1
|
Tenezaca Lliguin NM, Orellana Bravo PP, Andrade Tacuri CF, Ortiz Tejedor JG. [Methicillin-resistant Staphylococcus aureus isolated from mobile phones of nursing students in Cuenca, Ecuador]. Rev Argent Microbiol 2025:S0325-7541(24)00158-5. [PMID: 39880775 DOI: 10.1016/j.ram.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/26/2024] [Accepted: 12/03/2024] [Indexed: 01/31/2025] Open
Abstract
Staphylococcus aureus is an important pathogen in healthcare facilities, with its resistance to a number of antibiotics currently being a global concern. In this report the presence of S.aureus, resistance gene virulence and antibiotic susceptibility profiles were determined in the mobile phones of senior nursing students. S.aureus was isolated in 11.84% (9/76) of the samples. Furthermore, 44.44% of the mobile phones carried the mecA (MRSA) gene, while none carried the vanA gene. Virulence genes identified were 100% hla, 88.89% hlb, 22.22% tst and sec, and 11.11% sea. The antibiogram revealed that 33.33% of the strains were resistant to cefoxitin and 44.44% showed inducible resistance to clindamycin (ICRSA). The mobile phones of senior nursing students represent an important reservoir of drug-resistant and virulent strains of S.aureus, which could act as infectious foci for the transmission of this pathogen.
Collapse
Affiliation(s)
| | - Paola Patricia Orellana Bravo
- Carrera de Odontología, Laboratorio de Biología Molecular y Genética, Centro de Investigación Innovación y Transferencia de Tecnología (CIITT), Universidad Católica de Cuenca, Cuenca, Ecuador
| | - Carlos Fernando Andrade Tacuri
- Carrera de Odontología, Laboratorio de Biología Molecular y Genética, Centro de Investigación Innovación y Transferencia de Tecnología (CIITT), Universidad Católica de Cuenca, Cuenca, Ecuador
| | - Jonnathan Gerardo Ortiz Tejedor
- Carrera de Bioquímica y Farmacia, Maestría en Diagnóstico, Laboratorio Clínico y Molecular, Universidad Católica de Cuenca, Cuenca, Ecuador
| |
Collapse
|
2
|
Kraus K, Mikziński P, Widelski J, Paluch E. Prevention and Modern Strategies for Managing Methicillin-Resistant Staphylococcal Infections in Prosthetic Joint Infections (PJIs). Antibiotics (Basel) 2024; 13:1151. [PMID: 39766540 PMCID: PMC11672861 DOI: 10.3390/antibiotics13121151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/21/2024] [Accepted: 11/24/2024] [Indexed: 01/11/2025] Open
Abstract
Periprosthetic joint infections (PJIs) are a dangerous complication of joint replacement surgeries which have become much more common in recent years (mostly hip and knee replacement surgeries). Such a condition can lead to many health issues and often requires reoperation. Staphylococci is a bacterial group most common in terms of the pathogens causing PJIs. S. aureus and coagulase-negative staphylococci are found in around two-thirds of PJI cases. Recently, the numbers of staphylococci that cause such infections and that are methicillin-resistant are increasing. This trend leads to difficulties in the treatment and prevention of such infections. That is why MRSA and MRSE groups require extraordinary attention when dealing with PJIs in order to successfully treat them. Controlling carriage, using optimal prosthetic materials, and implementing perioperative antimicrobial prophylaxis are crucial strategies in infection prevention and are as essential as quick diagnosis and effective targeted treatment. The comprehensive professional procedures presented in this review show how to deal with such cases.
Collapse
Affiliation(s)
- Karolina Kraus
- Faculty of Medicine, Wroclaw Medical University, Wyb. Pasteura 1, 50-376 Wroclaw, Poland; (K.K.); (P.M.)
| | - Paweł Mikziński
- Faculty of Medicine, Wroclaw Medical University, Wyb. Pasteura 1, 50-376 Wroclaw, Poland; (K.K.); (P.M.)
| | - Jarosław Widelski
- Department of Pharmacognosy with Medicinal Plants Garden, Lublin Medical University, 20-093 Lublin, Poland;
| | - Emil Paluch
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Tytusa Chalubinskiego 4, 50-376 Wroclaw, Poland
| |
Collapse
|
3
|
Yan JD, Yang CY, Han A, Wu CC. A Label-Free Droplet Sorting Platform Integrating Dielectrophoretic Separation for Estimating Bacterial Antimicrobial Resistance. BIOSENSORS 2024; 14:218. [PMID: 38785691 PMCID: PMC11117925 DOI: 10.3390/bios14050218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024]
Abstract
Antimicrobial resistance (AMR) has become a crucial global health issue. Antibiotic-resistant bacteria can survive after antibiotic treatments, lowering drug efficacy and increasing lethal risks. A microfluidic water-in-oil emulsion droplet system can entrap microorganisms and antibiotics within the tiny bioreactor, separate from the surroundings, enabling independent assays that can be performed in a high-throughput manner. This study presents the development of a label-free dielectrophoresis (DEP)-based microfluidic platform to sort droplets that co-encapsulate Escherichia coli (E. coli) and ampicillin (Amp) and droplets that co-encapsulate Amp-resistant (AmpR) E. coli with Amp only based on the conductivity-dependent DEP force (FDEP) without the assistance of optical analyses. The 9.4% low conductivity (LC) Luria-Bertani (LB) broth diluted with 170 mM mannitol can maintain E. coli and AmpR E. coli growth for 3 h and allow Amp to kill almost all E. coli, which can significantly increase the LCLB conductivity by about 100 μS/cm. Therefore, the AmpR E. coli/9.4%LCLB/Amp where no cells are killed and the E. coli/9.4%LCLB/Amp-containing droplets where most of the cells are killed can be sorted based on this conductivity difference at an applied electric field of 2 MHz and 100 Vpp that generates positive FDEP. Moreover, the sorting ratio significantly decreased to about 50% when the population of AmpR E. coli was equal to or higher than 50% in droplets. The conductivity-dependent DEP-based sorting platform exhibits promising potential to probe the ratio of AmpR E. coli in an unknown bacterial sample by using the sorting ratio as an index.
Collapse
Affiliation(s)
- Jia-De Yan
- Doctoral Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung City 402, Taiwan;
| | - Chiou-Ying Yang
- Institute of Molecular Biology, National Chung Hsing University, Taichung City 402, Taiwan;
| | - Arum Han
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Ching-Chou Wu
- Doctoral Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung City 402, Taiwan;
- Department of Bio-Industrial Mechatronics Engineering, National Chung Hsing University, Taichung City 402, Taiwan
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung City 402, Taiwan
| |
Collapse
|
4
|
Carpenter JM, Hynds HM, Bimpeh K, Hines KM. HILIC-IM-MS for Simultaneous Lipid and Metabolite Profiling of Bacteria. ACS MEASUREMENT SCIENCE AU 2024; 4:104-116. [PMID: 38404491 PMCID: PMC10885331 DOI: 10.1021/acsmeasuresciau.3c00051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 02/27/2024]
Abstract
Although MALDI-ToF platforms for microbial identifications have found great success in clinical microbiology, the sole use of protein fingerprints for the discrimination of closely related species, strain-level identifications, and detection of antimicrobial resistance remains a challenge for the technology. Several alternative mass spectrometry-based methods have been proposed to address the shortcomings of the protein-centric approach, including MALDI-ToF methods for fatty acid/lipid profiling and LC-MS profiling of metabolites. However, the molecular diversity of microbial pathogens suggests that no single "ome" will be sufficient for the accurate and sensitive identification of strain- and susceptibility-level profiling of bacteria. Here, we describe the development of an alternative approach to microorganism profiling that relies upon both metabolites and lipids rather than a single class of biomolecule. Single-phase extractions based on butanol, acetonitrile, and water (the BAW method) were evaluated for the recovery of lipids and metabolites from Gram-positive and -negative microorganisms. We found that BAW extraction solutions containing 45% butanol provided optimal recovery of both molecular classes in a single extraction. The single-phase extraction method was coupled to hydrophilic interaction liquid chromatography (HILIC) and ion mobility-mass spectrometry (IM-MS) to resolve similar-mass metabolites and lipids in three dimensions and provide multiple points of evidence for feature annotation in the absence of tandem mass spectrometry. We demonstrate that the combined use of metabolites and lipids can be used to differentiate microorganisms to the species- and strain-level for four of the ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Acinetobacter baumannii, and Pseudomonas aeruginosa) using data from a single ionization mode. These results present promising, early stage evidence for the use of multiomic signatures for the identification of microorganisms by liquid chromatography, ion mobility, and mass spectrometry that, upon further development, may improve upon the level of identification provided by current methods.
Collapse
Affiliation(s)
- Jana M. Carpenter
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Hannah M. Hynds
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Kingsley Bimpeh
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Kelly M. Hines
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
5
|
Sifana NO, Melyna, Septiani NLW, Septama AW, Manurung RV, Yuliarto B, Jenie SNA. Detection of Methicillin-Resistant Staphylococcus Aureus using vancomycin conjugated silica-based fluorescent nanoprobe. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 307:123643. [PMID: 37979538 DOI: 10.1016/j.saa.2023.123643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 11/05/2023] [Accepted: 11/10/2023] [Indexed: 11/20/2023]
Abstract
Methicillin-Resistant Staphylococcus Aureus (MRSA) is a worldwide major pathogenic bacteria that has emerged over the past three decades as the leading cause of nosocomial and community-acquired infections. Biosensors can provide rapid, sensitive, and selective detection of the presence and number of bacteria in various environments. Herein, a novel fluorescence nanoprobe was designed as a biosensor for MRSA detection using dye-incorporated silica nanoparticles (FSiNP). Based on the results of specific surface area analysis using the Brauner Emmett-Teller (BET) method, the surface area of the nanoparticles was obtained at 377.127 m2/g, and the X-ray diffraction (XRD) analysis confirmed that it was in the amorphous phase. Vancomycin, as the bioreceptor, was immobilized on the silica surface through a hydrosilylation reaction, generating the biosensing platform FSiNP-Van. Each modification step was corroborated by the Fourier Transform Infra-Red (FTIR) spectroscopy. The sensing principle was based on the fluorescence-quenching mechanism of FSiNP-Van at 515 nm obtaining a rapid response time of 20 min. The FSiNP-Van nanoprobe provided a wide linear concentration range of 10-106 CFU/mL with a limit of MRSA detection calculated at 1 CFU/mL. The fluorescent nanoprobe demonstrated here is expected to find applications in point-of-care (POC) diagnostics to detect the presence of MRSA bacteria.
Collapse
Affiliation(s)
- Nining Oktafina Sifana
- Master Program of Nanotechnology, Graduate School, Institut Teknologi Bandung, Ganesha 10, Bandung 40132, Indonesia; Advanced Functional Material Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung, Jawa Barat 41032, Indonesia
| | - Melyna
- Master Program of Analytical Chemistry, Institut Teknologi Bandung, Ganesha 10, Bandung 40132, Indonesia
| | - Ni Luh Wulan Septiani
- Research Center for Advanced Materials, National Research and Innovation Agency (BRIN), Kawasan Puspiptek, South Tangerang 15134, Indonesia; BRIN and ITB Collaboration Research Center for Biosensor and Biodevices, Jl. Ganesha 10, Bandung, Jawa Barat 40132, Indonesia
| | - Abdi Wira Septama
- Research Centre for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Kawasan Puspiptek, South Tangerang, Banten 15134, Indonesia
| | - Robeth Viktoria Manurung
- BRIN and ITB Collaboration Research Center for Biosensor and Biodevices, Jl. Ganesha 10, Bandung, Jawa Barat 40132, Indonesia; Research Centre for Electronics, National Research and Innovation Agency (BRIN), Komplek LIPI Gd. 20, Jl. Cisitu Lama, Dago, Kecamatan Coblong, Bandung, Jawa Barat 40135, Indonesia
| | - Brian Yuliarto
- Master Program of Nanotechnology, Graduate School, Institut Teknologi Bandung, Ganesha 10, Bandung 40132, Indonesia; Advanced Functional Material Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung, Jawa Barat 41032, Indonesia; BRIN and ITB Collaboration Research Center for Biosensor and Biodevices, Jl. Ganesha 10, Bandung, Jawa Barat 40132, Indonesia.
| | - S N Aisyiyah Jenie
- BRIN and ITB Collaboration Research Center for Biosensor and Biodevices, Jl. Ganesha 10, Bandung, Jawa Barat 40132, Indonesia; Research Centre for Chemistry, National Research and Innovation Agency (BRIN), Kawasan PUSPIPTEK, Building 452, Serpong, South Tangerang, Banten 15314, Indonesia.
| |
Collapse
|
6
|
Kamath PR, Imthiaz NF, Razak AA, Pai V, Shenoy MM. A Study of Community-Acquired Pyodermas with Special Reference to Panton-Valentine Leukocidin (PVL)-Positive Methicillin-Resistant Staphylococcus Aureus. Indian Dermatol Online J 2024; 15:69-72. [PMID: 38282994 PMCID: PMC10810391 DOI: 10.4103/idoj.idoj_181_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 01/30/2024] Open
Abstract
Background Community-acquired (CA) pyodermas are one of the most common infections encountered in the dermatology outpatient clinics. A significant number of these conditions are caused by Staphylococcus aureus. CA-methicillin-sensitive Staphylococcus aureus (MSSA) and CA-methicillin-resistant Staphylococcus aureus (MRSA) have specific virulence genes which are associated with these diseases, particularly the Panton-Valentine leukocidin (PVL) genes. The presence of the PVL gene as a virulence factor may be associated with recurrent and severe skin infections. Materials and Methods A prospective study was conducted with 205 cases of CA pyodermas, of which five were discarded due to mixed isolates. Clinical details were taken and wound exudate was sent for bacteriological examination. Further, the molecular study was performed on all MRSA (7) isolates and 13 randomly selected MSSA isolates using polymerase chain reaction for mecA and PVL genes. Results Staphylococcus aureus was the most common organism (90%) isolated from primary or secondary CA pyodermas. The prevalence of CA-MRSA among all pyodermas was 3.5% in our community. The PVL gene was not detected in all tested CA-MRSA and CA-MSSA isolates. Conclusion While pyodermas are common, the prevalence of MRSA is low in the CA pyodermas in our region. PVL does not appear to be a virulence factor among the isolated MRSA. Larger, multicentric, and periodic studies are, however, required to further justify these claims.
Collapse
Affiliation(s)
- Prashanth R. Kamath
- Department of Dermatology, AJ Institute of Medical Sciences College, Mangalore, Karnataka, India
| | - Niha F. Imthiaz
- Department of Dermatology, Yenepoya Medical College, Mangalore, Karnataka, India
| | - Ashmiya A. Razak
- Department of Dermatology, Yenepoya Medical College, Mangalore, Karnataka, India
| | - Vidya Pai
- Department of Microbiology, Yenepoya Medical College, Mangalore, Karnataka, India
| | - Manjunath M. Shenoy
- Department of Dermatology, Yenepoya Medical College, Mangalore, Karnataka, India
| |
Collapse
|
7
|
Heng P, Shi B, Li D, Ou H, He Y, Zhou L. Rapid visualization molecular fluorescence detection of methicillin-resistant Staphylococcus aureus using the multiplex MIRA-qPCR method. Biotechnol J 2023; 18:e2300200. [PMID: 37626194 DOI: 10.1002/biot.202300200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023]
Abstract
Multidrug-resistant (MDR) bacterial infections constitute a major public health problem worldwide. A rapid method for the detection of methicillin-resistant Staphylococcus aureus (MRSA) is critical for the timely prevention of bacterial infections and the accurate clinical use of drugs. The nuc and mecA genes are potentially indicative of MRSA infection and in this study, a multiplex molecular fluorescence multi-enzyme isothermal rapid amplification visual assay was proposed and established. The method is capable of detecting MRSA at 17 min, 40°C amplification, and is well differentiated from common clinical bacteria in specific assays, with 500 colony-forming units (CFU) mL-1 of MRSA detected under optimal conditions. This method has excellent diagnostic capabilities versus classical methods to detect clinical samples and shows potential in the identification of pathogenic microorganisms in a clinical setting.
Collapse
Affiliation(s)
- Pengfei Heng
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Bo Shi
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, China
| | - Dongmei Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Hua Ou
- Department of Laboratory Medicine, People's Hospital of Xinjin District, Chengdu, Sichuan, China
| | - Yang He
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Lili Zhou
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Abdelwahab MA, Amer WH, Elsharawy D, Elkolaly RM, Helal RAEF, El Malla DA, Elfeky YG, Bedair HA, Amer RS, Abd-Elmonsef ME, Taha MS. Phenotypic and Genotypic Characterization of Methicillin Resistance in Staphylococci Isolated from an Egyptian University Hospital. Pathogens 2023; 12:pathogens12040556. [PMID: 37111442 PMCID: PMC10143866 DOI: 10.3390/pathogens12040556] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023] Open
Abstract
Methicillin-resistant in Staphylococci is a serious public health issue. It is mostly encoded by the mecA gene. The mecC gene is a new mecA analog responsible for resistance to methicillin in some Staphylococcal clinical isolates. This mecC gene is still underestimated in Egypt. The aim of the current study was to detect mecA and mecC genes in clinical Staphylococci isolates from a tertiary care university hospital in Egypt compared to the different phenotypic methods. A total of 118 Staphylococcus aureus (S. aureus) and 43 coagulase-negative Staphylococci (CoNS) were identified from various hospital-acquired infections. Methicillin resistance was identified genotypically using the PCR technique and phenotypically using the cefoxitin disc diffusion test, oxacillin broth microdilution and the VITEK2 system in all Staphylococcal isolates. The mecA gene was detected in 82.2% of S. aureus and 95.3% of CoNS isolates, while all of the isolates tested negative for the mecC gene. Interestingly, 30.2% of CoNS isolates showed the unique character of inducible oxacillin resistance, being mecA-positive but oxacillin-susceptible (OS-CoNS). The dual use of genotypic and phenotypic methods is highly recommended to avoid missing any genetically divergent strains.
Collapse
Affiliation(s)
- Marwa A. Abdelwahab
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Wesam H. Amer
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Dalia Elsharawy
- Department of Chest Diseases, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Reham M. Elkolaly
- Department of Chest Diseases, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Rehab Abd El Fattah Helal
- Department of Anathesia, Surgical Intensive Care, and Pain Medicine, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Dina Ahmed El Malla
- Department of Anathesia, Surgical Intensive Care, and Pain Medicine, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Yomna G. Elfeky
- Department of Pediatrics, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Hebatallah A. Bedair
- Department of Pediatrics, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Rania S. Amer
- Department of Clinical Pathology, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Marwa E. Abd-Elmonsef
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Marwa S. Taha
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
9
|
Li H, Hsieh K, Wong PK, Mach KE, Liao JC, Wang TH. Single-cell pathogen diagnostics for combating antibiotic resistance. NATURE REVIEWS. METHODS PRIMERS 2023; 3:6. [PMID: 39917628 PMCID: PMC11800871 DOI: 10.1038/s43586-022-00190-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/06/2022] [Indexed: 02/09/2025]
Abstract
Bacterial infections and antimicrobial resistance are a major cause for morbidity and mortality worldwide. Antimicrobial resistance often arises from antimicrobial misuse, where physicians empirically treat suspected bacterial infections with broad-spectrum antibiotics until standard culture-based diagnostic tests can be completed. There has been a tremendous effort to develop rapid diagnostics in support of the transition from empirical treatment of bacterial infections towards a more precise and personalized approach. Single-cell pathogen diagnostics hold particular promise, enabling unprecedented quantitative precision and rapid turnaround times. This Primer provides a guide for assessing, designing, implementing and applying single-cell pathogen diagnostics. First, single-cell pathogen diagnostic platforms are introduced based on three essential capabilities: cell isolation, detection assay and output measurement. Representative results, common analysis methods and key applications are highlighted, with an emphasis on initial screening of bacterial infection, bacterial species identification and antimicrobial susceptibility testing. Finally, the limitations of existing platforms are discussed, with perspectives offered and an outlook towards clinical deployment. This Primer hopes to inspire and propel new platforms that can realize the vision of precise and personalized bacterial infection treatments in the near future.
Collapse
Affiliation(s)
- Hui Li
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Present address: School of Electrical, Computer and Biomedical Engineering, Southern Illinois University, Carbondale, IL, USA
- These authors contributed equally: Hui Li, Kuangwen Hsieh
| | - Kuangwen Hsieh
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
- These authors contributed equally: Hui Li, Kuangwen Hsieh
| | - Pak Kin Wong
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Kathleen E. Mach
- Department of Urology, Stanford University School of Medicine, Stanford, CA, USA
| | - Joseph C. Liao
- Department of Urology, Stanford University School of Medicine, Stanford, CA, USA
| | - Tza-Huei Wang
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
10
|
Qin K, Zhang P, Li Z. Specific detection of antibiotic-resistant bacteria using CRISPR/Cas9 induced isothermal exponential amplification reaction (IEXPAR). Talanta 2023. [DOI: 10.1016/j.talanta.2022.124045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Ong'era E, Kagira J, Maina N, Kiboi D, Waititu K, Michira L, Ngotho M. Prevalence and Potential Risk Factors for the Acquisition of Antibiotic-Resistant Staphylococcus spp. Bacteria Among Pastoralist Farmers in Kajiado Central Subcounty, Kenya. BIOMED RESEARCH INTERNATIONAL 2023; 2023:3573056. [PMID: 37082192 PMCID: PMC10113052 DOI: 10.1155/2023/3573056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 02/08/2023] [Accepted: 03/01/2023] [Indexed: 04/22/2023]
Abstract
Antimicrobial resistance (AMR) is a growing health problem globally. To address this challenge, there is a need to generate baseline data on the prevalence and AMR profile of the main disease-causing bacteria. Here, we interrogated the prevalence of bacteria in the nasal cavity of healthy pastoralists in Kajiado Central Subcounty, Kenya, and the occurrence of AMR in Staphylococcus isolates among the study subjects. Nasal swabs from 176 pastoralists were cultured, and the bacteria isolates identified using standard phenotypic and biochemical bacteriological methods. Among the obtained 195 isolates, the most prevalent isolates were coagulase-negative Staphylococcus (CoNS) (44.9%), followed by Enterococci spp. (43.2%) while Staphylococcus aureus prevalence was 8%. Antimicrobial sensitivity of the Staphylococcus spp. isolates to 14 antibiotics representing six antibiotic groups was undertaken using the Kirby-Bauer disk diffusion method. Among the CoNS, the highest resistance was reported in amoxicillin (78.7%) and ceftazidime (76%), while the most resistance for S. aureus was reported in ceftazidime (100%), amoxicillin (71.4%), and streptomycin (71.4%). From an administered questionnaire looking at gender, animal contact frequency, history of hospital visitation and antibiotic usage, and habitual intake of raw milk, the study showed that male participants had a higher risk of carrying multiple drug resistant (MDR) bacteria than females (p = 0.02, OR = 1.3). Likewise, habitual intake of raw milk was significantly associated MDR acquisition (p = 0.02, OR = 1.82). This study reveals a high prevalence of AMR Staphylococcus isolates in the study area laying a foundation for further analysis of molecular characterization of the observed resistance as well as the development of interventions that can reduce the occurrence of AMR in the study area.
Collapse
Affiliation(s)
- Edidah Ong'era
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya P.O. Box 62000-00200
| | - John Kagira
- Department of Animal Sciences, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya P.O. Box 62000-00200
| | - Naomi Maina
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya P.O. Box 62000-00200
| | - Daniel Kiboi
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya P.O. Box 62000-00200
| | - Kenneth Waititu
- Department of Animal Science, Institute of Primate Research, P.O. Box 24481 Karen 00502 Nairobi, Kenya
| | - Lynda Michira
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya P.O. Box 62000-00200
| | - Maina Ngotho
- Department of Clinical Studies, University of Nairobi, Nairobi, Kenya P.O. Box 30197-GPO
| |
Collapse
|
12
|
Taban BM, Hassankhani A, Aytac SA. Investigation of mecA- and mecC-positive Staphylococcus aureus from raw milk and traditional artisanal dairy foods. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2021. [DOI: 10.1080/10942912.2021.1950182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | - Amin Hassankhani
- Dairy Technology Department, Ankara University, Diskapi, Ankara, Turkey
| | - S. Aykut Aytac
- Food Engineering Department, Hacettepe University, Beytepe, Ankara, Turkey
| |
Collapse
|
13
|
Sekizuka T, Niwa H, Kinoshita Y, Uchida-Fujii E, Inamine Y, Hashino M, Kuroda M. Identification of a mecA/mecC-positive MRSA ST1-t127 isolate from a racehorse in Japan. J Antimicrob Chemother 2021; 75:292-295. [PMID: 31691809 DOI: 10.1093/jac/dkz459] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/06/2019] [Accepted: 10/10/2019] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES MRSA is a known pathogen that affects horses. We investigated an equine MRSA isolate for potential antimicrobial resistance genes, classified the staphylococcal cassette chromosome mec (SCCmec) and identified the strain-specific dissemination in the horse community based on WGS. METHODS WGS, using short-read sequencing, and subsequent long-read sequencing by hybrid assembly, was conducted to obtain a complete genome sequence. Pairwise sequence alignment of relative SCCmec sequences and core-genome phylogenetic analysis were performed to highlight transmission routes of the SCCmec and MRSA strain-specific lineages. RESULTS In 2018, we isolated the MRSA JRA307 strain from the pus of a wound on a racehorse and the complete genome sequence suggests that it is a clinically relevant pvl-negative ST1-t127 MRSA that harbours both mecA and mecC on SCCmec-307. SCCmec-307 exhibited marked sequence identity to the previously reported SCCmec-mecC in the Staphylococcus sciuri GVGS2 strain isolated from cattle. The JRA307 mecC gene was classified as a mecC allotype of S. sciuri rather than that of Staphylococcus aureus. CONCLUSIONS We demonstrated the complete genome sequence of equine isolate JRA307, which is a clinically relevant MRSA harbouring mecA and mecC on SCCmec-307. The finding of mecC MRSA suggests a possible SCCmec transmission between distinct staphylococcal species. To the best of our knowledge, this is the first report of mecC detection in Japan.
Collapse
Affiliation(s)
- Tsuyoshi Sekizuka
- Pathogen Genomics Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo, Japan
| | - Hidekazu Niwa
- Microbiology Division, Equine Research Institute, Japan Racing Association, 1400-4 Shiba, Shimotsuke, Tochigi, Japan
| | - Yuta Kinoshita
- Microbiology Division, Equine Research Institute, Japan Racing Association, 1400-4 Shiba, Shimotsuke, Tochigi, Japan
| | - Eri Uchida-Fujii
- Microbiology Division, Equine Research Institute, Japan Racing Association, 1400-4 Shiba, Shimotsuke, Tochigi, Japan
| | - Yuba Inamine
- Pathogen Genomics Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo, Japan
| | - Masanori Hashino
- Pathogen Genomics Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo, Japan
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo, Japan
| |
Collapse
|
14
|
Trinh TND, Lee NY. Nucleic acid amplification-based microfluidic approaches for antimicrobial susceptibility testing. Analyst 2021; 146:3101-3113. [PMID: 33876805 DOI: 10.1039/d1an00180a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Because of the global spread of antimicrobials, there is an urgent need to develop rapid and effective tools for antimicrobial susceptibility testing to help clinicians prescribe accurate and appropriate antibiotic doses sooner. The conventional methods for antimicrobial susceptibility testing are usually based on bacterial culture methods, which are time-consuming, complicated, and labor-intensive. Therefore, other approaches are needed to address these issues. Recently, microfluidic technology has gained significant attention in infection management due to its advantages including rapid detection, high sensitivity and specificity, highly automated assay, simplicity, low cost, and potential for point-of-care testing in low-resource areas. Microfluidic advances for antimicrobial susceptibility testing can be classified into phenotypic (usually culture-based) and genotypic tests. Genotypic antimicrobial susceptibility testing is the detection of resistant genes in a microorganism using methods such as nucleic acid amplification. This review (with 107 references) surveys the different forms of nucleic acid amplification-based microdevices used for genotypic antimicrobial susceptibility testing. The first section reviews the serious threat of antimicrobial-resistant microorganisms and the urgent need for fast check-ups. Next, several conventional antimicrobial susceptibility testing methods are discussed, and microfluidic technology as a promising candidate for rapid detection of antimicrobial-resistant microorganisms is briefly introduced. The next section highlights several advancements of microdevices, with an emphasis on their working principles and performance. The review concludes with the importance of fully integrated microdevices and a discussion on future perspectives.
Collapse
Affiliation(s)
- Thi Ngoc Diep Trinh
- Department of Industrial Environmental Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Korea
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Korea.
| |
Collapse
|
15
|
Chen J, Wei H, Fang X, Cai Y, Zhang Z, Wang Y, Lin J, Zhang W, Zhong G. A pragmatic eLCR for an ultrasensitive detection of methicillin-resistant Staphylococcus aureus in joint synovial fluid: superior to qPCR. Analyst 2021; 146:3500-3509. [PMID: 33885074 DOI: 10.1039/d1an00350j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
For periprosthetic joint infection (PJI) patients, an early and rapid detection of methicillin-resistant Staphylococcus aureus (MRSA) in joint synovial fluid is of great significance for receiving timely treatment and avoiding side effects. In clinical practice, the methods for detecting MRSA include the culture-based method and the PCR-based mecA gene detection method with fluorescent readout. However, the culture-based method requires up to 3-7 days for incubation and elaborative screening. The PCR-based molecular diagnosis, due to its high sensitivity, improves the detection time but sacrifices cost and gives false-positive results. Herein, a ligation chain reaction (LCR)-based electrochemical biosensor was developed to detect the mecA of MRSA with the advantages of rapidity, accuracy and low cost. In this system, an integrated dsDNA labeled with thiol and biotin at both terminals is generated only in the presence of the target DNA after LCR, followed by immobilization of the integrated dsDNAs on the bovine serum albumin (BSA)-coated gold electrode, and then the streptavidin horseradish peroxidase (SA-HRPs) is specifically bound to the biotin labels via biotin-streptavidin interaction, generating the catalytic amperometric readout. Impressively, the developed method achieved the detection of rare mecA in the joint synovial fluid of PJI patients (417-666 copies as quantified by qPCR). The proposed electrochemistry-based method is highly convenient for the point-of-care testing and was comparable with PCR in sensitivity, but superior in selectivity (single-base differentiation) and cost (nanomolar DNA probe consumption and simple device), demonstrating its huge potential in clinical applications for MRSA diagnosis.
Collapse
Affiliation(s)
- Jinyuan Chen
- The Central Laboratory, Fujian Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China and Key Laboratory of Radiation Biology of Fujian higher education institutions, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Hongxiang Wei
- Department of Orthopaedics, Fujian Provincial Institute of Orthopaedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China.
| | - Xinyu Fang
- Department of Orthopaedics, Fujian Provincial Institute of Orthopaedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China.
| | - Yuanqing Cai
- Department of Orthopaedics, Fujian Provincial Institute of Orthopaedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China.
| | - Zhenzhen Zhang
- Department of Phthology, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Yunqing Wang
- Department of Orthopaedics, Fujian Provincial Institute of Orthopaedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China.
| | - Jianhua Lin
- Department of Orthopaedics, Fujian Provincial Institute of Orthopaedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China.
| | - Wenming Zhang
- Department of Orthopaedics, Fujian Provincial Institute of Orthopaedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China.
| | - Guangxian Zhong
- Department of Orthopaedics, Fujian Provincial Institute of Orthopaedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China.
| |
Collapse
|
16
|
Aptamer-quantum dots and teicoplanin-gold nanoparticles constructed FRET sensor for sensitive detection of Staphylococcus aureus. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.07.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Rajendran VK, Bakthavathsalam P, Bergquist PL, Sunna A. Smartphone technology facilitates point-of-care nucleic acid diagnosis: a beginner's guide. Crit Rev Clin Lab Sci 2020; 58:77-100. [PMID: 32609551 DOI: 10.1080/10408363.2020.1781779] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The reliable detection of nucleic acids at low concentrations in clinical samples like blood, urine and saliva, and in food can be achieved by nucleic acid amplification methods. Several portable and hand-held devices have been developed to translate these laboratory-based methods to point-of-care (POC) settings. POC diagnostic devices could potentially play an important role in environmental monitoring, health, and food safety. Use of a smartphone for nucleic acid testing has shown promising progress in endpoint as well as real-time analysis of various disease conditions. The emergence of smartphone-based POC devices together with paper-based sensors, microfluidic chips and digital droplet assays are used currently in many situations to provide quantitative detection of nucleic acid targets. State-of-the-art portable devices are commercially available and rapidly emerging smartphone-based POC devices that allow the performance of laboratory-quality colorimetric, fluorescent and electrochemical detection are described in this review. We present a comprehensive review of smartphone-based POC sensing applications, specifically on microbial diagnostics, assess their performance and propose recommendations for the future.
Collapse
Affiliation(s)
| | - Padmavathy Bakthavathsalam
- School of Chemistry and Australian Centre for Nanomedicine, University of New South Wales, Sydney, Australia
| | - Peter L Bergquist
- Department of Molecular Sciences, Macquarie University, Sydney, Australia.,Department of Molecular Medicine & Pathology, University of Auckland, Auckland, New Zealand.,Biomolecular Discovery Research Centre, Macquarie University, Sydney, Australia
| | - Anwar Sunna
- Department of Molecular Sciences, Macquarie University, Sydney, Australia.,Biomolecular Discovery Research Centre, Macquarie University, Sydney, Australia
| |
Collapse
|
18
|
McClure JA, Conly JM, Obasuyi O, Ward L, Ugarte-Torres A, Louie T, Zhang K. A Novel Assay for Detection of Methicillin-Resistant Staphylococcus aureus Directly From Clinical Samples. Front Microbiol 2020; 11:1295. [PMID: 32625187 PMCID: PMC7314949 DOI: 10.3389/fmicb.2020.01295] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/20/2020] [Indexed: 12/16/2022] Open
Abstract
The timely detection of Methicillin-resistant Staphylococcus aureus (MRSA) is crucial for antimicrobial therapy and a key factor to limit the hospital spread of MRSA. Currently available commercial MRSA detection assays target the 3' end of the orfX gene and the right extremity of Staphylococcal Cassette Chromosome mec (SCCmec). These assays suffer from both false positive due to SCC-like elements that lack mecA and false negative results due to the inability to detect new or variant SCCmec cassettes with the existing primers. We developed a novel MRSA detection scheme, designed to circumvent issues present in the existing commercial assays. Our assay demonstrated specificity and accuracy, capable of detecting prototypic strains of SCCmec types I-XIII [C(t) values ranged 8.58-26.29]. Previous false positive isolates (N = 19) by Xpert MRSA nasal assay were accurately classified with our assay. Further validation with 218 randomly selected clinical isolates (73 MRSA, 75 MSSA, 43 MR-CoNS, and 27 MS-CoNS) confirmed its feasibility and practicality. Testing assay performance with 88 direct clinical swabs from 33 patients showed that the assay was 96.6% in agreement with clinical culture results. Our novel MRSA detection assay targets both the S. aureus specific sequence and the mecA/mecC genes simultaneously to overcome the false positive and false negative deficits of currently available commercial assays. The results validate our assay and confirmed its feasibility and practicality. The assay is not affected by SCCmec types and only needs modification if new mec homologs emerge and establishes a new platform for other emerging SCCmec types.
Collapse
Affiliation(s)
- Jo-Ann McClure
- Centre for Antimicrobial Resistance, Alberta Health Services/Alberta Precision Laboratories/University of Calgary, Calgary, AB, Canada
| | - John M Conly
- Centre for Antimicrobial Resistance, Alberta Health Services/Alberta Precision Laboratories/University of Calgary, Calgary, AB, Canada.,Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada.,Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada.,Department of Medicine, University of Calgary, Calgary, AB, Canada.,The Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Osahon Obasuyi
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada
| | - Linda Ward
- Alberta Health Services, Calgary, AB, Canada
| | - Alejandra Ugarte-Torres
- Department of Medicine, University of Calgary, Calgary, AB, Canada.,Alberta Health Services, Calgary, AB, Canada
| | - Thomas Louie
- Department of Medicine, University of Calgary, Calgary, AB, Canada.,Alberta Health Services, Calgary, AB, Canada
| | - Kunyan Zhang
- Centre for Antimicrobial Resistance, Alberta Health Services/Alberta Precision Laboratories/University of Calgary, Calgary, AB, Canada.,Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada.,Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada.,Department of Medicine, University of Calgary, Calgary, AB, Canada.,The Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
19
|
Wang X, Zhang H, Zhang T, Pan L, Dong K, Yang M, Ma R, Li Y. Etiology of Community-Acquired Pneumonia Requiring Hospital Admission in Adults with and Without Cancers: A Single-Center Retrospective Study in China. Infect Drug Resist 2020; 13:1607-1617. [PMID: 32606812 PMCID: PMC7294101 DOI: 10.2147/idr.s251564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/16/2020] [Indexed: 01/07/2023] Open
Abstract
Background The etiology and distribution of community-acquired pneumonia (CAP) vary periodically and geographically. The clinical evaluation of CAP among patients with cancers remains unknown. Patients and Methods This retrospective hospital-based study on adult CAP was conducted in Tang Du Hospital, China, from September 2018 to August 2019. The demographic characteristics, clinical manifestations and laboratory data were extracted from medical records and compared between CAP patients with and without cancers. Univariable and multivariable logistic regression methods were used to explore risk factors associated with CAP patients with and without cancers. Results Data from 149 CAP patients with cancers and 268 CAP patients without cancers were analyzed. Patients without cancers were more likely to show fever, cough and yellow sputum, higher level of neutrophil count than the cancer patients. Klebsiella pneumoniae (K. pneumoniae 14.77% vs 9.33%, p = 0.093) and Streptococcus pneumoniae (S. pneumoniae 16.11% vs 11.57%, p = 0.189) were among the most commonly encountered pathogens in both the groups. Pseudomonas aeruginosa (P. pneumoniae 26.50% vs 11.41%, p < 0.001), Mycoplasma pneumoniae (M. pneumoniae 8.21% vs 1.34%, p = 0.003), and filamentous fungi (10.82% vs 4.7%, p = 0.033) were predominant in CAP patients without cancers. Haemophilus influenzae (H. influenzae 22.15% vs 14.18%, p = 0.038) and methicillin-resistant Staphylococci (MRS 23.49 vs 15.68, p = 0.049) were more prevalent for CAP cancer patients. Certain pathogens were increasing in a cold season. In patients without cancers, MRS, H. influenzae and P. aeruginosa were associated with central nervous system (CNS) disease, connective tissue disease, bronchiectasis, respectively. In addition, healthy adults were likely to be infected with M. pneumoniae showing fever. Conclusion CAP patients with cancers had atypical clinical manifestations and showed no distinct increase in inflammatory markers. The predominant pathogens differed as well as similar between the CAP patients with and without cancers. Certain pathogens follow a seasonal pattern. CNS disease, connective tissue disease and bronchiectasis were associated with the predominant pathogens in patients without cancers.
Collapse
Affiliation(s)
- Xinxin Wang
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Air Force Medical University, Xi'an, People's Republic of China
| | - Haihua Zhang
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Air Force Medical University, Xi'an, People's Republic of China
| | - Tao Zhang
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Air Force Medical University, Xi'an, People's Republic of China
| | - Lei Pan
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Air Force Medical University, Xi'an, People's Republic of China
| | - Ke Dong
- Department of Laboratory, The Second Affiliated Hospital of Air Force Medical University, Xi'an, People's Republic of China
| | - Ming Yang
- Department of Laboratory, The Second Affiliated Hospital of Air Force Medical University, Xi'an, People's Republic of China
| | - Ruina Ma
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Air Force Medical University, Xi'an, People's Republic of China
| | - Yujuan Li
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Air Force Medical University, Xi'an, People's Republic of China
| |
Collapse
|
20
|
Cheng N, Yang Z, Wang W, Wang X, Xu W, Luo Y. A Variety of Bio-nanogold in the Fabrication of Lateral Flow Biosensors for the Detection of Pathogenic Bacteria. Curr Top Med Chem 2019; 19:2476-2493. [DOI: 10.2174/1568026619666191023125020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 08/15/2019] [Accepted: 09/13/2019] [Indexed: 12/19/2022]
Abstract
Pathogenic bacteria constitute one of the most serious threats to human health. This has led
to the development of technologies for the rapid detection of bacteria. Bio-nanogold-based lateral flow
biosensors (LFBs) are a promising assay due to their low limit of detection, high sensitivity, good selectivity,
robustness, low cost, and quick assay performance ability. The aim of this review is to provide
a critical overview of the current variety of bio-nanogold LFBs and their targets, with a special focus on
whole-cell and DNA detection of pathogenic bacteria. The challenges of bio-nanogold-based LFBs in
improving their performance and accessibility are also comprehensively discussed.
Collapse
Affiliation(s)
- Nan Cheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zhansen Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Weiran Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xinxian Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Wentao Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yunbo Luo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
21
|
Decreased expression of femXAB genes and fnbp mediated biofilm pathways in OS-MRSA clinical isolates. Sci Rep 2019; 9:16028. [PMID: 31690794 PMCID: PMC6831631 DOI: 10.1038/s41598-019-52557-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 10/01/2019] [Indexed: 02/03/2023] Open
Abstract
Methicillin-Resistant Staphylococcus aureus (MRSA) is a significant threat to human health. Additionally, biofilm forming bacteria becomes more tolerant to antibiotics and act as bacterial reservoir leading to chronic infection. In this study, we characterised the antibiotic susceptibility, biofilm production and sequence types (ST) of 74 randomly selected clinical isolates of S. aureus causing ocular infections. Antibiotic susceptibility revealed 74% of the isolates as resistant against one or two antibiotics, followed by 16% multidrug-resistant isolates (MDR), and 10% sensitive. The isolates were characterized as MRSA (n = 15), Methicillin-sensitive S. aureus (MSSA, n = 48) and oxacillin susceptible mecA positive S. aureus (OS-MRSA, n = 11) based on oxacillin susceptibility, mecA gene PCR and PBP2a agglutination test. All OS-MRSA would have been misclassified as MSSA on the basis of susceptibility test. Therefore, both phenotypic and genotypic tests should be included to prevent strain misrepresentation. In addition, in-depth studies for understanding the emerging OS-MRSA phenotype is required. The role of fem XAB gene family has been earlier reported in OS-MRSA phenotype. Sequence analysis of the fem XAB genes revealed mutations in fem × (K3R, H11N, N18H and I51V) and fem B (L410F) genes. The fem XAB genes were also found down-regulated in OS-MRSA isolates in comparison to MRSA. In OS-MRSA isolates, biofilm formation is regulated by fibronectin binding proteins A & B. Molecular typing of the isolates revealed genetic diversity. All the isolates produced biofilm, however, MRSA isolates with strong biofilm phenotype represent a worrisome situation and may even result in treatment failure.
Collapse
|
22
|
Validating the AMRFinder Tool and Resistance Gene Database by Using Antimicrobial Resistance Genotype-Phenotype Correlations in a Collection of Isolates. Antimicrob Agents Chemother 2019; 63:AAC.00483-19. [PMID: 31427293 DOI: 10.1128/aac.00483-19] [Citation(s) in RCA: 770] [Impact Index Per Article: 128.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 08/11/2019] [Indexed: 12/21/2022] Open
Abstract
Antimicrobial resistance (AMR) is a major public health problem that requires publicly available tools for rapid analysis. To identify AMR genes in whole-genome sequences, the National Center for Biotechnology Information (NCBI) has produced AMRFinder, a tool that identifies AMR genes using a high-quality curated AMR gene reference database. The Bacterial Antimicrobial Resistance Reference Gene Database consists of up-to-date gene nomenclature, a set of hidden Markov models (HMMs), and a curated protein family hierarchy. Currently, it contains 4,579 antimicrobial resistance proteins and more than 560 HMMs. Here, we describe AMRFinder and its associated database. To assess the predictive ability of AMRFinder, we measured the consistency between predicted AMR genotypes from AMRFinder and resistance phenotypes of 6,242 isolates from the National Antimicrobial Resistance Monitoring System (NARMS). This included 5,425 Salmonella enterica, 770 Campylobacter spp., and 47 Escherichia coli isolates phenotypically tested against various antimicrobial agents. Of 87,679 susceptibility tests performed, 98.4% were consistent with predictions. To assess the accuracy of AMRFinder, we compared its gene symbol output with that of a 2017 version of ResFinder, another publicly available resistance gene detection system. Most gene calls were identical, but there were 1,229 gene symbol differences (8.8%) between them, with differences due to both algorithmic differences and database composition. AMRFinder missed 16 loci that ResFinder found, while ResFinder missed 216 loci that AMRFinder identified. Based on these results, AMRFinder appears to be a highly accurate AMR gene detection system.
Collapse
|
23
|
Pereira MR, Rana MM. Methicillin-resistant Staphylococcus aureus in solid organ transplantation-Guidelines from the American Society of Transplantation Infectious Diseases Community of Practice. Clin Transplant 2019; 33:e13611. [PMID: 31120612 DOI: 10.1111/ctr.13611] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 05/20/2019] [Indexed: 12/25/2022]
Abstract
These updated guidelines from the American Society of Transplantation Infectious Diseases Community of Practice review the epidemiology, diagnosis, prevention, and management of methicillin-resistant Staphylococcus aureus (MRSA) infections in solid organ transplantation. Despite an increasing armamentarium of antimicrobials active against MRSA, improved diagnostic tools, and overall declining rates of infection, MRSA infections remain a substantial cause of morbidity and mortality in solid organ transplant recipients. Pre- and post-transplant MRSA colonization is a significant risk factor for post-transplant MRSA infection. The preferred initial treatment of MRSA bacteremia remains vancomycin. Hand hygiene, chlorhexidine bathing in the ICU, central-line bundles that focus on reducing unnecessary catheter use, disinfection of patient equipment, and the environment along with antimicrobial stewardship are all aspects of an infection prevention approach to prevent MRSA transmission and decrease healthcare-associated infections.
Collapse
|
24
|
Methicillin-Resistant Staphylococcus aureus Harboring mecC Still Eludes Us in East London, United Kingdom. J Clin Microbiol 2019; 57:JCM.00020-19. [PMID: 30971461 DOI: 10.1128/jcm.00020-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 03/20/2019] [Indexed: 12/30/2022] Open
Abstract
Reports of methicillin-resistant Staphylococcus aureus (MRSA) harboring the mecC gene have increased in the UK since first being described. To our diagnostic S. aureus multiplex PCR, a mecC primer set was designed and implemented, and then the prevalence in our patient population was investigated. Fewer than 1% of the clinical isolates possessed the mecC gene, confirming that mecA remains the dominant genetic determinant of MRSA in East London.
Collapse
|
25
|
Evaluation of three consecutive versions of a commercial rapid PCR test to screen for methicillin-resistant Staphylococcus aureus. Clin Microbiol Infect 2019; 25:1430.e1-1430.e4. [PMID: 30980926 DOI: 10.1016/j.cmi.2019.03.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/15/2019] [Accepted: 03/29/2019] [Indexed: 11/22/2022]
Abstract
OBJECTIVES Screening for methicillin-resistant Staphylococcus aureus (MRSA) is part of many recommendations to control MRSA. Several rapid PCR tests are available commercially and updated versions are constantly released. We aimed to evaluate the performance of three consecutive versions (G3, Gen3 and NxG) of the XpertMRSA test. METHODS Routine samples for MRSA screening were simultaneously tested by culture and rapid PCR. The three versions of XpertMRSA were used successively and compared with culture. RESULTS A total of 3512, 2794 and 3288 samples were analysed by culture and by the G3, Gen3 and NxG XpertMRSA versions, respectively. The rates of positive-by-culture in the three groups were 5.0%, 4.7% and 4.3%, respectively. The sensitivity improved over time (71.4, 95% CI 64.0-77.9; 82.3, 95% CI 74.4-88.2; and 84.3%, 95% CI 77.0-89.7, respectively), but not significantly. The specificity (98.4, 95% CI 97.9-98.8; 96.8, 95% CI 96.0-97.4; and 99.1, 95% CI 98.7-99.4, respectively) and the positive likelihood ratios (45.7, 95% CI 34.4-60.8; 25.6, 95% CI 20.5-32.0; and 97.1, 95% CI 66.3-142.4) were significantly lower in the Gen3 version (p < 0.00001). CONCLUSIONS These significant differences in performance show the importance of evaluating each new version of a commercial test.
Collapse
|
26
|
Alexander JAN, Chatterjee SS, Hamilton SM, Eltis LD, Chambers HF, Strynadka NCJ. Structural and kinetic analyses of penicillin-binding protein 4 (PBP4)-mediated antibiotic resistance in Staphylococcus aureus. J Biol Chem 2018; 293:19854-19865. [PMID: 30366985 DOI: 10.1074/jbc.ra118.004952] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/24/2018] [Indexed: 01/08/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) causes serious community-acquired and nosocomial infections worldwide. MRSA strains are resistant to a variety of antibiotics, including the classic penicillin and cephalosporin classes of β-lactams, making them intractable to treatment. Although β-lactam resistance in MRSA has been ascribed to the acquisition and activity of penicillin-binding protein 2a (PBP2a, encoded by mecA), it has recently been observed that resistance can also be mediated by penicillin-binding protein 4 (PBP4). Previously, we have shown that broad-spectrum β-lactam resistance can arise following serial passaging of a mecA-negative COL strain of S. aureus, creating the CRB strain. This strain has two missense mutations in pbp4 and a mutation in the pbp4 promoter, both of which play an instrumental role in β-lactam resistance. To better understand PBP4's role in resistance, here we have characterized its kinetics and structure with clinically relevant β-lactam antibiotics. We present the first crystallographic PBP4 structures of apo and acyl-enzyme intermediate forms complexed with three late-generation β-lactam antibiotics: ceftobiprole, ceftaroline, and nafcillin. In parallel, we characterized the structural and kinetic effects of the PBP4 mutations present in the CRB strain. Localized within the transpeptidase active-site cleft, the two substitutions appear to have different effects depending on the drug. With ceftobiprole, the missense mutations impaired the Km value 150-fold, decreasing the proportion of inhibited PBP4. However, ceftaroline resistance appeared to be mediated by other factors, possibly including mutation of the pbp4 promoter. Our findings provide evidence that S. aureus CRB has at least two PBP4-mediated resistance mechanisms.
Collapse
Affiliation(s)
- J Andrew N Alexander
- From the Department of Biochemistry and Molecular Biology.,the Centre for Blood Research, and
| | - Som S Chatterjee
- the Division of Infectious Disease, Department of Medicine, San Francisco General Hospital, San Francisco, California 94110
| | - Stephanie M Hamilton
- the Division of Infectious Disease, Department of Medicine, San Francisco General Hospital, San Francisco, California 94110
| | - Lindsay D Eltis
- From the Department of Biochemistry and Molecular Biology.,the Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada and
| | - Henry F Chambers
- the Division of Infectious Disease, Department of Medicine, San Francisco General Hospital, San Francisco, California 94110
| | - Natalie C J Strynadka
- From the Department of Biochemistry and Molecular Biology, .,the Centre for Blood Research, and
| |
Collapse
|
27
|
Bard JD, Lee F. Why Can't We Just Use PCR? The Role of Genotypic versus Phenotypic Testing for Antimicrobial Resistance Testing. ACTA ACUST UNITED AC 2018; 40:87-95. [PMID: 32287688 PMCID: PMC7132721 DOI: 10.1016/j.clinmicnews.2018.05.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
There is a need for phenotypic susceptibility testing that is expeditious and that can be performed directly from clinical specimens. While rapid pathogen identification is important, it is the susceptibility result that is essential for antimicrobial optimization. The options for rapid susceptibility testing are limited, with the majority of commercial tests available offering genotypic resistance detection only. In this article, a laboratorian and a clinician discuss the benefits and limitations of genotypic and phenotypic susceptibility testing and provide examples of how results should be interpreted to maximize the clinical utility.
Collapse
Affiliation(s)
- Jennifer Dien Bard
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California, USA.,Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Francesca Lee
- Division of Infectious Diseases and Department of Pathology, University of Texas, Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
28
|
Knaack D, Idelevich EA, Körber-Irrgang B, Kresken M, Becker K. Evaluation of a novel optical assay for rapid detection of methicillin-resistant Staphylococcus aureus in liquid culture. J Microbiol Methods 2018; 146:68-70. [PMID: 29410104 DOI: 10.1016/j.mimet.2018.01.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 01/25/2018] [Accepted: 01/26/2018] [Indexed: 12/31/2022]
|
29
|
Comparison of Different Phenotypic Approaches To Screen and Detect mecC-Harboring Methicillin-Resistant Staphylococcus aureus. J Clin Microbiol 2017; 56:JCM.00826-17. [PMID: 28978682 DOI: 10.1128/jcm.00826-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 09/18/2017] [Indexed: 12/28/2022] Open
Abstract
Similar to mecA, mecC confers resistance against beta-lactams, leading to the phenotype of methicillin-resistant Staphylococcus aureus (MRSA). However, mecC-harboring MRSA strains pose special difficulties in their detection. The aim of this study was to assess and compare different phenotypic systems for screening, identification, and susceptibility testing of mecC-positive MRSA isolates. A well-characterized collection of mecC-positive S. aureus isolates (n = 111) was used for evaluation. Routinely used approaches were studied to determine their suitability to correctly identify mecC-harboring MRSA, including three (semi)automated antimicrobial susceptibility testing (AST) systems and five selective chromogenic agar plates. Additionally, a cefoxitin disk diffusion test and an oxacillin broth microdilution assay were examined. All mecC-harboring MRSA isolates were able to grow on all chromogenic MRSA screening plates tested. Detection of these isolates in AST systems based on cefoxitin and/or oxacillin testing yielded overall positive agreements with the mecC genotype of 97.3% (MicroScan WalkAway; Siemens), 91.9% (Vitek 2; bioMérieux), and 64.9% (Phoenix, BD). The phenotypic resistance pattern most frequently observed by AST devices was "cefoxitin resistance/oxacillin susceptibility," ranging from 54.1% (Phoenix) and 83.8% (Vitek 2) to 92.8% (WalkAway). The cefoxitin disk diffusion and oxacillin broth microdilution assays categorized 100% and 61.3% of isolates to be MRSA, respectively. The chromogenic media tested confirmed their suitability to reliably screen for mecC-harboring MRSA. The AST systems showed false-negative results with varying numbers, misidentifying mecC-harboring MRSA as methicillin-susceptible S. aureus This study underlines cefoxitin's status as the superior surrogate mecC-positive MRSA marker.
Collapse
|
30
|
Detection of mecC-Positive Staphylococcus aureus: What To Expect from Immunological Tests Targeting PBP2a? J Clin Microbiol 2017; 55:1961-1963. [PMID: 28298453 DOI: 10.1128/jcm.00068-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
31
|
Seidel C, Peters S, Eschbach E, Feßler AT, Oberheitmann B, Schwarz S. Development of a nucleic acid lateral flow immunoassay (NALFIA) for reliable, simple and rapid detection of the methicillin resistance genes mecA and mecC. Vet Microbiol 2017; 200:101-106. [DOI: 10.1016/j.vetmic.2016.08.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 07/22/2016] [Accepted: 08/13/2016] [Indexed: 11/29/2022]
|
32
|
Yan X, Li Z, Chlebowicz MA, Tao X, Ni M, Hu Y, Li Z, Grundmann H, Murray S, Pascoe B, Sheppard SK, Bo X, van Dijl JM, Du P, Zhang M, You Y, Yu X, Meng F, Wang S, Zhang J. Genetic features of livestock-associated Staphylococcus aureus ST9 isolates from Chinese pigs that carry the lsa(E) gene for quinupristin/dalfopristin resistance. Int J Med Microbiol 2016; 306:722-729. [PMID: 27528592 DOI: 10.1016/j.ijmm.2016.08.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 08/04/2016] [Accepted: 08/09/2016] [Indexed: 11/16/2022] Open
Abstract
Whole-genome sequencing (WGS) was used to investigate the genetic features of the recently identified lsa(E) gene in porcine S. aureus ST9 isolates. Three quinupristin/dalfopristin-resistant isolates harboring the lsa(E) gene (two MRSA and one MSSA) were sequenced. Phylogenetic analysis of 184S. aureus genomes showed that ST9 porcine isolates belong to a distinct sequence cluster. Further analysis showed that all isolates were deficient in the recently described type IV restriction-modification system and SCCmec type XII was identified in the two MRSA isolates, which included a rare class C2 mec gene complex. A 24kb ΨSCC fragment was found in the MRSA and MSSA isolates sharing 99% nucleotide sequence homology with the ΨSCCJCSC6690 (O-2) element of a ST9 MRSA isolate from Thailand (accession number AB705453). Comparison of these ST9 isolates with 181 publically available S. aureus genomes identified 24 genes present in all (100%) ST9 isolates, that were absent from the most closely related human isolate. Our analysis suggests that the sequenced quinupristin/dalfopristin-resistant ST9 lineage represent a reservoir of mobile genetic elements associated with resistance and virulence features.
Collapse
Affiliation(s)
- Xiaomei Yan
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Zongwei Li
- Beijing Institution of Radiation Medicine, Beijing, China
| | - Monika A Chlebowicz
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Xiaoxia Tao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Ming Ni
- Beijing Institution of Radiation Medicine, Beijing, China
| | - Yuan Hu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhen Li
- Beijing Institution of Radiation Medicine, Beijing, China
| | - Hajo Grundmann
- Department of Infection Prevention and Hospital Hygiene, University Medical Centre Freiburg, Freiburg, Germany
| | - Susan Murray
- Swansea University Medical School, Institute of Life Sciences, Swansea University, Singleton Park, Swansea, UK
| | - Ben Pascoe
- Swansea University Medical School, Institute of Life Sciences, Swansea University, Singleton Park, Swansea, UK; The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Samuel K Sheppard
- Swansea University Medical School, Institute of Life Sciences, Swansea University, Singleton Park, Swansea, UK; The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Xiaochen Bo
- Beijing Institution of Radiation Medicine, Beijing, China
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Pengcheng Du
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Minli Zhang
- Beijing Institution of Radiation Medicine, Beijing, China
| | - Yuanhai You
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Xiaojie Yu
- Heilongjiang provincial Centre for Disease Control and Prevention, Harbin, China
| | - Fanliang Meng
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Shengqi Wang
- Beijing Institution of Radiation Medicine, Beijing, China.
| | - Jianzhong Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China.
| |
Collapse
|
33
|
Han HW, Chang HC, Chang TC. Identification of Staphylococcus spp. and detection of mecA by an oligonucleotide array. Diagn Microbiol Infect Dis 2016; 86:23-9. [PMID: 27342780 DOI: 10.1016/j.diagmicrobio.2016.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 05/31/2016] [Accepted: 06/01/2016] [Indexed: 01/15/2023]
Abstract
Phenotypic identification of coagulase-negative staphylococci (CoNS) is difficult and many staphylococcal species carry mecA. This study developed an array that was able to detect mecA and identify 30 staphylococcal species by targeting the internal transcribed spacer regions. A total of 129 target reference strains (30 species) and 434 clinical isolates of staphylococci were analyzed. Gene sequencing of 16S rRNA, gap or tuf genes was the reference method for species identification. All reference strains (100%) were correctly identified, while the identification rates of clinical isolates of S. aureus and CoNS were 98.9% and 98%, respectively. The sensitivity and specificity for mecA detection were 99% and 100%, respectively, in S. aureus isolates, and both values were 100% in isolates of CoNS. The assay takes 6 h from a purified culture isolate, and so far it has not been performed directly on patient samples.
Collapse
Affiliation(s)
- Huan Wen Han
- Institute of Biomedical Engineering, College of Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Hsien Chang Chang
- Institute of Biomedical Engineering, College of Engineering, National Cheng Kung University, Tainan, Taiwan; Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan.
| | - Tsung Chain Chang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
34
|
Nillius D, von Müller L, Wagenpfeil S, Klein R, Herrmann M. Methicillin-Resistant Staphylococcus aureus in Saarland, Germany: The Long-Term Care Facility Study. PLoS One 2016; 11:e0153030. [PMID: 27073899 PMCID: PMC4830541 DOI: 10.1371/journal.pone.0153030] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 03/22/2016] [Indexed: 11/21/2022] Open
Abstract
Background Multiresistant organisms pose a threat for patients and care recipients. Control interventions need to be tailored to region, the type of institution considered, and risk factors. The German state of Saarland is ideally suited to study colonisation epidemiology throughout its various health and care institutions. After conclusion of a large admission prevalence study in acute care hospitals, we now performed a methicillin-resistant Staphylococcus aureus (MRSA) point prevalence study in Saarland long term care facilities (LTCF), allowing for a direct comparison with respect of MRSA prevalence and associated risk factors between these two institutional types located within a confined region. Methodology and Principal Findings Of all LTCF of the region, 65/136 participated in the study performed between 09/2013 and 07/2014. Overall, complete microbiological specimen and questionnaires of 2,858 of 4,275 (66.8%) LTCF residents were obtained. 136/2,858 (4.8%) screened residents revealed MRSA carrier status. Multivariate risk factor analysis yielded ulcer/deep soft tissue infection, urinary tract catheter, and MRSA history with multiple MRSA decolonisation cycles to be independently associated with MRSA carrier status. Conclusion As already known from previous studies, colonisation with MRSA is common in LTCF residents even in an area with relatively low MRSA prevalence. This found prevalence can now be related to the acute care admission prevalence (2.2%) as well as to the admission prevalence in acute care geriatric departments (7.6%). The common clonal attribution (spa type) of MRSA isolates prevalent in the LTCF population as well as in the acute care admission population points towards a close relationship between both types of institutions. However, the ostensible absence of risk factors such as “previous hospitalisation” in conjunction with newly identified factors such as “multiple decolonisation cycles” refers to MRSA colonisation risks independent of contact with acute care facilities. Overall, this large LTCF point prevalence study allows data-based, region-tailored decisions on MRSA screening policies and provides a basis for additional preventative measures.
Collapse
Affiliation(s)
- Dorothea Nillius
- Institute and State Laboratory of Medical Microbiology and Hygiene, Saarland University and Saarland University Medical Centre, Homburg, Germany
- * E-mail:
| | - Lutz von Müller
- Institute and State Laboratory of Medical Microbiology and Hygiene, Saarland University and Saarland University Medical Centre, Homburg, Germany
| | - Stefan Wagenpfeil
- Institute of Medical Biometry, Epidemiology, and Medical Informatics, Saarland University, Homburg, Germany
| | - Renate Klein
- Saarland Ministry of Social Affairs, Health, Women, and Family, Saarbrücken, Germany
| | - Mathias Herrmann
- Institute and State Laboratory of Medical Microbiology and Hygiene, Saarland University and Saarland University Medical Centre, Homburg, Germany
| |
Collapse
|