confirmed using molecular tools. In total, 29 Brucella isolates (eight B. abortus biovar 1 and 21 B. melitensis biovar 3) were identified and typed. The resistance of B. melitensis to ciprofloxacin, erythromycin, imipenem, rifampicin, and streptomycin were 76.2%, 19.0%, 76.2%, 66.7%, and 4.8%, respectively. Whereas, 25.0%, 87.5%, 25.0%, and 37.5% of B. abortus were resistant to ciprofloxacin, erythromycin, imipenem, and rifampicin, respectively. Mutations in the rpoB gene associated with rifampicin resistance were identified in all phenotypically resistant isolates. Mutations in gyrA and gyrB genes associated with ciprofloxacin resistance were identified in four phenotypically resistant isolates of B. melitensis. This is the first study highlighting the antimicrobial resistance in Brucella isolated from different animal species in Egypt. Mutations detected in genes associated with antimicrobial resistance unravel the molecular mechanisms of resistance in Brucella isolates from Egypt. The mutations in the rpoB gene in phenotypically resistant B. abortus isolates in this study were reported for the first time in Egypt.
Collapse
Affiliation(s)
- Aman Ullah Khan
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, 07743 Jena, Germany; (A.U.K.); (F.M.); (M.C.E.); (A.A.M.); (H.N.)
- Institute for Animal Hygiene and Environmental Health, Free University of Berlin, 14163 Berlin, Germany;
- Department of Pathobiology, College of Veterinary and Animal Sciences, 35200 Jhang, Pakistan
| | - Waleed S. Shell
- Central Laboratory for Evaluation of Veterinary Biologics, Agricultural Research Center, 11517 Abbasaia-Cairo, Egypt;
| | - Falk Melzer
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, 07743 Jena, Germany; (A.U.K.); (F.M.); (M.C.E.); (A.A.M.); (H.N.)
| | - Ashraf E. Sayour
- Department of Brucellosis, Animal Health Research Institute, Agricultural Research Center, 12618 Dokki-Giza, Egypt;
| | - Eman Shawkat Ramadan
- Animal Reproduction Research Institute, Agricultural Research Center, 12556 Al Ahram-Giza, Egypt;
| | - Mandy C. Elschner
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, 07743 Jena, Germany; (A.U.K.); (F.M.); (M.C.E.); (A.A.M.); (H.N.)
| | - Amira A. Moawad
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, 07743 Jena, Germany; (A.U.K.); (F.M.); (M.C.E.); (A.A.M.); (H.N.)
- Institute for Animal Hygiene and Environmental Health, Free University of Berlin, 14163 Berlin, Germany;
- Provincial Laboratory, Institute of Animal Health Research, 35516 Mansoura, Egypt
| | - Uwe Roesler
- Institute for Animal Hygiene and Environmental Health, Free University of Berlin, 14163 Berlin, Germany;
| | - Heinrich Neubauer
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, 07743 Jena, Germany; (A.U.K.); (F.M.); (M.C.E.); (A.A.M.); (H.N.)
| | - Hosny El-Adawy
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, 07743 Jena, Germany; (A.U.K.); (F.M.); (M.C.E.); (A.A.M.); (H.N.)
- Faculty of Veterinary Medicine, Kafr Elsheikh University, 33516 Kafr El-Sheikh, Egypt
- Correspondence:
| |
Collapse
|
17
|
MALDI Profiling and Applications in Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1140:27-43. [DOI: 10.1007/978-3-030-15950-4_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Sali M, De Maio F, Tarantino M, Garofolo G, Tittarelli M, Sacchini L, Zilli K, Pasquali P, Petrucci P, Marianelli C, Francia M, Sanguinetti M, Adone R. Rapid and safe one-step extraction method for the identification of Brucella strains at genus and species level by MALDI-TOF mass spectrometry. PLoS One 2018; 13:e0197864. [PMID: 29870530 PMCID: PMC5988274 DOI: 10.1371/journal.pone.0197864] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 05/09/2018] [Indexed: 12/21/2022] Open
Abstract
Brucellosis is essentially a disease of domesticated livestock; however, humans can also be infected via the consumption of contaminated meat or dairy products, underlying the need for rapid and accurate identification methods. Procedures for microbiological identification and typing of Brucella spp. are expensive, time-consuming, and must be conducted in biohazard containment facilities to minimize operator risk. The development of a matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS)-based assay has reduced the processing time while maintaining performance standards. In this study, to improve the identification accuracy and suitability of the MALDI-TOF-based assay for routine diagnosis, we developed a new protein extraction protocol and generated a custom reference database containing Brucella strains representative of the most widespread species. The reference library was then challenged with blind-coded field samples isolated from infected animals. The results indicated that the database could be used to correctly identify 99.5% and 97% of Brucella strains at the genus and species level, respectively, indicating that the performance of the assay was not affected by the different culture conditions used for microbial isolation. Moreover, the inactivated samples were stored and shipped to reference laboratories with no ill effect on protein stability, thus confirming the reliability of our method for routine diagnosis. Finally, we evaluated the epidemiological value of the protocol by comparing the clustering analysis results of Brucella melitensis strains obtained via multiple locus variable-number tandem repeat analysis or MALDI-TOF MS. The results showed that the MALDI-TOF assay could not decipher the true phylogenetic tree, suggesting that the protein profile did not correspond with the genetic evolution of Brucella.
Collapse
Affiliation(s)
- Michela Sali
- Insitute of Microbiology, Fondazione Policlinico A. Gemelli - IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy
- * E-mail:
| | - Flavio De Maio
- Insitute of Microbiology, Fondazione Policlinico A. Gemelli - IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy
| | - Michela Tarantino
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Giuliano Garofolo
- National and OIE Reference Laboratory for Brucellosis, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Manuela Tittarelli
- National and OIE Reference Laboratory for Brucellosis, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Lorena Sacchini
- National and OIE Reference Laboratory for Brucellosis, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Katiuscia Zilli
- National and OIE Reference Laboratory for Brucellosis, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Paolo Pasquali
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Paola Petrucci
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Cinzia Marianelli
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Massimiliano Francia
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Maurizio Sanguinetti
- Insitute of Microbiology, Fondazione Policlinico A. Gemelli - IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy
| | - Rosanna Adone
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
19
|
Misidentification of Risk Group 3/Security Sensitive Biological Agents by MALDI-TOF MS in Canada: November 2015-October 2017. ACTA ACUST UNITED AC 2018; 44:110-115. [PMID: 31007621 DOI: 10.14745/ccdr.v44i05a04] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Background Matrix-Assisted Laser Desorption/Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) is a technology increasingly used in diagnostic identification of microorganisms. However, anecdotal evidence suggests that this technology is associated with misidentification of Risk Group 3 (RG3)/Security Sensitive Biological Agents (SSBA) resulting in exposure risks to laboratory personnel. Objective To investigate and characterize incidents related to the use of MALDI-TOF MS in Canada between November 6, 2015, and October 10, 2017. Methods Cases were identified from laboratory incident reports in the national Laboratory Incident Notification Canada (LINC) surveillance system. Eligible cases referred directly to MALDI-TOF MS or one of three RG3/SSBA organisms, Brucella species, Francisella tularensis and Burkholderia pseudomallei. A questionnaire was developed to identify potential risk factors leading to the exposure. Reporters from organizations with selected incidents were interviewed using the questionnaire. Data were entered into an Excel spreadsheet and standard descriptive statistical analysis performed to assess common characteristics and identify possible risk factors. Results There were eight eligible incidents and a total of 39 laboratory workers were exposed to RG3/SSBA organisms. In five (out of eight) of the incidents, the reporters indicated that their device was equipped with both clinical and research reference libraries. For six incidents where reporters knew the type of library used, only the clinical library was employed at the time of the incident even though both libraries were available in five of these incidents. In all eight cases, the exposure occurred during the sample preparation stage with analyses performed on an open bench and directly from the specimen. And in all eight cases, patient specimens were received without information regarding potential risk. Conclusion This first national study characterizing the nature and extent of laboratory incidents involving RG3/SSBA that are related to the use of MALDI-TOF MS identifies risk factors and provides baseline data that can inform mitigation strategies.
Collapse
|
20
|
El-Diasty M, Wareth G, Melzer F, Mustafa S, Sprague LD, Neubauer H. Isolation of Brucella abortus and Brucella melitensis from Seronegative Cows is a Serious Impediment in Brucellosis Control. Vet Sci 2018. [PMID: 29522464 PMCID: PMC5876578 DOI: 10.3390/vetsci5010028] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Brucellosis is a zoonosis occurring worldwide, with economic and public health impacts. Its diagnosis remains a challenge in endemic countries and basically relies on serology. The present study was carried out on two dairy cattle farms allegedly free from brucellosis, but with sporadic cases of abortion. The aim of this study was to investigate the presence of Brucella (B.) spp. in uterine discharge of seronegative cows after abortion. In farm I, B. melitensis biovar (bv) 3 was cultured from two of five cows after abortion, while in farm II, B. abortus bv 1 was cultured from three of eleven cows after abortion. These cows had been intrauterinely infected but remained seronegative until abortion and seroconverted only thereafter. Shedding of brucellae in uterine discharge of culture positive/seronegative aborting cows is a serious problem resulting in maintenance and further spread of infection. Thus, serosurveys in endemic countries have to be accompanied by molecular detection and/or culture of aborted material to close the diagnostic window and to hinder uncontrolled spread.
Collapse
Affiliation(s)
- Mohamed El-Diasty
- Animal Health Research Institute-Mansoura Provincial Laboratory, 35516 Mansoura, Egypt.
| | - Gamal Wareth
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Bacterial Infections and Zoonoses, 07743 Jena, Germany.
- Faculty of Veterinary Medicine, Benha University, Moshtohor, 13736 Toukh, Egypt.
| | - Falk Melzer
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Bacterial Infections and Zoonoses, 07743 Jena, Germany.
| | - Shawky Mustafa
- Faculty of Veterinary Medicine, Benha University, Moshtohor, 13736 Toukh, Egypt.
| | - Lisa D Sprague
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Bacterial Infections and Zoonoses, 07743 Jena, Germany.
| | - Heinrich Neubauer
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Bacterial Infections and Zoonoses, 07743 Jena, Germany.
| |
Collapse
|
21
|
Are brucellosis, Q fever and melioidosis potential causes of febrile illness in Madagascar? Acta Trop 2017; 172:255-262. [PMID: 28502643 DOI: 10.1016/j.actatropica.2017.05.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 05/09/2017] [Accepted: 05/10/2017] [Indexed: 12/18/2022]
Abstract
Brucellosis, Q fever and melioidosis are zoonoses, which can lead to pyrexia. These diseases are often under-ascertained and underreported because of their unspecific clinical signs and symptoms, insufficient awareness by physicians and public health officers and limited diagnostic capabilities, especially in low-resource countries. Therefore, the presence of Brucella spp., Coxiella burnetii and Burkholderia pseudomallei was investigated in Malagasy patients exhibiting febrile illness. In addition, we analyzed zebu cattle and their ticks as potential reservoirs for Brucella and C. burnetii, respectively. Specific quantitative real-time PCR assays (qPCRs) were performed on 1020 blood samples drawn from febrile patients. In total, 15 samples (1.5%) were Brucella-positive, mainly originating from patients without travel history, while DNA from C. burnetii and Bu. pseudomallei was not detected. Anti-C. burnetii antibodies were found in four out of 201 zebu serum samples (2%), whereas anti-Brucella antibodies could not be detected. Brucella DNA was detected in a single zebu sample. Three out of 330 ticks analyzed (1%) were positively tested for C. burnetii DNA but with high Ct values in the qPCR assay. Our data suggest that zebus as well as Amblyomma and Boophilus ticks have to be considered as a natural reservoir or vector for C. burnetii, but the risk of cattle-to-human transmission is low. Since bovine brucellosis does not seem to contribute to human infections in Madagascar, other transmission routes have to be assumed.
Collapse
|
22
|
Grunow R, Jacob D, Klee S, Schlembach D, Jackowski-Dohrmann S, Loenning-Baucke V, Eberspächer B, Swidsinski S. Brucellosis in a refugee who migrated from Syria to Germany and lessons learnt, 2016. ACTA ACUST UNITED AC 2017; 21:30311. [PMID: 27525454 PMCID: PMC4998511 DOI: 10.2807/1560-7917.es.2016.21.31.30311] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 08/03/2016] [Indexed: 11/20/2022]
Abstract
A teenage woman migrating from Syria arrived in May 2015 in Germany. She gave birth to a healthy child in early 2016, but became febrile shortly after delivery. Blood cultures revealed Brucella melitensis. In retrospect, she reported contact with sheep in Syria and recurrent pain in the hip joints over about five months before diagnosis of brucellosis. We discuss consequences for adequate treatment of mother and child as well as for clinical and laboratory management.
Collapse
|
23
|
Tracz DM, Tyler AD, Cunningham I, Antonation KS, Corbett CR. Custom database development and biomarker discovery methods for MALDI-TOF mass spectrometry-based identification of high-consequence bacterial pathogens. J Microbiol Methods 2017; 134:54-57. [PMID: 28108323 DOI: 10.1016/j.mimet.2017.01.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/16/2017] [Accepted: 01/16/2017] [Indexed: 11/18/2022]
Abstract
A high-quality custom database of MALDI-TOF mass spectral profiles was developed with the goal of improving clinical diagnostic identification of high-consequence bacterial pathogens. A biomarker discovery method is presented for identifying and evaluating MALDI-TOF MS spectra to potentially differentiate biothreat bacteria from less-pathogenic near-neighbour species.
Collapse
Affiliation(s)
- Dobryan M Tracz
- National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, Manitoba R3E 3R2, Canada
| | - Andrea D Tyler
- National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, Manitoba R3E 3R2, Canada
| | - Ian Cunningham
- National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, Manitoba R3E 3R2, Canada
| | - Kym S Antonation
- National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, Manitoba R3E 3R2, Canada
| | - Cindi R Corbett
- National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, Manitoba R3E 3R2, Canada; University of Manitoba, Department of Medical Microbiology and Infectious Diseases, Winnipeg, Manitoba R3E 0J9, Canada.
| |
Collapse
|
24
|
Schwarz NG, Loderstaedt U, Hahn A, Hinz R, Zautner AE, Eibach D, Fischer M, Hagen RM, Frickmann H. Microbiological laboratory diagnostics of neglected zoonotic diseases (NZDs). Acta Trop 2017; 165:40-65. [PMID: 26391646 DOI: 10.1016/j.actatropica.2015.09.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 08/03/2015] [Accepted: 09/04/2015] [Indexed: 02/06/2023]
Abstract
This review reports on laboratory diagnostic approaches for selected, highly pathogenic neglected zoonotic diseases, i.e. anthrax, bovine tuberculosis, brucellosis, echinococcosis, leishmaniasis, rabies, Taenia solium-associated diseases (neuro-/cysticercosis & taeniasis) and trypanosomiasis. Diagnostic options, including microscopy, culture, matrix-assisted laser-desorption-ionisation time-of-flight mass spectrometry, molecular approaches and serology are introduced. These procedures are critically discussed regarding their diagnostic reliability and state of evaluation. For rare diseases reliable evaluation data are scarce due to the rarity of samples. If bio-safety level 3 is required for cultural growth, but such high standards of laboratory infrastructure are not available, serological and molecular approaches from inactivated sample material might be alternatives. Multiple subsequent testing using various test platforms in a stepwise approach may improve sensitivity and specificity. Cheap and easy to use tests, usually called "rapid diagnostic tests" (RDTs) may impact disease control measures, but should not preclude developing countries from state of the art diagnostics.
Collapse
|
25
|
Brucellosis. Infect Dis (Lond) 2017. [DOI: 10.1016/b978-0-7020-6285-8.00129-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
26
|
Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) for the identification of highly pathogenic bacteria. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.04.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
27
|
Karger A. Current developments to use linear MALDI-TOF spectra for the identification and typing of bacteria and the characterization of other cells/organisms related to infectious diseases. Proteomics Clin Appl 2016; 10:982-993. [PMID: 27400768 DOI: 10.1002/prca.201600038] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 05/30/2016] [Accepted: 07/07/2016] [Indexed: 12/21/2022]
Abstract
Within the past few years identification of bacteria by MALDI-TOF MS has become a standard technique in bacteriological laboratories for good reasons. MALDI-TOF MS identification is rapid, robust, automatable, and the per-sample costs are low. Yet, the spectra are very informative and the reliable identification of bacterial species is usually possible. Recently, new MS-based approaches for the identification of bacteria are emerging that are based on the detailed analysis of the bacterial proteome by high-resolution MS. These "proteotyping" approaches are highly discriminative and outperform MALDI-TOF MS-based identification in terms of specificity, but require a laborious proteomic workflow and far more expertise and sophisticated instrumentation than identification on basis of MALDI-TOF MS spectra, which can be obtained with relative simple and uncostly linear MALDI-TOF mass spectrometers. Thus MALDI-TOF MS identification of bacteria remains an attractive option for routine diagnostics. Additionally, MALDI-TOF MS identification protocols have been extended and improved in many respects making linear MALDI-TOF MS a versatile tool that can be useful beyond the identification of a bacterial species, e.g. for the characterization of leucocytes and arthropod vectors of infectious diseases. This review focuses on such improvements and extensions of the typical MALDI-TOF MS workflow in the field of infectious diseases.
Collapse
Affiliation(s)
- Axel Karger
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, , Federal Research Institute for Animal Health Südufer, Greifswald-Insel Riems, Germany.
| |
Collapse
|
28
|
Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for Microbial Identification in Clinical Microbiology. Mol Microbiol 2016. [DOI: 10.1128/9781555819071.ch8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
A Simple and Safe Protocol for Preparing Brucella Samples for Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry Analysis. J Clin Microbiol 2015; 54:449-52. [PMID: 26582837 DOI: 10.1128/jcm.02730-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 11/11/2015] [Indexed: 12/19/2022] Open
Abstract
We describe a simple protocol to inactivate the biosafety level 3 (BSL3) pathogens Brucella prior to their analysis by matrix-assisted laser desorption ionization-time of flight mass spectrometry. This method is also effective for several other bacterial pathogens and allows storage, and eventually shipping, of inactivated samples; therefore, it might be routinely applied to unidentified bacteria, for the safety of laboratory workers.
Collapse
|
30
|
van Belkum A, Chatellier S, Girard V, Pincus D, Deol P, Dunne WM. Progress in proteomics for clinical microbiology: MALDI-TOF MS for microbial species identification and more. Expert Rev Proteomics 2015; 12:595-605. [DOI: 10.1586/14789450.2015.1091731] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
31
|
Hammerl JA, Ulrich RG, Imholt C, Scholz HC, Jacob J, Kratzmann N, Nöckler K, Al Dahouk S. Molecular Survey on Brucellosis in Rodents and Shrews - Natural Reservoirs of Novel Brucella Species in Germany? Transbound Emerg Dis 2015; 64:663-671. [PMID: 26398680 DOI: 10.1111/tbed.12425] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Indexed: 11/26/2022]
Abstract
Brucellosis is a widespread zoonotic disease introduced from animal reservoirs to humans. In Germany, bovine and ovine/caprine brucellosis were eradicated more than a decade ago and mandatory measures in livestock have been implemented to keep the officially brucellosis-free status. In contrast, surveillance of wildlife is still challenging, and reliable data on the prevalence of brucellae in small mammal populations do not exist. To assess the epidemiology of Brucella spp. in rodents and shrews, a molecular survey was carried out. A total of 537 rodents and shrews were trapped in four federal states located throughout Germany and investigated for the presence of Brucella. Using a two-step molecular assay based on the detection of the Brucella-specific bcsp31 and IS711 sequences in tissue samples, 14.2% (n = 76) of the tested animals were positive. These originated mainly from western and south-western Germany, where preliminary analyses indicate population density-dependent Brucella prevalence in voles (Myodes glareolus) and mice (Apodemus spp.). recA typing revealed a close relationship to a potentially novel Brucella species recently isolated from red foxes (Vulpes vulpes) in Austria. The molecular detection of brucellae in various rodent taxa and for the first time in shrew species shows that these animals may be naturally infected or at least have a history of exposure to Brucella spp.
Collapse
Affiliation(s)
- J A Hammerl
- Department of Biological Safety, Federal Institute for Risk Assessment, Berlin, Germany
| | - R G Ulrich
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, OIE Collaborating Centre for Zoonoses in Europe, Institute for Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany
| | - C Imholt
- Julius Kühn-Institut, Federal Research Institute for Cultivated Plants, Institute for Plant Protection in Horticulture and Forests, Vertebrate Research Group, Münster, Germany
| | - H C Scholz
- Bundeswehr Institute of Microbiology, Munich, Germany.,German Center for Infection Research (DZIF), Munich, Germany
| | - J Jacob
- Julius Kühn-Institut, Federal Research Institute for Cultivated Plants, Institute for Plant Protection in Horticulture and Forests, Vertebrate Research Group, Münster, Germany
| | - N Kratzmann
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, OIE Collaborating Centre for Zoonoses in Europe, Institute for Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany
| | - K Nöckler
- Department of Biological Safety, Federal Institute for Risk Assessment, Berlin, Germany
| | - S Al Dahouk
- Department of Biological Safety, Federal Institute for Risk Assessment, Berlin, Germany.,Department of Internal Medicine III, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
32
|
Schäfer MO, Genersch E, Fünfhaus A, Poppinga L, Formella N, Bettin B, Karger A. Rapid identification of differentially virulent genotypes of Paenibacillus larvae, the causative organism of American foulbrood of honey bees, by whole cell MALDI-TOF mass spectrometry. Vet Microbiol 2014; 170:291-7. [PMID: 24613082 DOI: 10.1016/j.vetmic.2014.02.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 02/01/2014] [Indexed: 10/25/2022]
Abstract
Infection with Paenibacillus larvae, the etiological agent of American foulbrood, is lethal for honey bee larvae and may lead to loss of the entire colony. Of the four known ERIC-genotypes of P. larvae, ERIC I and II are most frequently observed and differ significantly in virulence. The course of the disease on the larval level is more accelerated after infection with genotype II strains allowing nurse bees to remove diseased larvae more efficiently before capping. For this reason the lead clinical symptom, conversion of capped larvae into 'ropy mass', is less frequently found than after infection with ERIC I strains bearing the risk of false negative diagnosis. In this study, the potential of matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) for the discrimination of P. larvae genotypes ERIC I and II was explored on the basis of a comprehensive set of isolates. Using commercial software and a reference database constructed from field and type strains, ERIC I and II genotypes of all field isolates could be unambiguously identified on basis of mass spectra. Statistical analysis showed that the genotype is the main determinant for the spectral phenotype and MS-based ERIC-type determination is robust against sample selection. Furthermore, analysis of samples from Canada and New Zealand showed that distribution of ERIC II is not restricted to Europe as previously assumed. We suggest adding ERIC I and II genotype isolates as type-specific reference spectra for use in routine diagnostics.
Collapse
Affiliation(s)
- Marc Oliver Schäfer
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Infectology, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Elke Genersch
- Institute for Bee Research, Friedrich-Engels-Str. 32, 16540 Hohen Neuendorf, Germany
| | - Anne Fünfhaus
- Institute for Bee Research, Friedrich-Engels-Str. 32, 16540 Hohen Neuendorf, Germany
| | - Lena Poppinga
- Institute for Bee Research, Friedrich-Engels-Str. 32, 16540 Hohen Neuendorf, Germany
| | - Noreen Formella
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Infectology, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Barbara Bettin
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Molecular Biology, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Axel Karger
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Molecular Biology, Südufer 10, 17493 Greifswald-Insel Riems, Germany.
| |
Collapse
|
33
|
Dudley E. MALDI Profiling and Applications in Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 806:33-58. [DOI: 10.1007/978-3-319-06068-2_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|