1
|
Ronish LA, Biswas B, Bauer RM, Jacob ME, Piepenbrink KH. The role of extracellular structures in Clostridioides difficile biofilm formation. Anaerobe 2024; 88:102873. [PMID: 38844261 DOI: 10.1016/j.anaerobe.2024.102873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/27/2024] [Accepted: 06/03/2024] [Indexed: 07/08/2024]
Abstract
C. difficile infection (CDI) is a costly and increasing burden on the healthcare systems of many developed countries due to the high rates of nosocomial infections. Despite the availability of several antibiotics with high response rates, effective treatment is hampered by recurrent infections. One potential mechanism for recurrence is the existence of C. difficile biofilms in the gut which persist through the course of antibiotics. In this review, we describe current developments in understanding the molecular mechanisms by which C. difficile biofilms form and are stabilized through extracellular biomolecular interactions.
Collapse
Affiliation(s)
- Leslie A Ronish
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Baishakhi Biswas
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Robert M Bauer
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Mallory E Jacob
- Biochemistry Department, University of Geneva, Geneva, Switzerland
| | - Kurt H Piepenbrink
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA; Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA; Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA; Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA; Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
| |
Collapse
|
2
|
Skinner AM, Petrella LA, Cheknis A, Johnson S. Antimicrobial susceptibility of Clostridioides difficile to omadacycline and comparator antimicrobials. J Antimicrob Chemother 2023; 78:1779-1784. [PMID: 37279600 DOI: 10.1093/jac/dkad170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 05/11/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND Omadacycline is a novel aminomethylcycline tetracycline antimicrobial that was approved for the treatment of community-associated bacterial pneumonia (CABP) and acute bacterial skin and skin structure infections (ABSSSI) in 2018. Omadacycline has demonstrated a high degree of in vitro activity towards Clostridioides difficile and previous data have hypothesized that use of omadacycline for CABP or ABSSSI may decrease the risk of C. difficile infections. OBJECTIVES To compare the in vitro antimicrobial activity of omadacycline versus commonly used antimicrobials for the approved indications of use. METHODS We compared the antimicrobial activity of eight antimicrobials approved for CABP and ABSSSI against omadacycline by agar dilution on 200 clinically relevant contemporary C. difficile isolates representing local and national prevalent strain types. RESULTS The in vitro omadacycline geometric mean MIC was 0.07 mg/L. Ceftriaxone resistance was noted in >50% of all isolates tested. The epidemic strain group, identified as restriction endonuclease analysis (REA) group BI, was commonly resistant to azithromycin (92%), moxifloxacin (86%) and clindamycin (78%). REA group DH strains had an elevated trimethoprim/sulfamethoxazole geometric mean MIC of 17.30 mg/L compared with the geometric mean MIC of 8.14 mg/L noted in all other isolates. In the REA group BK isolates that had a doxycycline MIC of ≥2 mg/L, the omadacycline MIC was <0.5 mg/L. CONCLUSIONS Among 200 contemporary C. difficile isolates, there were no notable elevations in the in vitro omadacycline MIC, indicating a high level of activity towards C. difficile in comparison with commonly used antimicrobials for CABP and ABSSSI.
Collapse
Affiliation(s)
- Andrew M Skinner
- Department of Medicine, Loyola University Medical Center, Maywood, IL, USA
- Research Section, Infection Diseases Section, Edward Hines Jr. VA Hospital, Hines, IL, USA
| | - Laurica A Petrella
- Research Section, Infection Diseases Section, Edward Hines Jr. VA Hospital, Hines, IL, USA
| | - Adam Cheknis
- Research Section, Infection Diseases Section, Edward Hines Jr. VA Hospital, Hines, IL, USA
| | - Stuart Johnson
- Department of Medicine, Loyola University Medical Center, Maywood, IL, USA
- Research Section, Infection Diseases Section, Edward Hines Jr. VA Hospital, Hines, IL, USA
| |
Collapse
|
3
|
Li Y, Liao J, Jian Z, Li H, Chen X, Liu Q, Liu P, Wang Z, Liu X, Yan Q, Liu W. Molecular epidemiology and clinical characteristics of
Clostridioides difficile
infection in patients with inflammatory bowel disease from a teaching hospital. J Clin Lab Anal 2022; 36:e24773. [DOI: 10.1002/jcla.24773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/21/2022] Open
Affiliation(s)
- Yan‐ming Li
- Department of Clinical Laboratory, Xiangya Hospital Central South University Changsha China
| | - Jing‐zhong Liao
- Department of Clinical Laboratory, Xiangya Hospital Central South University Changsha China
| | - Zi‐juan Jian
- Department of Clinical Laboratory, Xiangya Hospital Central South University Changsha China
| | - Hong‐ling Li
- Department of Clinical Laboratory, Xiangya Hospital Central South University Changsha China
| | - Xia Chen
- Department of Clinical Laboratory, Xiangya Hospital Central South University Changsha China
| | - Qing‐xia Liu
- Department of Clinical Laboratory, Xiangya Hospital Central South University Changsha China
| | - Pei‐lin Liu
- Department of Clinical Laboratory, Xiangya Hospital Central South University Changsha China
| | - Zhi‐qian Wang
- Department of Clinical Laboratory, Xiangya Hospital Central South University Changsha China
| | - Xuan Liu
- Department of Clinical Laboratory, Xiangya Hospital Central South University Changsha China
| | - Qun Yan
- Department of Clinical Laboratory, Xiangya Hospital Central South University Changsha China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital Changsha China
| | - Wen‐en Liu
- Department of Clinical Laboratory, Xiangya Hospital Central South University Changsha China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital Changsha China
| |
Collapse
|
4
|
Noori M, Azimirad M, Eslami G, Looha MA, Yadegar A, Ghalavand Z, Zali MR. Surface layer protein A from hypervirulent Clostridioides difficile ribotypes induce significant changes in the gene expression of tight junctions and inflammatory response in human intestinal epithelial cells. BMC Microbiol 2022; 22:259. [PMID: 36303110 PMCID: PMC9608920 DOI: 10.1186/s12866-022-02665-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 09/22/2022] [Accepted: 10/10/2022] [Indexed: 11/30/2022] Open
Abstract
Background
Surface layer protein A (SlpA), the primary outermost structure of Clostridioides difficile, plays an essential role in C. difficile pathogenesis, although its interaction with host intestinal cells are yet to be understood. The aim of this study was to investigate the effects of SlpA extracted from C. difficile on tight junction (TJ) proteins expression and induction of pro-inflammatory cytokines in human colon carcinoma cell line HT-29. SlpA was extracted from three toxigenic C. difficile clinical strains including RT126, RT001, RT084 as well as C. difficile ATCC 700057 as non-toxigenic strain. Cell viability was performed by MTT assay, and the mRNA expression of TJ proteins and inflammation-associated genes was determined using quantitative RT-PCR. Additionally, the secretion of IL-8, IL-1β and TNF-α cytokines was measured by ELISA. Results C. difficile SlpA from selected RTs variably downregulated the expression level of TJs-assassinated genes and increased the expression level of TLR-4 and pro-inflammatory cytokines in HT-29 treated cells. SlpA from RT126 significantly (padj<0.05) decreased the gene expression level of claudins family and JAM-A and increased the secretion of IL-8, TNF-α and IL1-β as compared to untreated cells. Moreover, only SlpA from RT001 could significantly induce the expression of IL-6 (padj<0.05). Conclusion
The results of the present study highlighted the importance of SlpA in the pathogenesis of CDI and C. difficile-induced inflammatory response in the gut. Further studies are required to unravel the significance of the observed results in promoting the intestinal inflammation and immune response induced by C. difficile SlpA from different RTs. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02665-0.
Collapse
Affiliation(s)
- Maryam Noori
- grid.411600.2Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran ,grid.411600.2Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Azimirad
- grid.411600.2Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gita Eslami
- grid.411600.2Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Azizmohammad Looha
- grid.411600.2Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- grid.411600.2Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zohreh Ghalavand
- grid.411600.2Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- grid.411600.2Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Noori M, Ghalavand Z, Azimirad M, Yadegar A, Eslami G, Krutova M, Brajerova M, Goudarzi M, Zali MR. Genetic diversity and phylogenetic analysis of the surface layer protein A gene (slpA) among Clostridioides difficile clinical isolates from Tehran, Iran. Anaerobe 2021; 70:102403. [PMID: 34111549 DOI: 10.1016/j.anaerobe.2021.102403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 05/24/2021] [Accepted: 06/04/2021] [Indexed: 12/15/2022]
Abstract
Clostridioides difficile is the most common causative agent of healthcare-associated diarrhea. C. difficile strains produce a crystalline surface layer protein (SlpA), encoded by the slpA gene. Previous studies have shown that SlpA varies among C. difficile strains. In this study, we used the SlpA sequence-based typing system (SlpAST) for the molecular genotyping of C. difficile clinical isolates identified in Iran; the PCR ribotypes (RTs) and toxin profiles of the isolates were also characterized. Forty-eight C. difficile isolates were obtained from diarrheal patients, and characterized by capillary electrophoresis (CE) PCR ribotyping and the detection of toxin genes. In addition, the genetic diversity of the slpA gene was investigated by Sanger sequencing. The most common RTs were RT126 (20.8%), followed by RT001 (12.5%) and RT084 (10.4%). The intact PaLoc arrangement representing cdu2+/tcdR+/tcdB+/tcdE+/tcdA+/tcdC+/cdd3+ profile was the predominant pattern and cdtA and cdtB genes were found in one-third of the isolates. Using the SlpA genotyping, 12 main genotypes and 16 subtypes were identified. The SlpA type 078-1 was the most prevalent genotype (20.8%), and identified within the isolates of RT126. The yok-1, gr-1, cr-1 and kr-3 genotypes were detected in 14.5%, 12.5%, 12.5% and 8.3% of isolates, respectively. Almost all the isolates with the same RT were clustered in similar SlpA sequence types. In comparison to PCR ribotyping, SlpAST, as a simple and highly reproducible sequenced-based technique, can discriminate well between C. difficile isolates. This typing method appears to be a valuable tool for the epidemiological study of C. difficile isolates worldwide.
Collapse
Affiliation(s)
- Maryam Noori
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zohreh Ghalavand
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Azimirad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Gita Eslami
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Marcela Krutova
- Department of Medical Microbiology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Prague, Czech Republic
| | - Marie Brajerova
- Department of Medical Microbiology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Prague, Czech Republic
| | - Mehdi Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Wongkuna S, Janvilisri T, Phanchana M, Harnvoravongchai P, Aroonnual A, Aimjongjun S, Malaisri N, Chankhamhaengdecha S. Temporal Variations in Patterns of Clostridioides difficile Strain Diversity and Antibiotic Resistance in Thailand. Antibiotics (Basel) 2021; 10:antibiotics10060714. [PMID: 34199301 PMCID: PMC8231780 DOI: 10.3390/antibiotics10060714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/05/2021] [Accepted: 06/08/2021] [Indexed: 01/04/2023] Open
Abstract
Clostridioides difficile has been recognized as a life-threatening pathogen that causes enteric diseases, including antibiotic-associated diarrhea and pseudomembranous colitis. The severity of C. difficile infection (CDI) correlates with toxin production and antibiotic resistance of C. difficile. In Thailand, the data addressing ribotypes, toxigenic, and antimicrobial susceptibility profiles of this pathogen are scarce and some of these data sets are limited. In this study, two groups of C. difficile isolates in Thailand, including 50 isolates collected from 2006 to 2009 (THA group) and 26 isolates collected from 2010 to 2012 (THB group), were compared for toxin genes and ribotyping profiles. The production of toxins A and B were determined on the basis of toxin gene profiles. In addition, minimum inhibitory concentration of eight antibiotics were examined for all 76 C. difficile isolates. The isolates of the THA group were categorized into 27 A−B+CDT− (54%) and 23 A-B-CDT- (46%), while the THB isolates were classified into five toxigenic profiles, including six A+B+CDT+ (23%), two A+B+CDT− (8%), five A−B+CDT+ (19%), seven A−B+CDT− (27%), and six A−B−CDT− (23%). By visually comparing them to the references, only five ribotypes were identified among THA isolates, while 15 ribotypes were identified within THB isolates. Ribotype 017 was the most common in both groups. Interestingly, 18 unknown ribotyping patterns were identified. Among eight tcdA-positive isolates, three isolates showed significantly greater levels of toxin A than the reference strain. The levels of toxin B in 3 of 47 tcdB-positive isolates were significantly higher than that of the reference strain. Based on the antimicrobial susceptibility test, metronidazole showed potent efficiency against most isolates in both groups. However, high MIC values of cefoxitin (MICs 256 μg/mL) and chloramphenicol (MICs ≥ 64 μg/mL) were observed with most of the isolates. The other five antibiotics exhibited diverse MIC values among two groups of isolates. This work provides evidence of temporal changes in both C. difficile strains and patterns of antimicrobial resistance in Thailand.
Collapse
Affiliation(s)
- Supapit Wongkuna
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (S.W.); (T.J.)
| | - Tavan Janvilisri
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (S.W.); (T.J.)
| | - Matthew Phanchana
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand;
| | - Phurt Harnvoravongchai
- Department of Biology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (P.H.); (N.M.)
| | - Amornrat Aroonnual
- Department of Tropical Nutrition and Food Science, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand;
| | - Sathid Aimjongjun
- Graduate Program in Molecular Medicine, Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
| | - Natamon Malaisri
- Department of Biology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (P.H.); (N.M.)
| | - Surang Chankhamhaengdecha
- Department of Biology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (P.H.); (N.M.)
- Correspondence:
| |
Collapse
|
7
|
Fortin E, Thirion DJG, Ouakki M, Garenc C, Lalancette C, Bergeron L, Moisan D, Villeneuve J, Longtin Y, Bolduc D, Frenette C, Galarneau LA, Garenc C, Lalancette C, Longtin Y, Loo V, Ngenda Muadi M, Parisien N, Rouleau I, Savard N, Vachon J, Villeneuve J. Role of high-risk antibiotic use in incidence of health-care-associated Clostridioides difficile infection in Quebec, Canada: a population-level ecological study. THE LANCET MICROBE 2021; 2:e182-e190. [DOI: 10.1016/s2666-5247(21)00005-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/16/2020] [Accepted: 01/07/2021] [Indexed: 01/22/2023] Open
|
8
|
Haddad NS, Nozick S, Kim G, Ohanian S, Kraft C, Rebolledo PA, Wang Y, Wu H, Bressler A, Le SNT, Kuruvilla M, Cannon LE, Lee FEH, Daiss JL. Novel immunoassay for diagnosis of ongoing Clostridioides difficile infections using serum and medium enriched for newly synthesized antibodies (MENSA). J Immunol Methods 2021; 492:112932. [PMID: 33221459 DOI: 10.1016/j.jim.2020.112932] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 01/13/2023]
Abstract
BACKGROUND Clostridioides difficile infections (CDI) have been a challenging and increasingly serious concern in recent years. While early and accurate diagnosis is crucial, available assays have frustrating limitations. OBJECTIVE Develop a simple, blood-based immunoassay to accurately diagnose patients suffering from active CDI. MATERIALS AND METHODS Uninfected controls (N = 95) and CDI patients (N = 167) were recruited from Atlanta area hospitals. Blood samples were collected from patients within twelve days of a positive CDI test and processed to yield serum and PBMCs cultured to yield medium enriched for newly synthesized antibodies (MENSA). Multiplex immunoassays measured Ig responses to ten recombinant C. difficile antigens. RESULTS Sixty-six percent of CDI patients produced measurable responses to C. difficile antigens in their serum or MENSA within twelve days of a positive CDI test. Fifty-two of the 167 CDI patients (31%) were detectable in both serum and MENSA, but 32/167 (19%) were detectable only in MENSA, and 27/167 (16%) were detectable only in serum. DISCUSSION We describe the results of a multiplex immunoassay for the diagnosis of ongoing CDI in hospitalized patients. Our assay resolved patients into four categories: MENSA-positive only, serum-positive only, MENSA- and serum-positive, and MENSA- and serum-negative. The 30% of patients who were MENSA-positive only may be accounted for by nascent antibody secretion prior to seroconversion. Conversely, the serum-positive only subset may have been more advanced in their disease course. Immunocompromise and misdiagnosis may have contributed to the 34% of CDI patients who were not identified using MENSA or serum immunoassays. IMPORTANCE While there was considerable overlap between patients identified through MENSA and serum, each method detected a distinctive patient group. The combined use of both MENSA and serum to detect CDI patients resulted in the greatest identification of CDI patients. Together, longitudinal analysis of MENSA and serum will provide a more accurate evaluation of successful host humoral immune responses in CDI patients.
Collapse
Affiliation(s)
| | | | | | | | - Colleen Kraft
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Paulina A Rebolledo
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA; Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA
| | - Yun Wang
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA; Department of Pathology and Laboratory Medicine, Grady Memorial Hospital, Atlanta, GA, USA
| | - Hao Wu
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Adam Bressler
- Infectious Disease Specialists of Atlanta, Decatur, GA, USA
| | - Sang Nguyet Thi Le
- Pulmonary, Allergy, Critical Care & Sleep Medicine, Emory University, Atlanta, GA, USA
| | - Merin Kuruvilla
- Pulmonary, Allergy, Critical Care & Sleep Medicine, Emory University, Atlanta, GA, USA
| | | | - F Eun-Hyung Lee
- MicroB-plex, Inc., Atlanta, GA, USA; Pulmonary, Allergy, Critical Care & Sleep Medicine, Emory University, Atlanta, GA, USA
| | - John L Daiss
- MicroB-plex, Inc., Atlanta, GA, USA; Department of Orthopedics, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
9
|
Comparison of Clostridioides difficile strains from animals and humans: First results after introduction of C. difficile molecular typing and characterization at the Istituto Zooprofilattico Sperimentale of Piemonte, Liguria e Valle d'Aosta, Italy. Comp Immunol Microbiol Infect Dis 2021; 75:101623. [PMID: 33607397 DOI: 10.1016/j.cimid.2021.101623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/27/2021] [Accepted: 02/05/2021] [Indexed: 11/24/2022]
Abstract
PCR ribotypes (RTs027 and 078) are known causes of Clostridioides difficile infection (CDI) in humans. Molecular typing and characterization of 39 C. difficile strains isolated from samples from humas and animals in 2016-2018 indicated an overlap of RTs between community-acquired patients (CA-CDI) and domestic animals from the same geographical area; 14 RTs were identified: 12 RTs were positive for toxins A/B; RT078, RT080 and RT126 were also positive for binary toxin (CDT). Most of the RTs from the animals (RTs020, 078, 106, 126) were also detected in the samples from humans. Strains grouped into three clusters: cluster I included prevalently human strains, mainly RT 018; clusters II and III included strains from humans and animals, mainly RT078 and RT020. The CA-CDI strains suggested animals as a reservoir of C. difficile isolated together with other microorganisms from animals, highlighting the association of enteric pathogens as a cause of infection and death.
Collapse
|
10
|
Pan Z, Zhang Y, Luo J, Li D, Zhou Y, He L, Yang Q, Dong M, Tao L. Functional analyses of epidemic Clostridioides difficile toxin B variants reveal their divergence in utilizing receptors and inducing pathology. PLoS Pathog 2021; 17:e1009197. [PMID: 33507919 PMCID: PMC7842947 DOI: 10.1371/journal.ppat.1009197] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023] Open
Abstract
Clostridioides difficile toxin B (TcdB) is a key virulence factor that causes C. difficile associated diseases (CDAD) including diarrhea and pseudomembranous colitis. TcdB can be divided into multiple subtypes/variants based on their sequence variations, of which four (TcdB1-4) are dominant types found in major epidemic isolates. Here, we find that these variants are highly diverse in their receptor preference: TcdB1 uses two known receptors CSPG4 and Frizzled (FZD) proteins, TcdB2 selectively uses CSPG4, TcdB3 prefers to use FZDs, whereas TcdB4 uses neither CSPG4 nor FZDs. By creating chimeric toxins and systematically switching residues between TcdB1 and TcdB3, we determine that regions in the N-terminal cysteine protease domain (CPD) are involved in CSPG4-recognition. We further evaluate the pathological effects induced by TcdB1-4 with a mouse intrarectal installation model. TcdB1 leads to the most severe overall symptoms, followed by TcdB2 and TcdB3. When comparing the TcdB2 and TcdB3, TcdB2 causes stronger oedema while TcdB3 induces severer inflammatory cell infiltration. These findings together demonstrate divergence in the receptor preference and further lead to colonic pathology for predominant TcdB subtypes. Clostridioides difficile is a major cause of nosocomial and community-associated gastrointestinal infections. The bacterium produces three exotoxins including TcdA, TcdB, and CDT, of which TcdB is known as a key virulence factor causing the diseases. Since C. difficile was first linked to antibiotic-associated infections in 1978, a large number of clinically relevant strains were characterized and many of them were found to harbor some variant forms of TcdB. In this study, we examined four predominant TcdB variants from epidemic C. difficile strains. We found that these variants are highly diverse in preference to the known receptors, CSPG4 and Frizzled proteins. By conducting a systematically designed mutagenesis study, we determined that TcdB interacts with CSPG4 via regions across multiple domains. We also found that TcdB variants could induce distinguishable pathological phenotypes in a mouse model, suggesting C. difficile strains harboring divergent TcdB variants might exhibit different disease progression. Our study provides new insights into the toxicology and pathology of C. difficile toxin variants.
Collapse
Affiliation(s)
- Zhenrui Pan
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Yuanyuan Zhang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Jianhua Luo
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Danyang Li
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Yao Zhou
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Liuqing He
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Qi Yang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Min Dong
- Department of Urology, Boston Children’s Hospital, Boston, Massechusetts, United States of America
- Department of Surgery and Department of Microbiology, Harvard Medical School, Boston, Massechusetts, United States of America
- * E-mail: (MD); (LT)
| | - Liang Tao
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
- * E-mail: (MD); (LT)
| |
Collapse
|
11
|
Continued decline in the prevalence of the Clostridioides difficile BI/NAP1/027 strain across the United States Veterans Health Administration. Diagn Microbiol Infect Dis 2021; 100:115308. [PMID: 33626478 DOI: 10.1016/j.diagmicrobio.2021.115308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 11/21/2022]
Abstract
In 2018, we demonstrated a decreased prevalence of the hypervirulent Clostridioides difficile BI/NAP1/027 strain across the United States (US) Veterans Health Administration (VHA) from 2011 through 2016. The objective of this retrospective study was to update the prevalence of the BI/NAP1/027 strain within the VHA from 2017 through 2020. Patients with positive tests for the presence of toxigenic C. difficile at any Veterans Affairs Medical Center found to also routinely test for BI/NAP1/027 strain presence were included between July 1, 2016 and June 30, 2020. In total, 7490 patients had 8148 positive C. difficile tests that had a corresponding BI/NAP1/027 test. Of those, there were 1031 (12.6%) presumptive positive tests for the BI/NAP1/027 strain. The overall prevalence of BI/NAP1/027 decreased from a high of 15.4% in 2017 to 8.21% in 2020. Statistically significant reductions in rates from 2017 to 2020 occurred in 4 of 9 US Census Bureau regions.
Collapse
|
12
|
Biographical Feature: Fred C. Tenover, Ph.D., D(ABMM), F(AAM), FIDSA. J Clin Microbiol 2021; 59:JCM.02532-20. [PMID: 33177122 DOI: 10.1128/jcm.02532-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
13
|
Skinner AM, Phillips ST, Merrigan MM, O’Leary KJ, Sambol SP, Siddiqui F, Peterson LR, Gerding DN, Johnson S. The Relative Role of Toxins A and B in the Virulence of Clotridioides difficile. J Clin Med 2020; 10:jcm10010096. [PMID: 33396595 PMCID: PMC7796042 DOI: 10.3390/jcm10010096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 12/24/2020] [Accepted: 12/26/2020] [Indexed: 01/03/2023] Open
Abstract
Most pathogenic strains of C. difficile possess two large molecular weight single unit toxins with four similar functional domains. The toxins disrupt the actin cytoskeleton of intestinal epithelial cells leading to loss of tight junctions, which ultimately manifests as diarrhea in the host. While initial studies of purified toxins in animal models pointed to toxin A (TcdA) as the main virulence factor, animal studies using isogenic mutants demonstrated that toxin B (TcdB) alone was sufficient to cause disease. In addition, the natural occurrence of TcdA−/TcdB+ (TcdA−/B+)mutant strains was shown to be responsible for cases of C. difficile infection (CDI) with symptoms identical to CDI caused by fully toxigenic (A+/B+) strains. Identification of these cases was delayed during the period when clinical laboratories were using immunoassays that only detected TcdA (toxA EIA). Our hospital laboratory at the time performed culture as well as toxA EIA on patient stool samples. A total of 1.6% (23/1436) of all clinical isolates recovered over a 2.5-year period were TcdA−/B+ variants, the majority of which belonged to the restriction endonuclease analysis (REA) group CF and toxinotype VIII. Despite reports of serious disease due to TcdA−/B+ CF strains, these infections were typically mild, often not requiring specific treatment. While TcdB alone may be sufficient to cause disease, clinical evidence suggests that both toxins have a role in disease.
Collapse
Affiliation(s)
- Andrew M. Skinner
- Research Service, Edward Hines Jr., Veterans Affairs Hospital, Infectious Disease Section, Hines, IL 60141, USA; (A.M.S.); (S.T.P.); (M.M.M.); (S.P.S.); (F.S.); (D.N.G.)
- Department of Medicine, Loyola University Medical Center, Chicago, IL 60153, USA
| | - S. Tyler Phillips
- Research Service, Edward Hines Jr., Veterans Affairs Hospital, Infectious Disease Section, Hines, IL 60141, USA; (A.M.S.); (S.T.P.); (M.M.M.); (S.P.S.); (F.S.); (D.N.G.)
- Department of Medicine, Loyola University Medical Center, Chicago, IL 60153, USA
| | - Michelle M. Merrigan
- Research Service, Edward Hines Jr., Veterans Affairs Hospital, Infectious Disease Section, Hines, IL 60141, USA; (A.M.S.); (S.T.P.); (M.M.M.); (S.P.S.); (F.S.); (D.N.G.)
| | - Kevin J. O’Leary
- Department of Medicine, Northwestern University Medical School, Chicago, IL 60611, USA;
| | - Susan P. Sambol
- Research Service, Edward Hines Jr., Veterans Affairs Hospital, Infectious Disease Section, Hines, IL 60141, USA; (A.M.S.); (S.T.P.); (M.M.M.); (S.P.S.); (F.S.); (D.N.G.)
| | - Farida Siddiqui
- Research Service, Edward Hines Jr., Veterans Affairs Hospital, Infectious Disease Section, Hines, IL 60141, USA; (A.M.S.); (S.T.P.); (M.M.M.); (S.P.S.); (F.S.); (D.N.G.)
| | - Lance R. Peterson
- Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA;
| | - Dale N. Gerding
- Research Service, Edward Hines Jr., Veterans Affairs Hospital, Infectious Disease Section, Hines, IL 60141, USA; (A.M.S.); (S.T.P.); (M.M.M.); (S.P.S.); (F.S.); (D.N.G.)
| | - Stuart Johnson
- Research Service, Edward Hines Jr., Veterans Affairs Hospital, Infectious Disease Section, Hines, IL 60141, USA; (A.M.S.); (S.T.P.); (M.M.M.); (S.P.S.); (F.S.); (D.N.G.)
- Department of Medicine, Loyola University Medical Center, Chicago, IL 60153, USA
- Correspondence:
| |
Collapse
|
14
|
Cheknis A, Devaris D, Chesnel L, Dale SE, Nary J, Sambol SP, Citron DM, Goering RV, Johnson S. Characterization of Clostridioides difficile isolates recovered from two Phase 3 surotomycin treatment trials by restriction endonuclease analysis, PCR ribotyping and antimicrobial susceptibilities. J Antimicrob Chemother 2020; 75:3120-3125. [PMID: 32747931 DOI: 10.1093/jac/dkaa297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES To investigate the molecular epidemiology and antimicrobial susceptibility of Clostridioides difficile isolates from patients with C. difficile infection (CDI) from two Phase 3 clinical trials of surotomycin. METHODS In both trials [Protocol MK-4261-005 (NCT01597505) conducted across Europe, North America and Israel; and Protocol MK-4261-006 (NCT01598311) conducted across North America, Asia-Pacific and South America], patients with CDI were randomized (1:1) to receive oral surotomycin (250 mg twice daily) or oral vancomycin (125 mg four times per day) for 10 days. Stool samples were collected at baseline and C. difficile isolates were characterized by restriction endonuclease analysis (REA) and PCR ribotyping. Susceptibility testing was performed by agar dilution, according to CLSI recommendations. RESULTS In total, 1147 patients were included in the microbiological modified ITT population. Of 992 recovered isolates, 922 (92.9%) were typed. There was a high association between REA groups and their corresponding predominant PCR ribotype (RT) for BI, DH, G and CF strains. REA group A showed more diverse PCR RTs. Overall, the most common strain was BI/RT027 (20.3%) followed by Y/RT014/020 (15.0%) and DH/RT106 (7.2%). The BI/RT027 strain was particularly prevalent in Europe (29.9%) and Canada (23.6%), with lower prevalence in the USA (16.8%) and Australia/New Zealand (3.4%). Resistance was most prevalent in the BI/RT027 strain, particularly to metronidazole, vancomycin and moxifloxacin. CONCLUSIONS A wide variation in C. difficile strains, both within and across different geographical regions, was documented by both REA and ribotyping, which showed overall good correlation.
Collapse
Affiliation(s)
| | | | | | | | - Julia Nary
- ACM Global Laboratories, Rochester, NY, USA
| | | | | | | | - Stuart Johnson
- Edward Hines, Jr. VA Hospital, Hines, IL, USA.,Loyola University Medical Center, Maywood, IL, USA
| |
Collapse
|
15
|
Martínez-Meléndez A, Morfin-Otero R, Villarreal-Treviño L, Baines SD, Camacho-Ortíz A, Garza-González E. Molecular epidemiology of predominant and emerging Clostridioides difficile ribotypes. J Microbiol Methods 2020; 175:105974. [PMID: 32531232 DOI: 10.1016/j.mimet.2020.105974] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/05/2020] [Accepted: 06/05/2020] [Indexed: 12/18/2022]
Abstract
There has been an increase in the incidence and severity of Clostridioides difficile infection (CDI) worldwide, and strategies to control, monitor, and diminish the associated morbidity and mortality have been developed. Several typing methods have been used for typing of isolates and studying the epidemiology of CDI; serotyping was the first typing method, but then was replaced by pulsed-field gel electrophoresis (PFGE). PCR ribotyping is now the gold standard method; however, multi locus sequence typing (MLST) schemes have been developed. New sequencing technologies have allowed comparing whole bacterial genomes to address genetic relatedness with a high level of resolution and discriminatory power to distinguish between closely related strains. Here, we review the most frequent C. difficile ribotypes reported worldwide, with a focus on their epidemiology and genetic characteristics.
Collapse
Affiliation(s)
- Adrián Martínez-Meléndez
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Pedro de Alba S/N, Ciudad Universitaria, CP 66450 San Nicolás de los Garza, Nuevo Leon, Mexico
| | - Rayo Morfin-Otero
- Hospital Civil de Guadalajara "Fray Antonio Alcalde" e Instituto de Patología Infecciosa y Experimental, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara. Sierra Mojada 950, Col. Independencia, CP 44350 Guadalajara, Jalisco, Mexico
| | - Licet Villarreal-Treviño
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Departamento de Microbiología e Inmunología, Pedro de Alba S/N, Ciudad Universitaria, CP 66450 San Nicolás de los Garza, Nuevo Leon, Mexico
| | - Simon D Baines
- University of Hertfordshire, School of Life and Medical Sciences, Department of Biological and Environmental Sciences, Hatfield AL10 9AB, UK
| | - Adrián Camacho-Ortíz
- Universidad Autónoma de Nuevo León, Hospital Universitario "Dr. José Eleuterio González", Servicio de Infectología. Av. Francisco I. Madero Pte. S/N y Av. José E. González. Col. Mitras Centro, CP 64460 Monterrey, Nuevo Leon, Mexico
| | - Elvira Garza-González
- Universidad Autónoma de Nuevo León, Hospital Universitario "Dr. José Eleuterio González", Servicio de Infectología. Av. Francisco I. Madero Pte. S/N y Av. José E. González. Col. Mitras Centro, CP 64460 Monterrey, Nuevo Leon, Mexico.
| |
Collapse
|
16
|
Carlson TJ, Blasingame D, Gonzales-Luna AJ, Alnezary F, Garey KW. Clostridioides difficile ribotype 106: A systematic review of the antimicrobial susceptibility, genetics, and clinical outcomes of this common worldwide strain. Anaerobe 2020; 62:102142. [PMID: 32007682 PMCID: PMC7153973 DOI: 10.1016/j.anaerobe.2019.102142] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 12/18/2022]
Abstract
Clostridioides difficile typing is invaluable for the investigation of both institution-specific outbreaks as well as national surveillance. While the epidemic ribotype 027 (RT027) has received a significant amount of resources and attention, ribotype 106 (RT106) has become more prevalent throughout the past decade. The purpose of this systematic review was to comprehensively summarize the genetic determinants, antimicrobial susceptibility, epidemiology, and clinical outcomes of infection caused by RT106. A total of 68 articles published between 1999 and 2019 were identified as relevant to this review. Although initially identified in the United Kingdom in 1999, RT106 is now found worldwide and became the most prevalent strain in the United States in 2016. Current data indicate that RT106 harbors the tcdA and tcdB genes, lacks binary toxin genes, and does not contain any deletions in the tcdC gene, which differentiates it from other epidemic strains, including ribotypes 027 and 078. Interestingly, RT106 produces more spores than other strains, including RT027. Overall, RT106 is highly resistant to erythromycin, clindamycin, fluoroquinolones, and third-generation cephalosporins. However, the MIC90 in most studies are one to two fold dilutions below the epidemiologic cut-off values of metronidazole and vancomycin, suggesting both are acceptable treatment options from an in vitro perspective. The few clinical outcomes studies available concluded that RT106 causes less severe disease than RT027, but patients were significantly more likely to experience multiple CDI relapses when infected with a RT106 strain. Specific areas warranting future study include potential survival advantages provided by genetic elements as well as a more robust investigation of clinical outcomes associated with RT106.
Collapse
Affiliation(s)
- T J Carlson
- High Point University Fred Wilson School of Pharmacy, High Point, NC, USA
| | - D Blasingame
- The University of Houston College of Pharmacy, Houston, TX, USA
| | | | - F Alnezary
- The University of Houston College of Pharmacy, Houston, TX, USA; Department of Clinical and Hospital Pharmacy, College of Pharmacy, Taibah University, Medinah, Saudi Arabia
| | - K W Garey
- The University of Houston College of Pharmacy, Houston, TX, USA.
| |
Collapse
|
17
|
Kong KY, Kwong TNY, Chan H, Wong K, Wong SSY, Chaparala AP, Chan RCY, Zhang L, Sung JJY, Yu J, Hawkey PM, Ip M, Wu WKK, Wong SH. Biological characteristics associated with virulence in Clostridioides difficile ribotype 002 in Hong Kong. Emerg Microbes Infect 2020; 9:631-638. [PMID: 32183606 PMCID: PMC7144233 DOI: 10.1080/22221751.2020.1739564] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/28/2020] [Accepted: 03/01/2020] [Indexed: 12/25/2022]
Abstract
Clostridioides difficile infection (CDI) is a common cause of nosocomial diarrhea and can sometimes lead to pseudo-membranous colitis and toxic megacolon. We previously reported that the PCR ribotype 002 was a common C. difficile ribotype in Hong Kong that was associated with increased mortality. In this study, we assessed in vitro bacteriological characteristics and in vivo virulence of ribotype 002 compared to other common ribotypes, including ribotypes 012, 014 and 046. We observed significantly higher toxin A (p < 0.05) and toxin B (p < 0.05) production, sporulation (p < 0.001) and germination rates (p < 0.0001) in ribotype 002 than other common ribotypes. In a murine model of C. difficile infection, ribotype 002 caused significantly more weight loss (p < 0.001) and histological damage (p < 0.001) than other common ribotypes. These findings may have contributed to the higher prevalence and mortality observed, and provided mechanistic insights that can help public surveillance and develop novel therapeutics to combat against this infection.
Collapse
Affiliation(s)
- Ka Yi Kong
- Institute of Digestive Disease, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
- State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Thomas N. Y. Kwong
- Institute of Digestive Disease, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
- State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Hung Chan
- Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Kristine Wong
- Division of Biological Sciences, University of California San Diego, San Diego, CA, USA
| | - Samuel S. Y. Wong
- Institute of Digestive Disease, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
- State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Anu P. Chaparala
- Division of Biological Sciences, University of California San Diego, San Diego, CA, USA
| | - Raphael C. Y. Chan
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
| | - Lin Zhang
- Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
- CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, People’s Republic of China
| | - Joseph J. Y. Sung
- Institute of Digestive Disease, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
- State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
- CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, People’s Republic of China
| | - Jun Yu
- Institute of Digestive Disease, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
- State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
- CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, People’s Republic of China
| | - Peter M. Hawkey
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| | - Margaret Ip
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - William K. K. Wu
- State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
- Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
- CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, People’s Republic of China
| | - Sunny H. Wong
- Institute of Digestive Disease, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
- State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
- CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, People’s Republic of China
| |
Collapse
|
18
|
Imwattana K, Knight DR, Kullin B, Collins DA, Putsathit P, Kiratisin P, Riley TV. Clostridium difficile ribotype 017 - characterization, evolution and epidemiology of the dominant strain in Asia. Emerg Microbes Infect 2019; 8:796-807. [PMID: 31138041 PMCID: PMC6542179 DOI: 10.1080/22221751.2019.1621670] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Clostridium difficile ribotype (RT) 017 is an important toxigenic C. difficile RT which, due to a deletion in the repetitive region of the tcdA gene, only produces functional toxin B. Strains belonging to this RT were initially dismissed as nonpathogenic and circulated largely undetected for almost two decades until they rose to prominence following a series of outbreaks in the early 2000s. Despite lacking a functional toxin A, C. difficile RT 017 strains have been shown subsequently to be capable of causing disease as severe as that caused by strains producing both toxins A and B. While C. difficile RT 017 strains can be found in almost every continent today, epidemiological studies suggest that the RT is endemic in Asia and that the global spread of this MLST clade 4 lineage member is a relatively recent event. C. difficile RT 017 transmission appears to be mostly from human to human with only a handful of reports of isolations from animals. An important feature of C. difficile RT 017 strains is their resistance to several antimicrobials and this has been documented as a possible factor driving multiple outbreaks in different parts of the world. This review summarizes what is currently known regarding the emergence and evolution of strains belonging to C. difficile RT 017 as well as features that have allowed it to become an RT of global importance.
Collapse
Affiliation(s)
- Korakrit Imwattana
- a School of Biomedical Sciences , The University of Western Australia , Crawley, Australia.,b Department of Microbiology, Faculty of Medicine Siriraj Hospital , Mahidol University , Bangkok, Thailand
| | - Daniel R Knight
- c School of Veterinary and Life Sciences , Murdoch University , Murdoch, Australia
| | - Brian Kullin
- d Department of Molecular and Cell Biology , University of Cape Town , Cape Town , South Africa
| | - Deirdre A Collins
- e School of Medical and Health Sciences , Edith Cowan University , Joondalup, Australia
| | - Papanin Putsathit
- e School of Medical and Health Sciences , Edith Cowan University , Joondalup, Australia
| | - Pattarachai Kiratisin
- b Department of Microbiology, Faculty of Medicine Siriraj Hospital , Mahidol University , Bangkok, Thailand
| | - Thomas V Riley
- a School of Biomedical Sciences , The University of Western Australia , Crawley, Australia.,c School of Veterinary and Life Sciences , Murdoch University , Murdoch, Australia.,e School of Medical and Health Sciences , Edith Cowan University , Joondalup, Australia.,f PathWest Laboratory Medicine , Queen Elizabeth II Medical Centre , Nedlands , Australia
| |
Collapse
|
19
|
Kociolek LK, Ozer EA, Gerding DN, Hecht DW, Patel SJ, Hauser AR. Whole-genome analysis reveals the evolution and transmission of an MDR DH/NAP11/106 Clostridium difficile clone in a paediatric hospital. J Antimicrob Chemother 2019; 73:1222-1229. [PMID: 29342270 DOI: 10.1093/jac/dkx523] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 12/13/2017] [Indexed: 02/07/2023] Open
Abstract
Background Clostridium difficile strain DH/NAP11/106, a relatively antibiotic-susceptible strain, is now the most common cause of C. difficile infection (CDI) among adults in the USA. Objectives To identify mechanisms underlying the evolution and transmission of an MDR DH/NAP11/106 clone. Methods WGS (Illumina MiSeq), restriction endonuclease analysis (REA) and antibiotic susceptibility testing were performed on 134 C. difficile isolates collected from paediatric patients with CDI over a 2 year period. Results Thirty-one of 134 (23%) isolates were REA group DH. Pairwise single-nucleotide variant (SNV) analyses identified a DH clone causing seven instances of CDI in two patients. During the 337 days between the first and second CDI, Patient 1 (P1) received 313 days of antibiotic therapy. Clindamycin and rifaximin resistance, and reduced vancomycin susceptibility (MIC 0.5-2 mg/L), were newly identified in the relapsed isolate. This MDR clone was transmitted to Patient 2 (P2) while P1 and P2 received care in adjacent private rooms. P1 and P2 each developed two additional CDI relapses. Comparative genomics analyses demonstrated SNVs in multiple antibiotic resistance genes, including rpoB (rifaximin resistance), gyrB and a gene encoding PBP; gyrB and PBP mutations did not consistently confer a resistance phenotype. The clone also acquired a 46 000 bp genomic element, likely a conjugative plasmid, which contained ermB (clindamycin resistance). The element shared 99% identity with the genomic sequence of Faecalibacterium prausnitzii, an enteric commensal. Conclusions These data highlight the emergence of MDR in C. difficile strain DH/NAP11/106 through multiple independent mechanisms probably as a consequence of profound antibiotic pressure.
Collapse
Affiliation(s)
- Larry K Kociolek
- Ann & Robert H. Lurie Children's Hospital of Chicago, 225 E. Chicago Ave, Chicago, IL 60611, USA.,Northwestern University Feinberg School of Medicine, 320 E. Superior St, Chicago, IL 60611, USA
| | - Egon A Ozer
- Northwestern University Feinberg School of Medicine, 320 E. Superior St, Chicago, IL 60611, USA
| | - Dale N Gerding
- Loyola University Chicago Stritch School of Medicine, 2160 S. 1st Ave, Maywood, IL 60153, USA.,Edward Hines, Jr. Veterans Administration Hospital, 5000 S. 5th Ave, Hines, IL 60141, USA
| | - David W Hecht
- Loyola University Chicago Stritch School of Medicine, 2160 S. 1st Ave, Maywood, IL 60153, USA.,Loyola University Medical Center, 2160 S. 1st Ave, Maywood, IL 60153, USA
| | - Sameer J Patel
- Ann & Robert H. Lurie Children's Hospital of Chicago, 225 E. Chicago Ave, Chicago, IL 60611, USA.,Northwestern University Feinberg School of Medicine, 320 E. Superior St, Chicago, IL 60611, USA
| | - Alan R Hauser
- Northwestern University Feinberg School of Medicine, 320 E. Superior St, Chicago, IL 60611, USA
| |
Collapse
|
20
|
Dayananda P, Wilcox MH. A Review of Mixed Strain Clostridium difficile Colonization and Infection. Front Microbiol 2019; 10:692. [PMID: 31024483 PMCID: PMC6469431 DOI: 10.3389/fmicb.2019.00692] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 03/19/2019] [Indexed: 12/18/2022] Open
Abstract
Given that Clostridium difficile is not part of the normal human microbiota, if multiple strains are to accumulate in the colon implies successive exposure events and/or persistent colonization must occur. Evidence of C. difficile infection (CDI) with more than one strain was first described in 1983. Despite the availability of increasingly discriminatory bacterial fingerprinting methods, the described rate of dual strain recovery in patients with CDI has remained stable at ∼5–10%. More data are needed to determine when dual strain infection may be harmful. Notably, one strain may block the establishment of and infection by another. In humans, patients colonized by non-toxigenic C. difficile strain are at a lower risk of developing CDI. Further studies to elucidate the interaction between co-infecting or colonizing and infecting C. difficile strains may help identify potential exploitable mechanisms to prevent CDI.
Collapse
Affiliation(s)
- Pete Dayananda
- Department of Microbiology, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom.,Leeds Institute of Biomedical and Clinical Sciences, University of Leeds, Leeds, United Kingdom
| | - Mark H Wilcox
- Department of Microbiology, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom.,Leeds Institute of Biomedical and Clinical Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
21
|
Status of vaccine research and development for Clostridium difficile. Vaccine 2019; 37:7300-7306. [PMID: 30902484 DOI: 10.1016/j.vaccine.2019.02.052] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 02/21/2019] [Indexed: 12/15/2022]
Abstract
Clostridium difficile associated disease is fundamentally associated with dysbiosis of the gut microbiome as a consequence of antibiotic use. This is because this sporulating, obligate anaerobe germinates and proliferates rapidly in the dysbiotic gut, which is an indirect consequence of their use. During its growth, C. difficile produces two toxins, toxin A (TcdA) and toxin B (TcdB), which are responsible for the majority of clinical symptoms associated with the disease. Three parenterally delivered vaccines, based on detoxified or recombinant forms of these toxins, have undergone or are undergoing clinical trials. Each offers the opportunity to generate high titres of toxin neutralising antibodies. Whilst these data suggest these vaccines may reduce primary symptomatic disease, they do not in their current form reduce the capacity of the organism to persist and shed from the vaccinated host. The current progress of vaccine development is considered with advantages and limitations of each highlighted. In addition, several alternative approaches are described that seek to limit C. difficile germination, colonisation and persistence. It may yet prove that the most effective treatments to limit infection, disease and spread of the organism will require a combination of therapeutic approaches. The potential use and efficacy of these vaccines in low and middle income countries will be depend on the development of a cost effective vaccine and greater understanding of the distribution and extent of disease in these countries.
Collapse
|
22
|
PCR based detection of tcdCΔ117 in Clostridium difficile infection identifies patients at risk for recurrence - A hospital-based prospective observational study. Anaerobe 2019; 57:39-44. [PMID: 30878603 DOI: 10.1016/j.anaerobe.2019.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 03/04/2019] [Accepted: 03/11/2019] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Increasing incidence and severity of Clostridium difficile infection (CDI) in the last decades has been attributed to the emergence of hypervirulent C. difficile strain PCR-ribotype 027 (RT027). Commercial multiplex real-time PCR tests allow the presumptive identification of RT027 by detecting a single-base deletion at nt117 in the tcdC gene (tcdCΔ117). The clinical usefulness of the detection of tcdCΔ117 is unclear. Therefore, we evaluated test performance and clinical association of the detection of tcdCΔ117 in patients with CDI in a prospective observational study conducted in a tertiary care hospital in Germany. METHODS From June to October 2015, stool from all patients with suspected CDI was tested for C. difficile according to ESCMID guidelines. C. difficile was cultured from positive samples and ribotyping was performed. Clinical data were collected prospectively from all C. difficile positive patients. RESULTS From 1121 tested stool samples 107 patients with CDI were included in the study. TcdCΔ117 was detected in 18 (16.8%) of these patients. Multivariable logistic regression analysis revealed an independent association of detection of tcdCΔ117 with a further episode of CDI (OR 14.6; 95% CI 3.6-58.3; p < 0.001) and death within 30 days of the positive test (OR 5.1; 95% CI 1.0-25.7; p = 0.046). As follow up data are limited, it remains unclear, whether the further episode of CDI was due to tcdCΔ117 (recurrence) or another type. CONCLUSION In our setting, PCR-based detection of tcdCΔ117 identified patients at risk for recurrent CDI and increased mortality and thus may guide therapeutic choices in CDI patients at the time of diagnosis.
Collapse
|
23
|
Imwattana K, Wangroongsarb P, Riley TV. High prevalence and diversity of tcdA-negative and tcdB-positive, and non-toxigenic, Clostridium difficile in Thailand. Anaerobe 2019; 57:4-10. [PMID: 30862468 DOI: 10.1016/j.anaerobe.2019.03.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/04/2019] [Accepted: 03/06/2019] [Indexed: 02/05/2023]
Abstract
Studies on the prevalence and diversity of Clostridium difficile in Thailand have been limited to those derived from a few tertiary hospitals in Central Thailand. In this study, 145 C. difficile isolates collected in 13 provinces in Thailand during 2006-2018 were characterized by ribotyping and detection of toxin genes. Minimum inhibitory concentrations of eight antimicrobial agents were determined also for all 100 C. difficile strains collected from 2006 until 2015. Of the 145 strains of C. difficile, 71 (49%) were non-toxigenic, 46 (32%) were toxin A-negative, toxin B-positive (A-B+) and 28 (19%) were A+B+. No binary toxin-positive strain was found. The most common ribotype (RT) was RT 017 (A-B+CDT-, 19%, 28/145). Besides RT 017, 20 novel non-toxigenic and A-B+ ribotyping profiles, which may be related to RT 017 by the similarity of ribotyping profile, were identified. All C. difficile strains remained susceptible to metronidazole and vancomycin, however, a slight increase in MIC for metronidazole was seen in both toxigenic and non-toxigenic strains (overall MIC50/90 0.25/0.25 mg/L during 2006-2010 compared to overall MIC50/90 1.0/2.0 mg/L during 2011-2015). There was a high rate of fluoroquinolone resistance among RT 017 strains (77%), but there was little resistance among non-toxigenic strains. These results suggest that RT 017 is endemic in Thailand, and that the misuse of fluoroquinolones may lead to outbreaks of RT 017 infection in this country. Further studies on non-toxigenic C. difficile are needed to understand whether they have a role in the pathogenesis of C. difficile infection in Asia.
Collapse
Affiliation(s)
- Korakrit Imwattana
- School of Biomedical Sciences, The University of Western Australia, Western Australia, 6009, Australia
| | - Piyada Wangroongsarb
- The National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, 11000, Thailand
| | - Thomas V Riley
- School of Biomedical Sciences, The University of Western Australia, Western Australia, 6009, Australia; School of Veterinary and Life Sciences, Murdoch University, Western Australia, 6150, Australia; School of Medical and Health Sciences, Edith Cowan University, Western Australia, 6027, Australia; Department of Microbiology, PathWest Laboratory Medicine, Queen Elizabeth II Medical Centre, Western Australia, 6009, Australia.
| |
Collapse
|
24
|
Candel-Pérez C, Ros-Berruezo G, Martínez-Graciá C. A review of Clostridioides [Clostridium] difficile occurrence through the food chain. Food Microbiol 2019; 77:118-129. [DOI: 10.1016/j.fm.2018.08.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/01/2018] [Accepted: 08/21/2018] [Indexed: 12/18/2022]
|
25
|
Kociolek LK, Perdue ER, Fawley WN, Wilcox MH, Gerding DN, Johnson S. Correlation between restriction endonuclease analysis and PCR ribotyping for the identification of Clostridioides (Clostridium) difficile clinical strains. Anaerobe 2018; 54:1-7. [PMID: 30009944 PMCID: PMC6924008 DOI: 10.1016/j.anaerobe.2018.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/03/2018] [Accepted: 07/12/2018] [Indexed: 01/05/2023]
Abstract
Restriction endonuclease analysis (REA) and PCR ribotyping are two typing systems that have been frequently utilized for molecular epidemiologic characterization of Clostridioides (Clostridium) difficile. To correlate typing data obtained from each method, we performed both REA and PCR ribotyping on a large and diverse set of historical and contemporary C. difficile infection clinical isolates. Eighty isolates were selected from each reference laboratory in the United States (Microbiology Reference Laboratory, Hines VA Medical Center) and United Kingdom (Clostridium difficile Network for England and Northern Ireland laboratory, University of Leeds). The 160 isolates were assigned to 82 unique ribotypes and 51 unique REA groups (116 unique REA types). In general, concordance between typing methods was good. Dendrogram analysis of PCR ribotype band patterns demonstrated close genetic relationships among strain types with discordant REA and ribotype assignments. While REA typing was more discriminatory, several REA types in this study were further discriminated by PCR ribotyping, indicating that discriminatory value of these typing methods may be strain dependent. These data will assist with molecular epidemiologic surveillance of strains identified by these two commonly used C. difficile typing systems.
Collapse
Affiliation(s)
- Larry K Kociolek
- Northwestern University Feinberg School of Medicine, 420 E. Superior St, Chicago, IL, 60611, USA; Ann & Robert H. Lurie Children's Hospital of Chicago, 225 E. Chicago Ave., Chicago, IL, 60611, USA.
| | - Eric R Perdue
- Edward Hines, Jr. Veterans Administration Hospital, 5000 5th Ave., Hines, IL, 60141, USA.
| | - Warren N Fawley
- Leeds Teaching Hospitals and University of Leeds, Leeds, LS2 9JT, UK.
| | - Mark H Wilcox
- Leeds Teaching Hospitals and University of Leeds, Leeds, LS2 9JT, UK.
| | - Dale N Gerding
- Edward Hines, Jr. Veterans Administration Hospital, 5000 5th Ave., Hines, IL, 60141, USA; Loyola University Chicago Stritch School of Medicine, 2160 S 1st Ave., Maywood, IL, 60153, USA.
| | - Stuart Johnson
- Edward Hines, Jr. Veterans Administration Hospital, 5000 5th Ave., Hines, IL, 60141, USA; Loyola University Chicago Stritch School of Medicine, 2160 S 1st Ave., Maywood, IL, 60153, USA.
| |
Collapse
|
26
|
Comparison of Common Molecular Typing Methods for Differentiation of Clostridium difficile Strains in the Study of Hospital Acquired Infections. ARCHIVES OF CLINICAL INFECTIOUS DISEASES 2018. [DOI: 10.5812/archcid.61030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Thornton CS, Rubin JE, Greninger AL, Peirano G, Chiu CY, Pillai DR. Epidemiological and genomic characterization of community-acquired Clostridium difficile infections. BMC Infect Dis 2018; 18:443. [PMID: 30170546 PMCID: PMC6119286 DOI: 10.1186/s12879-018-3337-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 08/16/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Clostridium difficile infection (CDI) is a major cause of morbidity and mortality in North America and Europe. The aim of this study was to identify epidemiologically-confirmed cases of community-acquired (CA)-CDI in a large North American urban center and analyze isolates using multiple genetic and phenotypic methods. METHODS Seventy-eight patients testing positive for C. difficile from outpatient clinics were further investigated by telephone questionnaire. CA-CDI isolates were characterized by antibiotic susceptibility, pulsed-field gel electrophoresis and whole genome sequencing. CA-CDI was defined as testing positive greater than 12 weeks following discharge or no previous hospital admission in conjunction with positive toxin stool testing. RESULTS 51.3% (40/78) of the patients in this study were found to have bona fide CA-CDI. The majority of patients were female (71.8% vs. 28.2%) with 50-59 years of age being most common (21.8%). Common co-morbidities included ulcerative colitis (1/40; 2.5%), Crohn's disease (3/40; 7.5%), celiac disease (2/40; 5.0%) and irritable bowel syndrome (8/40; 20.0%). However, of 40 patients with CA-CDI, 9 (29.0%) had been hospitalized between 3 and 6 months prior and 31 (77.5%) between 6 and 12 months prior. The hypervirulent North American Pulostype (NAP) 1-like (9/40; 22.5%) strain was the most commonly identified pulsotype. Whole genome sequencing of CA-CDI isolates confirmed that NAP 1-like pulsotypes are commonplace in CA-CDI. From a therapeutic perspective, there was universal susceptibility to metronidazole and vancomycin. CONCLUSIONS All CA-CDI cases had some history of hospitalization if the definition were modified to health care facility exposure in the last 12 months and is supported by the genomic analysis. This raises the possibility that even CA-CDI may have nosocomial origins.
Collapse
Affiliation(s)
- Christina S Thornton
- Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, AB, Canada.,Department of Medicine, University of Calgary, Calgary, AB, Canada
| | - Joseph E Rubin
- Calgary Laboratory Services, Calgary, AB, Canada.,Department of Veterinary Microbiology, University of Saskatchewan, Regina, Canada
| | - Alexander L Greninger
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, USA.,Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| | | | - Charles Y Chiu
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, USA.,Department of Medicine, Division of Infectious Diseases, University of California San Francisco, San Francisco, CA, USA
| | - Dylan R Pillai
- Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, AB, Canada. .,Department of Medicine, University of Calgary, Calgary, AB, Canada. .,Calgary Laboratory Services, Calgary, AB, Canada. .,Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada. .,Diagnostic and Scientific Center, Room 1W-416, 9-3535 Research Road NW, Calgary, AB, T2L 2K8, Canada.
| |
Collapse
|
28
|
Giancola S, Williams R, Gentry C. Prevalence of the Clostridium difficile BI/NAP1/027 strain across the United States Veterans Health Administration. Clin Microbiol Infect 2018; 24:877-881. [DOI: 10.1016/j.cmi.2017.11.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/09/2017] [Accepted: 11/13/2017] [Indexed: 01/10/2023]
|
29
|
Li Z, Liu X, Zhao J, Xu K, Tian T, Yang J, Qiang C, Shi D, Wei H, Sun S, Cui Q, Li R, Niu Y, Huang B. Comparison of a newly developed binary typing with ribotyping and multilocus sequence typing methods for Clostridium difficile. J Microbiol Methods 2018; 147:50-55. [DOI: 10.1016/j.mimet.2018.02.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/22/2018] [Accepted: 02/22/2018] [Indexed: 12/19/2022]
|
30
|
Berger FK, Rasheed SS, Araj GF, Mahfouz R, Rimmani HH, Karaoui WR, Sharara AI, Dbaibo G, Becker SL, von Müller L, Bischoff M, Matar GM, Gärtner B. Molecular characterization, toxin detection and resistance testing of human clinical Clostridium difficile isolates from Lebanon. Int J Med Microbiol 2018; 308:358-363. [PMID: 29478838 DOI: 10.1016/j.ijmm.2018.01.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/09/2018] [Accepted: 01/19/2018] [Indexed: 01/05/2023] Open
Abstract
Clostridium (Clostridioides) difficile is the main cause for nosocomial diarrhoea in industrialised nations. Epidemiologic data on the pathogen's occurrence in other world regions are still scarce. In this context we characterized with phenotypic and molecular genetic methods C. difficile isolates stemming from hospitalised patients with diarrhoea in Lebanon. From 129 stool samples of symptomatic patients at a tertiary care University hospital in Lebanon, a total of 107 C. difficile strains were cultivated and underwent ribotyping, toxin gene detection and antibiotic resistance testing. Ribotype 014 (RT014, 16.8%) predominated, followed by RT002 (9.3%), RT106 (8.4%) and RT070 (6.5%). Binary toxin gene-positive isolates (RT023, RT078 and RT126) were rarely detected and RT027 was absent. Interestingly, within one isolate only the toxin A gene (tcdA) was detected. Multiple-locus variable-number tandem repeat analysis (MLVA) revealed strong strain diversity in most RTs. The isolates were sensitive to metronidazole and vancomycin, and only a small proportion of strains displayed resistance against moxifloxacin, rifampicin, and clarithromycin (5.6%, 1.9%, and 2.8%), respectively. The data indicate that the genetic strain composition of Lebanese strains differs markedly from the situation seen in Europe and North America. Especially the epidemic RTs seen in the latter regions were almost absent in Lebanon. Interestingly, most strains showed almost no resistance to commonly used antibiotics that are suspected to play a major role in the development of C. difficile infection, despite frequent use of these antibiotics in Lebanon. Thus, the role of antimicrobial resistance as a major driving force for infection development remains uncertain in this area.
Collapse
Affiliation(s)
- Fabian K Berger
- Institute of Medical Microbiology and Hygiene, National Reference Laboratory for Clostridium difficile, Saarland University, Kirrberger Straße, Building 43, 66421 Homburg/Saar, Germany.
| | - Sari S Rasheed
- Center for Infectious Diseases Research, American University of Beirut Medical Center, Riad El-Solh 1107, 2020, Beirut, Lebanon; Department of Experimental Pathology, Immunology, and Microbiology, American University of Beirut Medical Center, Riad El-Solh 1107, 2020, Beirut, Lebanon
| | - George F Araj
- Center for Infectious Diseases Research, American University of Beirut Medical Center, Riad El-Solh 1107, 2020, Beirut, Lebanon; Department of Pathology and Lab Medicine, American University of Beirut Medical Center, Riad El-Solh 1107, 2020, Beirut, Lebanon
| | - Rami Mahfouz
- Center for Infectious Diseases Research, American University of Beirut Medical Center, Riad El-Solh 1107, 2020, Beirut, Lebanon; Department of Pathology and Lab Medicine, American University of Beirut Medical Center, Riad El-Solh 1107, 2020, Beirut, Lebanon
| | - Hussein H Rimmani
- Department of Internal Medicine, American University of Beirut Medical Center, Riad El-Solh 1107, 2020, Beirut, Lebanon
| | - Walid R Karaoui
- Department of Internal Medicine, American University of Beirut Medical Center, Riad El-Solh 1107, 2020, Beirut, Lebanon
| | - Ala I Sharara
- Department of Internal Medicine, American University of Beirut Medical Center, Riad El-Solh 1107, 2020, Beirut, Lebanon
| | - Ghassan Dbaibo
- Center for Infectious Diseases Research, American University of Beirut Medical Center, Riad El-Solh 1107, 2020 Beirut, Lebanon
| | - Sören L Becker
- Institute of Medical Microbiology and Hygiene, National Reference Laboratory for Clostridium difficile, Saarland University, Kirrberger Straße, Building 43, 66421 Homburg/Saar, Germany; Swiss Tropical and Public Health Institute, P.O. Box, CH-4002 Basel, Switzerland; University of Basel, P.O. Box, CH-4003 Basel, Switzerland
| | - Lutz von Müller
- Institute of Medical Microbiology and Hygiene, National Reference Laboratory for Clostridium difficile, Saarland University, Kirrberger Straße, Building 43, 66421 Homburg/Saar, Germany; Institute for Laboratory Medicine, Microbiology and Hygiene, Christophorus Kliniken, Südwall 22, 48653, Coesfeld, Germany
| | - Markus Bischoff
- Institute of Medical Microbiology and Hygiene, National Reference Laboratory for Clostridium difficile, Saarland University, Kirrberger Straße, Building 43, 66421 Homburg/Saar, Germany
| | - Ghassan M Matar
- Center for Infectious Diseases Research, American University of Beirut Medical Center, Riad El-Solh 1107, 2020, Beirut, Lebanon; Department of Experimental Pathology, Immunology, and Microbiology, American University of Beirut Medical Center, Riad El-Solh 1107, 2020, Beirut, Lebanon
| | - Barbara Gärtner
- Institute of Medical Microbiology and Hygiene, National Reference Laboratory for Clostridium difficile, Saarland University, Kirrberger Straße, Building 43, 66421 Homburg/Saar, Germany
| |
Collapse
|
31
|
Comparative genomics analysis of Clostridium difficile epidemic strain DH/NAP11/106. Microbes Infect 2018; 20:245-253. [PMID: 29391259 DOI: 10.1016/j.micinf.2018.01.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/06/2018] [Accepted: 01/08/2018] [Indexed: 02/05/2023]
Abstract
Clostridium difficile PCR ribotype 106 (also identified as restriction endonuclease analysis [REA] group DH) recently emerged as the most common strain causing C. difficile infection (CDI) among US adults. We previously identified this strain predominating our pediatric cohort. Pediatric clinical CDI isolates previously characterized by REA underwent antibiotic resistance testing and whole genome sequencing. Of 134 isolates collected from children, 31 (23%) were REA group DH. We performed a comparative genomics analysis to identify DH-associated accessory genes. We identified five DH-associated genes that are associated with virulence in other bacterial species but not previously known to contribute to CDI. These genes are associated with intestinal mucosal adhesion (collagen-binding surface protein), sporulation (sporulation integral membrane protein YtvI), and protection from oxidative stress and foreign DNA (DNA phosphorothioation-dependent restriction proteins, sulfurtransferase, and DNA sulfur modification proteins). The association of these genes was validated in a cohort of 623 publicly available C. difficile sequences, 10 (1.6%) of which were monophyletic to REA group DH through in silico multilocus sequence typing and core genome phylogenetic analysis. Further investigation is required to determine the contribution of these genes to the emergence and virulence of this epidemic strain.
Collapse
|
32
|
Complete Genome Sequence of Clostridioides difficile Epidemic Strain DH/NAP11/106/ST-42, Isolated from Stool from a Pediatric Patient with Diarrhea. GENOME ANNOUNCEMENTS 2017; 5:5/38/e00923-17. [PMID: 28935729 PMCID: PMC5609408 DOI: 10.1128/genomea.00923-17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report here the complete genome sequence of Clostridioides difficile strain DH/NAP11/106/ST-42, which is now the most common strain causing C. difficile infection among U.S. adults. This strain was isolated from the stool from a hospitalized pediatric patient with frequent relapses of C. difficile infection.
Collapse
|
33
|
Shin BM, Yoo SM, Shin WC. Evaluation of Xpert C. difficile, BD MAX Cdiff, IMDx C. difficile for Abbott m2000, and Illumigene C. difficile Assays for Direct Detection of Toxigenic Clostridium difficile in Stool Specimens. Ann Lab Med 2017; 36:131-7. [PMID: 26709260 PMCID: PMC4713846 DOI: 10.3343/alm.2016.36.2.131] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/12/2015] [Accepted: 11/04/2015] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND We evaluated the performance of four commercial nucleic acid amplification tests (NAATs: Xpert C. difficile, BD MAX Cdiff, IMDx C. difficile for Abbott m2000, and Illumigene C. difficile) for direct and rapid detection of Clostridium difficile toxin genes. METHODS We compared four NAATs on the same set of 339 stool specimens (303 prospective and 36 retrospective specimens) with toxigenic culture (TC). RESULTS Concordance rate among four NAATs was 90.3% (306/339). Based on TC results, the sensitivity and specificity were 90.0% and 92.9% for Xpert; 86.3% and 89.3% for Max; 84.3% and 94.4% for IMDx; and 82.4% and 93.7% for Illumigene, respectively. For 306 concordant cases, there were 11 TC-negative/NAATs co-positive cases and 6 TC-positive/NAATs co-negative cases. Among 33 discordant cases, 18 were only single positive in each NAAT (Xpert, 1; Max, 12; IMDx, 1; Illumigene, 4). Positivity rates of the four NAATs were associated with those of semi-quantitative cultures, which were maximized in grade 3 (>100 colony-forming unit [CFU]) compared with grade 1 (<10 CFU). CONCLUSIONS Commercial NAATs may be rapid and reliable methods for direct detection of tcdA and/or tcdB in stool specimens compared with TC. Some differences in the sensitivity of the NAATs may partly depend on the number of toxigenic C. difficile in stool specimens.
Collapse
Affiliation(s)
- Bo-Moon Shin
- Department of Laboratory Medicine, Sanggye Paik Hospital, School of Medicine, Inje University, Seoul, Korea.
| | - Sun Mee Yoo
- Department of Family Medicine, Haewoondae Paik Hospital, School of Medicine, Inje University, Busan, Korea
| | - Won Chang Shin
- Department of Internal Medicine, Sanggye Paik Hospital, School of Medicine, Inje University, Seoul, Korea
| |
Collapse
|
34
|
Orden C, Blanco JL, Álvarez-Pérez S, Garcia-Sancho M, Rodriguez-Franco F, Sainz A, Villaescusa A, Harmanus C, Kuijper E, Garcia ME. Isolation of Clostridium difficile from dogs with digestive disorders, including stable metronidazole-resistant strains. Anaerobe 2016; 43:78-81. [PMID: 27965048 DOI: 10.1016/j.anaerobe.2016.12.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/29/2016] [Accepted: 12/08/2016] [Indexed: 02/08/2023]
Abstract
The prevalence of Clostridium difficile in 107 dogs with diverse digestive disorders attended in a Spanish veterinary teaching hospital was assessed. The microorganism was isolated from 13 dogs (12.1%) of different disease groups. Isolates belonged to PCR ribotypes 078, 106, 154 and 430 (all of them toxigenic) and 110 (non-toxigenic), and were resistant to several antimicrobial drugs. Notably, seven isolates obtained from different dogs displayed stable resistance to metronidazole. The results of this study provide further evidence that dogs can act as a reservoir of C. difficile strains of epidemic ribotypes with resistance to multiple antibiotics.
Collapse
Affiliation(s)
- Cristina Orden
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense, 28040, Madrid, Spain
| | - Jose L Blanco
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense, 28040, Madrid, Spain; Hospital Clínico Veterinario Complutense, Universidad Complutense, 28040, Madrid, Spain.
| | - Sergio Álvarez-Pérez
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense, 28040, Madrid, Spain
| | | | | | - Angel Sainz
- Hospital Clínico Veterinario Complutense, Universidad Complutense, 28040, Madrid, Spain
| | - Alejandra Villaescusa
- Hospital Clínico Veterinario Complutense, Universidad Complutense, 28040, Madrid, Spain
| | - Celine Harmanus
- Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Ed Kuijper
- Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Marta E Garcia
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense, 28040, Madrid, Spain; Hospital Clínico Veterinario Complutense, Universidad Complutense, 28040, Madrid, Spain
| |
Collapse
|
35
|
Álvarez-Pérez S, Blanco JL, Harmanus C, Kuijper E, García ME. Subtyping and antimicrobial susceptibility of Clostridium difficile PCR ribotype 078/126 isolates of human and animal origin. Vet Microbiol 2016; 199:15-22. [PMID: 28110780 DOI: 10.1016/j.vetmic.2016.12.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/22/2016] [Accepted: 12/01/2016] [Indexed: 01/05/2023]
Abstract
The Clostridium difficile PCR ribotype complex 078/126 (RT078/126) is often involved in human disease and is also frequently isolated from diverse animal species. The high genetic relatedness between human and animal RT078/126 isolates found in different regions has encouraged discussion about the zoonotic potential of this lineage. We compared for the first time the genetic diversity and antimicrobial susceptibility profiles of human and animal C. difficile RT078/126 isolates from Spain. A collection of 96 isolates (50 of human and 46 of animal origin; 63 and 33 of ribotypes 078 and 126, respectively) was subtyped by an improved amplified fragment length polymorphism (AFLP) fingerprinting method and tested for in vitro antimicrobial susceptibility. A total of 67 genotypes were distinguished, three of which grouped together isolates of human and animal origin. Furthermore, two main groups of isolates that mostly correlated with PCR ribotypes could be distinguished in the AFLP dendrogram. Human origin was significantly associated with resistance to ertapenem, erythromycin and moxifloxacin; resistance to clindamycin and erythromycin was associated with RT126 and AFLP group 1. Twenty-nine isolates (30.2% of total) displayed heteroresistance to metronidazole. Substantial differences were observed in the susceptibility profiles of isolates belonging to a same genotype. Altogether, these results provide a valuable baseline for future studies on the epidemiology of C. difficile RT078/126.
Collapse
Affiliation(s)
- Sergio Álvarez-Pérez
- Department of Animal Health, Faculty of Veterinary, Universidad Complutense de Madrid, Madrid, Spain
| | - José L Blanco
- Department of Animal Health, Faculty of Veterinary, Universidad Complutense de Madrid, Madrid, Spain.
| | - Celine Harmanus
- Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Ed Kuijper
- Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Marta E García
- Department of Animal Health, Faculty of Veterinary, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
36
|
Torres Sopena L, Mairal Claver P, Milagro Beamonte A, Bergua Amores C. [Contributions to article «Recurrent disease due to rybotipe 027 Clostridium difficile»]. Enferm Infecc Microbiol Clin 2016; 34:612-613. [PMID: 26993437 DOI: 10.1016/j.eimc.2016.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 02/17/2016] [Indexed: 11/19/2022]
|
37
|
Koon HW, Su B, Xu C, Mussatto CC, Tran DHN, Lee EC, Ortiz C, Wang J, Lee JE, Ho S, Chen X, Kelly CP, Pothoulakis C. Probiotic Saccharomyces boulardii CNCM I-745 prevents outbreak-associated Clostridium difficile-associated cecal inflammation in hamsters. Am J Physiol Gastrointest Liver Physiol 2016; 311:G610-G623. [PMID: 27514478 PMCID: PMC5142203 DOI: 10.1152/ajpgi.00150.2016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 07/29/2016] [Indexed: 01/31/2023]
Abstract
C. difficile infection (CDI) is a common debilitating nosocomial infection associated with high mortality. Several CDI outbreaks have been attributed to ribotypes 027, 017, and 078. Clinical and experimental evidence indicates that the nonpathogenic yeast Saccharomyces boulardii CNCM I-745 (S.b) is effective for the prevention of CDI. However, there is no current evidence suggesting this probiotic can protect from CDI caused by outbreak-associated strains. We used established hamster models infected with outbreak-associated C. difficile strains to determine whether oral administration of live or heat-inactivated S.b can prevent cecal tissue damage and inflammation. Hamsters infected with C. difficile strain VPI10463 (ribotype 087) and outbreak-associated strains ribotype 017, 027, and 078 developed severe cecal inflammation with mucosal damage, neutrophil infiltration, edema, increased NF-κB phosphorylation, and increased proinflammatory cytokine TNFα protein expression. Oral gavage of live, but not heated, S.b starting 5 days before C. difficile infection significantly reduced cecal tissue damage, NF-κB phosphorylation, and TNFα protein expression caused by infection with all strains. Moreover, S.b-conditioned medium reduced cell rounding caused by filtered supernatants from all C. difficile strains. S.b-conditioned medium also inhibited toxin A- and B-mediated actin cytoskeleton disruption. S.b is effective in preventing C. difficile infection by outbreak-associated via inhibition of the cytotoxic effects of C. difficile toxins.
Collapse
Affiliation(s)
- Hon Wai Koon
- Inflammatory Bowel Disease Research Center, Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Bowei Su
- Inflammatory Bowel Disease Research Center, Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Chunlan Xu
- Inflammatory Bowel Disease Research Center, Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California; The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, P.R. China
| | - Caroline C Mussatto
- Inflammatory Bowel Disease Research Center, Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Diana Hoang-Ngoc Tran
- Inflammatory Bowel Disease Research Center, Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Elaine C Lee
- Inflammatory Bowel Disease Research Center, Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Christina Ortiz
- Inflammatory Bowel Disease Research Center, Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Jiani Wang
- Inflammatory Bowel Disease Research Center, Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Jung Eun Lee
- Inflammatory Bowel Disease Research Center, Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Samantha Ho
- Inflammatory Bowel Disease Research Center, Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Xinhua Chen
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; and
| | - Ciaran P Kelly
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; and
| | - Charalabos Pothoulakis
- Inflammatory Bowel Disease Research Center, Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California;
| |
Collapse
|
38
|
Vickers RJ, Tillotson G, Goldstein EJC, Citron DM, Garey KW, Wilcox MH. Ridinilazole: a novel therapy for Clostridium difficile infection. Int J Antimicrob Agents 2016; 48:137-43. [PMID: 27283730 DOI: 10.1016/j.ijantimicag.2016.04.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 04/22/2016] [Accepted: 04/23/2016] [Indexed: 12/15/2022]
Abstract
Clostridium difficile infection (CDI) is the leading cause of infectious healthcare-associated diarrhoea. Recurrent CDI increases disease morbidity and mortality, posing a high burden to patients and a growing economic burden to the healthcare system. Thus, there exists a significant unmet and increasing medical need for new therapies for CDI. This review aims to provide a concise summary of CDI in general and a specific update on ridinilazole (formerly SMT19969), a novel antibacterial currently under development for the treatment of CDI. Owing to its highly targeted spectrum of activity and ability to spare the normal gut microbiota, ridinilazole provides significant advantages over metronidazole and vancomycin, the mainstay antibiotics for CDI. Ridinilazole is bactericidal against C. difficile and exhibits a prolonged post-antibiotic effect. Furthermore, treatment with ridinilazole results in decreased toxin production. A phase 1 trial demonstrated that oral ridinilazole is well tolerated and specifically targets clostridia whilst sparing other faecal bacteria. Phase 2 and 3 trials will hopefully further our understanding of the clinical utility of ridinilazole for the treatment of CDI.
Collapse
Affiliation(s)
- Richard J Vickers
- Summit Therapeutics plc, 85b Park Drive, Milton Park, Abingdon, Oxford OX14 4RY, UK.
| | | | - Ellie J C Goldstein
- R.M. Alden Research Laboratory, Culver City, CA, USA; David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | | | - Kevin W Garey
- University of Houston College of Pharmacy, Houston, TX, USA
| | - Mark H Wilcox
- Microbiology, Leeds Teaching Hospitals and University of Leeds, Old Medical School, Leeds General Infirmary, Leeds, UK
| |
Collapse
|
39
|
Differences in the Molecular Epidemiology and Antibiotic Susceptibility of Clostridium difficile Isolates in Pediatric and Adult Patients. Antimicrob Agents Chemother 2016; 60:4896-900. [PMID: 27270275 DOI: 10.1128/aac.00714-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 05/27/2016] [Indexed: 01/11/2023] Open
Abstract
The rising incidence of Clostridium difficile infections (CDIs) in adults is partly related to the global spread of fluoroquinolone-resistant strains, namely, BI/NAP1/027. Although CDIs are also increasingly diagnosed in children, BI/NAP1/027 is relatively uncommon in children. Little is known about the antibiotic susceptibility of pediatric CDI isolates. C. difficile was cultured from tcdB-positive stools collected from children diagnosed with CDI between December 2012 and December 2013 at an academic children's hospital. CDI isolates were grouped by restriction endonuclease analysis (REA). MICs were measured by agar dilution method for 7 antibiotics. Susceptibility breakpoints were based on guidelines from CLSI and/or the European Committee on Antimicrobial Susceptibility Testing (EUCAST). MICs and REA groupings of C. difficile isolates from 74 adult patients (29 isolates underwent REA) from a temporally and geographically similar adult cohort were compared to those of pediatric isolates. Among 122 pediatric and 74 adult isolates, respectively, the rates of resistance were as follows: metronidazole, 0% and 0%; vancomycin, 0% and 8% (P = 0.003); rifaximin, 1.6% and 6.7% (P = 0.11); clindamycin, 18.9% and 25.3% (P = 0.29); and moxifloxacin, 2.5% and 36% (P = <0.0001). Only 1 of 122 (0.8%) BI/NAP1/027 isolates was identified among the children, compared to 9 of 29 (31%) isolates identified among the adults (P = <0.0001). The 3 moxifloxacin-resistant pediatric isolates were of REA groups BI and CF and a nonspecific group. The 2 rifaximin-resistant pediatric isolates were of REA groups DH and Y. The 21 clindamycin-resistant pediatric isolates were distributed among 9 REA groups (groups A, CF, DH, G, L, M, and Y and 2 unique nonspecific REA groups). These data suggest that a diverse array of relatively antibiotic-susceptible C. difficile strains predominate in a cohort of children with CDI compared to adults.
Collapse
|
40
|
Thabit AK, Nicolau DP. An exploratory study to evaluate Clostridium difficile polymerase chain reaction ribotypes and infection outcomes. Infect Drug Resist 2016; 9:143-8. [PMID: 27390531 PMCID: PMC4930231 DOI: 10.2147/idr.s108325] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Clostridium difficile infection ranges from mild to severe prolonged diarrhea with systemic symptoms. Previous studies have assessed the correlation of some disease severity parameters to C. difficile ribotypes. However, certain clinical parameters of interest have not yet been evaluated. AIM We conducted an exploratory study to evaluate the correlation of C. difficile ribotypes to parameters not assessed previously, notably days to diarrhea resolution (in terms of days to formed stools and days to less than three stools per day), length of hospital stay, 30-day recurrence rates, and 30-day readmission rates. Additional severity parameters evaluated include leukocytosis, serum creatinine, fever, and nausea/vomiting. METHODS Polymerase chain reaction ribotyping was performed on C. difficile isolates from baseline stool samples of 29 patients. A retrospective chart review was conducted to assess the parameters of interest. RESULTS The most common ribotypes were 027 (38%), 014/020 (21%), and 106/174 (21%). Numerically, 027 ribotype patients required more days to less than three stools per day versus 014/020 and 106/174 ribotype patients (P=0.2). The three ribotypes were similar regarding time to formed stools, duration of hospitalization, and 30-day readmission rate (P=0.2, 0.6, and 0.8, respectively). Recurrence within 30 days occurred in two patients with 027 and two patients with 014/020 (P=0.6). Leukocytosis and fever were more prominent with 027 than with 014/020 and 106/174 (P=0.04 for both parameters), although the degree of nausea/vomiting did not differ between the three groups (P=0.3). A serum creatinine level ≥1.5 times the premorbid level was seen in only three patients, each infected with a different ribotype. CONCLUSION Although these data provide a baseline assessment of outcomes to aid in the design of future studies, the diversity of C. difficile ribotypes within the population must be considered, and additional work with other ribotypes may further explain the association with these outcomes.
Collapse
Affiliation(s)
- Abrar K Thabit
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA; Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - David P Nicolau
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA; Division of Infectious Diseases, Hartford Hospital, Hartford, CT, USA
| |
Collapse
|
41
|
Abstract
Infection of the colon with the Gram-positive bacterium Clostridium difficile is potentially life threatening, especially in elderly people and in patients who have dysbiosis of the gut microbiota following antimicrobial drug exposure. C. difficile is the leading cause of health-care-associated infective diarrhoea. The life cycle of C. difficile is influenced by antimicrobial agents, the host immune system, and the host microbiota and its associated metabolites. The primary mediators of inflammation in C. difficile infection (CDI) are large clostridial toxins, toxin A (TcdA) and toxin B (TcdB), and, in some bacterial strains, the binary toxin CDT. The toxins trigger a complex cascade of host cellular responses to cause diarrhoea, inflammation and tissue necrosis - the major symptoms of CDI. The factors responsible for the epidemic of some C. difficile strains are poorly understood. Recurrent infections are common and can be debilitating. Toxin detection for diagnosis is important for accurate epidemiological study, and for optimal management and prevention strategies. Infections are commonly treated with specific antimicrobial agents, but faecal microbiota transplants have shown promise for recurrent infections. Future biotherapies for C. difficile infections are likely to involve defined combinations of key gut microbiota.
Collapse
Affiliation(s)
- Wiep Klaas Smits
- Section Experimental Bacteriology, Department of Medical Microbiology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Dena Lyras
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, and Department of Microbiology, Monash University, Victoria, Australia
| | - D. Borden Lacy
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, and The Veterans Affairs Tennessee Valley Healthcare System, Nashville Tennessee, USA
| | - Mark H. Wilcox
- Institute of Biomedical and Clinical Sciences, University of Leeds, Leeds, UK
| | - Ed J. Kuijper
- Section Experimental Bacteriology, Department of Medical Microbiology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| |
Collapse
|
42
|
Clostridium difficile infection: epidemiology, diagnosis and understanding transmission. Nat Rev Gastroenterol Hepatol 2016; 13:206-16. [PMID: 26956066 DOI: 10.1038/nrgastro.2016.25] [Citation(s) in RCA: 219] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Clostridium difficile infection (CDI) continues to affect patients in hospitals and communities worldwide. The spectrum of clinical disease ranges from mild diarrhoea to toxic megacolon, colonic perforation and death. However, this bacterium might also be carried asymptomatically in the gut, potentially leading to 'silent' onward transmission. Modern technologies, such as whole-genome sequencing and multi-locus variable-number tandem-repeat analysis, are helping to track C. difficile transmission across health-care facilities, countries and continents, offering the potential to illuminate previously under-recognized sources of infection. These typing strategies have also demonstrated heterogeneity in terms of CDI incidence and strain types reflecting different stages of epidemic spread. However, comparison of CDI epidemiology, particularly between countries, is challenging due to wide-ranging approaches to sampling and testing. Diagnostic strategies for C. difficile are complicated both by the wide range of bacterial targets and tests available and the need to differentiate between toxin-producing and non-toxigenic strains. Multistep diagnostic algorithms have been recommended to improve sensitivity and specificity. In this Review, we describe the latest advances in the understanding of C. difficile epidemiology, transmission and diagnosis, and discuss the effect of these developments on the clinical management of CDI.
Collapse
|
43
|
Gebreyes WA, Adkins PRF. The use of pulsed-field gel electrophoresis for genotyping of Clostridium difficile. Methods Mol Biol 2015; 1301:95-101. [PMID: 25862051 DOI: 10.1007/978-1-4939-2599-5_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Genotyping approaches are important for tracking infectious agents and can be used for various purposes. Pulsed-Field Gel Electrophoresis (PFGE) is among the highly discriminatory genotyping approaches commonly used for characterizing Clostridium difficile. Other genotyping methods used for C. difficile include Ribotyping, Restriction Endonuclease Assay (REA), Multilocus Variable Number Tandem Repeats (VNTR) Assay, and others. PFGE has a high discriminatory power, high reproducibility, and typeability. We utilized PFGE for typing C. difficile isolates of porcine and human origin. We used a macrorestriction fragment analysis of an intact genomic DNA using SmaI, a rare cutting restriction endonuclease. Using a Contour-Clamped Homogeneous Electric Field (CHEF) system with running conditions of 120° angle; initial switch time of 5 s; final switch time of 40 s with a run time of 18 h in a low-melting temperature agarose (Seakem Gold); and 0.5× TBE circulated in the CHEF system at 6 V/cm [CDC (2014) Pulsenet. http://www.cdc.gov/pulsenet/index.html . Accessed 22 Aug 2014] supported by 14 °C cooling module, we were able to separate very large DNA fragments (up to 2 Mb).
Collapse
Affiliation(s)
- Wondwossen A Gebreyes
- Department of Veterinary Preventive Medicine, Infectious Diseases Molecular Epidemiology Laboratory, The Ohio State University, Columbus, OH, USA,
| | | |
Collapse
|
44
|
Comparison of Multilocus Sequence Typing and the Xpert C. difficile/Epi Assay for Identification of Clostridium difficile 027/NAP1/BI. J Clin Microbiol 2015; 54:775-8. [PMID: 26699700 DOI: 10.1128/jcm.03075-15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 12/14/2015] [Indexed: 12/18/2022] Open
Abstract
Clostridium difficile 027/NAP1/BI is the most common C. difficile strain in the United States. The Xpert C. difficile/Epi assay allows rapid, presumptive identification of C. difficile NAP1. We compared Xpert C. difficile/Epi to multilocus sequence typing for identification of C. difficile NAP1 and found "very good" agreement at 97.9% (κ = 0.86; 95% confidence interval, 0.80 to 0.91).
Collapse
|
45
|
von Müller L, Mock M, Halfmann A, Stahlmann J, Simon A, Herrmann M. Epidemiology of Clostridium difficile in Germany based on a single center long-term surveillance and German-wide genotyping of recent isolates provided to the advisory laboratory for diagnostic reasons. Int J Med Microbiol 2015; 305:807-13. [PMID: 26341328 DOI: 10.1016/j.ijmm.2015.08.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Epidemiology of Clostridium difficile is characterized by worldwide increase of C. difficile infections (CDI) and the emergence of new epidemic outbreak strains with the capacity for global spreading. Long-term local surveillance at the University of Saarland Medical Center between 2000 and 2013 shows that the incidence rate of laboratory-confirmed CDI was influenced by local epidemiology as well as by testing strategies. Since 2008, molecular typing of C. difficile was regularly performed for symptomatic hospitalized patients by surface-layer protein A sequence typing (slpAST), which is an established highly standardized technique for genotyping of C. difficile. The results were assigned to known ribotypes for better comparison to international data. It could be demonstrated that distribution of genotypes was different between age groups. Older patients were predominantly infected with ribotype 001 and 027, whereas ribotype 027 was not detected in the pediatric population. Molecular typing of German isolates sent to the advisory laboratory between 2011 and 2013 revealed that ribotype 027 is present with high percentages in most German regions except for the very North. In conclusion, optimized testing of all hospitalized patients with diarrhea should be generally implemented to avoid under-diagnosis of C. difficile infection. Ribotype 027 is highly prevalent in Germany, but its infections are restricted to older patients, while absent in children. Molecular typing of suspected hospital outbreaks and of patients with severe or recurrent disease may help to better understand virulence and epidemic spreading of C. difficile.
Collapse
Affiliation(s)
- Lutz von Müller
- Institute of Medical Microbiology and Hygiene, State of Saarland Laboratory of Hygiene, Consultant Laboratory for Clostridium difficile, University of Saarland Medical Center, Kirrberger Straße, Building 43, Homburg D-66421 Saarland, Germany.
| | - Markus Mock
- Institute of Medical Microbiology and Hygiene, State of Saarland Laboratory of Hygiene, Consultant Laboratory for Clostridium difficile, University of Saarland Medical Center, Kirrberger Straße, Building 43, Homburg D-66421 Saarland, Germany
| | - Alexander Halfmann
- Institute of Medical Microbiology and Hygiene, State of Saarland Laboratory of Hygiene, Consultant Laboratory for Clostridium difficile, University of Saarland Medical Center, Kirrberger Straße, Building 43, Homburg D-66421 Saarland, Germany
| | - Julia Stahlmann
- Institute of Medical Microbiology and Hygiene, State of Saarland Laboratory of Hygiene, Consultant Laboratory for Clostridium difficile, University of Saarland Medical Center, Kirrberger Straße, Building 43, Homburg D-66421 Saarland, Germany
| | - Arne Simon
- Paediatric Hematology and Oncology, Children's Hospital Medical Center, University Hospital of Saarland, Kirrberger Straße, Building 9, Homburg, Saarland, Germany
| | - Mathias Herrmann
- Institute of Medical Microbiology and Hygiene, State of Saarland Laboratory of Hygiene, Consultant Laboratory for Clostridium difficile, University of Saarland Medical Center, Kirrberger Straße, Building 43, Homburg D-66421 Saarland, Germany
| |
Collapse
|
46
|
In the Endemic Setting, Clostridium difficile Ribotype 027 Is Virulent But Not Hypervirulent. Infect Control Hosp Epidemiol 2015; 36:1318-23. [PMID: 26288985 DOI: 10.1017/ice.2015.187] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Conflicting reports have been published on the association between Clostridium difficile ribotypes and severe disease outcomes in patients with C. difficile infection (CDI); several so-called hypervirulent ribotypes have been described. We performed a multicenter study to assess severe disease presentation and severe outcomes among CDI patients infected with different ribotypes. METHODS Stool samples that tested positive for C. difficile toxin were collected and cultured from patients who presented to any of 7 different hospitals in Houston, Texas (2011-2013). C. difficile was characterized using a fluorescent PCR ribotyping method. Medical records were reviewed to determine clinical characteristics and ribotype association with severe CDI presentation (ie, leukocytosis and/or hypoalbuminemia) and severe CDI outcomes (ie, ICU admission, ileus, toxic megacolon, colectomy, and/or in-hospital death). RESULTS Our study included 715 patients aged 61±18 years (female: 63%; median Charlson comorbidity index: 2.5±2.4; hospital-onset CDI: 45%; severe CDI: 36.7%; severe CDI outcomes: 12.3%). The most common ribotypes were 027, 014-020, FP311, 002, 078-126, and 001. Ribotype 027 was a significant independent predictor of severe disease (adjusted odds ratio [aOR], 2.24; 95% confidence interval [CI], 1.53-3.29; P<.001) and severe CDI outcomes (aOR, 1.71; 95% CI, 1.02-2.85; P=.041) compared with all other ribotypes in aggregate. However, in an analysis using all common ribotypes as individual variables, ribotype 027 was not associated with severe CDI outcomes more often than other ribotypes. CONCLUSION Ribotype 027 showed virulence equal to that of other ribotypes identified in this endemic setting. Clinical severity markers of CDI may be more predictive of severe CDI outcomes than a particular ribotype.
Collapse
|
47
|
King AM, Mackin KE, Lyras D. Emergence of toxin A-negative, toxin B-positive Clostridium difficile strains: epidemiological and clinical considerations. Future Microbiol 2015; 10:1-4. [PMID: 25598331 DOI: 10.2217/fmb.14.115] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Amy M King
- Department of Microbiology, Monash University, VIC 3800, Australia
| | | | | |
Collapse
|
48
|
U.S.-Based National Sentinel Surveillance Study for the Epidemiology of Clostridium difficile-Associated Diarrheal Isolates and Their Susceptibility to Fidaxomicin. Antimicrob Agents Chemother 2015; 59:6437-43. [PMID: 26239985 DOI: 10.1128/aac.00845-15] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 07/23/2015] [Indexed: 01/03/2023] Open
Abstract
In 2011 a surveillance study for the susceptibility to fidaxomicin and epidemiology of Clostridium difficile isolates in the United States was undertaken in seven geographically dispersed medical centers. This report encompasses baseline surveillance in 2011 and 2012 on 925 isolates. A convenience sample of C. difficile isolates or toxin positive stools from patients were referred to a central laboratory. Antimicrobial susceptibility was determined by agar dilution (CLSI M11-A8). Clinical and Laboratory Standards Institute (CLSI), Food and Drug Administration, or European Union of Clinical Antimicrobial Susceptibility Testing (EUCAST) breakpoints were applied where applicable. Toxin gene profiles were characterized by multiplex PCR on each isolate. A random sample of 322 strains, stratified by institution, underwent restriction endonuclease analysis (REA). The fidaxomicin MIC90 was 0.5 μg/ml for all isolates regardless of REA type or toxin gene profile, and all isolates were inhibited at ≤1.0 μg/ml. By REA typing, BI strains represented 25.5% of the isolates. The toxin gene profile of tcdA, tcdB, and cdtA/B positive with a tcdC 18-bp deletion correlated with BI REA group. Moxifloxacin and clindamycin resistance was increased among either BI or binary toxin-positive isolates. Metronidazole and vancomycin showed reduced susceptibility (EUCAST criteria) in these isolates. Geographic variations in susceptibility, REA group and binary toxin gene presence were observed. Fidaxomicin activity against C. difficile isolated in a national surveillance study did not change more than 1 year after licensure. This analysis provides baseline results for future comparisons.
Collapse
|
49
|
Development and Validation of Digital Enzyme-Linked Immunosorbent Assays for Ultrasensitive Detection and Quantification of Clostridium difficile Toxins in Stool. J Clin Microbiol 2015. [PMID: 26202120 DOI: 10.1128/jcm.01334-15] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The currently available diagnostics for Clostridium difficile infection (CDI) have major limitations. Despite mounting evidence that toxin detection is paramount for diagnosis, conventional toxin immunoassays are insufficiently sensitive and cytotoxicity assays too complex; assays that detect toxigenic organisms (toxigenic culture [TC] and nucleic acid amplification testing [NAAT]) are confounded by asymptomatic colonization by toxigenic C. difficile. We developed ultrasensitive digital enzyme-linked immunosorbent assays (ELISAs) for toxins A and B using single-molecule array technology and validated the assays using (i) culture filtrates from a panel of clinical C. difficile isolates and (ii) 149 adult stool specimens already tested routinely by NAAT. The digital ELISAs detected toxins A and B in stool with limits of detection of 0.45 and 1.5 pg/ml, respectively, quantified toxins across a 4-log range, and detected toxins from all clinical strains studied. Using specimens that were negative by cytotoxicity assay/TC/NAAT, clinical cutoffs were set at 29.4 pg/ml (toxin A) and 23.3 pg/ml (toxin B); the resulting clinical specificities were 96% and 98%, respectively. The toxin B digital ELISA was 100% sensitive versus cytotoxicity assay. Twenty-five percent and 22% of the samples positive by NAAT and TC, respectively, were negative by the toxin B digital ELISA, consistent with the presence of organism but minimal or no toxin. The mean toxin levels by digital ELISA were 1.5- to 1.7-fold higher in five patients with CDI-attributable severe outcomes, versus 68 patients without, but this difference was not statistically significant. Ultrasensitive digital ELISAs for the detection and quantification of toxins A and B in stool can provide a rapid and simple tool for the diagnosis of CDI with both high analytical sensitivity and high clinical specificity.
Collapse
|
50
|
|