1
|
Pham TAV, Nguyen MD. Subgingival 0.75% boric acid vs 1% povidone-iodine adjunctive to subgingival instrumentation in stage II and III periodontitis-A double-blind randomized clinical trial. Int J Dent Hyg 2024. [PMID: 38764161 DOI: 10.1111/idh.12819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 04/21/2024] [Accepted: 04/28/2024] [Indexed: 05/21/2024]
Abstract
PURPOSE To compare the effects of subgingival irrigation with 0.75% boric acid (BA) and 1% povidone-iodine (PVP-I) as an adjunct to scaling and root planing (SRP) on clinical and microbiologic parameters in the management of patients with periodontitis after a 12-month follow-up. METHODS Sixty systemically healthy individuals diagnosed with periodontitis were included in this double-blind randomised clinical trial. The patients were randomly allocated to treatment groups: (1) SRP plus 0.75% BA and (2) SRP plus 1% PVP-I. Whole-mouth periodontals were clinically examined, and the counts of bacteria including Aggregatibacter actinomycetemcomitans (Aa), Fusobacterium nucleatum (Fn), Porphyromonas gingivalis (Pg), Treponema denticola (Td), Tannerella forsythia (Tf), Solobacterium moorei (Sm) and Streptococcus salivarius (Ss) were tested by real-time polymerase chain reaction (PCR). RESULTS All periodontal parameters and the counts of Aa, Fn, Pg, Td, Tf, Sm and Ss in both groups showed statistically significant reductions at T3, T6 and T12 compared to T0. Whole-mouth or moderate or severe PD and CAL improvements were significantly found in the 0.75% BA group compared to the 1% PVP-I group at T3, T6 and T12. The reduction in Aa or Fn and the reduction in Ss were significantly higher in the 0.75% BA group at T6 and T12 than in the 1% PVP-I group. CONCLUSION This study shows that subgingival irrigation with 0.75% BA may be an alternative to 1% PVP-I because it promotes greater PD reductions and CAL gain, particularly up to 12 months after treatment.
Collapse
Affiliation(s)
- Thuy Anh Vu Pham
- School of Medicine, Vietnam National University, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Minh Duc Nguyen
- School of Medicine, Vietnam National University, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
- Hospital of Odonto-Stomatology, Ho Chi Minh City, Vietnam
| |
Collapse
|
2
|
Chopra A, Franco-Duarte R, Rajagopal A, Choowong P, Soares P, Rito T, Eberhard J, Jayasinghe TN. Exploring the presence of oral bacteria in non-oral sites of patients with cardiovascular diseases using whole metagenomic data. Sci Rep 2024; 14:1476. [PMID: 38233502 PMCID: PMC10794416 DOI: 10.1038/s41598-023-50891-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/27/2023] [Indexed: 01/19/2024] Open
Abstract
Cardiovascular diseases (CVDs) encompass various conditions affecting the heart and its blood vessels and are often linked with oral microbes. Our data analysis aimed to identify oral bacteria from other non-oral sites (i.e., gut, arterial plaque and cultured blood) that could be linked with CVDs. Taxonomic profiling identified bacteria to the species level and compared with the Human Oral Microbiome Database (HOMD). The oral bacteria in the gut, cultured blood and arterial plaque samples were catalogued, with their average frequency calculated for each sample. Additionally, data were filtered by comparison with the Human Microbiome Project (HMP) database. We identified 17,243 microbial species, of which 410 were present in the HOMD database and further denominated as "oral", and were found in at least one gut sample, but only 221 and 169 species were identified in the cultured blood and plaque samples, respectively. Of the 410 species, 153 were present solely in oral-associated environments after comparison with the HMP database, irrespective of their presence in other body sites. Our results suggest a potential connection between the presence of specific species of oral bacterial and occurrence of CVDs. Detecting these oral bacterial species in non-oral sites of patients with CVDs could help uncover the link between oral health and general health, including cardiovascular conditions via bacterial translocation.
Collapse
Affiliation(s)
- Aditi Chopra
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Ricardo Franco-Duarte
- Department of Biology, CBMA (Center of Molecular and Environmental Biology), University of Minho, Braga, Portugal
- Institute of Science and Innovation for Biosustainability (IB-S), University of Minho, Braga, Portugal
| | - Anjale Rajagopal
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Phannaphat Choowong
- School of Dentistry, Faculty of Medicine and Health, The University of Sydney, University of Sydney, Sydney, Australia
| | - Pedro Soares
- Department of Biology, CBMA (Center of Molecular and Environmental Biology), University of Minho, Braga, Portugal
- Institute of Science and Innovation for Biosustainability (IB-S), University of Minho, Braga, Portugal
| | - Teresa Rito
- Department of Biology, CBMA (Center of Molecular and Environmental Biology), University of Minho, Braga, Portugal
- Institute of Science and Innovation for Biosustainability (IB-S), University of Minho, Braga, Portugal
| | - Joerg Eberhard
- School of Dentistry, Faculty of Medicine and Health, The University of Sydney, University of Sydney, Sydney, Australia
| | - Thilini N Jayasinghe
- School of Dentistry, Faculty of Medicine and Health, The University of Sydney, University of Sydney, Sydney, Australia.
- The Charles Perkins Centre, The University of Sydney, University of Sydney, Sydney, Australia.
| |
Collapse
|
3
|
Alejo-Cancho I, Gual-de-Torrella A, Vielba Postigo R, Perez Abraguin I, Redondo Farias L, Lopez de Goikoetxea MJ. [Solobacterium moorei bacteriemia in a patient with sinusitis]. REVISTA ESPANOLA DE QUIMIOTERAPIA : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE QUIMIOTERAPIA 2023; 36:432-433. [PMID: 37192438 PMCID: PMC10336307 DOI: 10.37201/req/141.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/19/2023] [Accepted: 03/22/2023] [Indexed: 05/18/2023]
Affiliation(s)
- I Alejo-Cancho
- Izaskun Alejo-Cancho, Servicio de Microbiología, Hospital de Galdakao, Barrio Labeaga, 46 A, 48960, Galdakao, Spain.
| | | | | | | | | | | |
Collapse
|
4
|
Implication of gut microbes and its metabolites in colorectal cancer. J Cancer Res Clin Oncol 2023; 149:441-465. [PMID: 36572792 DOI: 10.1007/s00432-022-04422-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/14/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND Colorectal cancer (CRC) is the third most common cancer with a significant impact on loss of life. In 2020, nearly 1.9 million new cases and over 9,35,000 deaths were reported. Numerous microbes that are abundant in the human gut benefit host physiology in many ways. Although the underlying mechanism is still unknown, their association appears to be crucial in the beginning and progression of CRC. Diet has a significant impact on the microbial composition and may increase the chance of getting CRC. Increasing evidence points to the gut microbiota as the primary initiator of colonic inflammation, which is connected to the development of colonic tumors. However, it is unclear how the microbiota contributes to the development of CRCs. Patients with CRC have been found to have dysbiosis of the gut microbiota, which can be identified by a decline in commensal bacterial species, such as those that produce butyrate, and a concurrent increase in harmful bacterial populations, such as opportunistic pathogens that produce pro-inflammatory cytokines. We believe that using probiotics or altering the gut microbiota will likely be effective tools in the fight against CRC treatment. PURPOSE In this review, we revisited the association between gut microbiota and colorectal cancer whether cause or effect. The various factors which influence gut microbiome in patients with CRC and possible mechanism in relation with development of CRC. CONCLUSION The clinical significance of the intestinal microbiota may aid in the prevention and management of CRC.
Collapse
|
5
|
Wolf LJ, Stingu CS. Antimicrobial Susceptibility Profile of Rare Anaerobic Bacteria. Antibiotics (Basel) 2022; 12:antibiotics12010063. [PMID: 36671264 PMCID: PMC9854874 DOI: 10.3390/antibiotics12010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
Anaerobes play an important role in clinically relevant infections and resistance is increasing worldwide. We tested 120 rare anaerobic isolates belonging to 16 genera for antimicrobial resistance using the agar dilution method and compared those results to the time-saving E-test method. The susceptibility data for 12 antimicrobial substances (benzylpenicillin, ampicillin/sulbactam, piperacillin/tazobactam, imipenem, meropenem, cefoxitin, metronidazole, moxifloxacin, clindamycin, doxycycline, tigecycline, eravacycline) were collected. Susceptibility testing showed low resistance to β-lactam/β-lactamase inhibitor combinations and no resistance to carbapenems and tigecycline. We observed moderate to high rates of resistance to moxifloxacin and clindamycin which differed depending on the methodology used. The essential and categorical agreement was over 90% for ampicillin/sulbactam, meropenem, moxifloxacin, and tigecycline. For metronidazole and clindamycin, the essential agreement was below 90% but the categorical agreement was near or above 90%. Penicillin presented with the lowest categorical agreement of 86.7% and a very high very major error rate of 13.3%. The resistance rates reported in this study are concerning and show the importance of routine susceptibility testing. Further investigations are necessary to determine the reason for high error rates and how to improve susceptibility testing of fastidious anaerobes.
Collapse
|
6
|
Sattar RSA, Verma R, Nimisha, Kumar A, Dar GM, Apurva, Sharma AK, Kumari I, Ahmad E, Ali A, Mahajan B, Saluja SS. Diagnostic and prognostic biomarkers in colorectal cancer and the potential role of exosomes in drug delivery. Cell Signal 2022; 99:110413. [PMID: 35907519 DOI: 10.1016/j.cellsig.2022.110413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 11/03/2022]
Abstract
Colorectal cancer (CRC) is third most common cancer with second most common cause of death worldwide. One fourth to one fifth of the CRC cases are detected at advance stage. Early detection of colorectal cancer might help in decreasing mortality and morbidity worldwide. CRC being a heterogeneous disease, new non-invasive approaches are needed to complement and improve the screening and management of CRC. Reliable and early detectable biomarkers would improve diagnosis, prognosis, therapeutic responses, and will enable the prediction of drug response and recurrence risk. Over the past decades molecular research has demonstrated the potentials of CTCs, ctDNAs, circulating mRNA, ncRNAs, and exosomes as tumor biomarkers. Non-invasive screening approaches using fecal samples for identification of altered gut microbes in CRC is also gaining attention. Exosomes can be potential candidates that can be employed in the drug delivery system. Further, the integration of in vitro, in vivo and in silico models that involve CRC biomarkers will help to understand the interactions occurring at the cellular level. This review summarizes recent update on CRC biomarkers and their application along with the nanoparticles followed by the application of organoid culture in CRC.
Collapse
Affiliation(s)
- Real Sumayya Abdul Sattar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Renu Verma
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Nimisha
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Arun Kumar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Ghulam Mehdi Dar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Apurva
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Abhay Kumar Sharma
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Indu Kumari
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Ejaj Ahmad
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Asgar Ali
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Bhawna Mahajan
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India; Department of Biochemistry, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Sundeep Singh Saluja
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India; Department of GI Surgery, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India.
| |
Collapse
|
7
|
Pratt M, Forbes JD, Knox NC, Van Domselaar G, Bernstein CN. Colorectal Cancer Screening in Inflammatory Bowel Diseases-Can Characterization of GI Microbiome Signatures Enhance Neoplasia Detection? Gastroenterology 2022; 162:1409-1423.e1. [PMID: 34998802 DOI: 10.1053/j.gastro.2021.12.287] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/28/2021] [Accepted: 12/27/2021] [Indexed: 12/13/2022]
Abstract
Current noninvasive methods for colorectal cancer (CRC) screening are not optimized for persons with inflammatory bowel diseases (IBDs), requiring patients to undergo frequent interval screening via colonoscopy. Although colonoscopy-based screening reduces CRC incidence in IBD patients, rates of interval CRC remain relatively high, highlighting the need for more targeted approaches. In recent years, the discovery of disease-specific microbiome signatures for both IBD and CRC has begun to emerge, suggesting that stool-based biomarker detection using metagenomics and other culture-independent technologies may be useful for personalized, early, noninvasive CRC screening in IBD patients. Here we discuss the utility of the stool microbiome as a noninvasive CRC screening tool. Comparing the performance of multiple microbiome-based CRC classifiers, including several multi-cohort meta-analyses, we find that noninvasive detection of colorectal adenomas and carcinomas from microbial biomarkers is an active area of study with promising early results.
Collapse
Affiliation(s)
- Molly Pratt
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jessica D Forbes
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Natalie C Knox
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada; National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Gary Van Domselaar
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada; National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Charles N Bernstein
- Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada; University of Manitoba IBD Clinical and Research Centre, Winnipeg, Manitoba, Canada.
| |
Collapse
|
8
|
Haran JP, Bradley E, Zeamer AL, Cincotta L, Salive MC, Dutta P, Mutaawe S, Anya O, Meza-Segura M, Moormann AM, Ward DV, McCormick BA, Bucci V. Inflammation-type dysbiosis of the oral microbiome associates with the duration of COVID-19 symptoms and long COVID. JCI Insight 2021; 6:e152346. [PMID: 34403368 PMCID: PMC8564890 DOI: 10.1172/jci.insight.152346] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/12/2021] [Indexed: 12/19/2022] Open
Abstract
In the COVID-19 pandemic, caused by SARS-CoV-2, many individuals experience prolonged symptoms, termed long-lasting COVID-19 symptoms (long COVID). Long COVID is thought to be linked to immune dysregulation due to harmful inflammation, with the exact causes being unknown. Given the role of the microbiome in mediating inflammation, we aimed to examine the relationship between the oral microbiome and the duration of long COVID symptoms. Tongue swabs were collected from patients presenting with COVID-19 symptoms. Confirmed infections were followed until resolution of all symptoms. Bacterial composition was determined by metagenomic sequencing. We used random forest modeling to identify microbiota and clinical covariates that are associated with long COVID symptoms. Of the patients followed, 63% developed ongoing symptomatic COVID-19 and 37% went on to long COVID. Patients with prolonged symptoms had significantly higher abundances of microbiota that induced inflammation, such as members of the genera Prevotella and Veillonella, which, of note, are species that produce LPS. The oral microbiome of patients with long COVID was similar to that of patients with chronic fatigue syndrome. Altogether, our findings suggest an association with the oral microbiome and long COVID, revealing the possibility that dysfunction of the oral microbiome may have contributed to this draining disease.
Collapse
Affiliation(s)
- John P Haran
- Department of Emergency Medicine.,Department of Microbiology and Physiological Systems.,Program in Microbiome Dynamics, and
| | - Evan Bradley
- Department of Emergency Medicine.,Program in Microbiome Dynamics, and
| | - Abigail L Zeamer
- Department of Microbiology and Physiological Systems.,Program in Microbiome Dynamics, and
| | | | | | | | | | | | | | - Ann M Moormann
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Doyle V Ward
- Department of Microbiology and Physiological Systems.,Program in Microbiome Dynamics, and
| | - Beth A McCormick
- Department of Microbiology and Physiological Systems.,Program in Microbiome Dynamics, and
| | - Vanni Bucci
- Department of Microbiology and Physiological Systems.,Program in Microbiome Dynamics, and
| |
Collapse
|
9
|
Uchino Y, Goto Y, Konishi Y, Tanabe K, Toda H, Wada M, Kita Y, Beppu M, Mori S, Hijioka H, Otsuka T, Natsugoe S, Hara E, Sugiura T. Colorectal Cancer Patients Have Four Specific Bacterial Species in Oral and Gut Microbiota in Common-A Metagenomic Comparison with Healthy Subjects. Cancers (Basel) 2021; 13:cancers13133332. [PMID: 34283063 PMCID: PMC8268706 DOI: 10.3390/cancers13133332] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary The incidence of colorectal cancer (CRC) has been increasing in recent years, and the gut microbiota is nowadays considered to be involved in the progression of CRC. Recent studies have investigated the involvement of the oral microbiota in CRC development using saliva and stool samples. However, the details regarding how oral bacteria alter the gut microbiota and affect CRC carcinogenesis remain unclear. In the present study, we identified four bacterial species that may affect the carcinogenesis and progression of CRC. These microorganisms may be potential biomarkers in saliva for diagnosing CRC. Abstract Oral microbiota is reportedly associated with gut microbiota and influences colorectal cancer (CRC) progression; however, the details remain unclear. This study aimed to evaluate the role of oral microbiota in CRC progression. Fifty-two patients with CRC and 51 healthy controls were included. Saliva and stool samples were collected, and microbiota were evaluated using 16S rRNA analysis and next-generation sequencing. Comparative analysis was performed on both groups. Linear discriminant analysis effect size (LEfSe) revealed the presence of indigenous oral bacteria, such as Peptostreptococcus, Streptococcus, and Solobacterium spp., at a significantly higher relative abundance in saliva and stool samples of CRC patients compared with controls. Next, CRC patients were divided into early stage (Stage I, II; n = 26; 50%) and advanced stage (Stage III, IV; n = 26; 50%) disease. LEfSe revealed that S. moorei was present at a significantly higher relative abundance in the advanced-stage group compared with the early-stage group, again consistent for both saliva and stool samples. Among bacterial species with significantly higher relative abundance in CRC patients, P. stomatis, S. anginosus, S. koreensis, and S. moorei originated from the oral cavity, suggesting indigenous oral bacteria may have promoted initiation of CRC carcinogenesis. Furthermore, S. moorei may influence CRC progression.
Collapse
Affiliation(s)
- Yoshinori Uchino
- Department of Maxillofacial Diagnostic and Surgical Science, Field of Oral and Maxillofacial Rehabilitation, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima 890-8544, Japan; (Y.U.); (Y.G.); (M.B.); (H.H.)
| | - Yuichi Goto
- Department of Maxillofacial Diagnostic and Surgical Science, Field of Oral and Maxillofacial Rehabilitation, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima 890-8544, Japan; (Y.U.); (Y.G.); (M.B.); (H.H.)
| | - Yusuke Konishi
- Department of Molecular Microbiology, Research Institute for Microbial Diseases, Osaka University, 3-1, Yamadaoka, Suita, Osaka 565-0871, Japan; (Y.K.); (E.H.)
| | - Kan Tanabe
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima 890-8520, Japan; (K.T.); (Y.K.); (S.M.); (T.O.)
| | - Hiroko Toda
- Breast Surgery, Fujita Health University Hospital, 1-98, Dengakubo, Kutsukake, Toyoake, Aichi 470-1192, Japan;
| | - Masumi Wada
- Department of Digestive Surgery, Imakiire General Hospital, 43-25, Korai, Kagoshima 890-0051, Japan;
| | - Yoshiaki Kita
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima 890-8520, Japan; (K.T.); (Y.K.); (S.M.); (T.O.)
| | - Mahiro Beppu
- Department of Maxillofacial Diagnostic and Surgical Science, Field of Oral and Maxillofacial Rehabilitation, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima 890-8544, Japan; (Y.U.); (Y.G.); (M.B.); (H.H.)
| | - Shinichiro Mori
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima 890-8520, Japan; (K.T.); (Y.K.); (S.M.); (T.O.)
| | - Hiroshi Hijioka
- Department of Maxillofacial Diagnostic and Surgical Science, Field of Oral and Maxillofacial Rehabilitation, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima 890-8544, Japan; (Y.U.); (Y.G.); (M.B.); (H.H.)
| | - Takao Otsuka
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima 890-8520, Japan; (K.T.); (Y.K.); (S.M.); (T.O.)
| | - Shoji Natsugoe
- Kajikionsen Hospital, 4714, Kida, Kajiki, Aira, Kagoshima 899-5241, Japan;
| | - Eiji Hara
- Department of Molecular Microbiology, Research Institute for Microbial Diseases, Osaka University, 3-1, Yamadaoka, Suita, Osaka 565-0871, Japan; (Y.K.); (E.H.)
| | - Tsuyoshi Sugiura
- Department of Maxillofacial Diagnostic and Surgical Science, Field of Oral and Maxillofacial Rehabilitation, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima 890-8544, Japan; (Y.U.); (Y.G.); (M.B.); (H.H.)
- Correspondence:
| |
Collapse
|
10
|
Lee L, Samardzic K, Wallach M, Frumkin LR, Mochly-Rosen D. Immunoglobulin Y for Potential Diagnostic and Therapeutic Applications in Infectious Diseases. Front Immunol 2021; 12:696003. [PMID: 34177963 PMCID: PMC8220206 DOI: 10.3389/fimmu.2021.696003] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/26/2021] [Indexed: 01/14/2023] Open
Abstract
Antiviral, antibacterial, and antiparasitic drugs and vaccines are essential to maintaining the health of humans and animals. Yet, their production can be slow and expensive, and efficacy lost once pathogens mount resistance. Chicken immunoglobulin Y (IgY) is a highly conserved homolog of human immunoglobulin G (IgG) that has shown benefits and a favorable safety profile, primarily in animal models of human infectious diseases. IgY is fast-acting, easy to produce, and low cost. IgY antibodies can readily be generated in large quantities with minimal environmental harm or infrastructure investment by using egg-laying hens. We summarize a variety of IgY uses, focusing on their potential for the detection, prevention, and treatment of human and animal infections.
Collapse
Affiliation(s)
- Lucia Lee
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, United States
| | - Kate Samardzic
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, United States
| | - Michael Wallach
- School of Life Sciences, University of Technology, Sydney, NSW, Australia
| | | | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
11
|
Alauzet C, Aujoulat F, Lozniewski A, Ben Brahim S, Domenjod C, Enault C, Lavigne JP, Marchandin H. A New Look at the Genus Solobacterium: A Retrospective Analysis of Twenty-Seven Cases of Infection Involving S. moorei and a Review of Sequence Databases and the Literature. Microorganisms 2021; 9:microorganisms9061229. [PMID: 34198943 PMCID: PMC8229177 DOI: 10.3390/microorganisms9061229] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/18/2022] Open
Abstract
Solobacterium moorei is an anaerobic Gram-positive bacillus present within the oral and the intestinal microbiota that has rarely been described in human infections. Besides its role in halitosis and oral infections, S. moorei is considered to be an opportunistic pathogen causing mainly bloodstream and surgical wound infections. We performed a retrospective study of 27 cases of infections involving S. moorei in two French university hospitals between 2006 and 2021 with the aim of increasing our knowledge of this unrecognized opportunistic pathogen. We also reviewed all the data available in the literature and in genetic and metagenomic sequence databases. In addition to previously reported infections, S. moorei had been isolated from various sites and involved in intra-abdominal, osteoarticular, and cerebral infections more rarely or not previously reported. Although mostly involved in polymicrobial infections, in seven cases, it was the only pathogen recovered. Not included in all mass spectrometry databases, its identification can require 16S rRNA gene sequencing. High susceptibility to antibiotics (apart from rifampicin, moxifloxacin, and clindamycin; 91.3%, 11.8%, and 4.3% of resistant strains, respectively) has been noted. Our global search strategy revealed S. moorei to be human-associated, widely distributed in the human microbiota, including the vaginal and skin microbiota, which may be other sources for infection in addition to the oral and gut microbiota.
Collapse
Affiliation(s)
- Corentine Alauzet
- Laboratoire SIMPA Stress Immunité Pathogènes EA 7300, Université de Lorraine, & Service de Microbiologie, CHRU de Nancy, 54500 Vandœuvre-lès-Nancy, France; (C.A.); (A.L.)
| | - Fabien Aujoulat
- HydroSciences Montpellier, CNRS, IRD, Université de Montpellier, 34093 Montpellier, France;
| | - Alain Lozniewski
- Laboratoire SIMPA Stress Immunité Pathogènes EA 7300, Université de Lorraine, & Service de Microbiologie, CHRU de Nancy, 54500 Vandœuvre-lès-Nancy, France; (C.A.); (A.L.)
| | - Safa Ben Brahim
- Service de Microbiologie, CHRU de Nancy, 54500 Vandœuvre-lès-Nancy, France;
| | - Chloé Domenjod
- Service de Microbiologie et Hygiène Hospitalière, CHU de Nîmes, 30029 Nîmes, France; (C.D.); (C.E.)
| | - Cécilia Enault
- Service de Microbiologie et Hygiène Hospitalière, CHU de Nîmes, 30029 Nîmes, France; (C.D.); (C.E.)
| | - Jean-Philippe Lavigne
- VBIC, INSERM U1047, Université de Montpellier, Service de Microbiologie et Hygiène Hospitalière, CHU Nîmes, 30029 Nîmes, France;
| | - Hélène Marchandin
- HydroSciences Montpellier, CNRS, IRD, Université de Montpellier, Service de Microbiologie et Hygiène Hospitalière, CHU de Nîmes, 30029 Nîmes, France
- Correspondence:
| |
Collapse
|
12
|
Komatsu K, Shiba T, Takeuchi Y, Watanabe T, Koyanagi T, Nemoto T, Shimogishi M, Shibasaki M, Katagiri S, Kasugai S, Iwata T. Discriminating Microbial Community Structure Between Peri-Implantitis and Periodontitis With Integrated Metagenomic, Metatranscriptomic, and Network Analysis. Front Cell Infect Microbiol 2020; 10:596490. [PMID: 33425781 PMCID: PMC7793907 DOI: 10.3389/fcimb.2020.596490] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/11/2020] [Indexed: 12/11/2022] Open
Abstract
Peri-implantitis and periodontitis are both polymicrobial diseases induced by subgingival plaque accumulation, with some differing clinical features. Studies on the microbial and gene transcription activity of peri-implantitis microbiota are limited. This study aimed to verify the hypothesis that disease-specific microbial and gene transcription activity lead to disease-specific clinical features, using an integrated metagenomic, metatranscriptomic, and network analysis. Metagenomic data in peri-implantitis and periodontitis were obtained from the same 21 subjects and metatranscriptomic data from 12 subjects were obtained from a database. The microbial co-occurrence network based on metagenomic analysis had more diverse species taxa and correlations than the network based on the metatranscriptomic analysis. Solobacterium moorei and Prevotella denticola had high activity and were core species taxa specific to peri-implantitis in the co-occurrence network. Moreover, the activity of plasmin receptor/glyceraldehyde-3-phosphate dehydrogenase genes was higher in peri-implantitis. These activity differences may increase complexity in the peri-implantitis microbiome and distinguish clinical symptoms of the two diseases. These findings should help in exploring a novel biomarker that assist in the diagnosis and preventive treatment design of peri-implantitis.
Collapse
Affiliation(s)
- Keiji Komatsu
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takahiko Shiba
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yasuo Takeuchi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takayasu Watanabe
- Department of Chemistry, Nihon University School of Dentistry, Tokyo, Japan
| | - Tatsuro Koyanagi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takashi Nemoto
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masahiro Shimogishi
- Oral Implantology and Regenerative Dental Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masaki Shibasaki
- Oral Implantology and Regenerative Dental Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sayaka Katagiri
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shohei Kasugai
- Oral Implantology and Regenerative Dental Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takanori Iwata
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
13
|
Barrak I, Stájer A, Gajdács M, Urbán E. Small, but smelly: the importance of Solobacterium moorei in halitosis and other human infections. Heliyon 2020; 6:e05371. [PMID: 33163658 PMCID: PMC7610269 DOI: 10.1016/j.heliyon.2020.e05371] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/25/2020] [Accepted: 10/26/2020] [Indexed: 12/21/2022] Open
Abstract
Solobacterium moorei (S. moorei) has been described as Gram-positive, non spore forming, obligate anaerobic bacillus from human feces. The traditional culture and identification of these strains is very difficult (as the strains are often not cultivable or they grow only relatively slowly, in addition to producing only a very few positive biochemical reactions in commercially available identification kits); thus, reliable identification may only be carried out using methods, such as matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and DNA sequencing. Regarding its pathogenic role, the relevance of S. moorei in halitosis (oral malodor) has a good standing, as it has been suggested by multiple studies, while the isolation of these bacteria from invasive infections is very rare; there are only a few reports available in the literature, regarding infections outside the oral cavity. Based on these reports, affected patients are predominantly characterized compromised immunity and are frequently associated with a dental focus of infection. The aim of our present review is to summarize the currently available knowledge on the pathogenic role of S. moorei in halitosis and other infections and to emphasize the relevance of this neglected anaerobic pathogen.
Collapse
Affiliation(s)
- Ibrahim Barrak
- Department of Prosthodontics, Faculty of Dentistry, University of Szeged, Tiszta Lajos körút 62-64, 6720 Szeged, Hungary
| | - Anette Stájer
- Department of Prosthodontics, Faculty of Dentistry, University of Szeged, Tiszta Lajos körút 62-64, 6720 Szeged, Hungary
| | - Márió Gajdács
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, 6720 Szeged, Eötvös utca 6, Hungary
- Institute of Microbiology, Faculty of Medicine, Semmelweis University, 1089 Budapest, Nagyvárad tér 4, Hungary
| | - Edit Urbán
- Department of Medical Microbiology and Immunology, University of Pécs Medical School, 7624 Pécs, Szigeti út 12, Hungary
- Institute of Translational Medicine, University of Pécs Medical School, 7624 Pécs, Szigeti út 12, Hungary
| |
Collapse
|
14
|
Lee J, Lee S, Park DH, Kim MN, Jung J. First case report of Solobacterium moorei bacteremia due to acute cholangitis in South Korea. Anaerobe 2020; 66:102278. [PMID: 32992021 DOI: 10.1016/j.anaerobe.2020.102278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/20/2020] [Accepted: 09/25/2020] [Indexed: 10/23/2022]
Abstract
Solobacterium moorei is an anaerobic gram-positive bacillus that rarely causes bacteremia. Herein, we report a case of S. moorei bacteremia associated with acute cholangitis in a patient without malignancy. The patient had a history of chronic pancreatitis with pancreaticogastrostomy and presented with fever and abdominal pain. Computed tomography scans showed acute cholangitis and S. moorei identified in blood cultures were confirmed by matrix-assisted laser desorption/ionization-time of flight mass spectrometry and 16S rRNA sequencing. The patient was successfully treated with endoscopic retrograde biliary drainage and antibiotics including meropenem and piperacillin-tazobactam.
Collapse
Affiliation(s)
- Jinho Lee
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Seunghoo Lee
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Do Hyun Park
- Division of Gastroenterology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Mi-Na Kim
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.
| | - Jiwon Jung
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.
| |
Collapse
|
15
|
Six cases of Solobacterium moorei isolated alone or in mixed culture in Hungary and comparison with previously published cases. Anaerobe 2020; 65:102241. [PMID: 32777291 DOI: 10.1016/j.anaerobe.2020.102241] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 07/13/2020] [Indexed: 12/14/2022]
Abstract
Solobacterium moorei is a strict anaerobic gram-positive rod. It is found in the human microbiota in different parts of the body, but it also appears to be an opportunistic pathogen in some infectious processes. We describe six cases of severe infections identified in 2016 in which S. moorei was isolated alone or in mixed culture involving other anaerobes or both aerobic and anaerobic bacteria. Three cases were associated with the oral cavity, including a middle ear infection, a wound infection after total laryngectomy, and a mandibular abscess as a result of bisphosphonate therapy. In the other three patients, the sites of infection had no connections with the oral cavity and included chronic osteomyelitis of the tibia, a superinfection of cutaneous tuberculosis associated with hidradenitis suppurativa, and the isolation of S. moorei from the blood culture of a cachectic man with several comorbidities. Based on our findings, S. moorei does not appear to be that virulent of a bacterium; except for the case with bacteraemia, S. moorei was recovered as a co-pathogen in patients with several immunosuppressive predisposing factors. We highlight the finding that the routine use of MALDI-TOF MS in microbiology laboratories can in a timely and detailed manner identify members of mixed infections involving different anaerobic bacteria that may be rare and difficult-to-culture and identify species, such as S. moorei.
Collapse
|
16
|
Yang J, Li D, Yang Z, Dai W, Feng X, Liu Y, Jiang Y, Li P, Li Y, Tang B, Zhou Q, Qiu C, Zhang C, Xu X, Feng S, Wang D, Wang H, Wang W, Zheng Y, Zhang L, Wang W, Zhou K, Li S, Yu P. Establishing high-accuracy biomarkers for colorectal cancer by comparing fecal microbiomes in patients with healthy families. Gut Microbes 2020; 11:918-929. [PMID: 31971861 PMCID: PMC7524397 DOI: 10.1080/19490976.2020.1712986] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Colorectal cancer (CRC) causes high morbidity and mortality worldwide, and noninvasive gut microbiome (GM) biomarkers are promising for early CRC diagnosis. However, the GM varies significantly based on ethnicity, diet and living environment, suggesting varied GM biomarker performance in different regions. We performed a metagenomic association analysis on stools from 52 patients and 55 corresponding healthy family members who lived together to identify GM biomarkers for CRC in Chongqing, China. The GM of patients differed significantly from that of healthy controls. A total of 22 microbial genes were included as screening biomarkers with high accuracy in additional 46 cases and 40 randomly selected healthy adults in Chongqing (area under the receive-operation curve (AUC) = 0.905, 95% CI 0.832-0.977). The classifier based on the identified 22 biomarkers also performed well in the cohort from Hong Kong (AUC = 0.811, 95% CI 0.715-0.907) and French (AUC = 0.859, 95% CI 0.773-0.944) populations. Quantitative PCR was applied for measuring three selected biomarkers in the classification of CRC patients in independent Chongqing population containing 30 cases and 30 controls and the best biomarker from Coprobacillus performed well with high AUC (0.930, 95% CI 0.904-0.955). This study revealed increased sensitivity and applicability of our GM biomarkers compared with previous biomarkers significantly promoting the early diagnosis of CRC.
Collapse
Affiliation(s)
- Jian Yang
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, The First Hospital Affiliated to Army Medical University, Chongqing, China
| | - Dongfang Li
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenyu Yang
- School of statistics and data science, NanKai University, Tianjin, China,Key Laboratory for Medical Data Analysis and Statistical Research of Tianjin, Nankai University, Tianjin, China
| | - Wenkui Dai
- Department of Microbial Research, WeHealthGene Institute, Shenzhen, China,Joint Laboratory of Microecology and Children’s Health, Shenzhen Children’s Hospital & Shenzhen WeHealthGene Co. Ltd, Shenzhen, China
| | - Xin Feng
- Department of Microbial Research, WeHealthGene Institute, Shenzhen, China
| | - Yanhong Liu
- Department of Microbial Research, WeHealthGene Institute, Shenzhen, China
| | - Yiqi Jiang
- Department of Computer Science, College of Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Pingang Li
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, The First Hospital Affiliated to Army Medical University, Chongqing, China
| | - Yinhu Li
- Department of Microbial Research, WeHealthGene Institute, Shenzhen, China
| | - Bo Tang
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, The First Hospital Affiliated to Army Medical University, Chongqing, China
| | - Qian Zhou
- Department of Computer Science, College of Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Chuangzhao Qiu
- Department of Microbial Research, WeHealthGene Institute, Shenzhen, China
| | - Chao Zhang
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, The First Hospital Affiliated to Army Medical University, Chongqing, China
| | - Ximing Xu
- School of statistics and data science, NanKai University, Tianjin, China,Key Laboratory for Medical Data Analysis and Statistical Research of Tianjin, Nankai University, Tianjin, China
| | - Su Feng
- School of statistics and data science, NanKai University, Tianjin, China,Key Laboratory for Medical Data Analysis and Statistical Research of Tianjin, Nankai University, Tianjin, China
| | - Daxi Wang
- Department of Microbial Research, WeHealthGene Institute, Shenzhen, China
| | - Heping Wang
- Joint Laboratory of Microecology and Children’s Health, Shenzhen Children’s Hospital & Shenzhen WeHealthGene Co. Ltd, Shenzhen, China,Department of Respiratory Diseases, Shenzhen Children’s Hospital, Shenzhen, China
| | - Wenjian Wang
- Joint Laboratory of Microecology and Children’s Health, Shenzhen Children’s Hospital & Shenzhen WeHealthGene Co. Ltd, Shenzhen, China,Department of Respiratory Diseases, Shenzhen Children’s Hospital, Shenzhen, China
| | - Yuejie Zheng
- Joint Laboratory of Microecology and Children’s Health, Shenzhen Children’s Hospital & Shenzhen WeHealthGene Co. Ltd, Shenzhen, China,Department of Respiratory Diseases, Shenzhen Children’s Hospital, Shenzhen, China
| | - Lin Zhang
- Department of Pediatrics, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wenjie Wang
- Department of Pathology, Children’s Hospital of Shanxi, Shanxi, China,Department of Pathology, Women Health Center of Shanxi, Shanxi, China
| | - Ke Zhou
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China,CONTACT Ke Zhou, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Shuaicheng Li
- Department of Computer Science, College of Science and Engineering, City University of Hong Kong, Hong Kong, China,Shuaicheng Li, Department of Computer Science, College of Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Peiwu Yu
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, The First Hospital Affiliated to Army Medical University, Chongqing, China,Peiwu Yu, Department of General Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
17
|
Li J, Li J, Lyu N, Ma Y, Liu F, Feng Y, Yao L, Hou Z, Song X, Zhao H, Li X, Wang Y, Xiao C, Zhu B. Composition of fecal microbiota in low-set rectal cancer patients treated with FOLFOX. Ther Adv Chronic Dis 2020; 11:2040622320904293. [PMID: 32153743 PMCID: PMC7045296 DOI: 10.1177/2040622320904293] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 01/06/2020] [Indexed: 01/07/2023] Open
Abstract
Background: FOLFOX treatment is a method used widely to reduce tumor size in low-set rectal cancer, with variable clinical results. FOLFOX agents comprise a mixture of oxaliplatin and 5-fluorouracil, the efficacy of which might be modulated by the gut microbiome in humans. This study aimed to determine whether the bowel microbiota is a factor that influences FOLFOX treatment. Methods: To investigate the role of gut microbiota during FOLFOX treatment, we carried out comprehensive metagenomic and metabolomic analyses on 62 fecal samples collected from 37 low-set rectal cancer patients. A set of 31 samples was collected before the patients underwent treatment; another 31 samples were obtained after the treatment was completed. Among these samples, 50 were paired samples collected before and after FOLFOX treatment. The patients were divided into responder and nonresponder groups according to the treatment outcome. Metagenomic sequencing was performed on these fecal samples. Diverse bacterial taxa were identified by MetaGeneMark, Soapaligner, and DIAMOND; microbiotal data analyses were carried out in the R environment. Differences in microbial taxa and metagenomic linkage groups were observed in multiple comparative analyses. Results: The gut microbiota was altered after treatment. Compared with before treatment, the changes in bacterial diversity and microbiotal composition after treatment were more apparent in the responder group than in the nonresponder group. Bacterial species analysis revealed a group of gut bacteria in multiple comparisons, with a group of eight specific species being associated with the outcome of FOLFOX treatment. Responders and nonresponders before treatment were clearly separated based on this bacterial subset. Finally, the metagenomic linkage group network and metabolomic analyses based on the genomic data confirmed a more significant change in the gut microbiota during FOLFOX treatment in the responder group than in the nonresponder group. Conclusions: Overall, our results describe a dynamic process of gut microbiotal changes from the start to the end of FOLFOX treatment, and verified a close relationship between microbiota and treatment outcome. Recognition of the significance of microbiotal intervention before FOLFOX treatment for low-set rectal cancer may improve the effects of these agents.
Collapse
Affiliation(s)
- Jing Li
- College of Life Sciences, Beijing Normal University, Beijing, China
| | - Jingtao Li
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Na Lyu
- CAS Key Laboratory of Pathogenic Microbiology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yue Ma
- CAS Key Laboratory of Pathogenic Microbiology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Fei Liu
- CAS Key Laboratory of Pathogenic Microbiology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yuqing Feng
- CAS Key Laboratory of Pathogenic Microbiology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Li Yao
- Department of Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Zhiyong Hou
- Department of Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Xiaofeng Song
- CAS Key Laboratory of Pathogenic Microbiology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Hongchuan Zhao
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, China
| | - Xiaoya Li
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Yingdian Wang
- College of Life Sciences, Beijing Normal University, Beijing, China
| | - Cheng Xiao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Baoli Zhu
- CAS Key Laboratory of Pathogenic Microbiology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
18
|
Liu WJ, Xiao M, Yi J, Li Y, Kudinha T, Xu YC. First case report of bacteremia caused by Solobacterium moorei in China, and literature review. BMC Infect Dis 2019; 19:730. [PMID: 31429713 PMCID: PMC6700775 DOI: 10.1186/s12879-019-4359-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 08/06/2019] [Indexed: 12/15/2022] Open
Abstract
Background Solobacterium moorei, the only species in the genus Solobacterium, is a Gram-positive, non-spore-forming, strict anaerobic, short to long bacillus. It has rarely been documented to cause blood stream infections. Here we report the first case of bacteremia caused by S.moorei in China. Case presentation A 61-year-old male presented to Peking Union Medical College Hospital (Beijing) with thrombotic thrombocytopenic purpura (TTP) and several other underlying diseases. He also had persistent coma accompanied by intermittent convulsions, halitosis, and intermittent fever. Blood cultures taken when the patient had a high fever were positive, with the anaerobic bottle yielding an organism identified as S.moorei by 16S rRNA gene sequencing, whilst the aerobic bottle grew Streptococcus mitis. After replacement of venous pipeline, and empirical use of vancomycin and meropenem, the patient’s body temperature and white blood cell count returned to normal. Unfortunately, the patient died of severe TTP. Conclusion This is the first case report of S. moorei isolation from blood stream in China. 16S rRNA gene sequencing is the only method that can identify S. moorei. Blood cultures must be taken before administration of antibiotics, and anaerobic culture should be considered for such rare pathogens in patients with oral diseases and immune deficiency.
Collapse
Affiliation(s)
- Wen-Jing Liu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China.,Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| | - Meng Xiao
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China.,Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| | - Jie Yi
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China.,Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| | - Ying Li
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China.,Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| | - Timothy Kudinha
- Charles Sturt University, Leeds Parade, Orange, Sydney, NSW, Australia.,Centre for Infectious Diseases and Microbiology LaboratoryServices, ICPMR-Pathology West, Westmead Hospital, Westmead, NSW, Australia
| | - Ying-Chun Xu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China. .,Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China.
| |
Collapse
|
19
|
Genderini FG, Martiny D, Ponthieux F, Argudín MA, Gomez Galdon M, Zaarour A, Garcia C, Libois A, Gérard M, Dauby N. First case of Campylobacter rectus and Solobacterium moorei mixed bacteraemia successfully identified by MALDI TOF-MS. New Microbes New Infect 2019; 31:100587. [PMID: 31372234 PMCID: PMC6658993 DOI: 10.1016/j.nmni.2019.100587] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/21/2019] [Accepted: 06/26/2019] [Indexed: 11/07/2022] Open
Abstract
Campylobacter rectus and Solobacterium moorei are anaerobic Gram-negative and Gram-positive rods, respectively, that are occasionally members of the human oral flora. Bacteraemia has rarely been reported. We present the first case of mixed C. rectus–S. moorei bacteraemia in an individual with diabetes and human immunodeficiency virus infection. Both bacteria were successfully identified by MALDI-TOF MS.
Collapse
Affiliation(s)
- F G Genderini
- Infectious Diseases Department, Centre Hospitalier Universitaire (CHU) Saint-Pierre, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Infectious Diseases, Department of Mental and Physical Health and Preventive Medicine, Università della Campania "Luigi Vanvitelli", Naples, Italy
| | - D Martiny
- National Reference Centre for Campylobacter, CHU Saint-Pierre, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Department of Microbiology, Laboratoire Hospitalier Universitaire de Bruxelles-Universitair Laboratorium Brussel, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Faculté de Médecine et Pharmacie, Université de Mons, Mons, Belgium
| | - F Ponthieux
- Department of Microbiology, Laboratoire Hospitalier Universitaire de Bruxelles-Universitair Laboratorium Brussel, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - M A Argudín
- Department of Microbiology, Laboratoire Hospitalier Universitaire de Bruxelles-Universitair Laboratorium Brussel, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - M Gomez Galdon
- Department of Pathology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - A Zaarour
- Department of Gastroenterology, Hepatopancreatology, and Digestive Oncology, CHU Saint-Pierre, Brussels, Belgium
| | - C Garcia
- Nuclear Medicine Department, Université Libre de Bruxelles (ULB), CHU Saint-Pierre, Brussels, Belgium
| | - A Libois
- Infectious Diseases Department, Centre Hospitalier Universitaire (CHU) Saint-Pierre, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - M Gérard
- Infectious Diseases Department, Centre Hospitalier Universitaire (CHU) Saint-Pierre, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - N Dauby
- Infectious Diseases Department, Centre Hospitalier Universitaire (CHU) Saint-Pierre, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
20
|
Hong BY, Paulson JN, Stine OC, Weinstock GM, Cervantes JL. Meta-analysis of the lung microbiota in pulmonary tuberculosis. Tuberculosis (Edinb) 2018; 109:102-108. [DOI: 10.1016/j.tube.2018.02.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/30/2018] [Accepted: 02/20/2018] [Indexed: 02/06/2023]
|
21
|
Exploring a Possible Link between the Intestinal Microbiota and Feed Efficiency in Pigs. Appl Environ Microbiol 2017; 83:AEM.00380-17. [PMID: 28526795 DOI: 10.1128/aem.00380-17] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 05/12/2017] [Indexed: 11/20/2022] Open
Abstract
Feed efficiency (FE) is critical in pig production for both economic and environmental reasons. As the intestinal microbiota plays an important role in energy harvest, it is likely to influence FE. Therefore, our aim was to characterize the intestinal microbiota of pigs ranked as low, medium, and high residual feed intake ([RFI] a metric for FE), where genetic, nutritional, and management effects were minimized, to explore a possible link between the intestinal microbiota and FE. Eighty-one pigs were ranked according to RFI between weaning and day 126 postweaning, and 32 were selected as the extremes in RFI (12 low, 10 medium, and 10 high). Intestinal microbiota diversity, composition, and predicted functionality were assessed by 16S rRNA gene sequencing. Although no differences in microbial diversity were found, some RFI-associated compositional differences were revealed, principally among members of Firmicutes, predominantly in feces at slaughter (albeit mainly for low-abundance taxa). In particular, microbes associated with a leaner and healthier host (e.g., Christensenellaceae, Oscillibacter, and Cellulosilyticum) were enriched in low RFI (more feed-efficient) pigs. Differences were also observed in the ileum of low RFI pigs; most notably, Nocardiaceae (Rhodococcus) were less abundant. Predictive functional analysis suggested improved metabolic capabilities in these animals, especially within the ileal microbiota. Higher ileal isobutyric acid concentrations were also found in low RFI pigs. Overall, the differences observed within the intestinal microbiota of low RFI pigs compared with that of their high RFI counterparts, albeit relatively subtle, suggest a possible link between the intestinal microbiota and FE in pigs.IMPORTANCE This study is one of the first to show that differences in intestinal microbiota composition, albeit subtle, may partly explain improved feed efficiency (FE) in low residual feed intake (RFI) pigs. One of the main findings is that, although microbial diversity did not differ among animals of varying FE, specific intestinal microbes could potentially be linked with porcine FE. However, as the factors impacting FE are still not fully understood, intestinal microbiota composition may not be a major factor determining differences in FE. Nonetheless, this work has provided a potential set of microbial biomarkers for FE in pigs. Although culturability could be a limiting factor and intervention studies are required, these taxa could potentially be targeted in the future to manipulate the intestinal microbiome so as to improve FE in pigs. If successful, this has the potential to reduce both production costs and the environmental impact of pig production.
Collapse
|
22
|
Hiranmayi KV, Sirisha K, Ramoji Rao MV, Sudhakar P. Novel Pathogens in Periodontal Microbiology. J Pharm Bioallied Sci 2017; 9:155-163. [PMID: 28979069 PMCID: PMC5621177 DOI: 10.4103/jpbs.jpbs_288_16] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Periodontitis is a polymicrobial disease caused by complex interactions between distinct pathogens in a biofilm resulting in the destruction of periodontal tissues. It seems evident that unknown microorganisms might be involved in onset or progression of periodontitis. For many decades, research in the field of oral microbiology failed to identify certain subgingival microbiota due to technical limitations but, over a period of 12 years using molecular approaches and sequencing techniques, it became feasible to reveal the existence of new periodontal pathogens. Therefore, it is evident that in addition to conventional periodontal pathogens, other microbes might be involved in onset and progression of periodontitis. The novel pathogens enlisted under periodontal phylogeny include Cryptobacterium curtum, Dialister pneumosintes, Filifactor alocis, Mitsuokella dentalis, Slackia exigua, Selenomonas sputigena, Solobacterium moorei, Treponema lecithinolyticum, and Synergistes. The polymicrobial etiology of periodontitis has been elucidated by comprehensive techniques, and studies throwing light on the possible virulence mechanisms possessed by these novel periodontal pathogens are enlisted.
Collapse
Affiliation(s)
- K Vidya Hiranmayi
- Post Graduate Student, Department of Periodontics and Implantology, Drs S and NR Siddhartha Institute of Dental Sciences, Krishna District, Andhra Pradesh, India
| | - K Sirisha
- Reader, Department of Periodontics and Implantology, Drs S and NR Siddhartha Institute of Dental Sciences, Krishna District, Andhra Pradesh, India
| | - M V Ramoji Rao
- HOD, Department of Periodontics and Implantology, Drs S and NR Siddhartha Institute of Dental Sciences, Krishna District, Andhra Pradesh, India
| | - P Sudhakar
- Post Graduate Student, Department of Periodontics and Implantology, Drs S and NR Siddhartha Institute of Dental Sciences, Krishna District, Andhra Pradesh, India
| |
Collapse
|
23
|
Yu J, Feng Q, Wong SH, Zhang D, Liang QY, Qin Y, Tang L, Zhao H, Stenvang J, Li Y, Wang X, Xu X, Chen N, Wu WKK, Al-Aama J, Nielsen HJ, Kiilerich P, Jensen BAH, Yau TO, Lan Z, Jia H, Li J, Xiao L, Lam TYT, Ng SC, Cheng ASL, Wong VWS, Chan FKL, Xu X, Yang H, Madsen L, Datz C, Tilg H, Wang J, Brünner N, Kristiansen K, Arumugam M, Sung JJY, Wang J. Metagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancer. Gut 2017; 66:70-78. [PMID: 26408641 DOI: 10.1136/gutjnl-2015-309800] [Citation(s) in RCA: 690] [Impact Index Per Article: 98.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 08/26/2015] [Accepted: 09/01/2015] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To evaluate the potential for diagnosing colorectal cancer (CRC) from faecal metagenomes. DESIGN We performed metagenome-wide association studies on faecal samples from 74 patients with CRC and 54 controls from China, and validated the results in 16 patients and 24 controls from Denmark. We further validated the biomarkers in two published cohorts from France and Austria. Finally, we employed targeted quantitative PCR (qPCR) assays to evaluate diagnostic potential of selected biomarkers in an independent Chinese cohort of 47 patients and 109 controls. RESULTS Besides confirming known associations of Fusobacterium nucleatum and Peptostreptococcus stomatis with CRC, we found significant associations with several species, including Parvimonas micra and Solobacterium moorei. We identified 20 microbial gene markers that differentiated CRC and control microbiomes, and validated 4 markers in the Danish cohort. In the French and Austrian cohorts, these four genes distinguished CRC metagenomes from controls with areas under the receiver-operating curve (AUC) of 0.72 and 0.77, respectively. qPCR measurements of two of these genes accurately classified patients with CRC in the independent Chinese cohort with AUC=0.84 and OR of 23. These genes were enriched in early-stage (I-II) patient microbiomes, highlighting the potential for using faecal metagenomic biomarkers for early diagnosis of CRC. CONCLUSIONS We present the first metagenomic profiling study of CRC faecal microbiomes to discover and validate microbial biomarkers in ethnically different cohorts, and to independently validate selected biomarkers using an affordable clinically relevant technology. Our study thus takes a step further towards affordable non-invasive early diagnostic biomarkers for CRC from faecal samples.
Collapse
Affiliation(s)
- Jun Yu
- Department of Medicine & Therapeutics, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, LKS Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Qiang Feng
- BGI-Shenzhen, Shenzhen, China.,Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Sunny Hei Wong
- Department of Medicine & Therapeutics, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, LKS Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | | | - Qiao Yi Liang
- Department of Medicine & Therapeutics, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, LKS Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | | | | | | | - Jan Stenvang
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | - William Ka Kei Wu
- Department of Medicine & Therapeutics, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, LKS Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Jumana Al-Aama
- BGI-Shenzhen, Shenzhen, China.,Princess Al Jawhara Center of Excellence in the Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hans Jørgen Nielsen
- Department of Surgical Gastroenterology, Hvidovre Hospital, Hvidovre, Denmark
| | - Pia Kiilerich
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Tung On Yau
- Department of Medicine & Therapeutics, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, LKS Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | | | | | | | | | - Thomas Yuen Tung Lam
- Department of Medicine & Therapeutics, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, LKS Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Siew Chien Ng
- Department of Medicine & Therapeutics, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, LKS Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Alfred Sze-Lok Cheng
- Department of Medicine & Therapeutics, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, LKS Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Vincent Wai-Sun Wong
- Department of Medicine & Therapeutics, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, LKS Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Francis Ka Leung Chan
- Department of Medicine & Therapeutics, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, LKS Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Xun Xu
- BGI-Shenzhen, Shenzhen, China
| | | | - Lise Madsen
- BGI-Shenzhen, Shenzhen, China.,Department of Biology, University of Copenhagen, Copenhagen, Denmark.,National Institute of Nutrition and Seafood Research, Bergen, Norway
| | - Christian Datz
- Department of Internal Medicine, Hospital Oberndorf, Q3 Teaching Hospital of the Paracelsus Private University of Salzburg, Oberndorf, Austria
| | - Herbert Tilg
- First Department of Internal Medicine, Medical University Innsbruck, Innsbruck, Austria
| | | | - Nils Brünner
- BGI-Shenzhen, Shenzhen, China.,Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Karsten Kristiansen
- BGI-Shenzhen, Shenzhen, China.,Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Manimozhiyan Arumugam
- BGI-Shenzhen, Shenzhen, China.,The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Joseph Jao-Yiu Sung
- Department of Medicine & Therapeutics, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, LKS Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Jun Wang
- BGI-Shenzhen, Shenzhen, China.,Department of Biology, University of Copenhagen, Copenhagen, Denmark.,Princess Al Jawhara Center of Excellence in the Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia.,Macau University of Science and Technology, Macau, China
| |
Collapse
|
24
|
Stephen AS, Naughton DP, Pizzey RL, Bradshaw DJ, Burnett GR. In vitro growth characteristics and volatile sulfur compound production of Solobacterium moorei. Anaerobe 2014; 26:53-7. [DOI: 10.1016/j.anaerobe.2014.01.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 01/13/2014] [Accepted: 01/15/2014] [Indexed: 11/26/2022]
|
25
|
Four cases of bacteremia caused by Oscillibacter ruminantium, a newly described species. J Clin Microbiol 2014; 52:1304-7. [PMID: 24501034 DOI: 10.1128/jcm.03128-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The genus Oscillibacter has been known since 2007, but no association to human infection has been reported. Here, we present four cases of Oscillibacter ruminantium bacteremia from hospitals across Denmark from 2001 to 2010. Correct identification is now possible, as the 16S rRNA gene sequence was recently made publicly available.
Collapse
|
26
|
Cheng J, Kalliomäki M, Heilig HGHJ, Palva A, Lähteenoja H, de Vos WM, Salojärvi J, Satokari R. Duodenal microbiota composition and mucosal homeostasis in pediatric celiac disease. BMC Gastroenterol 2013; 13:113. [PMID: 23844808 PMCID: PMC3716955 DOI: 10.1186/1471-230x-13-113] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 07/08/2013] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Celiac disease (CD) is an autoimmune disorder of the small intestine which is triggered by dietary gluten in genetically predisposed (HLA-DQ2/DQ8 positive) individuals. Only a fraction of HLA-DQ2/DQ8 positive individuals develop CD indicating that other factors have a role in the disorder. Several studies have addressed intestinal microbiota aberrancies in pediatric CD, but the results are inconsistent. Previously, we demonstrated that pediatric CD patients have lower duodenal expression of TLR2 and higher expression of TLR9 as compared to healthy controls (HC) indicating that microbiota may have a role in CD. METHODS We used bacterial phylogenetic microarray to comprehensively profile the microbiota in duodenal biopsies of CD (n = 10) and HC (n = 9) children. The expression of selected mucosa-associated genes was assessed by qRT-PCR in CD and HC children and in treated CD adults (T-CD, n = 6) on gluten free diet. RESULTS The overall composition, diversity and the estimated microbe associated molecular pattern (MAMP) content of microbiota were comparable between CD and HC, but a sub-population profile comprising eight genus-like bacterial groups was found to differ significantly between HC and CD. In HC, increased TLR2 expression was positively correlated with the expression of tight junction protein ZO-1. In CD and T-CD, the expression of IL-10, IFN-g and CXCR6 were higher as compared to HC. CONCLUSIONS The results suggest that microbiota and altered expression of mucosal receptors have a role in CD. In CD subjects, the increased expression of IL-10 and IFN-g may have partly resulted from the increased TLR9 expression and signaling.
Collapse
Affiliation(s)
- Jing Cheng
- Department of Veterinary Biosciences, University of Helsinki, P.O. Box 66, Helsinki FI-00014, Finland
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Tanabe SI, Grenier D. Characterization of volatile sulfur compound production by Solobacterium moorei. Arch Oral Biol 2012; 57:1639-43. [PMID: 23088790 DOI: 10.1016/j.archoralbio.2012.09.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 08/16/2012] [Accepted: 09/20/2012] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Solobacterium moorei is a Gram positive bacterium that has been specifically associated with halitosis. The aim of this study was to characterize volatile sulfur compound (VSC) production by S. moorei. METHODS S. moorei was either grown or incubated in the presence of various supplements prior to determining VSC production with a Halimeter sulfide monitor. The effect of exogenous proteases or glycosidase inhibitors on VSC production by S. moorei was examined. RESULTS We first showed that S. moorei can convert cysteine into hydrogen sulfide. The capacity of S. moorei to produce VSCs from serum, saliva, and mucin was dependent on the presence of an exogenous source of proteases such as pancreatic trypsin or Porphyromonas gingivalis gingipains. VSC production from mucin was inhibited by the presence of a β-galactosidase inhibitor, thus suggesting that deglycosylation of mucin by S. moorei is critical for VSC production. CONCLUSION Our study suggests that S. moorei can be a major source of malodorous compounds in halitosis by producing VSCs through a process involving the β-galactosidase activity of the bacterium and an exogenous source of proteases.
Collapse
Affiliation(s)
- Shin-ichi Tanabe
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Quebec City, Quebec, Canada
| | | |
Collapse
|
28
|
Chicken egg yolk antibody (IgY) controls Solobacterium moorei under in vitro and in vivo conditions. Appl Biochem Biotechnol 2012; 168:1448-58. [PMID: 22968588 DOI: 10.1007/s12010-012-9869-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Accepted: 08/27/2012] [Indexed: 10/27/2022]
Abstract
Solobacterium moorei is a causative agent in diseases such as oral halitosis, bacteremia, and necrobacillosis-associated thrombophlebitis. The objective of this study was to determine the effectiveness of chicken egg yolk antibody (IgY) in controlling S. moorei. Intact S. moorei cells were used as an immunogen to immunize four White Leghorn laying hens. IgY, extracted from egg yolks obtained from these immunized hens, was purified using water dilution, two-step salt precipitation, and ultrafiltration. The purity of the IgY obtained was approximately 87.3 %. The antibody titer of the IgY was determined by enzyme-linked immunosorbent assay. The antibody titer peaked at 10,000 following the third immunization. In order to evaluate the inhibitory effects of the specific IgY, the growth of S. moorei in liquid media was measured every 12 h using a microplate reader at 600 nm. Biofilm formation of S. moorei was quantified by staining with crystal violet. The specific binding ability of IgY was further confirmed by the use of immunofluorescence and immunoelectron microscopy. Growth and biofilm formation of S. moorei were significantly (P<0.05) inhibited by 20 and 40 mg/ml specific IgY compared with the control. The specific IgY also decreased the bacterial level in the oral cavity of mice after infection with S. moorei. This study demonstrates that the growth and biofilm formation of S. moorei can be effectively inhibited by specific IgY. As a result, IgY technology may have application in the control of diseases caused by S. moorei.
Collapse
|
29
|
Clinical and microbiological characteristics of bacteremia caused by Eggerthella, Paraeggerthella, and Eubacterium species at a university hospital in Taiwan from 2001 to 2010. J Clin Microbiol 2012; 50:2053-5. [PMID: 22495556 DOI: 10.1128/jcm.00548-12] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We describe 16 patients with bacteremia caused by Eggerthella lenta (n = 7), Paraeggerthella hongkongensis (n = 3), Eubacterium limosum (n = 4), Eubacterium callanderi (n = 1), and concomitant Eubacterium limosum/Eggerthella lenta (n = 1). Nine (56%) patients had polymicrobial bacteremia. The overall 60-day mortality rate was 19%, and all deaths occurred in patients with E. lenta bacteremia.
Collapse
|