1
|
Piel RB, Veneziano SE, Nicholson EM, Walsh DP, Lomax AD, Nichols TA, Seabury CM, Schneider DA. Validation of a real-time quaking-induced conversion (RT-QuIC) assay protocol to detect chronic wasting disease using rectal mucosa of naturally infected, pre-clinical white-tailed deer (Odocoileus virginianus). PLoS One 2024; 19:e0303037. [PMID: 38870153 PMCID: PMC11175469 DOI: 10.1371/journal.pone.0303037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/18/2024] [Indexed: 06/15/2024] Open
Abstract
Chronic wasting disease (CWD) is a fatal prion disease of cervids spreading across North America. More effective mitigation efforts may require expansion of the available toolkit to include new methods that provide earlier antemortem detection, higher throughput, and less expense than current immunohistochemistry (IHC) methods. The rectal mucosa near the rectoanal junction is a site of early accumulation of CWD prions and is safely sampled in living animals by pinch biopsy. A fluorescence-based, 96-well format, protein-aggregation assay-the real-time quaking-induced conversion (RT-QuIC) assay-is capable of ultra-sensitive detection of CWD prions. Notably, the recombinant protein substrate is crucial to the assay's performance and is now commercially available. In this blinded independent study, the preclinical diagnostic performance of a standardized RT-QuIC protocol using a commercially sourced substrate (MNPROtein) and a laboratory-produced substrate was studied using mock biopsy samples of the rectal mucosa from 284 white-tailed deer (Odocoileus virginianus). The samples were from a frozen archive of intact rectoanal junctions collected at depopulations of farmed herds positive for CWD in the United States. All deer were pre-clinical at the time of depopulation and infection status was established from the regulatory record, which evaluated the medial retropharyngeal lymph nodes (MRPLNs) and obex by CWD-IHC. A pre-analytic sample precipitation step was found to enhance the protocol's detection limit. Performance metrics were influenced by the choice of RT-QuIC diagnostic cut points (minimum number of positive wells and assay time) and by deer attributes (preclinical infection stage and prion protein genotype). The peak overall diagnostic sensitivities of the protocol were similar for both substrates (MNPROtein, 76.8%; laboratory-produced, 73.2%), though each was achieved at different cut points. Preclinical infection stage and prion protein genotype at codon 96 (G = glycine, S = serine) were primary predictors of sensitivity. The diagnostic sensitivities in late preclinical infections (CWD-IHC positive MPRLNs and obex) were similar, ranging from 96% in GG96 deer to 80% in xS96 deer (x = G or S). In early preclinical infections (CWD-IHC positive MRPLNs only), the diagnostic sensitivity was 64-71% in GG96 deer but only 25% in xS96 deer. These results demonstrate that this standardized RT-QuIC protocol for rectal biopsy samples using a commercial source of substrate produced stratified diagnostic sensitivities similar to or greater than those reported for CWD-IHC but in less than 30 hours of assay time and in a 96-well format. Notably, the RT-QuIC protocol used herein represents a standardization of protocols from several previous studies. Alignment of the sensitivities across these studies suggests the diagnostic performance of the assay is robust given quality reagents, optimized diagnostic criteria, and experienced staff.
Collapse
Affiliation(s)
- Robert B. Piel
- U.S. Department of Agriculture, Agricultural Research Service, Animal Disease Research Unit, Pullman, Washington, United States of America
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
| | - Susan E. Veneziano
- U.S. Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, Ames, Iowa, United States of America
| | - Eric M. Nicholson
- U.S. Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, Ames, Iowa, United States of America
| | - Daniel P. Walsh
- U.S. Geological Survey, Montana Cooperative Wildlife Research Unit, Missoula, Montana, United States of America
- Wildlife Biology Program, University of Montana, Missoula, Montana, United States of America
| | - Aaron D. Lomax
- Department of Soil Science, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Tracy A. Nichols
- U.S. Department of Agriculture, Animal Plant Health Inspection Service, Veterinary Services, Fort Collins, Colorado, United States of America
| | - Christopher M. Seabury
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, United States of America
| | - David A. Schneider
- U.S. Department of Agriculture, Agricultural Research Service, Animal Disease Research Unit, Pullman, Washington, United States of America
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
| |
Collapse
|
2
|
Kobashigawa E, Russell S, Zhang MZ, Sinnott EA, Connolly M, Zhang S. RT-QuIC detection of chronic wasting disease prion in platelet samples of white-tailed deer. BMC Vet Res 2024; 20:152. [PMID: 38654224 DOI: 10.1186/s12917-024-04005-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/04/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Chronic wasting disease (CWD) is a prion disease of captive and free-ranging cervids. Currently, a definitive diagnosis of CWD relies on immunohistochemistry detection of PrPSc in the obex and retropharyngeal lymph node (RPLN) of the affected cervids. For high-throughput screening of CWD in wild cervids, RPLN samples are tested by ELISA followed by IHC confirmation of positive results. Recently, real-time quacking-induced conversion (RT-QuIC) has been used to detect CWD positivity in various types of samples. To develop a blood RT-QuIC assay suitable for CWD diagnosis, this study evaluated the assay sensitivity and specificity with and without ASR1-based preanalytical enrichment and NaI as the main ionic component in assay buffer. RESULTS A total of 23 platelet samples derived from CWD-positive deer (ELISA + /IHC +) and 30 platelet samples from CWD-negative (ELISA-) deer were tested. The diagnostic sensitivity was 43.48% (NaCl), 65.22% (NaI), 60.87% (NaCl-ASR1) or 82.61% (NaI-ASR1). The diagnostic specificity was 96.67% (NaCl), 100% (NaI), 100% (NaCl-ASR1), or 96.67% (NaI-ASR1). The probability of detecting CWD prion in platelet samples derived from CWD-positive deer was 0.924 (95% CRI: 0.714, 0.989) under NaI-ASR1 experimental condition and 0.530 (95% CRI: 0.156, 0.890) under NaCl alone condition. The rate of amyloid formation (RFA) was greatest under the NaI-ASR1 condition at 10-2 (0.01491, 95% CRI: 0.00675, 0.03384) and 10-3 (0.00629, 95% CRI: 0.00283, 0.01410) sample dilution levels. CONCLUSIONS Incorporation of ASR1-based preanalytical enrichment and NaI as the main ionic component significantly improved the sensitivity of CWD RT-QuIC on deer platelet samples. Blood test by the improved RT-QuIC assay may be used for antemortem and postmortem diagnosis of CWD.
Collapse
Affiliation(s)
- Estela Kobashigawa
- Veterinary Medical Diagnostic Laboratory, College of Veterinary Medicine, University of Missouri, 901 E. Campus Loop, Columbia, MO, USA
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, 901 E. Campus Loop, Columbia, MO, USA
| | - Sherri Russell
- Missouri Department of Conservation, 2901 W Truman Blvd, Jefferson City, MO, USA
| | - Michael Z Zhang
- Veterinary Medical Diagnostic Laboratory, College of Veterinary Medicine, University of Missouri, 901 E. Campus Loop, Columbia, MO, USA
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, 901 E. Campus Loop, Columbia, MO, USA
| | - Emily A Sinnott
- Missouri Department of Conservation, 2901 W Truman Blvd, Jefferson City, MO, USA
| | - Michael Connolly
- The Molecular Foundry, Lawrence Berkeley National Laboratory, 67 Cyclotron Rd, Berkeley, CA, USA
| | - Shuping Zhang
- Veterinary Medical Diagnostic Laboratory, College of Veterinary Medicine, University of Missouri, 901 E. Campus Loop, Columbia, MO, USA.
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, 901 E. Campus Loop, Columbia, MO, USA.
| |
Collapse
|
3
|
Yilmaz G, Morrill T, Pilot W, Ward C, Mitchell G, Soutyrine A, Dan H, Lin M, Guan J. Optimization of RT-QuIC Assay Duration for Screening Chronic Wasting Disease in White-Tailed Deer. Vet Sci 2024; 11:60. [PMID: 38393078 PMCID: PMC10891863 DOI: 10.3390/vetsci11020060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 02/25/2024] Open
Abstract
Real-time quaking-induced conversion (RT-QuIC) assays have become a common tool to detect chronic wasting disease (CWD) and are very sensitive provided the assay duration is sufficient. However, a prolonged assay duration may lead to non-specific signal amplification. The wide range of pre-defined assay durations in current RT-QuIC applications presents a need for methods to optimize the RT-QuIC assay. In this study, receiver operating characteristic (ROC) analysis was applied to optimize the assay duration for CWD screening in obex and retropharyngeal lymph node (RLN) tissue specimens. Two different fluorescence thresholds were used: a fixed threshold based on background fluorescence (Tstdev) and a max-point ratio (maximum/background fluorescence) threshold (TMPR) to determine CWD positivity. The optimal assay duration was 33 h for obex and 30 h for RLN based on Tstdev, and 29 h for obex and 32 h for RLN based on TMPR. The optimized assay durations were then evaluated for screening CWD in white-tailed deer from an affected farm. At a replicate level, using the optimized assay durations with TStdev and TMPR, the level of agreement with enzyme-linked immunosorbent assay (ELISA) was significantly higher (p < 0.05) than that when using a 40 h assay duration. These findings demonstrate that the optimization of assay duration via a ROC analysis can improve RT-QuIC assays for screening CWD in white-tailed deer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jiewen Guan
- Ottawa Laboratory Fallowfield, Canadian Food Inspection Agency, Ottawa, ON K2J 4S1, Canada
| |
Collapse
|
4
|
Bravo-Risi F, Soto P, Benavente R, Nichols TA, Morales R. Dynamics of CWD prion detection in feces and blood from naturally infected white-tailed deer. Sci Rep 2023; 13:20170. [PMID: 37978207 PMCID: PMC10656452 DOI: 10.1038/s41598-023-46929-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023] Open
Abstract
Chronic wasting disease (CWD) is a prion disease affecting cervids. Confirmatory testing of CWD is currently performed postmortem in obex and lymphoid tissues. Extensive evidence demonstrates the presence of infectious prions in feces of CWD-infected deer using in vitro prion-amplification techniques and bioassays. In experimental conditions, this has been achieved as soon as 6-month post-inoculation, suggesting this sample type is a candidate for antemortem diagnosis. In the present study, we optimized the detection of CWD-prions in fecal samples from naturally infected, pre-clinical white-tailed deer by comparing protocols aiming to concentrate CWD-prions with direct spiking of the sample into the PMCA reactions. Results of this screening were compared with similar analyses made in blood. Our data shows that CWD-prion detection in feces using PMCA is best in the absence of sample pre-treatments. We performed a screening of 169 fecal samples, detecting CWD-prions with diagnostic sensitivity and specificity of 54.81% and 98.46%, respectively. In addition, the PMCA seeding activity of 76 fecal samples was compared with that on blood of matched deer. Our findings, demonstrate that CWD-prions in feces and blood are increased at late pre-clinical stages, exhibiting similar detection in both sample types (> 90% sensitivity) when PrP96GG animals are tested. Our findings contribute to understand prion distribution across different biological samples and polymorphic variants in white-tailed deer. This information is also relevant for the current efforts to identify platforms to diagnose CWD.
Collapse
Affiliation(s)
- Francisca Bravo-Risi
- Department of Neurology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX, 77030, USA
- Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile
| | - Paulina Soto
- Department of Neurology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX, 77030, USA
- Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile
| | - Rebeca Benavente
- Department of Neurology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX, 77030, USA
| | - Tracy A Nichols
- Veterinary Services Cervid Health Program, United States Department of Agriculture, Animal and Plant Health Inspection Service, Fort Collins, CO, USA
| | - Rodrigo Morales
- Department of Neurology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX, 77030, USA.
- Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile.
| |
Collapse
|
5
|
Tranulis MA, Tryland M. The Zoonotic Potential of Chronic Wasting Disease-A Review. Foods 2023; 12:foods12040824. [PMID: 36832899 PMCID: PMC9955994 DOI: 10.3390/foods12040824] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
Prion diseases are transmissible neurodegenerative disorders that affect humans and ruminant species consumed by humans. Ruminant prion diseases include bovine spongiform encephalopathy (BSE) in cattle, scrapie in sheep and goats and chronic wasting disease (CWD) in cervids. In 1996, prions causing BSE were identified as the cause of a new prion disease in humans; variant Creutzfeldt-Jakob disease (vCJD). This sparked a food safety crisis and unprecedented protective measures to reduce human exposure to livestock prions. CWD continues to spread in North America, and now affects free-ranging and/or farmed cervids in 30 US states and four Canadian provinces. The recent discovery in Europe of previously unrecognized CWD strains has further heightened concerns about CWD as a food pathogen. The escalating CWD prevalence in enzootic areas and its appearance in a new species (reindeer) and new geographical locations, increase human exposure and the risk of CWD strain adaptation to humans. No cases of human prion disease caused by CWD have been recorded, and most experimental data suggest that the zoonotic risk of CWD is very low. However, the understanding of these diseases is still incomplete (e.g., origin, transmission properties and ecology), suggesting that precautionary measures should be implemented to minimize human exposure.
Collapse
Affiliation(s)
- Michael A. Tranulis
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 5003 As, Norway
- Correspondence: ; Tel.: +47-67232040
| | - Morten Tryland
- Department of Forestry and Wildlife Management, Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Inland Norway University of Applied Sciences, 2480 Koppang, Norway
| |
Collapse
|
6
|
Standardization of Data Analysis for RT-QuIC-Based Detection of Chronic Wasting Disease. Pathogens 2023; 12:pathogens12020309. [PMID: 36839581 PMCID: PMC9962701 DOI: 10.3390/pathogens12020309] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
Chronic wasting disease (CWD) is a disease affecting cervids and is caused by prions accumulating as pathogenic fibrils in lymphoid tissue and the central nervous system. Approaches for detecting CWD prions historically relied on antibody-based assays. However, recent advancements in protein amplification technology provided the foundation for a new class of CWD diagnostic tools. In particular, real-time quaking-induced conversion (RT-QuIC) has rapidly become a feasible option for CWD diagnosis. Despite its increased usage for CWD-focused research, there lacks a consensus regarding the interpretation of RT-QuIC data for diagnostic purposes. It is imperative then to identify a standardized and replicable method for determining CWD status from RT-QuIC data. Here, we assessed variables that could impact RT-QuIC results and explored the use of maxpoint ratios (maximumRFU/backgroundRFU) to improve the consistency of RT-QuIC analysis. We examined a variety of statistical analyses to retrospectively analyze CWD status based on RT-QuIC and ELISA results from 668 white-tailed deer lymph nodes. Our results revealed an MPR threshold of 2.0 for determining the rate of amyloid formation, and MPR analysis showed excellent agreement with independent ELISA results. These findings suggest that the use of MPR is a statistically viable option for normalizing between RT-QuIC experiments and defining CWD status.
Collapse
|
7
|
Kraft CN, Denkers ND, Mathiason CK, Hoover EA. Longitudinal detection of prion shedding in nasal secretions of CWD-infected white-tailed deer. J Gen Virol 2023; 104:001825. [PMID: 36748533 PMCID: PMC10233467 DOI: 10.1099/jgv.0.001825] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/21/2022] [Indexed: 01/28/2023] Open
Abstract
Chronic wasting disease (CWD) is an emergent prion disease spreading in cervid populations in North America, South Korea and Scandinavia. Rapid detection of CWD prions shed by live animals using minimally invasive methods remains an important need. Previous studies in deer, elk and hamsters have demonstrated prion replication in the nasal olfactory mucosa, yet the temporal profile of CWD prion shedding in nasal secretions has not been well characterized. Here we report nasal prion shedding in 18 deer orally exposed to low doses of CWD prions and monitored longitudinally by several parameters. Serially collected nasal swabs were assayed for CWD prion seeding activity using iron oxide magnetic extraction and real-time quaking-induced conversion (IOME RT-QuIC). These findings were correlated with the results from longitudinal tonsil biopsies, terminal tissues and PRNP genotype. We detected nasal prion shedding 3-16 months after the first positive tonsil biopsy in ten of the 18 deer; detectable shedding persisted thereafter in nine of the ten animals. Surprisingly, nasal swabs were negative in eight deer, even though all were CWD-infected as determined by tonsil biopsies and terminal tissue assays. Nasal shedding was detected more often in deer that were homozygous for glycine at codon 96, and those that were near or demonstrating symptoms of clinical disease shed earlier and more frequently, irrespective of prion exposure dose. The results of this study demonstrate nasal shedding of CWD prions that can be detected using minimally invasive nasal swab sampling and RT-QuIC analysis.
Collapse
Affiliation(s)
- Caitlyn N. Kraft
- Prion Research Center, College of Veterinary Medicine and Biomedical Sciences, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Nathaniel D. Denkers
- Prion Research Center, College of Veterinary Medicine and Biomedical Sciences, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Candace K. Mathiason
- Prion Research Center, College of Veterinary Medicine and Biomedical Sciences, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Edward A. Hoover
- Prion Research Center, College of Veterinary Medicine and Biomedical Sciences, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
8
|
Assessment of Real-Time Quaking-Induced Conversion (RT-QuIC) Assay, Immunohistochemistry and ELISA for Detection of Chronic Wasting Disease under Field Conditions in White-Tailed Deer: A Bayesian Approach. Pathogens 2022; 11:pathogens11050489. [PMID: 35631010 PMCID: PMC9144059 DOI: 10.3390/pathogens11050489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/11/2022] [Accepted: 04/17/2022] [Indexed: 11/17/2022] Open
Abstract
Chronic wasting disease (CWD) is a transmissible prion disease of the cervidae family. ELISA and IHC tests performed postmortem on the medial retropharyngeal lymph nodes (RPLN) or obex are considered diagnostic gold standards for prion detection. However, differences in CWD transmission, stage of infection, pathogenesis, and strain can limit performance. To overcome these uncertainties, we used Bayesian statistics to assess the accuracy of RT-QuIC, an increasingly used prion amplification assay, to diagnose CWD on tonsil (TLN), parotid (PLN) and submandibular lymph nodes (SMLN), and ELISA/IHC on RPLN of white-tailed deer (WTD) sampled from Minnesota. Dichotomous RT-QuIC and ELISA/IHC results from wild (n = 61) and captive (n = 46) WTD were analyzed with two-dependent-test, one-population models. RT-QuIC performed on TLN and SMLN of the wild WTD population had similar sensitivity (median range (MR): 92.2–95.1) to ELISA/IHC on RPLN (MR: 91.1–92.3). Slightly lower (4–7%) sensitivity estimates were obtained from farmed animal and PLN models. RT-QuIC specificity estimates were high (MR: 94.5–98.5%) and similar to ELISA/IHC estimates (MR: 95.7–97.6%) in all models. This study offers new insights on RT-QuIC and ELISA/IHC performance at the population level and under field conditions, an important step in CWD diagnosis and management.
Collapse
|
9
|
Atarashi R. RT-QuIC as ultrasensitive method for prion detection. Cell Tissue Res 2022; 392:295-300. [PMID: 35084571 DOI: 10.1007/s00441-021-03568-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/17/2021] [Indexed: 12/18/2022]
Abstract
Real-time quaking-induced conversion (RT-QuIC) is a cell-free abnormal form of prion protein (PrPSc) amplification method using recombinant prion protein from Escherichia coli that can measure prion seeding activity in samples with high sensitivity. The advantages of this method are that it is much more sensitive than Western blotting, which is usually used to detect PrPSc, and that prion seeding activity can be easily quantified by combining it with endpoint dilution of the sample, and that it can be amplified in most species and prion strains. A decade has passed since the development of RT-QuIC, and many studies have been reported that take advantage of its characteristics. In particular, its usefulness in the diagnosis of sporadic CJD has been clarified, and it is recommended to be one of the diagnostic criteria. Future challenges include the establishment of a method to differentiate prion strains and application of RT-QuIC to early diagnosis of prion diseases and determination of treatment efficacy.
Collapse
Affiliation(s)
- Ryuichiro Atarashi
- Division of Microbiology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.
| |
Collapse
|
10
|
Kincaid AE. The Role of the Nasal Cavity in the Pathogenesis of Prion Diseases. Viruses 2021; 13:v13112287. [PMID: 34835094 PMCID: PMC8621399 DOI: 10.3390/v13112287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022] Open
Abstract
Prion diseases, or transmissible spongiform encephalopathies (TSEs), are a class of fatal neurodegenerative diseases caused by the entry and spread of infectious prion proteins (PrPSc) in the central nervous system (CNS). These diseases are endemic to certain mammalian animal species that use their sense of smell for a variety of purposes and therefore expose their nasal cavity (NC) to PrPSc in the environment. Prion diseases that affect humans are either inherited due to a mutation of the gene that encodes the prion protein, acquired by exposure to contaminated tissues or medical devices, or develop without a known cause (referred to as sporadic). The purpose of this review is to identify components of the NC that are involved in prion transport and to summarize the evidence that the NC serves as a route of entry (centripetal spread) and/or a source of shedding (centrifugal spread) of PrPSc, and thus plays a role in the pathogenesis of the TSEs.
Collapse
Affiliation(s)
- Anthony E Kincaid
- Departments of Pharmacy Sciences and Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| |
Collapse
|
11
|
Selective Breeding for Disease-Resistant PRNP Variants to Manage Chronic Wasting Disease in Farmed Whitetail Deer. Genes (Basel) 2021; 12:genes12091396. [PMID: 34573378 PMCID: PMC8471411 DOI: 10.3390/genes12091396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 01/18/2023] Open
Abstract
Chronic wasting disease (CWD) is a fatal transmissible spongiform encephalopathy (TSE) of cervids caused by a misfolded variant of the normal cellular prion protein, and it is closely related to sheep scrapie. Variations in a host's prion gene, PRNP, and its primary protein structure dramatically affect susceptibility to specific prion disorders, and breeding for PRNP variants that prevent scrapie infection has led to steep declines in the disease in North American and European sheep. While resistant alleles have been identified in cervids, a PRNP variant that completely prevents CWD has not yet been identified. Thus, control of the disease in farmed herds traditionally relies on quarantine and depopulation. In CWD-endemic areas, depopulation of private herds becomes challenging to justify, leading to opportunities to manage the disease in situ. We developed a selective breeding program for farmed white-tailed deer in a high-prevalence CWD-endemic area which focused on reducing frequencies of highly susceptible PRNP variants and introducing animals with less susceptible variants. With the use of newly developed primers, we found that breeding followed predictable Mendelian inheritance, and early data support our project's utility in reducing CWD prevalence. This project represents a novel approach to CWD management, with future efforts building on these findings.
Collapse
|
12
|
Sohn HJ, Mitchell G, Lee YH, Kim HJ, Park KJ, Staskevicus A, Walther I, Soutyrine A, Balachandran A. Experimental oral transmission of chronic wasting disease to sika deer ( Cervus nippon). Prion 2020; 14:271-277. [PMID: 33300452 PMCID: PMC7734081 DOI: 10.1080/19336896.2020.1857038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Chronic wasting disease (CWD) affects a broad array of cervid species and continues to be detected in an expanding geographic range. Initially introduced into the Republic of Korea through the importation of CWD-infected elk (Cervus canadensis), additional cases of CWD were subsequently detected in farmed Korean elk and sika deer (Cervus nippon). Wild and farmed sika deer are found in many regions of Asia, North America, and Europe, although natural transmission to this species has not been detected outside of the Republic of Korea. In this study, the oral transmission of CWD to sika deer was investigated using material from CWD-affected elk. Pathological prion (PrPCWD) immunoreactivity was detected in oropharyngeal lymphoid tissues of one sika deer at 3.9 months post-inoculation (mpi) and was more widely distributed in a second sika deer examined at 10.9 mpi. The remaining four sika deer progressed to clinical disease between 21 and 24 mpi. Analysis of PrPCWD tissue distribution in clinical sika deer revealed widespread deposition in central and peripheral nervous systems, lymphoreticular tissues, and the gastrointestinal tract. Prion protein gene (PRNP) sequences of these sika deer were identical and consistent with those reported in natural sika deer populations. These findings demonstrate the efficient oral transmission of CWD from elk to sika deer.
Collapse
Affiliation(s)
- Hyun-Joo Sohn
- Foreign Animal Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency , Gimcheon-si, Republic of Korea
| | - Gordon Mitchell
- National and OIE Reference Laboratory for Scrapie and CWD, Canadian Food Inspection Agency , Ottawa, Canada
| | - Yoon Hee Lee
- Foreign Animal Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency , Gimcheon-si, Republic of Korea
| | - Hyo Jin Kim
- Foreign Animal Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency , Gimcheon-si, Republic of Korea
| | - Kyung-Je Park
- Foreign Animal Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency , Gimcheon-si, Republic of Korea
| | - Antanas Staskevicus
- National and OIE Reference Laboratory for Scrapie and CWD, Canadian Food Inspection Agency , Ottawa, Canada
| | - Ines Walther
- National and OIE Reference Laboratory for Scrapie and CWD, Canadian Food Inspection Agency , Ottawa, Canada
| | - Andrei Soutyrine
- National and OIE Reference Laboratory for Scrapie and CWD, Canadian Food Inspection Agency , Ottawa, Canada
| | - Aru Balachandran
- National and OIE Reference Laboratory for Scrapie and CWD, Canadian Food Inspection Agency , Ottawa, Canada
| |
Collapse
|
13
|
Arshad H, Bourkas MEC, Watts JC. The utility of bank voles for studying prion disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 175:179-211. [PMID: 32958232 DOI: 10.1016/bs.pmbts.2020.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The transmission of prions between species is typically an inefficient process due to the species barrier, which represents incompatibility between prion seed and substrate molecules. Bank voles (Myodes glareolus) are an exception to this rule, as they are susceptible to a diverse range of prion strains from many different animal species. In particular, bank voles can be efficiently infected with most types of human prions and have played a critical role in validating variably protease-sensitive prionopathy (VPSPr) and certain forms of Gerstmann-Sträussler-Scheinker (GSS) disease as bona fide prion disorders rather than non-transmissible proteinopathies. The bank vole prion protein (BVPrP) confers a "universal prion acceptor" phenotype when expressed in mice and when used as a substrate for in vitro prion amplification assays, indicating that the unique prion transmission properties of bank voles are mediated by BVPrP. Over-expression of BVPrP in mice can also promote the spontaneous development of prion disease, indicating that BVPrP is intrinsically prone to both spontaneous and template-directed misfolding. Here, we discuss the utility of bank voles and BVPrP for prion research and how they have provided new tools for establishing rapid animal bioassays, modeling spontaneous prion disease, standardizing prion diagnostics, and understanding the molecular basis of the species barrier.
Collapse
Affiliation(s)
- Hamza Arshad
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Matthew E C Bourkas
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Joel C Watts
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
14
|
Del Rio JA, Ferrer I. Potential of Microfluidics and Lab-on-Chip Platforms to Improve Understanding of " prion-like" Protein Assembly and Behavior. Front Bioeng Biotechnol 2020; 8:570692. [PMID: 33015021 PMCID: PMC7506036 DOI: 10.3389/fbioe.2020.570692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/18/2020] [Indexed: 12/14/2022] Open
Abstract
Human aging is accompanied by a relevant increase in age-associated chronic pathologies, including neurodegenerative and metabolic diseases. The appearance and evolution of numerous neurodegenerative diseases is paralleled by the appearance of intracellular and extracellular accumulation of misfolded proteins in affected brains. In addition, recent evidence suggests that most of these amyloid proteins can behave and propagate among neural cells similarly to infective prions. In order to improve understanding of the seeding and spreading processes of these "prion-like" amyloids, microfluidics and 3D lab-on-chip approaches have been developed as highly valuable tools. These techniques allow us to monitor changes in cellular and molecular processes responsible for amyloid seeding and cell spreading and their parallel effects in neural physiology. Their compatibility with new optical and biochemical techniques and their relative availability have increased interest in them and in their use in numerous laboratories. In addition, recent advances in stem cell research in combination with microfluidic platforms have opened new humanized in vitro models for myriad neurodegenerative diseases affecting different cellular targets of the vascular, muscular, and nervous systems, and glial cells. These new platforms help reduce the use of animal experimentation. They are more reproducible and represent a potential alternative to classical approaches to understanding neurodegeneration. In this review, we summarize recent progress in neurobiological research in "prion-like" protein using microfluidic and 3D lab-on-chip approaches. These approaches are driven by various fields, including chemistry, biochemistry, and cell biology, and they serve to facilitate the development of more precise human brain models for basic mechanistic studies of cell-to-cell interactions and drug discovery.
Collapse
Affiliation(s)
- Jose A Del Rio
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia, Barcelona Institute of Science and Technology, Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain.,Center for Networked Biomedical Research on Neurodegenerative Diseases (Ciberned), Barcelona, Spain.,Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Isidre Ferrer
- Center for Networked Biomedical Research on Neurodegenerative Diseases (Ciberned), Barcelona, Spain.,Institute of Neuroscience, University of Barcelona, Barcelona, Spain.,Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain.,Bellvitge University Hospital, Hospitalet de Llobregat, Barcelona, Spain.,Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
15
|
Zhou DH, Wang J, Xiao K, Wu YZ, Maimaitiming A, Hu C, Gao LP, Chen J, Gao C, Chen C, Shi Q, Dong XP. Stilbene Compounds Inhibit the Replications of Various Strains of Prions in the Levels of Cell Culture, PMCA, and RT-QuIC Possibly via Molecular Binding. ACS Chem Neurosci 2020; 11:2117-2128. [PMID: 32511904 DOI: 10.1021/acschemneuro.0c00218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Resveratrol shows the ability to block prion replication in a scrapie-infected cell line, SMB-S15, and remove the infectivity of the treated cell lysates in an experimental bioassay. In this study, we compared the effectiveness of three stilbene compounds, resveratrol (Res), pterostilbene (Pte), and piceatannol (Pic), on inhibiting prion propagations in the levels of cell culture, PMCA, and RT-QuIC. All three chemicals showed active suppressions on PrPSc replication in SMB-S15 cells, in which Res seemed to be the most active one, followed by Pic and Pte. Mouse PrP-based PMCA tests using the lysates of SMB-S15 cells and brain homogenates of scrapie agents S15-, 139A-, or ME7-infected mice verified that Res, Pte, and Pic inhibited the amplifications of PK-resistant signals. Res was also the most effective one. Mouse PrP-based RT-QuIC using the above seeds demonstrated that three stilbenes efficiently inhibited the fibril formation. However, Pic was the most effective one, followed by Res and Pte. Furthermore, the inhibition activities of the three stilbenes on the brain-derived prion from a 263K-infected hamster were tested with hamster PrP-based PMCA and RT-QuIC. The results indicated that Pic was the most effective one apparently, followed by Res and Pte. According to the results of Biacore, Res showed binding affinities much stronger than those of Pte, whereas both revealed markedly stronger binding affinities with mouse PrP. Our data here indicate that different stilbenes have the ability to block PrPSc replication in vitro with different prion species. The suppressive effects of stilbene compounds are likely associated with their molecular binding activities with PrPs.
Collapse
Affiliation(s)
- Dong-Hua Zhou
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Road 155, Beijing 102206, China
| | - Jing Wang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Road 155, Beijing 102206, China
| | - Kang Xiao
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Road 155, Beijing 102206, China
| | - Yue-Zhang Wu
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Road 155, Beijing 102206, China
| | - Adalaiti Maimaitiming
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Road 155, Beijing 102206, China
| | - Chao Hu
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Road 155, Beijing 102206, China
| | - Li-Ping Gao
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Road 155, Beijing 102206, China
| | - Jia Chen
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Road 155, Beijing 102206, China
| | - Chen Gao
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Road 155, Beijing 102206, China
- Chinese Center for Disease Control and Prevention, Wuhan Institute of Virology, Chinese Academy of Sciences Joint Research Center for Emerging Infectious Diseases and Biosafety, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Cao Chen
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Road 155, Beijing 102206, China
| | - Qi Shi
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Road 155, Beijing 102206, China
- China Academy of Chinese Medical Sciences, Beijing 100050, China
| | - Xiao-Ping Dong
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Road 155, Beijing 102206, China
- Center for Global Public Health, Chinese Center for Disease Control and Prevention, Chang-Bai Road 155, Beijing 102206, China
- Chinese Center for Disease Control and Prevention, Wuhan Institute of Virology, Chinese Academy of Sciences Joint Research Center for Emerging Infectious Diseases and Biosafety, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
- China Academy of Chinese Medical Sciences, Beijing 100050, China
| |
Collapse
|
16
|
Kondru N, Manne S, Kokemuller R, Greenlee J, Greenlee MHW, Nichols T, Kong Q, Anantharam V, Kanthasamy A, Halbur P, Kanthasamy AG. An Ex Vivo Brain Slice Culture Model of Chronic Wasting Disease: Implications for Disease Pathogenesis and Therapeutic Development. Sci Rep 2020; 10:7640. [PMID: 32376941 PMCID: PMC7203233 DOI: 10.1038/s41598-020-64456-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 04/12/2020] [Indexed: 12/03/2022] Open
Abstract
Chronic wasting disease (CWD) is a rapidly spreading prion disease of cervids, yet antemortem diagnosis, treatment, and control remain elusive. We recently developed an organotypic slice culture assay for sensitive detection of scrapie prions using ultrasensitive prion seeding. However, this model was not established for CWD prions due to their strong transmission barrier from deer (Odocoileus spp) to standard laboratory mice (Mus musculus). Therefore, we developed and characterized the ex vivo brain slice culture model for CWD, using a transgenic mouse model (Tg12) that expresses the elk (Cervus canadensis) prion protein gene (PRNP). We tested for CWD infectivity in cultured slices using sensitive seeding assays such as real-time quaking-induced conversion (RT-QuIC) and protein misfolding cyclic amplification (PMCA). Slice cultures from Tg12, but not from prnp-/- mice, tested positive for CWD. Slice-generated CWD prions transmitted efficiently to Tg12 mice. Furthermore, we determined the activity of anti-prion compounds and optimized a screening protocol for the infectivity of biological samples in this CWD slice culture model. Our results demonstrate that this integrated brain slice model of CWD enables the study of pathogenic mechanisms with translational implications for controlling CWD.
Collapse
Affiliation(s)
- Naveen Kondru
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Sireesha Manne
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Robyn Kokemuller
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
| | - Justin Greenlee
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
| | - M Heather West Greenlee
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Tracy Nichols
- Surveillance, Preparedness and Response Services, Veterinary Services, United States Department of Agriculture, Fort Collins, CO, USA
| | - Qingzhong Kong
- Departments of Pathology and Neurology, Case Western Reserve University, Cleveland, OH, USA
| | - Vellareddy Anantharam
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Arthi Kanthasamy
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Patrick Halbur
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Anumantha G Kanthasamy
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA.
| |
Collapse
|
17
|
Detection of Pathognomonic Biomarker PrP Sc and the Contribution of Cell Free-Amplification Techniques to the Diagnosis of Prion Diseases. Biomolecules 2020; 10:biom10030469. [PMID: 32204429 PMCID: PMC7175149 DOI: 10.3390/biom10030469] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 02/07/2023] Open
Abstract
Transmissible spongiform encephalopathies or prion diseases are rapidly progressive neurodegenerative diseases, the clinical manifestation of which can resemble other promptly evolving neurological maladies. Therefore, the unequivocal ante-mortem diagnosis is highly challenging and was only possible by histopathological and immunohistochemical analysis of the brain at necropsy. Although surrogate biomarkers of neurological damage have become invaluable to complement clinical data and provide more accurate diagnostics at early stages, other neurodegenerative diseases show similar alterations hindering the differential diagnosis. To solve that, the detection of the pathognomonic biomarker of disease, PrPSc, the aberrantly folded isoform of the prion protein, could be used. However, the amounts in easily accessible tissues or body fluids at pre-clinical or early clinical stages are extremely low for the standard detection methods. The solution comes from the recent development of in vitro prion propagation techniques, such as Protein Misfolding Cyclic Amplification (PMCA) and Real Time-Quaking Induced Conversion (RT-QuIC), which have been already applied to detect minute amounts of PrPSc in different matrixes and make early diagnosis of prion diseases feasible in a near future. Herein, the most relevant tissues and body fluids in which PrPSc has been detected in animals and humans are being reviewed, especially those in which cell-free prion propagation systems have been used with diagnostic purposes.
Collapse
|
18
|
Haley N, Henderson D, Donner R, Wyckoff S, Merrett K, Tennant J, Hoover E, Love D, Kline E, Lehmkuhl A, Thomsen B. Management of chronic wasting disease in ranched elk: conclusions from a longitudinal three-year study. Prion 2020; 14:76-87. [PMID: 32033521 PMCID: PMC7009334 DOI: 10.1080/19336896.2020.1724754] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chronic wasting disease is a fatal, horizontally transmissible prion disease of cervid species that has been reported in free-ranging and farmed animals in North America, Scandinavia, and Korea. Like other prion diseases, CWD susceptibility is partly dependent on the sequence of the prion protein encoded by the host's PRNP gene; it is unknown if variations in PRNP have any meaningful effects on other aspects of health. Conventional diagnosis of CWD relies on ELISA or IHC testing of samples collected post-mortem, with recent efforts focused on antemortem testing approaches. We report on the conclusions of a study evaluating the role of antemortem testing of rectal biopsies collected from over 570 elk in a privately managed herd, and the results of both an amplification assay (RT-QuIC) and conventional IHC among animals with a several PRNP genotypes. Links between PRNP genotype and potential markers of evolutionary fitness, including pregnancy rates, body condition, and annual return rates were also examined. We found that the RT-QuIC assay identified significantly more CWD positive animals than conventional IHC across the course of the study, and was less affected by factors known to influence IHC sensitivity - including follicle count and PRNP genotype. We also found that several evolutionary markers of fitness were not adversely correlated with specific PRNP genotypes. While the financial burden of the disease in this herd was ultimately unsustainable for the herd owners, our scientific findings and the hurdles encountered will assist future CWD management strategies in both wild and farmed elk and deer.
Collapse
Affiliation(s)
- N.J. Haley
- Department of Microbiology and Immunology, College of Graduate Studies, Midwestern University, Glendale, AZ, USA,CONTACT N.J. Haley Department of Microbiology and Immunology, College of Graduate Studies, Midwestern University, Glendale, AZ, USA
| | - D.M. Henderson
- Prion Research Center, Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - R. Donner
- Department of Microbiology and Immunology, College of Graduate Studies, Midwestern University, Glendale, AZ, USA
| | - S. Wyckoff
- Department of Microbiology and Immunology, College of Graduate Studies, Midwestern University, Glendale, AZ, USA
| | - K. Merrett
- Department of Microbiology and Immunology, College of Graduate Studies, Midwestern University, Glendale, AZ, USA
| | - J Tennant
- Prion Research Center, Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - E.A. Hoover
- Prion Research Center, Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - D. Love
- Colorado Department of Agriculture Animal Health Division, Broomfield, CO, USA
| | - E. Kline
- Colorado Department of Agriculture Animal Health Division, Broomfield, CO, USA
| | - A.D. Lehmkuhl
- National Veterinary Services Laboratories, United States Department of Agriculture, APHIS, VS, Ames, IA, USA
| | - B.V. Thomsen
- National Veterinary Services Laboratories, United States Department of Agriculture, APHIS, VS, Ames, IA, USA,Center for Veterinary Biologics, United States Department of Agriculture, APHIS, VS, Ames, IA, USA
| |
Collapse
|
19
|
Haley N, Donner R, Henderson D, Tennant J, Hoover E, Manca M, Caughey B, Kondru N, Manne S, Kanthasamay A, Hannaoui S, Chang S, Gilch S, Smiley S, Mitchell G, Lehmkuhl A, Thomsen B. Cross-validation of the RT-QuIC assay for the antemortem detection of chronic wasting disease in elk. Prion 2020; 14:47-55. [PMID: 31973662 PMCID: PMC6984646 DOI: 10.1080/19336896.2020.1716657] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Chronic wasting disease is a progressively fatal, horizontally transmissible prion disease affecting several members of the cervid species. Conventional diagnosis relies on ELISA or IHC evaluation using tissues collected post-mortem; however, recent research has focused on newly developed amplification techniques using samples collected antemortem. The present study sought to cross-validate the real-time quaking-induced conversion assay (RT-QuIC) evaluation of rectal biopsies collected from an elk herd with endemic CWD, assessing both binary positive/negative test results as well as relative rates of amplification between laboratories. We found that results were correlative in both categories across all laboratories performing RT-QuIC, as well as to conventional IHC performed at a national reference laboratory. A significantly higher number of positive samples were identified using RT-QuIC, with results seemingly unhindered by low follicle counts. These findings support the continued development and implementation of amplification assays in the diagnosis of prion diseases of veterinary importance, targeting not just antemortem sampling strategies, but post-mortem testing approaches as well.
Collapse
Affiliation(s)
- N.J. Haley
- Department of Microbiology and Immunology, College of Graduate Studies, Midwestern University, Glendale, AZ, USA,CONTACT N.J. Haley Department of Microbiology and Immunology, College of Graduate Studies, Midwestern University, Glendale, AZ, USA
| | - R. Donner
- Department of Microbiology and Immunology, College of Graduate Studies, Midwestern University, Glendale, AZ, USA
| | - D.M. Henderson
- Prion Research Center, Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - J. Tennant
- Prion Research Center, Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - E.A. Hoover
- Prion Research Center, Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - M. Manca
- TSE/Prion Biochemistry Section, Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA
| | - B. Caughey
- TSE/Prion Biochemistry Section, Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA
| | - N. Kondru
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - S. Manne
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - A. Kanthasamay
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - S. Hannaoui
- Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, Canada,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada,Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Alberta, Canada
| | - S.C. Chang
- Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, Canada,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada,Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Alberta, Canada
| | - S. Gilch
- Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, Canada,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada,Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Alberta, Canada
| | - S. Smiley
- National and OIE Reference Laboratory for Scrapie and CWD, Canadian Food Inspection, Agency, Ottawa Laboratory-Fallowfield, Ottawa, Ontario, Canada
| | - G. Mitchell
- National and OIE Reference Laboratory for Scrapie and CWD, Canadian Food Inspection, Agency, Ottawa Laboratory-Fallowfield, Ottawa, Ontario, Canada
| | - A.D. Lehmkuhl
- United States Department of Agriculture, APHIS, VS, National Veterinary Services Laboratories, Ames, IA, USA
| | - B.V. Thomsen
- United States Department of Agriculture, APHIS, VS, National Veterinary Services Laboratories, Ames, IA, USA,United States Department of Agriculture, APHIS, VS, Center for Veterinary Biologics, Ames, IA, USA
| |
Collapse
|
20
|
Bistaffa E, Vuong TT, Cazzaniga FA, Tran L, Salzano G, Legname G, Giaccone G, Benestad SL, Moda F. Use of different RT-QuIC substrates for detecting CWD prions in the brain of Norwegian cervids. Sci Rep 2019; 9:18595. [PMID: 31819115 PMCID: PMC6901582 DOI: 10.1038/s41598-019-55078-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 11/22/2019] [Indexed: 12/12/2022] Open
Abstract
Chronic wasting disease (CWD) is a highly contagious prion disease affecting captive and free-ranging cervid populations. CWD has been detected in United States, Canada, South Korea and, most recently, in Europe (Norway, Finland and Sweden). Animals with CWD release infectious prions in the environment through saliva, urine and feces sustaining disease spreading between cervids but also potentially to other non-cervids ruminants (e.g. sheep, goats and cattle). In the light of these considerations and due to CWD unknown zoonotic potential, it is of utmost importance to follow specific surveillance programs useful to minimize disease spreading and transmission. The European community has already in place specific surveillance measures, but the traditional diagnostic tests performed on nervous or lymphoid tissues lack sensitivity. We have optimized a Real-Time Quaking-Induced Conversion (RT-QuIC) assay for detecting CWD prions with high sensitivity and specificity to try to overcome this problem. In this work, we show that bank vole prion protein (PrP) is an excellent substrate for RT-QuIC reactions, enabling the detection of trace-amounts of CWD prions, regardless of prion strain and cervid species. Beside supporting the traditional diagnostic tests, this technology could be exploited for detecting prions in peripheral tissues from live animals, possibly even at preclinical stages of the disease.
Collapse
Affiliation(s)
- Edoardo Bistaffa
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Division of Neurology 5 and Neuropathology, Milano, Italy
| | | | - Federico Angelo Cazzaniga
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Division of Neurology 5 and Neuropathology, Milano, Italy
| | - Linh Tran
- Norwegian Veterinary Institute, Oslo, Norway
| | - Giulia Salzano
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Laboratory of Prion Biology, Department of Neuroscience, Trieste, Italy
| | - Giuseppe Legname
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Laboratory of Prion Biology, Department of Neuroscience, Trieste, Italy
| | - Giorgio Giaccone
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Division of Neurology 5 and Neuropathology, Milano, Italy
| | | | - Fabio Moda
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Division of Neurology 5 and Neuropathology, Milano, Italy.
| |
Collapse
|
21
|
Saijo E, Groveman BR, Kraus A, Metrick M, Orrù CD, Hughson AG, Caughey B. Ultrasensitive RT-QuIC Seed Amplification Assays for Disease-Associated Tau, α-Synuclein, and Prion Aggregates. Methods Mol Biol 2019; 1873:19-37. [PMID: 30341601 DOI: 10.1007/978-1-4939-8820-4_2] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The abnormal assembly of tau, α-synuclein (αSyn), or prion protein into oligomers and multimers underpins the molecular pathogenesis of multiple neurodegenerative diseases. Such pathological aggregates can often grow by seeded polymerization mechanisms. We and others have taken advantage of these mechanisms to amplify seeding activities in vitro and devise ultrasensitive, specific and quantitative assays for these etiological biomarkers. Real-time quaking-induced conversion (RT-QuIC) assays are performed in multiwell plates with fluorescent readouts, facilitating efficient throughput. Prion RT-QuIC assays on cerebrospinal fluid (CSF) samples are being widely used for antemortem diagnosis of human prion diseases. Recently, we have also described a tau RT-QuIC prototype that has been optimized for Pick disease (with predominant 3R tau pathology) that detects 3R tau seeds in postmortem CSF, and brain tissue dilutions as extreme as a billion-fold. αSyn RT-QuIC prototypes have also been developed, providing ~92% diagnostic sensitivity and 100% specificity for Parkinson's disease and dementia with Lewy bodies using antemortem CSF. Here we provide detailed protocols for our 3R tau and αSyn RT-QuIC assays and refer the reader to published up-to-date protocols for prion RT-QuIC assays (Orru et al. Methods Mol Biol 1658:185-203, 2017; Schmitz et al. Nat Protoc 11:2233-2242, 2016).
Collapse
Affiliation(s)
- Eri Saijo
- Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT, USA
| | | | - Allison Kraus
- Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT, USA
| | | | | | | | - Byron Caughey
- Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT, USA.
| |
Collapse
|
22
|
Benestad SL, Telling GC. Chronic wasting disease: an evolving prion disease of cervids. HANDBOOK OF CLINICAL NEUROLOGY 2018; 153:135-151. [PMID: 29887133 DOI: 10.1016/b978-0-444-63945-5.00008-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chronic wasting disease (CWD) is a relatively new and burgeoning prion epidemic of deer, elk, reindeer, and moose, which are members of the cervid family. While the disease was first described in captive deer, its subsequent discovery in various species of free-ranging animals makes it the only currently recognized prion disorder of both wild and farmed animals. In addition to its expanding range of host species, CWD continues to spread from North America to new geographic areas, including South Korea, and most recently Norway, marking the first time this disease was detected in Europe. Its unparalleled efficiency of contagious transmission, combined with high densities of deer in certain areas, complicates strategies for controlling CWD, raising concerns about its potential for spread to new species. Because there is a high prevalence of CWD in deer and elk, which are commonly hunted and consumed by humans, and since prions from cattle with bovine spongiform encephalopathy have been transmitted to humans causing variant Creutzfeldt-Jakob disease, the possibility of zoonotic transmission of CWD is particularly concerning. Here we review the clinical and pathologic features of CWD and its disturbing epidemiology, and discuss features that affect its transmission, including genetic susceptibility, pathogenesis, and agent strain variability. Finally, we discuss evidence that speaks to the potential for zoonotic transmission of this emerging disease.
Collapse
Affiliation(s)
| | - Glenn C Telling
- Prion Research Center (PRC) and the Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States.
| |
Collapse
|
23
|
Paciotti S, Bellomo G, Gatticchi L, Parnetti L. Are We Ready for Detecting α-Synuclein Prone to Aggregation in Patients? The Case of "Protein-Misfolding Cyclic Amplification" and "Real-Time Quaking-Induced Conversion" as Diagnostic Tools. Front Neurol 2018; 9:415. [PMID: 29928254 PMCID: PMC5997809 DOI: 10.3389/fneur.2018.00415] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/22/2018] [Indexed: 11/23/2022] Open
Abstract
The accumulation and deposition of α-synuclein aggregates in brain tissue is the main event in the pathogenesis of different neurodegenerative disorders grouped under the term of synucleinopathies. They include Parkinson's disease, dementia with Lewy bodies and multiple system atrophy. To date, the diagnosis of any of these disorders mainly relies on the recognition of clinical symptoms, when the neurodegeneration is already in an advanced phase. In the last years, several efforts have been carried out to develop new diagnostic tools for early diagnosis of synucleinopathies, with special interest to Parkinson's disease. The Protein-Misfolding Cyclic Amplification (PMCA) and the Real-Time Quaking-Induced Conversion (RT-QuIC) are ultrasensitive protein amplification assays for the detection of misfolded protein aggregates. Starting from the successful application in the diagnosis of human prion diseases, these techniques were recently tested for the detection of misfolded α-synuclein in brain homogenates and cerebrospinal fluid samples of patients affected by synucleinopathies. So far, only a few studies on a limited number of samples have been performed to test PMCA and RT-QuIC diagnostic reliability. Neverthless, these assays have shown very high sensitivity and specificity in detecting synucleinopathies even at the pre-clinical stage. Despite the application of PMCA and RT-QuIC for α-synuclein detection in biological fluids is very recent, these techniques seem to have the potential for identifying subjects that will be likely to develop synucleinopathies.
Collapse
Affiliation(s)
- Silvia Paciotti
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Giovanni Bellomo
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, Italy
| | - Leonardo Gatticchi
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Lucilla Parnetti
- Laboratory of Clinical Neurochemistry, Department of Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
24
|
Haley NJ, Richt JA, Davenport KA, Henderson DM, Hoover EA, Manca M, Caughey B, Marthaler D, Bartz J, Gilch S. Design, implementation, and interpretation of amplification studies for prion detection. Prion 2018; 12:73-82. [PMID: 29468946 DOI: 10.1080/19336896.2018.1443000] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Amplification assays for transmissible spongiform encephalopathies have been in development for close to 15 years, with critical implications for the postmortem and antemortem diagnosis of human and animal prion diseases. Little has been published regarding the structured development, implementation and interpretation of experiments making use of protein misfolding cyclic amplification (PMCA) and real time quaking-induced conversion (RT-QuIC), and our goal with this Perspectives manuscript is to offer a framework which might allow for more efficient expansion of pilot studies into diagnostic trials in both human and animal subjects. This framework is made up of approaches common to diagnostic medicine, including a thorough understanding of analytical and diagnostic sensitivity and specificity, an a priori development of amplification strategy, and an effective experimental design. It is our hope that a structured framework for prion amplification assays will benefit not only experiments seeking to sensitively detect naturally-occurring cases of prion diseases and describe the pathogenesis of TSEs, but ultimately assist with future endeavors seeking to use these methods more broadly for other protein misfolding disorders, including Alzheimer's and Parkinson's disease.
Collapse
Affiliation(s)
- Nicholas J Haley
- a Department of Microbiology and Immunology , Midwestern University , Glendale , AZ , USA
| | - Jürgen A Richt
- b College of Veterinary Medicine, Kansas State University (KSU) , Manhattan , KS , USA
| | - Kristen A Davenport
- c Prion Research Center, Department of Microbiology , Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University , Fort Collins , CO , USA
| | - Davin M Henderson
- c Prion Research Center, Department of Microbiology , Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University , Fort Collins , CO , USA
| | - Edward A Hoover
- c Prion Research Center, Department of Microbiology , Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University , Fort Collins , CO , USA
| | - Matteo Manca
- d Department of Medicine , Imperial College London, Hammersmith Campus , London , UK
| | - Byron Caughey
- e TSE/Prion Biochemistry Section, Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Disease , Hamilton , MT , USA
| | - Douglas Marthaler
- b College of Veterinary Medicine, Kansas State University (KSU) , Manhattan , KS , USA
| | - Jason Bartz
- f Department of Medical Microbiology and Immunology , Creighton University , Omaha , NE , USA
| | - Sabine Gilch
- g Department of Ecosystem and Public Health , Calgary Prion Research Unit, Faculty of Veterinary Medicine, University of Calgary , Calgary , Alberta , Canada
| |
Collapse
|
25
|
Moore SJ, Vrentas CE, Hwang S, West Greenlee MH, Nicholson EM, Greenlee JJ. Pathologic and biochemical characterization of PrP Sc from elk with PRNP polymorphisms at codon 132 after experimental infection with the chronic wasting disease agent. BMC Vet Res 2018. [PMID: 29523205 PMCID: PMC5845354 DOI: 10.1186/s12917-018-1400-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The Rocky Mountain elk (Cervus elaphus nelsoni) prion protein gene (PRNP) is polymorphic at codon 132, with leucine (L132) and methionine (M132) allelic variants present in the population. In elk experimentally inoculated with the chronic wasting disease (CWD) agent, different incubation periods are associated with PRNP genotype: LL132 elk survive the longest, LM132 elk are intermediate, and MM132 elk the shortest. The purpose of this study was to investigate potential mechanisms underlying variations in incubation period in elk of different prion protein genotypes. Elk calves of three PRNP genotypes (n = 2 MM132, n = 2 LM132, n = 4 LL132) were orally inoculated with brain homogenate from elk clinically affected with CWD. RESULTS Elk with longer incubation periods accumulated relatively less PrPSc in the brain than elk with shorter incubation periods. PrPSc accumulation in LM132 and MM132 elk was primarily neuropil-associated while glial-associated immunoreactivity was prominent in LL132 elk. The fibril stability of PrPSc from MM132 and LM132 elk were similar to each other and less stable than that from LL132 elk. Real-time quaking induced conversion assays (RT-QuIC) revealed differences in the ability of PrPSc seed from elk of different genotypes to convert recombinant 132 M or 132 L substrate. CONCLUSIONS This study provides further evidence of the importance of PRNP genotype in the pathogenesis of CWD of elk. The longer incubation periods observed in LL132 elk are associated with PrPSc that is more stable and relatively less abundant at the time of clinical disease. The biochemical properties of PrPSc from MM132 and LM132 elk are similar to each other and different to PrPSc from LL132 elk. The shorter incubation periods in MM132 compared to LM132 elk may be the result of genotype-dependent differences in the efficiency of propagation of PrPSc moieties present in the inoculum. A better understanding of the mechanisms by which the polymorphisms at codon 132 in elk PRNP influence disease pathogenesis will help to improve control of CWD in captive and free-ranging elk populations.
Collapse
Affiliation(s)
- S Jo Moore
- USDA, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, Ames, USA
| | - Catherine E Vrentas
- USDA, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, Ames, USA
| | - Soyoun Hwang
- USDA, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, Ames, USA
| | - M Heather West Greenlee
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, USA
| | - Eric M Nicholson
- USDA, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, Ames, USA
| | - Justin J Greenlee
- USDA, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, Ames, USA.
| |
Collapse
|
26
|
Haley NJ, Henderson DM, Wycoff S, Tennant J, Hoover EA, Love D, Kline E, Lehmkuhl A, Thomsen B. Chronic wasting disease management in ranched elk using rectal biopsy testing. Prion 2018; 12:93-108. [PMID: 29424295 DOI: 10.1080/19336896.2018.1436925] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Chronic wasting disease (CWD) is a transmissible spongiform encephalopathy (TSE) affecting members of the cervid species, and is one of the few TSEs with an expanding geographic range. Diagnostic limitations, efficient transmission, and the movement of infected animals are important contributing factors in the ongoing spread of disease. Managing CWD in affected populations has proven difficult, relying on population reduction in the case of wild deer and elk, or quarantine and depopulation in farmed cervids. In the present study, we evaluated the effectiveness of managing endemic CWD in a closed elk herd using antemortem sampling combined with both conventional and experimental diagnostic testing, and selective, targeted culling of infected animals. We hypothesized that the real-time quaking-induced conversion (RT-QuIC) assay, a developing amplification assay, would offer greater detection capabilities over immunohistochemistry (IHC) in the identification of infected animals using recto-anal mucosa associated lymphoid tissue (RAMALT). We further sought to develop a better understanding of CWD epidemiology in elk with various PRNP alleles, and predicted that CWD prevalence would decrease with targeted culling. We found that RT-QuIC identified significantly more CWD-positive animals than IHC using RAMALT tissues (121 vs. 86, respectively, out of 553 unique animals), and that longstanding disease presence was associated with an increasing frequency of less susceptible PRNP alleles. Prevalence of CWD increased significantly over the first two years of the study, implying that refinements in our management strategy are necessary to reduce the prevalence of CWD in this herd.
Collapse
Affiliation(s)
- Nicholas J Haley
- a Department of Microbiology and Immunology , Midwestern University , Glendale , AZ , USA
| | - Davin M Henderson
- b Prion Research Center, Department of Microbiology , Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University , Fort Collins , CO , USA
| | - Sarah Wycoff
- a Department of Microbiology and Immunology , Midwestern University , Glendale , AZ , USA
| | - Joanne Tennant
- b Prion Research Center, Department of Microbiology , Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University , Fort Collins , CO , USA
| | - Edward A Hoover
- b Prion Research Center, Department of Microbiology , Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University , Fort Collins , CO , USA
| | - Dan Love
- c Colorado Department of Agriculture , Animal Health Division , Broomfield , CO , USA
| | - Ed Kline
- c Colorado Department of Agriculture , Animal Health Division , Broomfield , CO , USA
| | - Aaron Lehmkuhl
- d United States Department of Agriculture , APHIS, VS, National Veterinary Services Laboratory , Ames , IA , USA
| | - Bruce Thomsen
- e United States Department of Agriculture , APHIS, VS, Center for Veterinary Biologics , Ames , IA , USA
| |
Collapse
|
27
|
Ricci A, Allende A, Bolton D, Chemaly M, Davies R, Fernández Escámez PS, Gironés R, Herman L, Koutsoumanis K, Lindqvist R, Nørrung B, Robertson L, Ru G, Sanaa M, Skandamis P, Snary E, Speybroeck N, Kuile BT, Threlfall J, Wahlström H, Benestad S, Gavier-Widen D, Miller MW, Telling GC, Tryland M, Latronico F, Ortiz-Pelaez A, Stella P, Simmons M. Scientific opinion on chronic wasting disease (II). EFSA J 2018; 16:e05132. [PMID: 32625679 PMCID: PMC7328883 DOI: 10.2903/j.efsa.2018.5132] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The European Commission asked EFSA for a scientific opinion on chronic wasting disease in two parts. Part one, on surveillance, animal health risk-based measures and public health risks, was published in January 2017. This opinion (part two) addresses the remaining Terms of Reference, namely, 'are the conclusions and recommendations in the EFSA opinion of June 2004 on diagnostic methods for chronic wasting disease still valid? If not, an update should be provided', and 'update the conclusions of the 2010 EFSA opinion on the results of the European Union survey on chronic wasting disease in cervids, as regards its occurrence in the cervid population in the European Union'. Data on the performance of authorised rapid tests in North America are not comprehensive, and are more limited than those available for the tests approved for statutory transmissible spongiform encephalopathies surveillance applications in cattle and sheep. There are no data directly comparing available rapid test performances in cervids. The experience in Norway shows that the Bio-Rad TeSeE™ SAP test, immunohistochemistry and western blotting have detected reindeer, moose and red deer cases. It was shown that testing both brainstem and lymphoid tissue from each animal increases the surveillance sensitivity. Shortcomings in the previous EU survey limited the reliability of inferences that could be made about the potential disease occurrence in Europe. Subsequently, testing activity in Europe was low, until the detection of the disease in Norway, triggering substantial testing efforts in that country. Available data neither support nor refute the conclusion that chronic wasting disease does not occur widely in the EU and do not preclude the possibility that the disease was present in Europe before the survey was conducted. It appears plausible that chronic wasting disease could have become established in Norway more than a decade ago.
Collapse
|
28
|
Kramm C, Pritzkow S, Lyon A, Nichols T, Morales R, Soto C. Detection of Prions in Blood of Cervids at the Asymptomatic Stage of Chronic Wasting Disease. Sci Rep 2017; 7:17241. [PMID: 29222449 PMCID: PMC5722867 DOI: 10.1038/s41598-017-17090-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/21/2017] [Indexed: 01/05/2023] Open
Abstract
Chronic wasting disease (CWD) is a rapidly spreading prion disorder affecting captive and free-ranging cervids. The zoonotic potential of CWD is unknown, as well as the mechanism for its highly efficient transmission. A top priority to minimize further spreading of this disease and its potential impact on environmental prion contamination is the development of a non-invasive, sensitive, and specific test for ante-mortem detection of infected animals. Here, we optimized the protein misfolding cyclic amplification (PMCA) assay for highly efficient detection of CWD prions in blood samples. Studies were done using a blind panel of 98 field-collected samples of whole blood from codon 96 glycine/glycine, captive white-tailed deer that were analyzed for prion infection post-mortem by immunohistochemistry (IHC). The results showed a sensitivity of 100% in animals with very poor body condition that were IHC-positive in both brain and lymph nodes, 96% in asymptomatic deer IHC-positive in brain and lymph nodes and 53% in animals at early stages of infection that were IHC-positive only in lymph nodes. The overall mean diagnostic sensitivity was 79.3% with 100% specificity. These findings show that PMCA might be useful as a blood test for routine, live animal diagnosis of CWD.
Collapse
Affiliation(s)
- Carlos Kramm
- Mitchell Center for Alzheimer's disease and Related Brain Disorders, Dept. of Neurology, McGovern School of Medicine University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.,Universidad de los Andes, Facultad de Medicina, Av. San Carlos de Apoquindo, 2200, Las Condes, Santiago, Chile
| | - Sandra Pritzkow
- Mitchell Center for Alzheimer's disease and Related Brain Disorders, Dept. of Neurology, McGovern School of Medicine University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Adam Lyon
- Mitchell Center for Alzheimer's disease and Related Brain Disorders, Dept. of Neurology, McGovern School of Medicine University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Tracy Nichols
- Veterinary Services Cervid Health Program, APHIS, United States Department of Agriculture, Fort Collins, CO, 80526, USA
| | - Rodrigo Morales
- Mitchell Center for Alzheimer's disease and Related Brain Disorders, Dept. of Neurology, McGovern School of Medicine University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| | - Claudio Soto
- Mitchell Center for Alzheimer's disease and Related Brain Disorders, Dept. of Neurology, McGovern School of Medicine University of Texas Health Science Center at Houston, Houston, TX, 77030, USA. .,Universidad de los Andes, Facultad de Medicina, Av. San Carlos de Apoquindo, 2200, Las Condes, Santiago, Chile.
| |
Collapse
|
29
|
Manne S, Kondru N, Nichols T, Lehmkuhl A, Thomsen B, Main R, Halbur P, Dutta S, Kanthasamy AG. Ante-mortem detection of chronic wasting disease in recto-anal mucosa-associated lymphoid tissues from elk (Cervus elaphus nelsoni) using real-time quaking-induced conversion (RT-QuIC) assay: A blinded collaborative study. Prion 2017; 11:415-430. [PMID: 29098931 DOI: 10.1080/19336896.2017.1368936] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Prion diseases are transmissible spongiform encephalopathies (TSEs) characterized by fatal, progressive neurologic diseases with prolonged incubation periods and an accumulation of infectious misfolded prion proteins. Antemortem diagnosis is often difficult due to a long asymptomatic incubation period, differences in the pathogenesis of different prions, and the presence of very low levels of infectious prion in easily accessible samples. Chronic wasting disease (CWD) is a TSE affecting both wild and captive populations of cervids, including mule deer, white-tailed deer, elk, moose, muntjac, and most recently, wild reindeer. This study represents a well-controlled evaluation of a newly developed real-time quaking-induced conversion (RT-QuIC) assay as a potential CWD diagnostic screening test using rectal biopsy sections from a depopulated elk herd. We evaluated 69 blinded samples of recto-anal mucosa-associated lymphoid tissue (RAMALT) obtained from USDA Veterinary Services. The results were later un-blinded and statistically compared to immunohistochemical (IHC) results from the USDA National Veterinary Services Laboratories (NVSL) for RAMALT, obex, and medial retropharyngeal lymph node (MRPLN). Comparison of RAMALT RT-QuIC assay results with the IHC results of RAMALT revealed 92% relative sensitivity (95% confidence limits: 61.52-99.8%) and 95% relative specificity (95% confidence limits: 85.13-99%). Collectively, our results show a potential utility of the RT-QuIC assay to advance the development of a rapid, sensitive, and specific prion diagnostic assay for CWD prions.
Collapse
Affiliation(s)
- Sireesha Manne
- a Department of Biomedical Sciences , College of Veterinary Medicine, Iowa State University , Ames , IA , USA
| | - Naveen Kondru
- a Department of Biomedical Sciences , College of Veterinary Medicine, Iowa State University , Ames , IA , USA
| | - Tracy Nichols
- b United States Department of Agriculture (USDA) , National Wildlife Research Center, Wildlife Services , Fort Collins , CO , USA
| | - Aaron Lehmkuhl
- c USDA, National Veterinary Services Laboratories (NVSL), Veterinary Services , Ames , IA , USA
| | - Bruce Thomsen
- c USDA, National Veterinary Services Laboratories (NVSL), Veterinary Services , Ames , IA , USA
| | - Rodger Main
- d Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine , Iowa State University , Ames , IA , USA
| | - Patrick Halbur
- d Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine , Iowa State University , Ames , IA , USA
| | - Somak Dutta
- e Department of Statistics , Iowa State University , Ames , IA , USA
| | - Anumantha G Kanthasamy
- a Department of Biomedical Sciences , College of Veterinary Medicine, Iowa State University , Ames , IA , USA
| |
Collapse
|
30
|
Haley NJ, Rielinger R, Davenport KA, O'Rourke K, Mitchell G, Richt JA. Estimating chronic wasting disease susceptibility in cervids using real-time quaking-induced conversion. J Gen Virol 2017; 98:2882-2892. [PMID: 29058651 DOI: 10.1099/jgv.0.000952] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In mammals, susceptibility to prion infection is primarily modulated by the host's cellular prion protein (PrPC) sequence. In the sheep scrapie model, a graded scale of susceptibility has been established both in vivo and in vitro based on PrPC amino acids 136, 154 and 171, leading to global breeding programmes to reduce the prevalence of scrapie in sheep. Chronic wasting disease (CWD) resistance in cervids is often characterized as decreased prevalence and/or protracted disease progression in individuals with specific alleles; at present, no PrPC allele conferring absolute resistance in cervids has been identified. To model the susceptibility of various naturally occurring and hypothetical cervid PrPC alleles in vitro, we compared the amplification rates and amyloid extension efficiencies of eight distinct CWD isolates in recombinant cervid PrPC substrates using real-time quaking-induced conversion. We hypothesized that the in vitro conversion characteristics of these isolates in cervid substrates would correlate to in vivo susceptibility - permitting susceptibility prediction for the rare alleles found in nature. We also predicted that hypothetical alleles with multiple resistance-associated codons would be more resistant to in vitro conversion than natural alleles with a single resistant codon. Our studies demonstrate that in vitro conversion metrics align with in vivo susceptibility, and that alleles with multiple amino acid substitutions, each influencing resistance independently, do not necessarily contribute additively to conversion resistance. Importantly, we found that the naturally occurring whitetail deer QGAK substrate exhibited the slowest amplification rate among those evaluated, suggesting that further investigation of this allele and its resistance in vivo is warranted.
Collapse
Affiliation(s)
- Nicholas J Haley
- Department of Microbiology and Immunology, Midwestern University, Glendale, AZ, USA
| | - Rachel Rielinger
- College of Veterinary Medicine, Kansas State University (KSU), Manhattan, KS, USA
| | - Kristen A Davenport
- Department of Microbiology, Immunology and Pathology, Prion Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Katherine O'Rourke
- US Department of Agriculture, Animal Disease Research Unit, Agricultural Research Service, Pullman, WA, USA
| | - Gordon Mitchell
- Canadian Food Inspection Agency, National and OIE Reference Laboratory for Scrapie and CWD, Ottawa Laboratory Fallowfield, Ottawa, ON, Canada
| | - Jürgen A Richt
- College of Veterinary Medicine, Kansas State University (KSU), Manhattan, KS, USA
| |
Collapse
|
31
|
Mathiason CK. Scrapie, CWD, and Transmissible Mink Encephalopathy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 150:267-292. [PMID: 28838664 DOI: 10.1016/bs.pmbts.2017.07.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Transmissible spongiform encephalopathies (TSEs), or prions, are neurodegenerative diseases that affect a variety of animal species, including humans. Cruetzfeldt-Jakob disease (CJD) in humans, sheep and goat scrapie, chronic wasting disease (CWD) of cervids, and transmissible mink encephalopathy (TME) of mink are classified as TSEs. According to the "protein-only" hypothesis (Prusiner, 1982),1 prions are devoid of nucleic acids and consist of assemblies of misfolded host-encoded normal protein, the prion protein (PrPC). Prion propagation is thought to occur by a templating mechanism during which PrPC is recruited, converted to a disease-associated isoform (PrPD), and assembled onto the growing amyloid fibril. This fibular assembly is infectious, with ability to initiate disease processes similar to other pathogenic agents. Evidence indicates that scrapie, CWD, and TME disease processes follow this rule.
Collapse
|
32
|
Haley NJ, Richt JA. Evolution of Diagnostic Tests for Chronic Wasting Disease, a Naturally Occurring Prion Disease of Cervids. Pathogens 2017; 6:pathogens6030035. [PMID: 28783058 PMCID: PMC5617992 DOI: 10.3390/pathogens6030035] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/29/2017] [Accepted: 08/01/2017] [Indexed: 12/23/2022] Open
Abstract
Since chronic wasting disease (CWD) was first identified nearly 50 years ago in a captive mule deer herd in the Rocky Mountains of the United States, it has slowly spread across North America through the natural and anthropogenic movement of cervids and their carcasses. As the endemic areas have expanded, so has the need for rapid, sensitive, and cost effective diagnostic tests—especially those which take advantage of samples collected antemortem. Over the past two decades, strategies have evolved from the recognition of microscopic spongiform pathology and associated immunohistochemical staining of the misfolded prion protein to enzyme-linked immunoassays capable of detecting the abnormal prion conformer in postmortem samples. In a history that parallels the diagnosis of more conventional infectious agents, both qualitative and real-time amplification assays have recently been developed to detect minute quantities of misfolded prions in a range of biological and environmental samples. With these more sensitive and semi-quantitative approaches has come a greater understanding of the pathogenesis and epidemiology of this disease in the native host. Because the molecular pathogenesis of prion protein misfolding is broadly analogous to the misfolding of other pathogenic proteins, including Aβ and α-synuclein, efforts are currently underway to apply these in vitro amplification techniques towards the diagnosis of Alzheimer’s disease, Parkinson’s disease, and other proteinopathies. Chronic wasting disease—once a rare disease of Colorado mule deer—now represents one of the most prevalent prion diseases, and should serve as a model for the continued development and implementation of novel diagnostic strategies for protein misfolding disorders in the natural host.
Collapse
Affiliation(s)
- Nicholas J Haley
- Department of Microbiology and Immunology, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA.
| | - Jürgen A Richt
- College of Veterinary Medicine, Kansas State University (KSU), Manhattan, KS 66506, USA.
| |
Collapse
|
33
|
Caughey B, Orru CD, Groveman BR, Hughson AG, Manca M, Raymond LD, Raymond GJ, Race B, Saijo E, Kraus A. Amplified Detection of Prions and Other Amyloids by RT-QuIC in Diagnostics and the Evaluation of Therapeutics and Disinfectants. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 150:375-388. [PMID: 28838670 DOI: 10.1016/bs.pmbts.2017.06.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Among the most sensitive, specific and practical of methods for detecting prions are the real-time quaking-induced conversion (RT-QuIC) assays. These assays exploit the fundamental self-propagating activity of prions to amplify the presence of prion seeds by as much as a trillion-fold. The reactions can detect most of the known mammalian prion diseases, often with sensitivities greater than those of animal bioassays. RT-QuIC assays are performed in multiwell plates with fluorescence detection and have now reached the sensitivity and practicality required for routine prion disease diagnostics. Some key strains of prions within particular host species, e.g., humans, cattle, and sheep, can be discriminated by comparison of RT-QuIC responses with different recombinant prion protein substrates. The most thoroughly validated diagnostic application of RT-QuIC is in the diagnosis of sporadic Creutzfeldt-Jakob disease (sCJD) using cerebrospinal fluid. Diagnostic sensitivities as high as 96% can be achieved in less than 24h with specificities of 98%-100%. The ability, if needed, to also test nasal swab samples can increase the RT-QuIC sensitivity for sCJD to virtually 100%. In addition to diagnostic applications, RT-QuIC has also been used in the testing of prion disinfectants and potential therapeutics. Mechanistically related assays are also now being developed for other protein misfolding diseases.
Collapse
Affiliation(s)
- Byron Caughey
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States.
| | - Christina D Orru
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Bradley R Groveman
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Andrew G Hughson
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Matteo Manca
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Lynne D Raymond
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Gregory J Raymond
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Brent Race
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Eri Saijo
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Allison Kraus
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| |
Collapse
|
34
|
Henderson DM, Tennant JM, Haley NJ, Denkers ND, Mathiason CK, Hoover EA. Detection of chronic wasting disease prion seeding activity in deer and elk feces by real-time quaking-induced conversion. J Gen Virol 2017; 98:1953-1962. [PMID: 28703697 DOI: 10.1099/jgv.0.000844] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Chronic wasting disease (CWD) is an emergent prion disease affecting cervid species in North America, Canada, South Korea, and recently, Norway. Detection of CWD has been advanced by techniques that rely on amplification of low levels of prion amyloid to a detectable level. However, the increased sensitivity of amplification assays is often compromised by inhibitors and/or activators in complex biologic samples including body fluids, excreta, or the environment. Here, we adapt real-time quaking-induced conversion conditions to specifically detect CWD prions in fecal samples from both experimentally infected deer and naturally infected elk and estimate environmental contamination. The results have application to detection, surveillance and management of CWD, and potentially to other protein-misfolding diseases.
Collapse
Affiliation(s)
- Davin M Henderson
- Prion Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Joanne M Tennant
- Prion Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Nicholas J Haley
- Department of Microbiology and Pathology, Midwestern State University, Glendale, AZ, USA
| | - Nathaniel D Denkers
- Prion Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Candace K Mathiason
- Prion Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Edward A Hoover
- Prion Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
35
|
Self-propagating, protease-resistant, recombinant prion protein conformers with or without in vivo pathogenicity. PLoS Pathog 2017; 13:e1006491. [PMID: 28704563 PMCID: PMC5524416 DOI: 10.1371/journal.ppat.1006491] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 07/24/2017] [Accepted: 06/27/2017] [Indexed: 11/19/2022] Open
Abstract
Prions, characterized by self-propagating protease-resistant prion protein (PrP) conformations, are agents causing prion disease. Recent studies generated several such self-propagating protease-resistant recombinant PrP (rPrP-res) conformers. While some cause prion disease, others fail to induce any pathology. Here we showed that although distinctly different, the pathogenic and non-pathogenic rPrP-res conformers were similarly recognized by a group of conformational antibodies against prions and shared a similar guanidine hydrochloride denaturation profile, suggesting a similar overall architecture. Interestingly, two independently generated non-pathogenic rPrP-res were almost identical, indicating that the particular rPrP-res resulted from cofactor-guided PrP misfolding, rather than stochastic PrP aggregation. Consistent with the notion that cofactors influence rPrP-res conformation, the propagation of all rPrP-res formed with phosphatidylglycerol/RNA was cofactor-dependent, which is different from rPrP-res generated with a single cofactor, phosphatidylethanolamine. Unexpectedly, despite the dramatic difference in disease-causing capability, RT-QuIC assays detected large increases in seeding activity in both pathogenic and non-pathogenic rPrP-res inoculated mice, indicating that the non-pathogenic rPrP-res is not completely inert in vivo. Together, our study supported a role of cofactors in guiding PrP misfolding, indicated that relatively small structural features determine rPrP-res’ pathogenicity, and revealed that the in vivo seeding ability of rPrP-res does not necessarily result in pathogenicity. Many neurodegenerative disorders, including Alzheimer’s disease, Parkinson’s disease and Prion disease, are caused by misfolded proteins that can self-propagate in vivo and in vitro. Misfolded self-replicating recombinant prion protein (PrP) conformers have been generated in vitro with defined cofactors, some of which are highly infectious and cause bona fide prion diseases, while others completely fail to induce any pathology. Here we compare these misfolded recombinant PrP conformers and show that the non-pathogenic misfolded recombinant PrP is not completely inert in vivo. We also found that the pathogenic and non-pathogenic recombinant PrP conformers share a similar overall architecture. Importantly, our study clearly shows that in vivo seeded spread of misfolded conformation does not necessarily lead to pathogenic change or cause disease. These findings not only are important for understanding the molecular basis for prion infectivity, but also may have important implications for the “prion-like” spread of misfolded proteins in other neurodegenerative diseases.
Collapse
|
36
|
Prion Diagnosis: Application of Real-Time Quaking-Induced Conversion. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5413936. [PMID: 28596963 PMCID: PMC5449729 DOI: 10.1155/2017/5413936] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/14/2017] [Accepted: 04/24/2017] [Indexed: 02/06/2023]
Abstract
Prions composed of pathogenic scrapie prion protein (PrPSc) are infectious pathogens that cause progressive neurological conditions known as prion diseases or transmissible spongiform encephalopathies. Although these diseases pose considerable risk to public health, procedures for early diagnosis have not been established. One of the most recent attempts at sensitive and specific detection of prions is the real-time quaking-induced conversion (RT-QuIC) method, which measures the activity of PrPSc aggregates or amyloid formation triggered by PrPSc seeds in the presence of recombinant PrP. In this review, we summarize prions, prion diseases, and current approaches to diagnosis, including the principle, conditions for assay performance, and current diagnostic applications of RT-QuIC.
Collapse
|
37
|
Pathways of Prion Spread during Early Chronic Wasting Disease in Deer. J Virol 2017; 91:JVI.00077-17. [PMID: 28250130 DOI: 10.1128/jvi.00077-17] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 02/23/2017] [Indexed: 11/20/2022] Open
Abstract
Among prion infections, two scenarios of prion spread are generally observed: (i) early lymphoid tissue replication or (ii) direct neuroinvasion without substantial antecedent lymphoid amplification. In nature, cervids are infected with chronic wasting disease (CWD) prions by oral and nasal mucosal exposure, and studies of early CWD pathogenesis have implicated pharyngeal lymphoid tissue as the earliest sites of prion accumulation. However, knowledge of chronological events in prion spread during early infection remains incomplete. To investigate this knowledge gap in early CWD pathogenesis, we exposed white-tailed deer to CWD prions by mucosal routes and performed serial necropsies to assess PrPCWD tissue distribution by real-time quaking-induced conversion (RT-QuIC) and tyramide signal amplification immunohistochemistry (TSA-IHC). Although PrPCWD was not detected by either method in the initial days (1 and 3) postexposure, we observed PrPCWD seeding activity and follicular immunoreactivity in oropharyngeal lymphoid tissues at 1 and 2 months postexposure (MPE). At 3 MPE, PrPCWD replication had expanded to all systemic lymphoid tissues. By 4 MPE, the PrPCWD burden in all lymphoid tissues had increased and approached levels observed in terminal disease, yet there was no evidence of nervous system invasion. These results indicate the first site of CWD prion entry is in the oropharynx, and the initial phase of prion amplification occurs in the oropharyngeal lymphoid tissues followed by rapid dissemination to systemic lymphoid tissues. This lymphoid replication phase appears to precede neuroinvasion.IMPORTANCE Chronic wasting disease (CWD) is a universally fatal transmissible spongiform encephalopathy affecting cervids, and natural infection occurs through oral and nasal mucosal exposure to infectious prions. Terminal disease is characterized by PrPCWD accumulation in the brain and lymphoid tissues of affected animals. However, the initial sites of prion accumulation and pathways of prion spread during early CWD infection remain unknown. To investigate the chronological events of early prion pathogenesis, we exposed deer to CWD prions and monitored the tissue distribution of PrPCWD over the first 4 months of infection. We show CWD uptake occurs in the oropharynx with initial prion replication in the draining oropharyngeal lymphoid tissues, rapidly followed by dissemination to systemic lymphoid tissues without evidence of neuroinvasion. These data highlight the two phases of CWD infection: a robust prion amplification in systemic lymphoid tissues prior to neuroinvasion and establishment of a carrier state.
Collapse
|
38
|
|
39
|
Groveman BR, Orrú CD, Hughson AG, Bongianni M, Fiorini M, Imperiale D, Ladogana A, Pocchiari M, Zanusso G, Caughey B. Extended and direct evaluation of RT-QuIC assays for Creutzfeldt-Jakob disease diagnosis. Ann Clin Transl Neurol 2016; 4:139-144. [PMID: 28168213 PMCID: PMC5288466 DOI: 10.1002/acn3.378] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/04/2016] [Accepted: 11/11/2016] [Indexed: 11/11/2022] Open
Abstract
Real-Time Quaking-Induced Conversion (RT-QuIC) testing of human cerebrospinal fluid (CSF) is highly sensitive and specific in discriminating sporadic CJD patients from those without prion disease. Here, using CSF samples from 113 CJD and 64 non-prion disease patients, we provide the first direct and concurrent comparison of our improved RT-QuIC assay to our previous assay, which is similar to those commonly used internationally for CJD diagnosis. This extended comparison demonstrated a ~21% increase in diagnostic sensitivity, a 2-day reduction in average detection time, and 100% specificity.
Collapse
Affiliation(s)
- Bradley R Groveman
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| | - Christina D Orrú
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| | - Andrew G Hughson
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| | - Matilde Bongianni
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | - Michele Fiorini
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | | | - Anna Ladogana
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | - Maurizio Pocchiari
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | - Gianluigi Zanusso
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | - Byron Caughey
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| |
Collapse
|
40
|
Inactivation of Prions and Amyloid Seeds with Hypochlorous Acid. PLoS Pathog 2016; 12:e1005914. [PMID: 27685252 PMCID: PMC5042475 DOI: 10.1371/journal.ppat.1005914] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 09/04/2016] [Indexed: 11/19/2022] Open
Abstract
Hypochlorous acid (HOCl) is produced naturally by neutrophils and other cells to kill conventional microbes in vivo. Synthetic preparations containing HOCl can also be effective as microbial disinfectants. Here we have tested whether HOCl can also inactivate prions and other self-propagating protein amyloid seeds. Prions are deadly pathogens that are notoriously difficult to inactivate, and standard microbial disinfection protocols are often inadequate. Recommended treatments for prion decontamination include strongly basic (pH ≥~12) sodium hypochlorite bleach, ≥1 N sodium hydroxide, and/or prolonged autoclaving. These treatments are damaging and/or unsuitable for many clinical, agricultural and environmental applications. We have tested the anti-prion activity of a weakly acidic aqueous formulation of HOCl (BrioHOCl) that poses no apparent hazard to either users or many surfaces. For example, BrioHOCl can be applied directly to skin and mucous membranes and has been aerosolized to treat entire rooms without apparent deleterious effects. Here, we demonstrate that immersion in BrioHOCl can inactivate not only a range of target microbes, including spores of Bacillus subtilis, but also prions in tissue suspensions and on stainless steel. Real-time quaking-induced conversion (RT-QuIC) assays showed that BrioHOCl treatments eliminated all detectable prion seeding activity of human Creutzfeldt-Jakob disease, bovine spongiform encephalopathy, cervine chronic wasting disease, sheep scrapie and hamster scrapie; these findings indicated reductions of ≥103- to 106-fold. Transgenic mouse bioassays showed that all detectable hamster-adapted scrapie infectivity in brain homogenates or on steel wires was eliminated, representing reductions of ≥~105.75-fold and >104-fold, respectively. Inactivation of RT-QuIC seeding activity correlated with free chlorine concentration and higher order aggregation or destruction of proteins generally, including prion protein. BrioHOCl treatments had similar effects on amyloids composed of human α-synuclein and a fragment of human tau. These results indicate that HOCl can block the self-propagating activity of prions and other amyloids. Many serious diseases have been linked to pathogenic states of various proteins. These naturally occurring proteins can be corrupted to form aggregates such as prions and amyloids that propagate in and between tissues by acting as seeds that convert the normal form of the protein into more of the pathological form. For example, corrupted prion protein can cause fatal transmissible neurodegenerative diseases such as Creutzfeldt-Jakob disease in humans, chronic wasting disease in cervids and bovine spongiform encephalopathy. Other amyloid-forming protein aggregates are pathogenic in Parkinson’s, Alzheimer’s, and other diseases. The fact that prions and amyloids are composed predominantly of tough, tightly packed proteins makes them unusually resistant to conventional microbial disinfection procedures. Infectious prions can persist indefinitely in, or on, a variety of materials such as tissues, fluids, tools, instruments, and environmental surfaces, making it important to identify decontaminants that are effective without being dangerous or damaging. Here we show that hypochlorous acid, a disinfectant that is produced naturally by certain cells within the body, has strong anti-prion and anti-amyloid activity. We find that a non-irritating and broadly applicable hypochlorous acid preparation can disinfect prions in tissue homogenates and on stainless steel wires serving as surrogates for surgical instruments.
Collapse
|
41
|
Orrú CD, Hughson AG, Groveman BR, Campbell KJ, Anson KJ, Manca M, Kraus A, Caughey B. Factors That Improve RT-QuIC Detection of Prion Seeding Activity. Viruses 2016; 8:E140. [PMID: 27223300 PMCID: PMC4885095 DOI: 10.3390/v8050140] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/09/2016] [Accepted: 05/12/2016] [Indexed: 12/14/2022] Open
Abstract
Rapid and sensitive detection of prions is important in managing prion diseases. The real-time quaking-induced conversion (RT-QuIC) assay for prion seeding activity has been applied to many prion diseases and provides for specific antemortem diagnostic testing. We evaluated RT-QuIC's long-term consistency and varied multiple reaction parameters. Repeated assays of a single scrapie sample using multiple plate readers and recombinant prion protein (rPrP(Sen)) substrates gave comparable results. N-terminal truncated hamster rPrP(Sen) (residues 90-231) hastened both prion-seeded and prion-independent reactions but maintained a clear kinetic distinction between the two. Raising temperatures or shaking speeds accelerated RT-QuIC reactions without compromising specificity. When applied to nasal brushings from Creutzfeldt-Jakob disease patients, higher temperatures accelerated RT-QuIC kinetics, and the use of hamster rPrP(Sen) (90-231) strengthened RT-QuIC responses. Elongation of shaking periods reduced scrapie-seeded reaction times, but continuous shaking promoted false-positive reactions. Furthermore, pH 7.4 provided for more rapid RT-QuIC reactions than more acidic pHs. Additionally, we show that small variations in the amount of sodium dodecyl sulfate (SDS) significantly impacted the assay. Finally, RT-QuIC performed in multiplate thermoshakers followed by fluorescence readings in separate plate readers enhanced assay throughput economically. Collectively, these results demonstrate improved speed, efficacy and practicality of RT-QuIC assays and highlight variables to be optimized for future applications.
Collapse
Affiliation(s)
- Christina D Orrú
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Hamilton, 59840 MT, USA.
| | - Andrew G Hughson
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Hamilton, 59840 MT, USA.
| | - Bradley R Groveman
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Hamilton, 59840 MT, USA.
| | - Katrina J Campbell
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Hamilton, 59840 MT, USA.
| | - Kelsie J Anson
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Hamilton, 59840 MT, USA.
| | - Matteo Manca
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Hamilton, 59840 MT, USA.
| | - Allison Kraus
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Hamilton, 59840 MT, USA.
| | - Byron Caughey
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Hamilton, 59840 MT, USA.
| |
Collapse
|
42
|
Antemortem Detection of Chronic Wasting Disease Prions in Nasal Brush Collections and Rectal Biopsy Specimens from White-Tailed Deer by Real-Time Quaking-Induced Conversion. J Clin Microbiol 2016; 54:1108-16. [PMID: 26865693 DOI: 10.1128/jcm.02699-15] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 02/04/2016] [Indexed: 11/20/2022] Open
Abstract
Chronic wasting disease (CWD), a transmissible spongiform encephalopathy of cervids, was first documented nearly 50 years ago in Colorado and Wyoming and has since spread to cervids in 23 states, two Canadian provinces, and the Republic of Korea. The expansion of this disease makes the development of sensitive diagnostic assays and antemortem sampling techniques crucial for the mitigation of its spread; this is especially true in cases of relocation/reintroduction of farmed or free-ranging deer and elk or surveillance studies of private or protected herds, where depopulation is contraindicated. This study sought to evaluate the sensitivity of the real-time quaking-induced conversion (RT-QuIC) assay by using recto-anal mucosa-associated lymphoid tissue (RAMALT) biopsy specimens and nasal brush samples collected antemortem from farmed white-tailed deer (n= 409). Antemortem findings were then compared to results from ante- and postmortem samples (RAMALT, brainstem, and medial retropharyngeal lymph nodes) evaluated by using the current gold standardin vitroassay, immunohistochemistry (IHC) analysis. We hypothesized that the sensitivity of RT-QuIC would be comparable to IHC analysis in antemortem tissues and would correlate with both the genotype and the stage of clinical disease. Our results showed that RAMALT testing by RT-QuIC assay had the highest sensitivity (69.8%) compared to that of postmortem testing, with a specificity of >93.9%. These data suggest that RT-QuIC, like IHC analysis, is an effective assay for detection of PrP(CWD)in rectal biopsy specimens and other antemortem samples and, with further research to identify more sensitive tissues, bodily fluids, or experimental conditions, has potential for large-scale and rapid automated testing for CWD diagnosis.
Collapse
|