1
|
Odoom JK, Dzotse EK, Nii-Trebi NI, Opare D, Akyereko E, Attiku K, Duker EO, Eshun M, Boahene BB, Gberbi E, Houphouet EE, Diamenu S, Adjabeng M, Asamoah-Frimpong J, Ameme D, Opare JKL, Obodai E. Outbreak Response to Circulating Vaccine-Derived Poliovirus in Three Northern Regions of Ghana, 2019. BIOMED RESEARCH INTERNATIONAL 2024; 2024:5515777. [PMID: 39399343 PMCID: PMC11469924 DOI: 10.1155/2024/5515777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/26/2024] [Accepted: 09/09/2024] [Indexed: 10/15/2024]
Abstract
Background: Circulating Vaccine-Derived Poliovirus Type 2 (cVDPV2) was isolated in sewage and later in stool samples from children with acute flaccid paralysis (AFP) in northern Ghana. Method: A multidisciplinary and multisectoral team investigated this outbreak and reported on epidemiological and laboratory investigations. Sewage/wastewater samples were collected from the environment, while stool samples were collected from AFP/contact children under 5 years of age. The samples were processed for virus isolation, and positive isolates were sequenced. We also conducted a descriptive investigation involving a review of records, active case search, and Monovalent Oral Polio Vaccine 2 campaigns. Additionally, we interviewed caregivers about the vaccination status of their children, as well as their knowledge on polio prevention. Water quality, sanitation, hygiene practices, and health-seeking behaviours were also assessed. Results: A total of 18 cVDPV2 were confirmed in the three regions of Ghana during the outbreak in 2019-2020. All strains were genetically linked to a Nigerian cVDPV2 strain NIE-KWS-KSB-18-006HC29 that circulated in 2018. Evaluation of the surveillance system shows that officers have good knowledge of AFP and know how to collect samples, package them, and ship them to the laboratory. Few communities had access to potable water. Open defecation was common, and the water supply, sanitation, and hygiene practices of the communities were poor. Conclusion: The cVDPV2 outbreak represents the first time cVDPV2 has circulated in the country since Ghana embarked on the polio eradication program in 1996. However, with quality mOPV2 mop-up campaigns, a nationwide IPV catch-up campaign coupled with enhanced surveillance measures, transmission was interrupted.
Collapse
Affiliation(s)
- John Kofi Odoom
- Department of Virology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Emmanuel Kofi Dzotse
- Disease Surveillance Department, Ghana Health Service, Ministry of Health, Accra, Ghana
| | - Nicholas Israel Nii-Trebi
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, University of Ghana, Accra, Ghana
| | - David Opare
- National Public Health and Reference Laboratory, Ghana Health Service, Ministry of Health, Korle-Bu, Accra, Ghana
| | - Ernest Akyereko
- Disease Surveillance Department, Ghana Health Service, Ministry of Health, Accra, Ghana
| | - Keren Attiku
- Department of Virology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Ewurabena Oduma Duker
- Department of Virology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Miriam Eshun
- Department of Virology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Bismarck Banahene Boahene
- Department of Virology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Emmanuel Gberbi
- Department of Virology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | | | | | | | | | - Donne Ameme
- Ghana Field Epidemiology and Laboratory Training Program, Accra, Ghana
| | | | - Evangeline Obodai
- Department of Virology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
2
|
Nanteza MB, Tushabe P, Bukenya H, Namuwulya P, Kabaliisa T, Birungi M, Tibanagwa M, Ampeire I, Kakooza P, Katushabe E, Bwogi J, Bakamutumaho B, Nanyunja M, Byabamazima CR. The road to a polio-free Uganda; contribution of the Expanded Program on Immunization Laboratory (EPI-LAB) at Uganda Virus Research Institute. Afr Health Sci 2023; 23:186-196. [PMID: 38357183 PMCID: PMC10862580 DOI: 10.4314/ahs.v23i3.23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Background The control of poliomyelitis in Uganda dates back as far as 1950 and acute flaccid paralysis (AFP) surveillance has since been used as a criterion for identifying wild polioviruses. Poliovirus isolation was initially pursued through collaborative research however, in 1993, the Expanded Program on Immunization Laboratory (EPI-LAB) was established as a member of the Global Poliovirus Laboratory Network (GPLN) and spearheaded this activity at Uganda Virus Research Institute. Objectives The aim of this report is to document the progress and impact of the EPI-LAB on poliovirus eradication in Uganda. Methods Poliovirus detection and identification were achieved fundamentally through tissue culture and intra-typic differentiation of the poliovirus based on the real-time reverse transcriptase polymerase chain reaction (rRT PCR). The data obtained was entered into the national AFP database and analysed using EpiInfoTM statistical software. Results Quantitative and qualitative detection of wild and Sabin polioviruses corresponded with the polio campaigns. The WHO target indicators for AFP surveillance were achieved essentially throughout the study period. Conclusion Virological tracking coupled with attaining standard AFP surveillance indicators has been pivotal in achieving and maintaining the national wild polio-free status. Laboratory surveillance remains key in informing the certification process of polio eradication.
Collapse
Affiliation(s)
- Mary B Nanteza
- Uganda Virus Research Institute, Plot 51-59 Nakiwogo Road, P. O. Box 49, Entebbe, Uganda
| | - Phionah Tushabe
- Uganda Virus Research Institute, Plot 51-59 Nakiwogo Road, P. O. Box 49, Entebbe, Uganda
| | - Henry Bukenya
- Uganda Virus Research Institute, Plot 51-59 Nakiwogo Road, P. O. Box 49, Entebbe, Uganda
| | - Prossy Namuwulya
- Uganda Virus Research Institute, Plot 51-59 Nakiwogo Road, P. O. Box 49, Entebbe, Uganda
| | - Theopista Kabaliisa
- Uganda Virus Research Institute, Plot 51-59 Nakiwogo Road, P. O. Box 49, Entebbe, Uganda
| | - Molly Birungi
- Uganda Virus Research Institute, Plot 51-59 Nakiwogo Road, P. O. Box 49, Entebbe, Uganda
| | - Mayi Tibanagwa
- Uganda Virus Research Institute, Plot 51-59 Nakiwogo Road, P. O. Box 49, Entebbe, Uganda
| | - Immaculate Ampeire
- Ministry of Health, Government of Uganda, Plot 6, Lourdel Road, Nakasero P. O. Box 7272, Kampala, Uganda
| | - Proscovia Kakooza
- Uganda Virus Research Institute, Plot 51-59 Nakiwogo Road, P. O. Box 49, Entebbe, Uganda
| | - Edson Katushabe
- World Health Organization Office, Plot 60 Prince Charles Avenue, Kololo, Kampala
| | - Josephine Bwogi
- Uganda Virus Research Institute, Plot 51-59 Nakiwogo Road, P. O. Box 49, Entebbe, Uganda
| | - Barnabas Bakamutumaho
- Uganda Virus Research Institute, Plot 51-59 Nakiwogo Road, P. O. Box 49, Entebbe, Uganda
| | - Miriam Nanyunja
- World Health Organization AFRO, East and Southern Africa (ESA), Nairobi, 45335 Nairobi, Kenya
| | - Charles R Byabamazima
- World Health Organization AFRO, East and Southern Africa (ESA), Harare, 82-86 Enterprise Road, Highlands, P. O. Box BE 773, Belvedere, Harare, Zimbabwe
| |
Collapse
|
3
|
Polio and Its Epidemiology. Infect Dis (Lond) 2023. [DOI: 10.1007/978-1-0716-2463-0_839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
4
|
Keeren K, Böttcher S, Diedrich S. Enterovirus Surveillance (EVSurv) in Germany. Microorganisms 2021; 9:2005. [PMID: 34683328 PMCID: PMC8538599 DOI: 10.3390/microorganisms9102005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 01/22/2023] Open
Abstract
The major aim of the enterovirus surveillance (EVSurv) in Germany is to prove the absence of poliovirus circulation in the framework of the Global Polio Eradication Program (GPEI). Therefore, a free-of-charge enterovirus diagnostic is offered to all hospitals for patients with symptoms compatible with a polio infection. Within the quality proven laboratory network for enterovirus diagnostic (LaNED), stool and cerebrospinal fluid (CSF) samples from patients with suspected aseptic meningitis/encephalitis or acute flaccid paralysis (AFP) are screened for enterovirus (EV), typing is performed in all EV positive sample to exclude poliovirus infections. Since 2006, ≈200 hospitals from all 16 German federal states have participated annually. On average, 2500 samples (70% stool, 28% CSF) were tested every year. Overall, the majority of the patients studied are children <15 years. During the 15-year period, 53 different EV serotypes were detected. While EV-A71 was most frequently detected in infants, E30 dominated in older children and adults. Polioviruses were not detected. The German enterovirus surveillance allows monitoring of the circulation of clinically relevant serotypes resulting in continuous data about non-polio enterovirus epidemiology.
Collapse
Affiliation(s)
- Kathrin Keeren
- Secretary of the National Commission for Polio Eradication in Germany, Robert Koch Institute, 13353 Berlin, Germany;
| | - Sindy Böttcher
- National Reference Centre for Poliomyelitis and Enteroviruses, Robert Koch Institute, 13353 Berlin, Germany;
| | | | - Sabine Diedrich
- National Reference Centre for Poliomyelitis and Enteroviruses, Robert Koch Institute, 13353 Berlin, Germany;
| |
Collapse
|
5
|
Sun H, Harrington C, Gerloff N, Mandelbaum M, Jeffries-Miles S, Apostol LNG, Valencia MALD, Shaukat S, Angez M, Sharma DK, Nalavade UP, Pawar SD, Pukuta Simbu E, Andriamamonjy S, Razafindratsimandresy R, Vega E. Validation of a redesigned pan-poliovirus assay and real-time PCR platforms for the global poliovirus laboratory network. PLoS One 2021; 16:e0255795. [PMID: 34358268 PMCID: PMC8345876 DOI: 10.1371/journal.pone.0255795] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/25/2021] [Indexed: 11/19/2022] Open
Abstract
Surveillance and detection of polioviruses (PV) remain crucial to monitoring eradication progress. Intratypic differentiation (ITD) using the real-time RT-PCR kit is key to the surveillance workflow, where viruses are screened after cell culture isolation before a subset are verified by sequencing. The ITD kit is a series of real-time RT-PCR assays that screens cytopathic effect (CPE)-positive cell cultures using the standard WHO method for virus isolation. Because ITD screening is a critical procedure in the poliovirus identification workflow, validation of performance of real-time PCR platforms is a core requirement for the detection of poliovirus using the ITD kit. In addition, the continual update and improvement of the ITD assays to simplify interpretation in all platforms is necessary to ensure that all real-time machines are capable of detecting positive real-time signals. Four platforms (ABI7500 real-time systems, Bio-Rad CFX96, Stratagene MX3000P, and the Qiagen Rotor-Gene Q) were validated with the ITD kit and a redesigned poliovirus probe. The poliovirus probe in the real-time RT-PCR pan-poliovirus (PanPV) assay was re-designed with a double-quencher (Zen™) to reduce background fluorescence and potential false negatives. The updated PanPV probe was evaluated with a panel consisting of 184 polioviruses and non-polio enteroviruses. To further validate the updated PanPV probe, the new assay was pilot tested in five Global Polio Laboratory Network (GPLN) laboratories (Madagascar, India, Philippines, Pakistan, and Democratic Republic of Congo). The updated PanPV probe performance was shown to reduce background fluorescence and decrease the number of false positives compared to the standard PanPV probe.
Collapse
Affiliation(s)
- Hong Sun
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Chelsea Harrington
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Nancy Gerloff
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Mark Mandelbaum
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Stacey Jeffries-Miles
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | | | | | | | - Mehar Angez
- National Institute of Health, Islamabad, Pakistan
| | | | | | | | - Elisabeth Pukuta Simbu
- National Institute of Biomedical Research, Kinshasa, Democratic Republic of the Congo, Congo
| | | | | | - Everardo Vega
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| |
Collapse
|
6
|
González MM, Fonseca MC, Rodríguez CA, Giraldo AM, Vila JJ, Castaño JC, Padilla L, Sarmiento L. Environmental Surveillance of Polioviruses in Armenia, Colombia before Trivalent Oral Polio Vaccine Cessation. Viruses 2019; 11:E775. [PMID: 31450757 PMCID: PMC6783851 DOI: 10.3390/v11090775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/17/2019] [Accepted: 08/18/2019] [Indexed: 11/16/2022] Open
Abstract
Although acute flaccid paralysis (AFP) surveillance is the "gold standard" for detecting cases of polio, environmental surveillance can provide supplementary information in the absence of paralytic poliomyelitis cases. This study aimed to detect the introduction and/or circulation of wild poliovirus or vaccine-derived polioviruses (VDPV) in wastewater, covering a significant population of Armenia, Colombia, before trivalent oral polio vaccine (OPV) cessation. Between March and September 2015, 24 wastewater samples were collected from eight study sites in eight communes of Armenia, Colombia. Virus detection and characterization were performed using both cell culture (i.e., RD or L20B cells) and RT-PCR. Polioviruses were isolated in 11 (45.8%) of 24 wastewater samples. All isolates were identified as Sabin strains (type 1 = 9, type 3 = 2) by intratypic differentiation. Type 2 poliovirus was not detected in any of the samples. No wild poliovirus or VDPV was detected among the isolates. Non-polio enterovirus was identified in 8.3% (2/24) of the samples. This study revealed the excretion of Sabin poliovirus from OPV-immunized individuals, as well as the absence of VDPV and wild poliovirus in wastewaters of Armenia, Colombia. This confirms that environmental surveillance is an effective method, as an additional support to AFP surveillance, to monitor poliovirus during the OPV-to-IPV (inactivated polio vaccine) transition period.
Collapse
Affiliation(s)
- María Mercedes González
- Center of Biomedical Research, Faculty of Health Sciences, Universidad del Quindío, Armenia 630003, Colombia.
| | - Magile C Fonseca
- Enterovirus Laboratory, Department of Virology, Pedro Kourí Institute of Tropical Medicine, Havana 11400, Cuba
| | - Carlos Andrés Rodríguez
- Center of Biomedical Research, Faculty of Health Sciences, Universidad del Quindío, Armenia 630003, Colombia
| | - Alejandra María Giraldo
- Center of Biomedical Research, Faculty of Health Sciences, Universidad del Quindío, Armenia 630003, Colombia
| | - José Joaquín Vila
- Center of Biomedical Research, Faculty of Health Sciences, Universidad del Quindío, Armenia 630003, Colombia
| | - Jhon Carlos Castaño
- Center of Biomedical Research, Faculty of Health Sciences, Universidad del Quindío, Armenia 630003, Colombia
| | - Leonardo Padilla
- Center of Biomedical Research, Faculty of Health Sciences, Universidad del Quindío, Armenia 630003, Colombia
| | - Luis Sarmiento
- Department of Clinical Sciences, Skåne University Hospital, Lund University, Malmo 21428, Sweden.
| |
Collapse
|
7
|
Sadeuh-Mba SA, Kavunga-Membo H, Joffret ML, Yogolelo R, Endegue-Zanga MC, Bessaud M, Njouom R, Muyembe-Tamfu JJ, Delpeyroux F. Genetic landscape and macro-evolution of co-circulating Coxsackieviruses A and Vaccine-derived Polioviruses in the Democratic Republic of Congo, 2008-2013. PLoS Negl Trop Dis 2019; 13:e0007335. [PMID: 31002713 PMCID: PMC6505894 DOI: 10.1371/journal.pntd.0007335] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/06/2019] [Accepted: 03/27/2019] [Indexed: 02/06/2023] Open
Abstract
Enteroviruses (EVs) are among the most common viruses infecting humans worldwide
but only a few Non-Polio Enterovirus (NPEV) isolates have been characterized in
the Democratic Republic of Congo (DR Congo). Moreover, circulating
vaccine-derived polioviruses (PVs) [cVDPVs] isolated during multiple outbreaks
in DR Congo from 2004 to 2018 have been characterized so far only by the
sequences of their VP1 capsid coding gene. This study was carried to i)
investigate the circulation and genetic diversity of NPEV and polio vaccine
isolates recovered from healthy children and Acute Flaccid Paralysis (AFP)
patients, ii) evaluate the occurrence of genetic recombination among EVs
belonging to the Enterovirus C species (including PVs) and iii)
identify the virological factors favoring multiple emergences of cVDPVs in DR
Congo. The biological material considered in this study included i) a collection
of 91 Sabin-like PVs, 54 cVDPVs and 150 NPEVs isolated from AFP patients between
2008 and 2012 in DR Congo and iii) a collection of 330 stool specimens collected
from healthy children in 2013 in the Kasai Oriental and Maniema provinces of DR
Congo. Studied virus isolates were sequenced in four distinct sub-genomic
regions 5’-UTR, VP1, 2CATPase and 3Dpol. Resulting
sequences were compared through comparative phylogenetic analyses. Virus
isolation showed that 19.1% (63/330) healthy children were infected by EVs
including 17.9% (59/330) of NPEVs and 1.2% (4/330) of type 3 Sabin-like PVs.
Only one EV-C type, EV-C99 was identified among the NPEV collection from AFP
patients whereas 27.5% of the 69 NPEV isolates typed in healthy children
belonged to the EV-C species: CV-A13 (13/69), A20 (5/69) and A17 (1/69).
Interestingly, 50 of the 54 cVDPVs featured recombinant genomes containing
exogenous sequences in at least one of the targeted non-structural regions of
their genomes: 5’UTR, 2CATPase and 3Dpol. Some of these
non-vaccine sequences of the recombinant cVDPVs were strikingly related to
homologous sequences from co-circulating CV-A17 and A20 in the
2CATPase region as well as to those from co-circulating CV-A13,
A17 and A20 in the 3Dpol region. This study provided the first
evidence uncovering CV-A20 strains as major recombination partners of PVs. High
quality AFP surveillance, sensitive environmental surveillance and efficient
vaccination activities remain essential to ensure timely detection and efficient
response to recombinant cVDPVs outbreaks in DR Congo. Such needs are valid for
any epidemiological setting where high frequency and genetic diversity of
Coxsackieviruses A13, A17 and A20 provide a conducive viral ecosystem for the
emergence of virulent recombinant cVDPVs. The strategy of the Global Polio Eradication Initiative is based on the
surveillance of patients suffering from Acute Flaccid Paralysis (AFP) and mass
vaccination with live-attenuated vaccine strains of polioviruses (PVs) in
endemic areas. However, vaccine strains of PVs can circulate and replicate for a
long time when the vaccine coverage of the population is low. Such prolonged
circulation and replication of vaccine strains of PVs can result to the
emergence of circulating vaccine-derived polioviruses [cVDPVs] that are as
virulent as wild PVs. In this study, we performed the molecular characterization
of a large collection of 377 virus isolates recovered from paralyzed patients
between 2008 and 2012 in DR Congo and healthy children in 2013 in the Kasai
Oriental and Maniema provinces of DR Congo. We found that the genetic diversity
of enteroviruses of the species Enterovirus C is more important
than previously reported. Interestingly, 50 of the 54 cVDPVs featured
recombinant genomes containing exogenous sequences of the 2C ATPase and/or 3D
polymerase coding genes acquired from co-circulating Coxsackieviruses A13, A17
and A20. Coxsackieviruses A20 strains were identified for the first time as
major partners of genetic recombination with co-circulating live-attenuated
polio vaccine strains. Our findings highlight the need to reinforce and maintain high quality
surveillance of PVs and efficient immunization activities in order to ensure
early detection and control of emerging cVDPVs in all settings where high
frequency and diversity of Coxsackieviruses A13, A17 and A20 have been
documented.
Collapse
Affiliation(s)
- Serge Alain Sadeuh-Mba
- Virology Service, Centre Pasteur of Cameroon, Yaounde, Centre region,
Cameroon
- * E-mail: ,
| | - Hugo Kavunga-Membo
- Virology Department, Institut National de Recherche Biomédicale,
Kinshasa, Democratic Republic of Congo
| | - Marie-Line Joffret
- Biology of Enteric Viruses Unit, Institut Pasteur, Paris,
France
- INSERM U994 Unit, INSERM, Paris, France
| | - Riziki Yogolelo
- Virology Department, Institut National de Recherche Biomédicale,
Kinshasa, Democratic Republic of Congo
| | | | - Maël Bessaud
- Biology of Enteric Viruses Unit, Institut Pasteur, Paris,
France
- INSERM U994 Unit, INSERM, Paris, France
| | - Richard Njouom
- Virology Service, Centre Pasteur of Cameroon, Yaounde, Centre region,
Cameroon
| | | | - Francis Delpeyroux
- Biology of Enteric Viruses Unit, Institut Pasteur, Paris,
France
- INSERM U994 Unit, INSERM, Paris, France
| |
Collapse
|
8
|
van Hoorebeke C, Huang C, Leary S, Holubar M, Altamirano J, Halpern MS, Sommer M, Maldonado Y. Lab Protocol Paper: Use of a High-throughput, Multiplex Reverse-transcription Quantitative Polymerase Chain Reaction Assay for Detection of Sabin Oral Polio Vaccine in Fecal Samples. Clin Infect Dis 2018; 67:S121-S126. [PMID: 30376092 PMCID: PMC6206103 DOI: 10.1093/cid/ciy648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background Global polio eradication efforts rely in part on molecular methods of detecting polioviruses, both wild and vaccine strains, from human and environmental samples. Previous assays used for detection of Sabin oral polio vaccine (OPV) in fecal samples have been labor and time intensive and vary in their sensitivity and specificity. Methods We developed a high-throughput, multiplex reverse-transcription quantitative polymerase chain reaction assay able to detect all 3 OPV strains in fecal samples. The assay used a KingFisher Duo Prime system for viral RNA isolation and extraction. Positive samples were retested and Sanger sequenced for verification of Sabin serotype identity. Results The 95% lower limit of detection was determined to be 3 copies per reaction for Sabin 1 and 3 and 4 copies per reaction for Sabin 2, with no cross-reactivity between the 3 serotypes and their primers. A total of 554 samples (3.6%) were positive, with 304 positive samples (54.9%) containing >1 serotype. Of the positive samples, 476 (85.9%) contained enough RNA to be sequenced, and of these all sequences were Sabin serotypes. The previous assay we used could process 48 samples in a 10-hour period, whereas the new assay processed >100 samples in 6 hours. Conclusions The new high-throughput, multiplex reverse-transcription quantitative polymerase chain reaction assay allowed for sensitive and specific detection of OPV serotypes while greatly decreasing sample handling and processing time. We were able to sequence 72.4% of the 210 positive samples in the cycle threshold range of 35-37.
Collapse
Affiliation(s)
| | | | - Sean Leary
- Stanford University School of Medicine, California
| | | | | | | | | | | |
Collapse
|
9
|
Quantitative multiplex one-step RT-PCR assay for identification and quantitation of Sabin strains of poliovirus in clinical and environmental specimens. J Virol Methods 2018; 259:74-80. [PMID: 29920299 DOI: 10.1016/j.jviromet.2018.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 11/24/2022]
Abstract
An improved quantitative multiplex one-step RT-PCR (qmosRT-PCR) for simultaneous identification and quantitation of all three serotypes of poliovirus is described. It is based on using serotype-specific primers and fluorescent TaqMan oligonucleotide probes. The assay can be used for high-throughput screening of samples for the presence of poliovirus, poliovirus surveillance and for evaluation of virus shedding by vaccine recipients in clinical trials to assess mucosal immunity. It could replace conventional methods based on cell culture virus isolation followed by serotyping. The assay takes only few hours, and was found to be simple, specific, sensitive and has large quantitative linearity range. In addition, the method could be used as readout in PCR-based poliovirus titration and neutralization assays.
Collapse
|
10
|
Diagnostic Assay Development for Poliovirus Eradication. J Clin Microbiol 2018; 56:JCM.01624-17. [PMID: 29212703 DOI: 10.1128/jcm.01624-17] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 12/01/2017] [Indexed: 02/07/2023] Open
Abstract
With poliovirus eradication nearing, few pockets of active wild poliovirus (WPV) transmission remain in the world. Intratypic differentiation (ITD) plays a crucial part in laboratory surveillance as the molecular detection method that can identify and distinguish wild and vaccine-like polioviruses isolated from acute flaccid paralysis cases or environmental sources. The need to detect new variants of WPV serotype 1 (WPV1) and the containment of all serotype 2 polioviruses (PV2) in 2015 required changes to the previous version of the method. The ITD version 5.0 is a set of six real-time reverse transcription-PCR (rRT-PCR) assays that serve as accurate diagnostic tools to easily detect and differentiate PV serotypes and genotypes. We describe the creation and properties of quantitation standards, including 16 control RNA transcripts and nine plaque-isolated viruses. All ITD rRT-PCR assays were validated using these standards, and the limits of detection were determined for each assay. We designed and pilot tested two new assays targeting recently circulating WPV1 genotypes and all PV2 viruses. The WPV1 assay had 99.1% specificity and 100% sensitivity, and the PV2 assay had 97.7% specificity and 92% sensitivity. Before proceeding to the next step in the global poliovirus eradication program, we needed to gain a better understanding of the performance of the ITD 5.0 suite of molecular assays and their limits of detection and specificities. The findings and conclusions in this evaluation serve as building blocks for future development work.
Collapse
|
11
|
Gosert R, Heininger U, Hirsch HH. Enterovirus detection in patients with acute gastroenteritis in Switzerland. J Med Virol 2018; 90:685-691. [PMID: 29236304 DOI: 10.1002/jmv.25005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 11/30/2017] [Indexed: 01/21/2023]
Abstract
Acute gastroenteritis (GE) has a major impact on morbidity and mortality worldwide, yet comprehensive data regarding infectious agents including enteroviruses are scarce. We hypothesized that enteroviruses constitute a significant cause of acute GE. We analyzed 677 stool samples from 504 patients, which had been submitted for suspected infectious GE. 0.2 mL of stool suspension was extracted using the Abbott m2000sp robot and analysed by multiplex nucleic acid testing (NAT) using the Luminex xTAG gastrointestinal pathogen panel (GPP) as well as by specific NATs detecting enteroviruses and polioviruses. Median age of the patients was 6.6 years (IQR 1.1-50.6; pediatric <18 years). 292 of 677 (43%) samples were positive for at least one pathogen. Enterovirus was detected in 5.3% (36/677) as sole pathogen (67%), and more frequently in children (P = 0.0054). Only rotavirus (18.6%) and norovirus (12.1%) were more frequent. Clostridium difficile and Campylobacter jejuni were detected in 5.5% and 2.2% of stools, respectively. Adenovirus, E. coli O157, Salmonella, Shiga toxin-producing E. coli (STEC), Shigella, Giardia lamblia, Cryptosporidium, and Entamoeba histolytica were rare (<1% of samples). Vibrio cholerae, Yersinia enterocolitica, enterotoxigenic E. coli (ETEC) and poliovirus were not detected. Thus, non-polio enteroviruses are the third most frequent pathogen in acute GE suggesting that enteroviruses may play an important role in GE even in developed, industrial health care settings.
Collapse
Affiliation(s)
- Rainer Gosert
- Division of Infection Diagnostics, Department Biomedicine - Haus Petersplatz, University of Basel, Basel, Switzerland
| | - Ulrich Heininger
- University of Basel Children's Hospital, Pediatric Infectious Diseases and Vaccinology, Basel, Switzerland
| | - Hans H Hirsch
- Division of Infection Diagnostics, Department Biomedicine - Haus Petersplatz, University of Basel, Basel, Switzerland.,Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
12
|
Zhang X, Qin C, Li W, Zheng Z, Wang H, Cui Z. Isolation and characterization of a highly evolved type 3 vaccine-derived poliovirus in China. Virus Res 2017; 238:179-182. [PMID: 28669764 DOI: 10.1016/j.virusres.2017.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 06/22/2017] [Accepted: 06/22/2017] [Indexed: 10/19/2022]
Abstract
In this study, we report the identification and characterization of a highly evolved type 3 vaccine-derived poliovirus (VDPV) strain designated as WIV14, isolated in 2014 from a 4-year-old child suspected of having an enteroviral infection in China. Complete genome sequence of WIV14 revealed multiple nucleotide substitutions when compared with the attenuated poliovirus (PV) Sabin 3, including the reversion of three major attenuation sites to wild type. From the nucleotide divergence for the P1/capsid region, we estimated that the evolution time of WIV14 was more than 7 years, indicating the possible long time of replication. WIV14 strain seemed to have differences in biological characteristics compared with attenuated PV strains, such as being non-temperature-sensitive and producing large plaques. The current isolation of a highly divergent type 3 VDPV gives an idea of the risk of emergent VDPV strains, and emphasizes the importance of maintaining high vaccination coverage and herd immunity against PVs in China.
Collapse
Affiliation(s)
- Xiaowei Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Chong Qin
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Wei Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Zhenhua Zheng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Hanzhong Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Zongqiang Cui
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| |
Collapse
|
13
|
Molecular Characterization of Polio from Environmental Samples: ISSP, The Israeli Sewage Surveillance Protocol. Methods Mol Biol 2016; 1387:55-107. [PMID: 26983731 DOI: 10.1007/978-1-4939-3292-4_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Polioviruses are enteric viruses that cause paralytic poliomyelitis in less than 0.5 % of infections and are asymptomatic in >90 % infections of naïve hosts. Environmental surveillance monitors polio in populations rather than in individuals. When this very low morbidity to infection ratio, drops drastically in highly vaccinated populations, environmental surveillance employing manual or automatic sampling coupled with molecular analysis carried out in well-equipped central laboratories becomes the surveillance method of choice since polioviruses are excreted by infected individuals regardless of whether or not the infection is symptomatic. This chapter describes a high throughput rapid turn-around time method for molecular characterization of polioviruses from sewage. It is presented in five modules: (1) Sewage collection and concentration of the viruses in the sewage; (2) Cell cultures for identification of virus in the concentrated sewage; (3) Nucleic acid extractions directly from sewage and from tissue cultures infected with aliquots of concentrated sewage; (4) Nucleic Acid Amplification for poliovirus serotype identification and intratypic differentiation (discriminating wild and vaccine derived polioviruses form vaccine strains); and (5) Molecular characterization of viral RNA by qRT-PCR, TR-PCR, and Sequence analysis. Monitoring silent or symptomatic transmission of vaccine-derived polioviruses or wild polioviruses is critical for the endgame of poliovirus eradication. We present methods for adapting standard kits and validating the changes for this purpose based on experience gained during the recent introduction and sustained transmission of a wild type 1 poliovirus in Israel in 2013 in a population with an initial IPV vaccine coverage >90 %.
Collapse
|
14
|
Sharma DK, Nalavade UP, Deshpande JM. Real-time reverse transcription-polymerase chain reaction assays for identification of wild poliovirus 1 & 3. Indian J Med Res 2016; 142:471-8. [PMID: 26609040 PMCID: PMC4683833 DOI: 10.4103/0971-5916.169216] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Background & objectives: The poliovirus serotype identification and intratypic differentiation by real-time reverse transcription-polymerase chain reaction (rRT-PCR) assay is suitable for serotype mixtures but not for intratypic mixtures of wild and vaccine poliovirus strains. This study was undertaken to develop wild poliovirus 1 and 3 (WPV1 and WPV3) specific rRT-PCR assays for use. Methods: Specific primers and probes for rRT-PCR were designed based on VP1 sequences of WPV1 and WPV3 isolated in India since 2000. The specificity of the rRT-PCR assays was evaluated using WPV1 and WPV3 of different genetic lineages, non-polio enteroviruses (NPEVs) and mixtures of wild/wild and wild/Sabin vaccine strains. The sensitivity of the assays was determined by testing serial 10-fold dilutions of wild poliovirus 1 and 3 stock suspensions of known titre. Results: No cross-reactivity with Sabin strains, intertypic wild poliovirus isolates or 27 types of NPEVs across all the four Enterovirus species was found for both the wild poliovirus 1 and 3 rRT-PCR assays. All WPV1 and WPV3 strains isolated since 2000 were successfully amplified. The rRT-PCR assays detected 104.40CCID50/ml of WPV1 and 104.00CCID50/ml of WPV3, respectively either as single isolate or mixture with Sabin vaccine strains or intertypic wild poliovirus. Interpretation & conclusions: rRT-PCR assays for WPV1 and WPV3 have been validated to detect all the genetic variations of the WPV1 and WPV3 isolated in India for the last decade. When used in combination with the current rRT-PCR assay testing was complete for confirmation of the presence of wild poliovirus in intratypic mixtures.
Collapse
|
15
|
Gumede N, Coulibaly SO, Yahaya AA, Ndihokubwayo JB, Nsubuga P, Okeibunor J, Dosseh A, Salla M, Mihigo R, Mkanda P, Byabamazima C. Polio Eradication Initiative (PEI) contribution in strengthening public health laboratories systems in the African region. Vaccine 2016; 34:5164-5169. [PMID: 27646028 PMCID: PMC7115515 DOI: 10.1016/j.vaccine.2016.05.055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 05/11/2016] [Indexed: 11/18/2022]
Abstract
BACKGROUND The laboratory has always played a very critical role in diagnosis of the diseases. The success of any disease programme is based on a functional laboratory network. Health laboratory services are an integral component of the health system. Efficiency and effectiveness of both clinical and public health functions including surveillance, diagnosis, prevention, treatment, research and health promotion are influenced by reliable laboratory services. The establishment of the African Regional polio laboratory for the Polio Eradication Initiative (PEI) has contributed in supporting countries in their efforts to strengthen laboratory capacity. On the eve of the closing of the program, we have shown through this article, examples of this contribution in two countries of the African region: Côte d'Ivoire and the Democratic Republic of Congo. METHODS Descriptive studies were carried out in Côte d'Ivoire (RCI) and Democratic Republic of Congo (DRC) from October to December 2014. Questionnaires and self-administered and in-depth interviews and group discussions as well as records and observation were used to collect information during laboratory visits and assessments. RESULTS The PEI financial support allows to maintain the majority of the 14 (DRC) and 12 (RCI) staff involved in the polio laboratory as full or in part time members. Through laboratory technical staff training supported by the PEI, skills and knowledge were gained to reinforce laboratories capacity and performance in quality laboratory functioning, processes and techniques such as cell culture. In the same way, infrastructure was improved and equipment provided. General laboratory quality standards, including the entire laboratory key elements was improved through the PEI accreditation process. CONCLUSION The Polio Eradication Initiative (PEI) is a good example of contribution in strengthening public health laboratories systems in the African region. It has established strong Polio Laboratory network that contributed to the strengthening of capacities and its expansion to surveillance of other viral priority diseases such as measles, yellow fever, Influenza, MERS-CoV and Ebola. This could serve as lesson and good example of laboratory based surveillance to improving diseases prevention, detection and control in our middle and low income countries as WHO and partners are heading to polio eradication in the world.
Collapse
Affiliation(s)
- Nicksy Gumede
- World Health Organization Regional Office for Africa, Brazzaville, Congo.
| | | | - Ali Ahmed Yahaya
- World Health Organization Regional Office for Africa, Brazzaville, Congo
| | | | | | - Joseph Okeibunor
- World Health Organization Regional Office for Africa, Brazzaville, Congo
| | - Annick Dosseh
- World Health Organization Intercountry Support Office, Ouagadougou, Burkina Faso
| | - Mbaye Salla
- World Health Organization Regional Office for Africa, Brazzaville, Congo
| | - Richard Mihigo
- World Health Organization Regional Office for Africa, Brazzaville, Congo
| | - Pascal Mkanda
- World Health Organization Regional Office for Africa, Brazzaville, Congo
| | - Charles Byabamazima
- Expanded Program on Immunization, WHO Regional Office for Africa, Inter-Country Support Team, Harare, Zimbabwe
| |
Collapse
|
16
|
Sharma DK, Nalavade UP, Varose SY, Deshpande JM. Vaccine-Derived Polioviruses Not Detected by Global Surveillance Screening Assay. Emerg Infect Dis 2016; 21:1880-1. [PMID: 26402584 PMCID: PMC4593449 DOI: 10.3201/eid2110.150702] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
17
|
de Oliveira Pereira JS, da Silva LR, de Meireles Nunes A, de Souza Oliveira S, da Costa EV, da Silva EE. Environmental Surveillance of Polioviruses in Rio de Janeiro, Brazil, in Support to the Activities of Global Polio Eradication Initiative. FOOD AND ENVIRONMENTAL VIROLOGY 2016; 8:27-33. [PMID: 26538420 PMCID: PMC4752579 DOI: 10.1007/s12560-015-9221-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 10/26/2015] [Indexed: 05/29/2023]
Abstract
Wild polioviruses still remain endemic in three countries (Afghanistan, Pakistan, and Nigeria) and re-emergency of wild polio has been reported in previously polio-free countries. Environmental surveillance has been used as a supplementary tool in monitoring the circulation of wild poliovirus (PVs) and/or vaccine-derived PVs even in the absence of acute flaccid paralysis cases. This study aimed to monitor the presence of polioviruses in wastewater samples collected at one wastewater treatment plant located in the municipality of Rio de Janeiro, Brazil. From December 2011 to June 2012 and from September to December 2012, 31 samples were collected and processed. RD and L20B cell cultures were able to isolate PVs and non-polio enteroviruses in 27/31 samples. Polioviruses were isolated in eight samples (type 1 Sabin = 1, type 2 Sabin = 5, and type 3 Sabin = 2). Vaccine-derived polioviruses were not detected nor evidence of recombination with other PVs or non-polio enterovirus serotypes were observed among the isolates. The Sabin-related serotypes 2 and 3 presented nucleotide substitutions in positions associated with the neurovirulent phenotype at the 5'-UTR. Changes in important Amino acid residues at VP1 were also observed in the serotypes 2 and 3. Environmental surveillance has been used successfully in monitoring the circulation of PVs and non-polio enteroviruses and it is of crucial importance in the final stages of the WHO global polio eradication initiative. Our results show the continuous circulation of Sabin-like PVs and non-polio enteroviruses in the analyzed area during the study period.
Collapse
Affiliation(s)
| | - Lidiane Rodrigues da Silva
- Enterovirus Laboratory, Oswaldo Cruz Institute, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, RJ, CEP 21040-360, Brazil
| | - Amanda de Meireles Nunes
- Enterovirus Laboratory, Oswaldo Cruz Institute, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, RJ, CEP 21040-360, Brazil
| | - Silas de Souza Oliveira
- Enterovirus Laboratory, Oswaldo Cruz Institute, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, RJ, CEP 21040-360, Brazil
| | - Eliane Veiga da Costa
- Enterovirus Laboratory, Oswaldo Cruz Institute, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, RJ, CEP 21040-360, Brazil
| | - Edson Elias da Silva
- Enterovirus Laboratory, Oswaldo Cruz Institute, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, RJ, CEP 21040-360, Brazil.
| |
Collapse
|
18
|
Burns CC, Kilpatrick DR, Iber JC, Chen Q, Kew OM. Molecular Properties of Poliovirus Isolates: Nucleotide Sequence Analysis, Typing by PCR and Real-Time RT-PCR. Methods Mol Biol 2016; 1387:177-212. [PMID: 26983735 DOI: 10.1007/978-1-4939-3292-4_9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Virologic surveillance is essential to the success of the World Health Organization initiative to eradicate poliomyelitis. Molecular methods have been used to detect polioviruses in tissue culture isolates derived from stool samples obtained through surveillance for acute flaccid paralysis. This chapter describes the use of realtime PCR assays to identify and serotype polioviruses. In particular, a degenerate, inosine-containing, panpoliovirus (panPV) PCR primer set is used to distinguish polioviruses from NPEVs. The high degree of nucleotide sequence diversity among polioviruses presents a challenge to the systematic design of nucleic acid-based reagents. To accommodate the wide variability and rapid evolution of poliovirus genomes, degenerate codon positions on the template were matched to mixed-base or deoxyinosine residues on both the primers and the TaqMan™ probes. Additional assays distinguish between Sabin vaccine strains and non-Sabin strains. This chapter also describes the use of generic poliovirus specific primers, along with degenerate and inosine-containing primers, for routine VP1 sequencing of poliovirus isolates. These primers, along with nondegenerate serotype-specific Sabin primers, can also be used to sequence individual polioviruses in mixtures.
Collapse
Affiliation(s)
- Cara C Burns
- Polio and Picornavirus Laboratory Branch, Division of Viral Diseases, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, 1600 Clifton Rd., NE MS G-10, Atlanta, GA, 30333, USA.
| | - David R Kilpatrick
- Polio and Picornavirus Laboratory Branch, Division of Viral Diseases, National Center for Immunizationand Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jane C Iber
- Polio and Picornavirus Laboratory Branch, Division of Viral Diseases, National Center for Immunizationand Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Qi Chen
- Polio and Picornavirus Laboratory Branch, Division of Viral Diseases, National Center for Immunizationand Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Olen M Kew
- Polio and Picornavirus Laboratory Branch, Division of Viral Diseases, National Center for Immunizationand Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
19
|
Abstract
World Health Assembly (WHA) in 1988 encouraged the member states to launch Global Polio Eradication Initiative (GPEI) (resolution WHA41.28) against "the Crippler" called poliovirus, through strong routine immunization program and intensified surveillance systems. Since its launch, global incidence of poliomyelitis has been reduced by more than 99 % and the disease squeezed to only three endemic countries (Afghanistan, Pakistan, and Nigeria) out of 125. Today, poliomyelitis is on the verge of eradication, and their etiological agents, the three poliovirus serotypes, are on the brink of extinction from the natural environment. The last case of poliomyelitis due to wild type 2 strain occurred in 1999 in Uttar Pradesh, India whereas the last paralytic case due to wild poliovirus type 3 (WPV3) was seen in November, 2012 in Yobe, Nigeria. Despite this progress, undetected circulation cannot fully rule out the eradication as most of the poliovirus infections are entirely subclinical; hence sophisticated environmental surveillance is needed to ensure the complete eradication of virus. Moreover, the vaccine virus in under-immunized communities can sometimes revert and attain wild type characteristics posing a big challenge to the program.
Collapse
Affiliation(s)
- Syed Sohail Zahoor Zaidi
- WHO Regional Reference Laboratory for Poliomyelitis, National Institute of Health, Chak Shehzad, Park Road, Islamabad, 45500, Pakistan.
| | | | - Salmaan Sharif
- WHO Regional Reference Laboratory for Poliomyelitis, National Institute of Health, Islamabad, Pakistan
| | - Muhammad Masroor Alam
- WHO Regional Reference Laboratory for Poliomyelitis, National Institute of Health, Islamabad, Pakistan
| |
Collapse
|
20
|
Kinetics of poliovirus shedding following oral vaccination as measured by quantitative reverse transcription-PCR versus culture. J Clin Microbiol 2014; 53:206-11. [PMID: 25378579 DOI: 10.1128/jcm.02406-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Amid polio eradication efforts, detection of oral polio vaccine (OPV) virus in stool samples can provide information about rates of mucosal immunity and allow estimation of the poliovirus reservoir. We developed a multiplex one-step quantitative reverse transcription-PCR (qRT-PCR) assay for detection of OPV Sabin strains 1, 2, and 3 directly in stool samples with an external control to normalize samples for viral quantity and compared its performance with that of viral culture. We applied the assay to samples from infants in Dhaka, Bangladesh, after the administration of trivalent OPV (tOPV) at weeks 14 and 52 of life (on days 0 [pre-OPV], +4, +11, +18, and +25 relative to vaccination). When 1,350 stool samples were tested, the sensitivity and specificity of the quantitative PCR (qPCR) assay were 89 and 91% compared with culture. A quantitative relationship between culture(+)/qPCR(+) and culture(-)/qPCR(+) stool samples was observed. The kinetics of shedding revealed by qPCR and culture were similar. qPCR quantitative cutoffs based on the day +11 or +18 stool samples could be used to identify the culture-positive shedders, as well as the long-duration or high-frequency shedders. Interestingly, qPCR revealed that a small minority (7%) of infants contributed the vast majority (93 to 100%) of the total estimated viral excretion across all subtypes at each time point. This qPCR assay for OPV can simply and quantitatively detect all three Sabin strains directly in stool samples to approximate shedding both qualitatively and quantitatively.
Collapse
|
21
|
Gumede N, Jorba J, Deshpande J, Pallansch M, Yogolelo R, Muyembe-Tamfum JJ, Kew O, Venter M, Burns CC. Phylogeny of imported and reestablished wild polioviruses in theDemocratic Republic of the Congo from 2006 to 2011. J Infect Dis 2014; 210 Suppl 1:S361-7. [PMID: 25316856 PMCID: PMC4303083 DOI: 10.1093/infdis/jiu375] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND The last case of polio associated with wild poliovirus (WPV) indigenous to the Democratic Republic of the Congo (DRC) was reported in 2001, marking a major milestone toward polio eradication in Africa. However, during 2006-2011, outbreaks associated with WPV type 1 (WPV1) were widespread in the DRC, with >250 reported cases. METHODS WPV1 isolates obtained from patients with acute flaccid paralysis (AFP) were compared by nucleotide sequencing of the VP1 capsid region (906 nucleotides). VP1 sequence relationships among isolates from the DRC and other countries were visualized in phylogenetic trees, and isolates representing distinct lineage groups were mapped. RESULTS Phylogenetic analysis indicated that WPV1 was imported twice in 2004-2005 and once in approximately 2006 from Uttar Pradesh, India (a major reservoir of endemicity for WPV1 and WPV3 until 2010-2011), into Angola. WPV1 from the first importation spread to the DRC in 2006, sparking a series of outbreaks that continued into 2011. WPV1 from the second importation was widely disseminated in the DRC and spread to the Congo in 2010-2011. VP1 sequence relationships revealed frequent transmission of WPV1 across the borders of Angola, the DRC, and the Congo. Long branches on the phylogenetic tree signaled prolonged gaps in AFP surveillance and a likely underreporting of polio cases. CONCLUSIONS The reestablishment of widespread and protracted WPV1 transmission in the DRC and Angola following long-range importations highlights the continuing risks of WPV spread until global eradication is achieved, and it further underscores the need for all countries to maintain high levels of poliovirus vaccine coverage and sensitive surveillance to protect their polio-free status.
Collapse
Affiliation(s)
- Nicksy Gumede
- National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Jaume Jorba
- Division of Viral Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | - Mark Pallansch
- Division of Viral Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Riziki Yogolelo
- National Institute for Biomedical Research, Kinshasa/Gombe, Democratic Republic of the Congo
| | | | - Olen Kew
- Division of Viral Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Marietjie Venter
- National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Cara C. Burns
- Division of Viral Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
22
|
Development of an efficient entire-capsid-coding-region amplification method for direct detection of poliovirus from stool extracts. J Clin Microbiol 2014; 53:73-8. [PMID: 25339406 DOI: 10.1128/jcm.02384-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Laboratory diagnosis has played a critical role in the Global Polio Eradication Initiative since 1988, by isolating and identifying poliovirus (PV) from stool specimens by using cell culture as a highly sensitive system to detect PV. In the present study, we aimed to develop a molecular method to detect PV directly from stool extracts, with a high efficiency comparable to that of cell culture. We developed a method to efficiently amplify the entire capsid coding region of human enteroviruses (EVs) including PV. cDNAs of the entire capsid coding region (3.9 kb) were obtained from as few as 50 copies of PV genomes. PV was detected from the cDNAs with an improved PV-specific real-time reverse transcription-PCR system and nucleotide sequence analysis of the VP1 coding region. For assay validation, we analyzed 84 stool extracts that were positive for PV in cell culture and detected PV genomes from 100% of the extracts (84/84 samples) with this method in combination with a PV-specific extraction method. PV could be detected in 2/4 stool extract samples that were negative for PV in cell culture. In PV-positive samples, EV species C viruses were also detected with high frequency (27% [23/86 samples]). This method would be useful for direct detection of PV from stool extracts without using cell culture.
Collapse
|
23
|
Gumede N, Lentsoane O, Burns CC, Pallansch M, de Gourville E, Yogolelo R, Muyembe-Tamfum JJ, Puren A, Schoub BD, Venter M. Emergence of vaccine-derived polioviruses, Democratic Republic of Congo, 2004-2011. Emerg Infect Dis 2014; 19:1583-9. [PMID: 24047933 PMCID: PMC3810735 DOI: 10.3201/eid1910.130028] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Polioviruses isolated from 70 acute flaccid paralysis patients from the Democratic Republic of Congo (DRC) during 2004-2011 were characterized and found to be vaccine-derived type 2 polioviruses (VDPV2s). Partial genomic sequencing of the isolates revealed nucleotide sequence divergence of up to 3.5% in the viral protein 1 capsid region of the viral genome relative to the Sabin vaccine strain. Genetic analysis identified at least 7 circulating lineages localized to specific geographic regions. Multiple independent events of VDPV2 emergence occurred throughout DRC during this 7-year period. During 2010-2011, VDPV2 circulation in eastern DRC occurred in an area distinct from that of wild poliovirus circulation, whereas VDPV2 circulation in the southwestern part of DRC (in Kasai Occidental) occurred within the larger region of wild poliovirus circulation.
Collapse
|
24
|
Hindiyeh MY, Moran-Gilad J, Manor Y, Ram D, Shulman LM, Sofer D, Mendelson E. Development and validation of a real time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) assay for investigation of wild poliovirus type 1-South Asian (SOAS) strain reintroduced into Israel, 2013 to 2014. ACTA ACUST UNITED AC 2014; 19:20710. [PMID: 24576470 DOI: 10.2807/1560-7917.es2014.19.7.20710] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In February 2013, wild poliovirus type 1 (WPV1) was reintroduced into southern Israel and resulted in continuous silent circulation in the highly immune population. As a part of the public health emergency response, a novel real time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) assay was developed, to allow for the sensitive and specific detection of the circulatingWPV1-South Asian (SOAS) strain. Specific primers and probes derived from the VP-1 region were designed, based on sequenced sewage isolates, and used to simultaneously amplify this WPV1-SOAS sequence together with bacteriophage MS-2 as internal control. High titre WPV1-SOAS stock virus was used for assay optimisation and 50 processed sewage samples collected from southern Israel and tested by reference culture based methods were used for analytical validation of the assay’s performance. The limit of detection of the multiplex qRT-PCR (SOAS/MS-2) assay was 0.1 plaque-forming unit (pfu)/reaction (20 pfu/mL) for WPV1-SOAS RNA with 100% sensitivity, specificity, positive and negative predictive values when compared to the culture based method. The turnaround time was rapid, providing results for environmental samples within 24 to 48 hours from completion of sewage processing, instead of five to seven days by culture-based analysis. Direct sewage testing by qRT-PCR assay proved to be a useful tool for rapid detection and environmental surveillance of WPV1-SOAS circulating strain during emergency response. Application of the approach for detection of WPV1-SOAS in stool samples obtained during acute flaccid paralysis (AFP) surveillance or field surveys should be further evaluated.
Collapse
Affiliation(s)
- M Y Hindiyeh
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Tel Hashomer, Israel
| | | | | | | | | | | | | |
Collapse
|
25
|
Identification of vaccine-derived polioviruses using dual-stage real-time RT-PCR. J Virol Methods 2013; 197:25-8. [PMID: 24321704 DOI: 10.1016/j.jviromet.2013.11.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 11/13/2013] [Accepted: 11/20/2013] [Indexed: 01/21/2023]
Abstract
Vaccine-derived polioviruses (VDPVs) are associated with polio outbreaks and prolonged infections in individuals with primary immunodeficiencies. VDPV-specific PCR assays for each of the three Sabin oral poliovirus vaccine (OPV) strains were developed, targeting sequences within the VP1 capsid region that are selected for during replication of OPV in the human intestine. Over 2400 Sabin-related isolates and identified 755 VDPVs were screened. Sensitivity of all assays was 100%, while specificity was 100% for serotypes 1 and 3, and 76% for serotype 2. The assays permit rapid, sensitive identification of OPV-related viruses and flag programmatically important isolates for further characterization by genomic sequencing.
Collapse
|
26
|
Direct Serotyping of Enteroviruses in Cerebrospinal Fluid of Children With Aseptic Meningitis. Jundishapur J Microbiol 2013. [DOI: 10.5812/jjm.7852] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
27
|
Razafindratsimandresy R, Joffret ML, Rabemanantsoa S, Andriamamonjy S, Heraud JM, Delpeyroux F. Reemergence of recombinant vaccine-derived polioviruses in healthy children, Madagascar. Emerg Infect Dis 2013; 19:1008-10. [PMID: 23735779 PMCID: PMC3713839 DOI: 10.3201/eid1906.130080] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
28
|
Iwai-Itamochi M, Yoshida H, Obara-Nagoya M, Horimoto E, Kurata T, Takizawa T. Development of real-time PCR to detect oral vaccine-like poliovirus and its application to environmental surveillance. J Virol Methods 2013; 195:148-55. [PMID: 24134937 DOI: 10.1016/j.jviromet.2013.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 07/31/2013] [Accepted: 10/04/2013] [Indexed: 10/26/2022]
Abstract
In order to perform environmental surveillance to track oral poliovirus vaccine-like poliovirus sensitively and conveniently, real-time PCR was developed and applied to a raw sewage concentrate. The real-time PCR method detected 0.01-0.1 TCID50 of 3 serotypes of Sabin strain specifically. The method also detected the corresponding serotypes of oral poliovirus vaccine-like poliovirus specifically, but detected neither wild poliovirus, except Mahoney for type 1 and Saukett for type 3, nor other enteric viruses, as far as examined. When real-time PCR was applied to environmental surveillance, the overall agreement rates between real-time PCR and the cell culture were 83.3% for all serotypes. Since real-time PCR has the advantages of rapid detection of viruses and minimum requirement of sampling volume as compared with ordinary cell culture, it is suitable to monitor oral poliovirus vaccine-like poliovirus in the environment, especially in areas where an oral vaccine is being replaced by an inactivated vaccine.
Collapse
Affiliation(s)
- Masae Iwai-Itamochi
- Department of Virology, Toyama Institute of Health, 17-1 Nakataikoyama, Imizu City, Toyama 939-0363, Japan
| | | | | | | | | | | |
Collapse
|
29
|
Development of poliovirus extraction method from stool extracts by using magnetic nanoparticles sensitized with soluble poliovirus receptor. J Clin Microbiol 2013; 51:2717-20. [PMID: 23698530 DOI: 10.1128/jcm.00499-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A method for extracting poliovirus (PV) from stool extracts was developed. Magnetic nanoparticles sensitized with soluble PV receptor efficiently extracted PV pseudovirus (>99% extraction) or endogenous infectious PVs (>90% extraction) from stool extracts. This method would be useful for extraction of PV from crude biological samples.
Collapse
|
30
|
Burns CC, Shaw J, Jorba J, Bukbuk D, Adu F, Gumede N, Pate MA, Abanida EA, Gasasira A, Iber J, Chen Q, Vincent A, Chenoweth P, Henderson E, Wannemuehler K, Naeem A, Umami RN, Nishimura Y, Shimizu H, Baba M, Adeniji A, Williams AJ, Kilpatrick DR, Oberste MS, Wassilak SG, Tomori O, Pallansch MA, Kew O. Multiple independent emergences of type 2 vaccine-derived polioviruses during a large outbreak in northern Nigeria. J Virol 2013; 87:4907-22. [PMID: 23408630 PMCID: PMC3624331 DOI: 10.1128/jvi.02954-12] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 02/07/2013] [Indexed: 01/15/2023] Open
Abstract
Since 2005, a large poliomyelitis outbreak associated with type 2 circulating vaccine-derived poliovirus (cVDPV2) has occurred in northern Nigeria, where immunization coverage with trivalent oral poliovirus vaccine (tOPV) has been low. Phylogenetic analysis of P1/capsid region sequences of isolates from each of the 403 cases reported in 2005 to 2011 resolved the outbreak into 23 independent type 2 vaccine-derived poliovirus (VDPV2) emergences, at least 7 of which established circulating lineage groups. Virus from one emergence (lineage group 2005-8; 361 isolates) was estimated to have circulated for over 6 years. The population of the major cVDPV2 lineage group expanded rapidly in early 2009, fell sharply after two tOPV rounds in mid-2009, and gradually expanded again through 2011. The two major determinants of attenuation of the Sabin 2 oral poliovirus vaccine strain (A481 in the 5'-untranslated region [5'-UTR] and VP1-Ile143) had been replaced in all VDPV2 isolates; most A481 5'-UTR replacements occurred by recombination with other enteroviruses. cVDPV2 isolates representing different lineage groups had biological properties indistinguishable from those of wild polioviruses, including efficient growth in neuron-derived HEK293 cells, the capacity to cause paralytic disease in both humans and PVR-Tg21 transgenic mice, loss of the temperature-sensitive phenotype, and the capacity for sustained person-to-person transmission. We estimate from the poliomyelitis case count and the paralytic case-to-infection ratio for type 2 wild poliovirus infections that ∼700,000 cVDPV2 infections have occurred during the outbreak. The detection of multiple concurrent cVDPV2 outbreaks in northern Nigeria highlights the risks of cVDPV emergence accompanying tOPV use at low rates of coverage in developing countries.
Collapse
Affiliation(s)
- Cara C Burns
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Nijst OE, Mouthaan JJ, Mekkes DR, Jusic E, van der Avoort HG, Metz B. Rapid and accurate identification of poliovirus strains used for vaccine production. J Virol Methods 2013; 189:189-95. [DOI: 10.1016/j.jviromet.2013.01.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 01/25/2013] [Accepted: 01/30/2013] [Indexed: 10/27/2022]
|
32
|
Laassri M, DiPiazza A, Bidzhieva B, Zagorodnyaya T, Chumakov K. Quantitative one-step RT-PCR assay for rapid and sensitive identification and titration of polioviruses in clinical specimens. J Virol Methods 2013; 189:7-14. [DOI: 10.1016/j.jviromet.2012.12.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 12/12/2012] [Accepted: 12/17/2012] [Indexed: 10/27/2022]
|
33
|
Sutter RW, Kew OM, Cochi SL, Aylward RB. Poliovirus vaccine—live. Vaccines (Basel) 2013. [DOI: 10.1016/b978-1-4557-0090-5.00035-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
|
34
|
|
35
|
High frequency and diversity of species C enteroviruses in Cameroon and neighboring countries. J Clin Microbiol 2012; 51:759-70. [PMID: 23254123 DOI: 10.1128/jcm.02119-12] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Human enteroviruses (HEVs) are endemic worldwide and among the most common viruses infecting humans. Nevertheless, there are very limited data on the circulation and genetic diversity of HEVs in developing countries and sub-Saharan Africa in particular. We investigated the circulation and genetic diversity of HEVs among 436 healthy children in a limited area of the far north region of Cameroon in 2008 and 2009. We also characterized the genetic biodiversity of 146 nonpolio enterovirus (NPEV) isolates obtained throughout the year 2008 from stool specimens of patients with acute flaccid paralysis (AFP) in Cameroon, Chad, and Gabon. We found a high rate of NPEV infections (36.9%) among healthy children in the far north region of Cameroon. Overall, 45 different HEV types were found among healthy children and AFP patients. Interestingly, this study uncovered a high rate of HEVs of species C (HEV-C) among all typed NPEVs: 63.1% (94/149) and 39.5% (49/124) in healthy children and AFP cases, respectively. Besides extensive circulation, the most prevalent HEV-C type, coxsackievirus A-13, featured a tremendous intratypic diversity. Africa-specific HEV lineages were discovered, including HEV-C lineages and the recently reported EV-A71 "genogroup E." Virtually all pathogenic circulating vaccine-derived polioviruses (cVDPVs) that have been fully characterized were recombinants between oral poliovaccine (OPV) strains and cocirculating HEV-C strains. The extensive circulation of diverse HEV-C types and lineages in countries where OPV is massively used constitutes a major viral factor that could promote the emergence of recombinant cVDPVs in the Central African subregion.
Collapse
|
36
|
Shaukat S, Angez M, Alam MM, Sharif S, Khurshid A, Mahmood T, Zaidi SSZ. Characterization of non-polio enterovirus isolates from acute flaccid paralysis children in Pakistan reflects a new genotype of EV-107. Virus Res 2012; 170:164-8. [DOI: 10.1016/j.virusres.2012.09.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Revised: 09/09/2012] [Accepted: 09/24/2012] [Indexed: 11/28/2022]
|
37
|
Adedeji AO, Okonko IO, Adu FD. Comparative study of molecular and antigenic characterization for intratypic differentiation (ITD) of poliovirus strains. J Med Virol 2012; 84:1975-9. [PMID: 23080505 DOI: 10.1002/jmv.23408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This study was designed to compare the sensitivity of a Sabin vaccine strain-specific PCR assay and an enzyme-linked immunosorbent assay with polyclonal cross-absorbed antisera (PAb-E) for intratypic differentiation (ITD) of polioviruses (PVs). These were used for the definitive characterization of the strains. Poliovirus strains isolated in L20B and RD cell lines were subjected to both PCR and ELISA. Both PCR and ELISA identified 3 (13.6%) out of 22 isolates, respectively as poliovirus Sabin 1. PCR identified 4 (18.2%) out of 22 isolates as poliovirus Sabin 2 and ELISA identified 2 (9.1%) out of 22 isolates as poliovirus Sabin 2. None of the two assay identified poliovirus Sabin 3. Both PCR and ELISA identified 12 (54.5%) out of 22 isolates, respectively as wild poliovirus (WPV) 1. None of the assays identified any of the isolates as WPV 2 and 3. Only PCR assay was able to identify the mixture of two poliovirus Sabin serotypes (a mixture of Sabin 1 and 2) and two mixtures of poliovirus Sabin 2 and 3. In this study, only ELISA was able to identified two invalid results. Invalid results observed in this study are of important practical implication to the emergence of vaccine-derived poliovirus. This may have epidemic potential. Hence, the two ITD assays are of paramount importance for identification of PVs. It is therefore recommended in line with WHO guideline that at least two methods be used for the ITD of poliovirus isolates, and each method should be based on a different principle (i.e., antigenic and genetic properties).
Collapse
Affiliation(s)
- A O Adedeji
- Faculty of Veterinary Medicine, Department of Veterinary Microbiology & Parasitology, University of Ibadan, Ibadan, Nigeria
| | | | | |
Collapse
|
38
|
Baba MM, Oderinde BS, Patrick PZ, Jarmai MM. Sabin and wild polioviruses from apparently healthy primary school children in northeastern Nigeria. J Med Virol 2012; 84:358-64. [PMID: 22170559 DOI: 10.1002/jmv.23184] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Despite significant success of the Global Polio Eradication Initiative (GPEI) in Nigeria, Afghanistan, India, Pakistan, wild poliovirus still occurs due to persistently high proportions of under and unimmunized children. The study aimed at determining the type of poliovirus often excreted into the environment. Four hundred nine fecal samples collected from apparently healthy school children aged 5-16 years in Borno and Adamawa States, northeastern Nigeria, were tested for poliovirus by tissue culture technique. The isolates were characterized further by intratypic differentiation testing and genetic sequencing. Three wild poliovirus type, 11 Sabin type, combination of Sabin-types 1 + 2 and 2 + 3 poliovirus, and 22 non-polio enteroviruses were obtained. The continued excretion of wild-type poliovirus among children above 5 years old vaccinated with oral polio vaccine contributes to the persistent circulation of these viruses in the environment and may limit the population immunity. However, the excreted Sabin poliovirus is capable of immunizing the unvaccinated children and promotes herd immunity. Similarly, the excretion of combination of two polio serotypes indicates the child susceptibility to the missing serotype (s) and therefore indicates an immunity gap. The common unhygienic practices in the environment could aid the spread of these viruses through oral-fecal route. Asymptomatic transmission of wild poliovirus among older oral polio vaccine-vaccinated children poses a serious threat to polio eradication program in Nigeria and therefore, environmental and serological surveillance with larger sample size are important for monitoring poliovirus circulation in Nigeria.
Collapse
Affiliation(s)
- M M Baba
- World Health Organization National/ITD Polio Laboratory, University of Maiduguri Teaching Hospital, Maiduguri, Nigeria.
| | | | | | | |
Collapse
|
39
|
Estívariz CF, Molnár Z, Venczel L, Kapusinszky B, Zingeser JA, Lipskaya GY, Kew OM, Berencsi G, Csohán A. Paralytic poliomyelitis associated with Sabin monovalent and bivalent oral polio vaccines in Hungary. Am J Epidemiol 2011; 174:316-25. [PMID: 21685412 DOI: 10.1093/aje/kwr070] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Historical records of patients with vaccine-associated paralytic poliomyelitis (VAPP) in Hungary during 1961-1981 were reviewed to assess the risk of VAPP after oral polio vaccine (OPV) administration. A confirmed VAPP case was defined as a diagnosis of paralytic poliomyelitis and residual paralysis at 60 days in a patient with an epidemiologic link to the vaccine. Archived poliovirus isolates were retested using polymerase chain reaction and sequencing of the viral protein 1 capsid region. This review confirmed 46 of 47 cases previously reported as VAPP. Three cases originally linked to monovalent OPV (mOPV) 3 and one case linked to mOPV1 presented after administration of bivalent OPV 1 + 3 (bOPV). The adjusted VAPP risk per million doses administered was 0.18 for mOPV1 (2 cases/11.13 million doses), 2.96 for mOPV3 (32 cases/10.81 million doses), and 12.82 for bOPV (5 cases/390,000 doses). Absence of protection from immunization with inactivated poliovirus vaccine or exposure to OPV virus from routine immunization and recent injections could explain the higher relative risk of VAPP in Hungarian children. In polio-endemic areas in which mOPV3 and bOPV are needed to achieve eradication, the higher risk of VAPP would be offset by the high risk of paralysis due to wild poliovirus and higher per-dose efficacy of mOPV3 and bOPV compared with trivalent OPV.
Collapse
Affiliation(s)
- Concepción F Estívariz
- Global Immunization Division, Centers for Disease Control and Prevention, Atlanta, Georgia, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Song KM, Choe YJ, Cho H, Bae GR, Lee JK. National action plan for response to poliovirus importation. Osong Public Health Res Perspect 2011; 2:65-71. [PMID: 24159453 PMCID: PMC3766906 DOI: 10.1016/j.phrp.2011.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 03/16/2011] [Accepted: 03/21/2011] [Indexed: 12/30/2022] Open
Abstract
The Division of Vaccine-Preventable Disease Control and National Immunization Program of the Korea Centers for Disease Control and Prevention has prepared a plan of action as a guide for key actions that will be taken if a poliovirus outbreak occurs in the Republic of Korea. The history of poliomyelitis and vaccination against poliovirus in the nation was reviewed and the routine surveillance procedures that are currently in place were described. The principles and specific actions for an effective response to a poliovirus outbreak were prepared. The guidelines clearly outline the actions to be taken in case of a polio outbreak. When a suspected case of poliovirus infection is reported, an immediate epidemiological investigation is to be conducted. The response to a poliovirus outbreak includes case isolation, management of potential contacts and immunization. All stakeholders are to be made aware of what key actions should be taken at each stage of the response to a poliovirus outbreak in the nation.
Collapse
Affiliation(s)
- Kyung Min Song
- Division of Vaccine Preventable Disease Control and National Immunization Program, Korea Centers for Disease Control and Prevention, Osong, Korea
| | | | | | | | | |
Collapse
|
41
|
Kilpatrick DR, Iber JC, Chen Q, Ching K, Yang SJ, De L, Mandelbaum MD, Emery B, Campagnoli R, Burns CC, Kew O. Poliovirus serotype-specific VP1 sequencing primers. J Virol Methods 2011; 174:128-30. [PMID: 21440569 DOI: 10.1016/j.jviromet.2011.03.020] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 03/17/2011] [Indexed: 11/30/2022]
Abstract
The Global Polio Laboratory Network routinely uses poliovirus-specific PCR primers and probes to determine the serotype and genotype of poliovirus isolates obtained as part of global poliovirus surveillance. To provide detailed molecular epidemiologic information, poliovirus isolates are further characterized by sequencing the ~900-nucleotide region encoding the major capsid protein, VP1. It is difficult to obtain quality sequence information when clinical or environmental samples contain poliovirus mixtures. As an alternative to conventional methods for resolving poliovirus mixtures, sets of serotype-specific primers were developed for amplifying and sequencing the VP1 regions of individual components of mixed populations of vaccine-vaccine, vaccine-wild, and wild-wild polioviruses.
Collapse
Affiliation(s)
- David R Kilpatrick
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Wassilak S, Pate MA, Wannemuehler K, Jenks J, Burns C, Chenoweth P, Abanida EA, Adu F, Baba M, Gasasira A, Iber J, Mkanda P, Williams AJ, Shaw J, Pallansch M, Kew O. Outbreak of type 2 vaccine-derived poliovirus in Nigeria: emergence and widespread circulation in an underimmunized population. J Infect Dis 2011; 203:898-909. [PMID: 21402542 PMCID: PMC3068031 DOI: 10.1093/infdis/jiq140] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 10/22/2010] [Indexed: 11/25/2022] Open
Abstract
Wild poliovirus has remained endemic in northern Nigeria because of low coverage achieved in the routine immunization program and in supplementary immunization activities (SIAs). An outbreak of infection involving 315 cases of type 2 circulating vaccine-derived poliovirus (cVDPV2; >1% divergent from Sabin 2) occurred during July 2005-June 2010, a period when 23 of 34 SIAs used monovalent or bivalent oral poliovirus vaccine (OPV) lacking Sabin 2. In addition, 21 "pre-VDPV2" (0.5%-1.0% divergent) cases occurred during this period. Both cVDPV and pre-VDPV cases were clinically indistinguishable from cases due to wild poliovirus. The monthly incidence of cases increased sharply in early 2009, as more children aged without trivalent OPV SIAs. Cumulative state incidence of pre-VDPV2/cVDPV2 was correlated with low childhood immunization against poliovirus type 2 assessed by various means. Strengthened routine immunization programs in countries with suboptimal coverage and balanced use of OPV formulations in SIAs are necessary to minimize risks of VDPV emergence and circulation.
Collapse
Affiliation(s)
- Steven Wassilak
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Ben-Dov E, Siboni N, Shapiro OH, Arotsker L, Kushmaro A. Substitution by inosine at the 3'-ultimate and penultimate positions of 16S rRNA gene universal primers. MICROBIAL ECOLOGY 2011; 61:1-6. [PMID: 20614115 DOI: 10.1007/s00248-010-9718-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 06/23/2010] [Indexed: 05/29/2023]
Abstract
Universal 16S rRNA gene primers (8F and 518R) bearing inosine substitutions at either the 3'-ultimate or the 3'-ultimate and penultimate base positions were exploited for the first time to study the bacterial community associated with coral polymicrobial Black Band Disease (BBD). Inosine-modified universal primer pairs display some shifting in the composition of 16S rRNA gene libraries, as well as expanding the observed diversity of a BBD bacterial community at the family/class level. Possible explanations for the observed shifts are discussed. These results thus point to the need for adopting multiple approaches in designing 16S rRNA universal primers for PCR amplification and subsequent construction of 16S rRNA gene libraries or pyrosequencing in the exploration of complex microbial communities.
Collapse
Affiliation(s)
- Eitan Ben-Dov
- Department of Biotechnology Engineering, Ben-Gurion University of the Negev, PO Box 653, Be'er Sheva, 84105, Israel
| | | | | | | | | |
Collapse
|
44
|
Vidal-Domínguez ME, Perez-Cenci M, Salerno GL, Berón CM. Genetic diversity of cry gene sequences of Bacillus thuringiensis strains analyzed by denaturing gradient gel electrophoresis. Curr Microbiol 2010; 62:866-70. [PMID: 21046400 DOI: 10.1007/s00284-010-9776-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 09/08/2010] [Indexed: 11/28/2022]
Abstract
PCR has been widely used to identify cry-type genes, to determine their distribution, to detect new such genes and to predict insecticidal activities. We describe here a molecular approach to analyze the genetic diversity of B. thuringiensis cry-like genes based on denaturing gradient gel electrophoresis (DGGE). This analysis demonstrated that different B. thuringiensis isolates can be distinguished according to its PCR-DGGE profile of cry-like genes. Identification of the resolvable DNA fragments was easy to accomplish by DNA sequencing, which was confirmed in this work. Importantly, the strategy allowed the identification of unknown B. thuringiensis cry-like sequences present in a single strain that remained cryptic after PCR analysis using degenerate primers. The method developed in this work contributes to the availability of molecular techniques for both B. thuringiensis strains and cry-like genes identification and discovery.
Collapse
Affiliation(s)
- María E Vidal-Domínguez
- Centro de Estudios de Biodiversidad y Biotecnología, Centro de Investigaciones Biológicas, Fundación para Investigaciones Biológicas Aplicadas (CEBB-CIB FIBA), C.C. 1348, 7600, Mar del Plata, Argentina
| | | | | | | |
Collapse
|
45
|
Optimization of PCR amplification for sensitive capture of Methanopyrus isoleucyl-tRNA synthetase gene in environmental samples. ANN MICROBIOL 2010. [DOI: 10.1007/s13213-010-0097-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
46
|
Kapusinszky B, Molnár Z, Szomor KN, Berencsi G. Molecular characterization of poliovirus isolates from children who contracted vaccine-associated paralytic poliomyelitis (VAPP) following administration of monovalent type 3 oral poliovirus vaccine in the 1960s in Hungary. ACTA ACUST UNITED AC 2010; 58:211-7. [DOI: 10.1111/j.1574-695x.2009.00621.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Dias AP, Tavares FN, Costa EV, da Silva EE. Evaluation of a protocol for rapid diagnosis of enterovirus associated with acute flaccid paralysis cases. J Clin Virol 2009; 46:337-40. [DOI: 10.1016/j.jcv.2009.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Revised: 09/07/2009] [Accepted: 09/09/2009] [Indexed: 11/26/2022]
|
48
|
Rapid group-, serotype-, and vaccine strain-specific identification of poliovirus isolates by real-time reverse transcription-PCR using degenerate primers and probes containing deoxyinosine residues. J Clin Microbiol 2009; 47:1939-41. [PMID: 19386844 DOI: 10.1128/jcm.00702-09] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have adapted our previously described poliovirus diagnostic reverse transcription-PCR (RT-PCR) assays to a real-time RT-PCR (rRT-PCR) format. Our highly specific assays and rRT-PCR reagents are designed for use in the WHO Global Polio Laboratory Network for rapid and large-scale identification of poliovirus field isolates.
Collapse
|
49
|
Alexander J, Ehresmann K, Seward J, Wax G, Harriman K, Fuller S, Cebelinski E, Chen Q, Jorba J, Kew O, Pallansch M, Oberste M, Schleiss M, Davis J, Warshawsky B, Squires S, Hull H. Transmission of Imported Vaccine‐Derived Poliovirus in an Undervaccinated Community in Minnesota. J Infect Dis 2009; 199:391-7. [DOI: 10.1086/596052] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
50
|
Shahmahmoodi S, Parvaneh N, Burns C, Asghar H, Mamishi S, Tabatabaie H, Chen Q, Teimourian S, Gooya MM, Esteghamati AR, Mousavi T, Yousefi M, Farrokhi K, Mashlool M, Kew O, Nategh R. Isolation of a type 3 vaccine-derived poliovirus (VDPV) from an Iranian child with X-linked agammaglobulinemia. Virus Res 2008; 137:168-72. [DOI: 10.1016/j.virusres.2008.07.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2008] [Revised: 07/02/2008] [Accepted: 07/03/2008] [Indexed: 11/26/2022]
|