1
|
Benito AA, Monteagudo LV, Lázaro-Gaspar S, Mazas-Cabetas L, Quílez J. Detection and subtyping of influenza A virus in porcine clinical samples from Spain in 2020. Virology 2024; 600:110223. [PMID: 39278103 DOI: 10.1016/j.virol.2024.110223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/21/2024] [Accepted: 09/03/2024] [Indexed: 09/17/2024]
Abstract
A total of 1019 samples collected on 726 Spanish swine farms suffering from outbreaks of respiratory disease were screened for influenza A viruses (IAVs) using a RT-qPCR method. A subset of positive samples was further analyzed using a subtype-specific RT-qPCR method (n: 142) and Sanger sequencing (n: 64). A total of 19.4% samples from 23% farms tested positive, with infection being most common in suckling (53.6%) and weaning pigs (30.2%). Viruses belonging to four HA subtypes (H1av, H1hu, H1pdm, H3) were detected, with subtypes H1avN2, H1huN2 and H1avN1 accounting for over half of the specimens. An optimized protocol with newly designed primers allowed the detection of H3 viruses in a significant number of samples (21%). A comparison of antigenic positions revealed that circulating strains exhibited mutations with vaccine strains in a significant percentage of amino acid residues, both in the NA protein (27.8-43.3%) and particularly in the HA protein (51-75.3%).
Collapse
Affiliation(s)
- Alfredo A Benito
- Exopol S.L., Pol Río Gállego D/14, San Mateo de Gállego, 50840, Zaragoza, Spain
| | - Luis V Monteagudo
- Department of Anatomy, Embriology and Genetics, Faculty of Veterinary Sciences, University of Zaragoza, 50013, Zaragoza, Spain; Agrifood Institute of Aragón (IA2), University of Zaragoza-CITA, 50013, Zaragoza, Spain
| | - Sofía Lázaro-Gaspar
- Exopol S.L., Pol Río Gállego D/14, San Mateo de Gállego, 50840, Zaragoza, Spain
| | - Luna Mazas-Cabetas
- Exopol S.L., Pol Río Gállego D/14, San Mateo de Gállego, 50840, Zaragoza, Spain
| | - Joaquín Quílez
- Department of Animal Pathology, Faculty of Veterinary Sciences, University of Zaragoza, 50013, Zaragoza, Spain; Agrifood Institute of Aragón (IA2), University of Zaragoza-CITA, 50013, Zaragoza, Spain.
| |
Collapse
|
2
|
Shimizu T, Nomachi T, Matsumoto K, Hisamoto N. A cytidine deaminase regulates axon regeneration by modulating the functions of the Caenorhabditis elegans HGF/plasminogen family protein SVH-1. PLoS Genet 2024; 20:e1011367. [PMID: 39058749 PMCID: PMC11305532 DOI: 10.1371/journal.pgen.1011367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 08/07/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
The pathway for axon regeneration in Caenorhabditis elegans is activated by SVH-1, a growth factor belonging to the HGF/plasminogen family. SVH-1 is a dual-function factor that acts as an HGF-like growth factor to promote axon regeneration and as a protease to regulate early development. It is important to understand how SVH-1 is converted from a protease to a growth factor for axon regeneration. In this study, we demonstrate that cytidine deaminase (CDD) SVH-17/CDD-2 plays a role in the functional conversion of SVH-1. We find that the codon exchange of His-755 to Tyr in the Asp-His-Ser catalytic triad of SVH-1 can suppress the cdd-2 defect in axon regeneration. Furthermore, the stem hairpin structure around the His-755 site in svh-1 mRNA is required for the activation of axon regeneration by SVH-1. These results suggest that CDD-2 promotes axon regeneration by transforming the function of SVH-1 from a protease to a growth factor through modification of svh-1 mRNA.
Collapse
Affiliation(s)
- Tatsuhiro Shimizu
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, Japan
| | - Takafumi Nomachi
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, Japan
| | - Kunihiro Matsumoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, Japan
| | - Naoki Hisamoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, Japan
| |
Collapse
|
3
|
Influenza A Viruses in Ruddy Turnstones ( Arenaria interpres); Connecting Wintering and Migratory Sites with an Ecological Hotspot at Delaware Bay. Viruses 2020; 12:v12111205. [PMID: 33105913 PMCID: PMC7690596 DOI: 10.3390/v12111205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 01/11/2023] Open
Abstract
Each May for over three decades, avian influenza A viruses (IAVs) have been isolated from shorebirds and gulls (order Charadriiformes) at Delaware Bay (DE Bay), USA, which is a critical stopover site for shorebirds on their spring migration to arctic breeding grounds. At DE Bay, most isolates have been recovered from ruddy turnstones (Arenaria interpres), but it is unknown if this species is involved in either the maintenance or movement of these viruses outside of this site. We collected and tested fecal samples from 2823 ruddy turnstones in Florida and Georgia in the southeastern United States during four winter/spring sample periods—2010, 2011, 2012, and 2013—and during the winters of 2014/2015 and 2015/2016. Twenty-five low pathogenicity IAVs were recovered representing five subtypes (H3N4, H3N8, H5N9, H6N1, and H12N2). Many of these subtypes matched those recovered at DE Bay during the previous year or that year’s migratory cycle, suggesting that IAVs present on these southern wintering areas represent a source of virus introduction to DE Bay via migrating ruddy turnstones. Analyses of all IAV gene segments of H5N9 and H6N1 viruses recovered from ruddy turnstones at DE Bay during May 2012 and from the southeast during the spring of 2012 revealed a high level of genetic relatedness at the nucleotide level, suggesting that migrating ruddy turnstones move IAVs from wintering grounds to the DE Bay ecosystem.
Collapse
|
4
|
Sakai Y, Hanafusa H, Pastuhov SI, Shimizu T, Li C, Hisamoto N, Matsumoto K. TDP2 negatively regulates axon regeneration by inducing SUMOylation of an Ets transcription factor. EMBO Rep 2019; 20:e47517. [PMID: 31393064 PMCID: PMC6776894 DOI: 10.15252/embr.201847517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 07/03/2019] [Accepted: 07/15/2019] [Indexed: 12/02/2022] Open
Abstract
In Caenorhabditis elegans, the JNK MAP kinase (MAPK) pathway is important for axon regeneration. The JNK pathway is activated by a signaling cascade consisting of the growth factor SVH-1 and its receptor tyrosine kinase SVH-2. Expression of the svh-2 gene is induced by axonal injury in a process involving the transcription factors ETS-4 and CEBP-1. Here, we find that svh-14/mxl-1, a gene encoding a Max-like transcription factor, is required for activation of svh-2 expression in response to axonal injury. We show that MXL-1 binds to and inhibits the function of TDPT-1, a C. elegans homolog of mammalian tyrosyl-DNA phosphodiesterase 2 [TDP2; also called Ets1-associated protein II (EAPII)]. Deletion of tdpt-1 suppresses the mxl-1 defect, but not the ets-4 defect, in axon regeneration. TDPT-1 induces SUMOylation of ETS-4, which inhibits ETS-4 transcriptional activity, and MXL-1 counteracts this effect. Thus, TDPT-1 interacts with two different transcription factors in axon regeneration.
Collapse
Affiliation(s)
- Yoshiki Sakai
- Division of Biological ScienceGraduate School of ScienceNagoya UniversityNagoyaJapan
| | - Hiroshi Hanafusa
- Division of Biological ScienceGraduate School of ScienceNagoya UniversityNagoyaJapan
| | - Strahil Iv Pastuhov
- Division of Biological ScienceGraduate School of ScienceNagoya UniversityNagoyaJapan
| | - Tatsuhiro Shimizu
- Division of Biological ScienceGraduate School of ScienceNagoya UniversityNagoyaJapan
| | - Chun Li
- Division of Biological ScienceGraduate School of ScienceNagoya UniversityNagoyaJapan
| | - Naoki Hisamoto
- Division of Biological ScienceGraduate School of ScienceNagoya UniversityNagoyaJapan
| | - Kunihiro Matsumoto
- Division of Biological ScienceGraduate School of ScienceNagoya UniversityNagoyaJapan
| |
Collapse
|
5
|
Takayama I, Nakauchi M, Takahashi H, Oba K, Semba S, Kaida A, Kubo H, Saito S, Nagata S, Odagiri T, Kageyama T. Development of real-time fluorescent reverse transcription loop-mediated isothermal amplification assay with quenching primer for influenza virus and respiratory syncytial virus. J Virol Methods 2019; 267:53-58. [PMID: 30831121 PMCID: PMC7113748 DOI: 10.1016/j.jviromet.2019.02.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 01/31/2019] [Accepted: 02/28/2019] [Indexed: 12/20/2022]
Abstract
Influenza virus and respiratory syncytial virus cause acute upper and lower respiratory tract infections, especially in children and the elderly. Early treatment for these infections is thought to be important, so simple and sensitive detection methods are needed for use at clinical sites. Therefore, in this study, real-time reverse transcription loop-mediated isothermal amplification assays with quenching primer for influenza virus and respiratory syncytial virus were developed. Evaluation of a total of 113 clinical specimens compared to real-time RT-PCR assays showed that the novel assays could distinguish between the types and subtypes of influenza virus and respiratory syncytial virus and had 100% diagnostic specificity. The diagnostic sensitivity of each assay exceeded 85.0% and the assays showed sufficient clinical accuracy. Furthermore, positive results could be obtained in around 15 min using the novel assays in cases with high concentrations of virus. The developed assays should be useful for identifying influenza virus and respiratory syncytial virus cases not only in experimental laboratories but also in hospital and quarantine laboratories.
Collapse
Affiliation(s)
- Ikuyo Takayama
- Influenza Virus Research Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan
| | - Mina Nakauchi
- Influenza Virus Research Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan
| | - Hitoshi Takahashi
- Influenza Virus Research Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan
| | - Kunihiro Oba
- Department of Pediatrics, Showa General Hospital, 8-1-1 Hanakoganei, Kodaira-shi, Tokyo 187-0002, Japan
| | - Shohei Semba
- Eiken Chemical Co. Ltd., 4-19-9 Taito, Taito-ku, Tokyo 110-8408, Japan
| | - Atsushi Kaida
- Division of Microbiology, Osaka Institute of Public Health, 8-34 Tojo-cho, Tennoji-ku, Osaka 543-0026, Japan
| | - Hideyuki Kubo
- Division of Microbiology, Osaka Institute of Public Health, 8-34 Tojo-cho, Tennoji-ku, Osaka 543-0026, Japan
| | - Shinji Saito
- Influenza Virus Research Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan
| | - Shiho Nagata
- Influenza Virus Research Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan
| | - Takato Odagiri
- Influenza Virus Research Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan
| | - Tsutomu Kageyama
- Influenza Virus Research Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan.
| |
Collapse
|
6
|
Phosphatidylserine exposure mediated by ABC transporter activates the integrin signaling pathway promoting axon regeneration. Nat Commun 2018; 9:3099. [PMID: 30082731 PMCID: PMC6079064 DOI: 10.1038/s41467-018-05478-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 07/02/2018] [Indexed: 12/22/2022] Open
Abstract
Following axon injury, a cascade of signaling events is triggered to initiate axon regeneration. However, the mechanisms regulating axon regeneration are not well understood at present. In Caenorhabditis elegans, axon regeneration utilizes many of the components involved in phagocytosis, including integrin and Rac GTPase. Here, we identify the transthyretin (TTR)-like protein TTR-11 as a component functioning in axon regeneration upstream of integrin. We show that TTR-11 binds to both the extracellular domain of integrin-α and phosphatidylserine (PS). Axon injury induces the accumulation of PS around the injured axons in a manner dependent on TTR-11, the ABC transporter CED-7, and the caspase CED-3. Furthermore, we demonstrate that CED-3 activates CED-7 during axon regeneration. Thus, TTR-11 functions to link the PS injury signal to activation of the integrin pathway, which then initiates axon regeneration.
Collapse
|
7
|
Prospective surveillance for influenza. virus in Chinese swine farms. Emerg Microbes Infect 2018; 7:87. [PMID: 29765021 PMCID: PMC5954049 DOI: 10.1038/s41426-018-0086-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 03/11/2018] [Accepted: 04/11/2018] [Indexed: 12/23/2022]
Abstract
Pork production in China is rapidly increasing and swine production operations are expanding in size and number. However, the biosecurity measures necessary to prevent swine disease transmission, particularly influenza A viruses (IAV) that can be zoonotic, are often inadequate. Despite this risk, few studies have attempted to comprehensively study IAV ecology in swine production settings. Here, we present environmental and animal sampling data collected in the first year of an ongoing five-year prospective epidemiological study to assess IAV ecology as it relates to swine workers, their pigs, and the farm environment. From March 2015 to February 2016, we collected 396 each of environmental swab, water, bioaerosol, and fecal/slurry samples, as well as 3300 pig oral secretion samples from six farms in China. The specimens were tested with molecular assays for IAV. Of these, 46 (11.6%) environmental swab, 235 (7.1%) pig oral secretion, 23 (5.8%) water, 20 (5.1%) bioaerosol, and 19 (4.8%) fecal/slurry specimens were positive for influenza A by qRT-PCR. Risk factors for IAV detection among collected samples were identified using bivariate logistic regression. Overall, these first year data suggest that IAV is quite ubiquitous in the swine production environment and demonstrate an association between the different types of environmental sampling used. Given the mounting evidence that some of these viruses freely move between pigs and swine workers, and that mixing of these viruses can yield progeny viruses with pandemic potential, it seems imperative that routine surveillance for novel IAVs be conducted in commercial swine farms.
Collapse
|
8
|
Zhao J, Liu J, Vemula SV, Lin C, Tan J, Ragupathy V, Wang X, Mbondji-wonje C, Ye Z, Landry ML, Hewlett I. Sensitive Detection and Simultaneous Discrimination of Influenza A and B Viruses in Nasopharyngeal Swabs in a Single Assay Using Next-Generation Sequencing-Based Diagnostics. PLoS One 2016; 11:e0163175. [PMID: 27658193 PMCID: PMC5033603 DOI: 10.1371/journal.pone.0163175] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 09/02/2016] [Indexed: 11/18/2022] Open
Abstract
Reassortment of 2009 (H1N1) pandemic influenza virus (pdH1N1) with other strains may produce more virulent and pathogenic forms, detection and their rapid characterization is critical. In this study, we reported a “one-size-fits-all” approach using a next-generation sequencing (NGS) detection platform to extensively identify influenza viral genomes for diagnosis and determination of novel virulence and drug resistance markers. A de novo module and other bioinformatics tools were used to generate contiguous sequence and identify influenza types/subtypes. Of 162 archived influenza-positive patient specimens, 161(99.4%) were positive for either influenza A or B viruses determined using the NGS assay. Among these, 135(83.3%) were A(H3N2), 14(8.6%) were A(pdH1N1), 2(1.2%) were A(H3N2) and A(pdH1N1) virus co-infections and 10(6.2%) were influenza B viruses. Of the influenza A viruses, 66.7% of A(H3N2) viruses tested had a E627K mutation in the PB2 protein, and 87.8% of the influenza A viruses contained the S31N mutation in the M2 protein. Further studies demonstrated that the NGS assay could achieve a high level of sensitivity and reveal adequate genetic information for final laboratory confirmation. The current diagnostic platform allows for simultaneous identification of a broad range of influenza viruses, monitoring emerging influenza strains with pandemic potential that facilitating diagnostics and antiviral treatment in the clinical setting and protection of the public health.
Collapse
Affiliation(s)
- Jiangqin Zhao
- DETTD/OBRR/CBER, Food and Drug Administration, Silver Spring, MD, 20993, United States of America
- * E-mail: (JZ); (IH)
| | - Jikun Liu
- DETTD/OBRR/CBER, Food and Drug Administration, Silver Spring, MD, 20993, United States of America
| | - Sai Vikram Vemula
- DETTD/OBRR/CBER, Food and Drug Administration, Silver Spring, MD, 20993, United States of America
| | - Corinna Lin
- DETTD/OBRR/CBER, Food and Drug Administration, Silver Spring, MD, 20993, United States of America
| | - Jiying Tan
- DETTD/OBRR/CBER, Food and Drug Administration, Silver Spring, MD, 20993, United States of America
| | - Viswanath Ragupathy
- DETTD/OBRR/CBER, Food and Drug Administration, Silver Spring, MD, 20993, United States of America
| | - Xue Wang
- DETTD/OBRR/CBER, Food and Drug Administration, Silver Spring, MD, 20993, United States of America
| | - Christelle Mbondji-wonje
- DETTD/OBRR/CBER, Food and Drug Administration, Silver Spring, MD, 20993, United States of America
| | - Zhiping Ye
- DVP/OVRR/CBER, Food and Drug Administration, Silver Spring, MD, 20993, United States of America
| | - Marie L. Landry
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, 06520, United States of America
| | - Indira Hewlett
- DETTD/OBRR/CBER, Food and Drug Administration, Silver Spring, MD, 20993, United States of America
- * E-mail: (JZ); (IH)
| |
Collapse
|
9
|
Quantification of designer nuclease induced mutation rates: a direct comparison of different methods. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 3:16047. [PMID: 27419195 PMCID: PMC4934480 DOI: 10.1038/mtm.2016.47] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 05/21/2016] [Accepted: 05/23/2016] [Indexed: 02/08/2023]
Abstract
Designer nucleases are broadly applied to induce site-specific DNA double-strand breaks (DSB) in genomic DNA. These are repaired by nonhomologous end joining leading to insertions or deletions (in/dels) at the respective DNA-locus. To detect in/del mutations, the heteroduplex based T7-endonuclease I -assay is widely used. However, it only provides semi-quantitative evidence regarding the number of mutated alleles. Here we compared T7-endonuclease I- and heteroduplex mobility assays, with a quantitative polymerase chain reaction mutation detection method. A zinc finger nuclease pair specific for the human adeno-associated virus integration site 1 (AAVS1), a transcription activator-like effector nuclease pair specific for the human DMD gene, and a zinc finger nuclease- and a transcription activator-like effector nuclease pair specific for the human CCR5 gene were explored. We found that the heteroduplex mobility assays and T7-endonuclease I - assays detected mutations but the relative number of mutated cells/alleles can only be estimated. In contrast, the quantitative polymerase chain reaction based method provided quantitative results which allow calculating mutation and homologous recombination rates in different eukaryotic cell types including human peripheral blood mononuclear cells. In conclusion, our quantitative polymerase chain reaction based mutation detection method expands the array of methods for in/del mutation detection and facilitates quantification of introduced in/del mutations for a genomic locus containing a mixture of mutated and unmutated DNA.
Collapse
|
10
|
Ramey AM, Walther P, Link P, Poulson RL, Wilcox BR, Newsome G, Spackman E, Brown JD, Stallknecht DE. Optimizing Surveillance for South American Origin Influenza A Viruses Along the United States Gulf Coast Through Genomic Characterization of Isolates from Blue-winged Teal (Anas discors). Transbound Emerg Dis 2016; 63:194-202. [PMID: 25056712 PMCID: PMC4305350 DOI: 10.1111/tbed.12244] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Indexed: 11/27/2022]
Abstract
Relative to research focused on inter-continental viral exchange between Eurasia and North America, less attention has been directed towards understanding the redistribution of influenza A viruses (IAVs) by wild birds between North America and South America. In this study, we genomically characterized 45 viruses isolated from blue-winged teal (Anas discors) along the Texas and Louisiana Gulf Coast during March of 2012 and 2013, coincident with northward migration of this species from Neotropical wintering areas to breeding grounds in the United States and Canada. No evidence of South American lineage genes was detected in IAVs isolated from blue-winged teal supporting restricted viral gene flow between the United States and southern South America. However, it is plausible that blue-winged teal redistribute IAVs between North American breeding grounds and wintering areas throughout the Neotropics, including northern South America, and that viral gene flow is limited by geographical barriers further south (e.g., the Amazon Basin). Surveillance for the introduction of IAVs from Central America and northern South America into the United States may be further optimized through genomic characterization of viruses resulting from coordinated, concurrent sampling efforts targeting blue-winged teal and sympatric species throughout the Neotropics and along the United States Gulf Coast.
Collapse
Affiliation(s)
- Andrew M. Ramey
- US Geological Survey, Alaska Science Center, 4210 University Drive, Anchorage, Alaska 99508, USA
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, Department of Population Health, The University of Georgia, 589 D. W. Brooks Drive, Athens, Georgia 30602, USA
| | - Patrick Walther
- US Fish and Wildlife Service, Texas Chenier Plain Refuge Complex, P.O. Box 278 4017 FM 563, Anahuac, Texas 77514, USA
| | - Paul Link
- Louisiana Department of Wildlife and Fisheries, 2000 Quail Drive, Room 436, Baton Rouge, Louisiana 70808, USA
| | - Rebecca L. Poulson
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, Department of Population Health, The University of Georgia, 589 D. W. Brooks Drive, Athens, Georgia 30602, USA
| | - Benjamin R. Wilcox
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, Department of Population Health, The University of Georgia, 589 D. W. Brooks Drive, Athens, Georgia 30602, USA
| | - George Newsome
- City of Beaumont Wastewater Treatment Plant, 4900 Lafin Road, Beaumont, Texas 77705, USA
| | - Erica Spackman
- US Department of Agriculture, Agriculture Research Service, Southeast Poultry Research Laboratory, 934 College Station Road, Athens, GA 30605, USA
| | - Justin D. Brown
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, Department of Population Health, The University of Georgia, 589 D. W. Brooks Drive, Athens, Georgia 30602, USA
| | - David E. Stallknecht
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, Department of Population Health, The University of Georgia, 589 D. W. Brooks Drive, Athens, Georgia 30602, USA
| |
Collapse
|
11
|
Next generation sequencing for whole genome analysis and surveillance of influenza A viruses. J Clin Virol 2016; 79:44-50. [PMID: 27085509 DOI: 10.1016/j.jcv.2016.03.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 02/26/2016] [Accepted: 03/07/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND The Wadsworth Center, New York State Department of Health (NYSDOH), conducts routine diagnosis and surveillance of influenza viruses. Whole genome sequencing (WGS) with next generation sequencing (NGS) was initiated to provide more rapid, detailed, thorough, and accurate analysis. OBJECTIVES To optimize and implement a method for routine WGS of influenza A viruses. To use WGS to monitor influenza A viruses for reassortment, mutations associated with antiviral resistance and antigenicity changes, as well as those potentially affecting virulence and tropism. STUDY DESIGN Multiple extraction and amplification methods were investigated and optimized for the production of template to be used for NGS. Additionally, software options were considered for data analysis. Initial WGS influenza projects have included the comparison of mixed population sequence data obtained with NGS, Sanger dideoxy sequencing, and pyrosequencing, the comparison of sequences obtained from paired primary/cultured samples, the analysis of sequence changes over several influenza seasons, and phylogenetic analysis. RESULTS Procedures were optimized for extraction and amplification such that WGS could be successfully performed on both cultured isolates and primary specimens. Data is presented on 15 A/H1pdm09 and 44 A/H3N2 samples. Analysis of influenza A viruses identified and confirmed variant and mixed populations affecting antigenicity and antiviral susceptibility in both primary specimens and cultured isolates. CONCLUSIONS An influenza A whole genome PCR method has been optimized for the reliable production of template for NGS. The WGS method has been successfully implemented for enhanced comprehensive surveillance and the generation of detailed clinical data on drug resistance and virulence. Data obtained with this method will also aid in future vaccine selection.
Collapse
|
12
|
Jumat MR, Sugrue RJ, Tan BH. Genetic characterisation of influenza B viruses detected in Singapore, 2004 to 2009. BMC Res Notes 2014; 7:863. [PMID: 25435177 PMCID: PMC4265450 DOI: 10.1186/1756-0500-7-863] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 11/21/2014] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Influenza B viruses are classified into two main lineages: Yamagata-like and Victoria-like, which differ antigenically and phylogenetically. To understand the evolution of influenza B viruses in South East Asia as well as to determine the vaccine efficacy, we genetically characterised gene segments 4, 6 and 8 from non-tissue culture adapted influenza B viruses detected in Singapore from 2004 to 2009. METHODS vRNA were extracted from the nasopharyngeal swabs or nasal washes of SAF servicemen displaying febrile and respiratory symptoms, and subjected to PCR assay to test for the presence of influenza B virus. The PCR-positive specimens were next subjected to sequencing of the full gene segments 4 (HA), 6 (NA/NB) and 8 (NS1/NEP). The nucleotide sequences were aligned together with that of other specimens isolated from South East Asia as well as the vaccine strains. Phylogenetic trees of each gene segment were constructed and the amino acid alignments were analysed. RESULTS A majority of the Singaporean specimens analysed in this study, from 2004-2009, had gene segment 4 from the Victoria-like lineage and gene segment 6 from Yamagata-like lineage. Some of these specimens had both gene segments from the Yamagata lineage and this resulted in several vaccine mismatches. Gene segment 8 from majority of these specimens clustered separately from both the Yamagata and Victoria strains. The HA protein of most of the Singaporean specimens isolated post 2000 contained a glycosylation site at position 211, which was not dominant prior to 2000. No amino acid substitution conferring drug-resistance was found in either the HA or NA proteins. CONCLUSIONS The presence of both lineages co-circulating post 2000, suggests that a trivalent vaccine is not enough to confer immunity to the general public, strongly endorsing the inclusion of both lineages in the vaccine. Several amino acid substitutions were observed, prompting in depth functional analyses.
Collapse
Affiliation(s)
- Muhammad Raihan Jumat
- />Division of Molecular and Cell Biology, School of Biological Sciences, Nanyang Technological University, Singapore, 637551 Republic of Singapore
| | - Richard J Sugrue
- />Division of Molecular and Cell Biology, School of Biological Sciences, Nanyang Technological University, Singapore, 637551 Republic of Singapore
| | - Boon-Huan Tan
- />Detection and Diagnostics Laboratory, Defence Medical and Environmental Institute, DSO National Laboratories, 27 Medical Drive, Singapore, 117510 Republic of Singapore
- />Saw Swee Hock School of Public Health, Faculty of Medicine, National University Singapore, Singapore, 117549 Republic of Singapore
| |
Collapse
|
13
|
Zhu X, Xu Y, Yu S, Lu L, Ding M, Cheng J, Song G, Gao X, Yao L, Fan D, Meng S, Zhang X, Hu S, Tian Y. An efficient genotyping method for genome-modified animals and human cells generated with CRISPR/Cas9 system. Sci Rep 2014; 4:6420. [PMID: 25236476 PMCID: PMC4168274 DOI: 10.1038/srep06420] [Citation(s) in RCA: 191] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 08/20/2014] [Indexed: 01/11/2023] Open
Abstract
The rapid generation of various species and strains of laboratory animals using CRISPR/Cas9 technology has dramatically accelerated the interrogation of gene function in vivo. So far, the dominant approach for genotyping of genome-modified animals has been the T7E1 endonuclease cleavage assay. Here, we present a polyacrylamide gel electrophoresis-based (PAGE) method to genotype mice harboring different types of indel mutations. We developed 6 strains of genome-modified mice using CRISPR/Cas9 system, and utilized this approach to genotype mice from F0 to F2 generation, which included single and multiplexed genome-modified mice. We also determined the maximal detection sensitivity for detecting mosaic DNA using PAGE-based assay as 0.5%. We further applied PAGE-based genotyping approach to detect CRISPR/Cas9-mediated on- and off-target effect in human 293T and induced pluripotent stem cells (iPSCs). Thus, PAGE-based genotyping approach meets the rapidly increasing demand for genotyping of the fast-growing number of genome-modified animals and human cell lines created using CRISPR/Cas9 system or other nuclease systems such as TALEN or ZFN.
Collapse
Affiliation(s)
- Xiaoxiao Zhu
- 1] Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China [2] University of Chinese Academy of Sciences, Beijing 100080, China [3]
| | - Yajie Xu
- 1] Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China [2]
| | - Shanshan Yu
- 1] Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China [2]
| | - Lu Lu
- 1] Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China [2] University of Chinese Academy of Sciences, Beijing 100080, China
| | - Mingqin Ding
- 1] Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China [2] University of Chinese Academy of Sciences, Beijing 100080, China
| | - Jing Cheng
- Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Guoxu Song
- 1] Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China [2] University of Chinese Academy of Sciences, Beijing 100080, China
| | - Xing Gao
- Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Liangming Yao
- Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Dongdong Fan
- 1] Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China [2] University of Chinese Academy of Sciences, Beijing 100080, China
| | - Shu Meng
- Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xuewen Zhang
- Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Shengdi Hu
- Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yong Tian
- Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
14
|
Pecoraro HL, Bennett S, Spindel ME, Landolt GA. Evolution of the hemagglutinin gene of H3N8 canine influenza virus in dogs. Virus Genes 2014; 49:393-9. [PMID: 25056577 PMCID: PMC4232753 DOI: 10.1007/s11262-014-1102-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 07/02/2014] [Indexed: 11/29/2022]
Abstract
With the widespread use of a recently developed canine influenza virus (CIV) H3N8 vaccine, continual molecular evaluation of circulating CIVs is necessary for monitoring antigenic drift. The aim of this project was to further describe the genetic evolution of CIV, as well as determine any genetic variation within potential antigenic regions that might result in antigenic drift. To this end, the hemagglutinin gene of 19 CIV isolates from dogs residing in Colorado, New York, and South Carolina humane shelters was sequenced and compared to CIV strains isolated during 2003–2012. Phylogenetic analysis suggests that CIV might be diverging into two geographically distinct lineages. Using a mixed-effects model for evolution and single likelihood ancestor counting methods, several amino acid sites were found to be undergoing selection pressure. Additionally, a total of six amino acid changes were observed in two possible antigenic sites for CIVs isolated from Colorado and New York humane shelters between 2009 and 2011. As CIV isolates might be diverging into geographically distinct lineages, further experiments are warranted to determine the extent of antigenic drift occurring within circulating CIV.
Collapse
Affiliation(s)
- Heidi L Pecoraro
- From the Departments of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Science, Colorado State University, 300 West Drake Road, Fort Collins, CO, 80523-1678, USA,
| | | | | | | |
Collapse
|
15
|
Real-time RT-PCR assays for discriminating influenza B virus Yamagata and Victoria lineages. J Virol Methods 2014; 205:110-5. [PMID: 24797457 PMCID: PMC7172331 DOI: 10.1016/j.jviromet.2014.04.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 04/17/2014] [Accepted: 04/25/2014] [Indexed: 11/30/2022]
Abstract
We developed one step real-time RT-PCR assays to discriminate two lineages of influenza B viruses. The developed assays were evaluated using in vitro transcribed control RNA, clinical specimens, and clinical isolates. The assays were shown to have high sensitivity and high specificity. The results from the assays were consistent with those from a hemagglutination inhibition (HI) test, which is a standard method to define the lineage of influenza B virus. The developed assays will be useful for the diagnosis and surveillance of influenza B viruses.
Since the late 1980s, two genetically and antigenically distinct lineages of influenza B virus, namely, B/Victoria/2/87-like (B/Victoria) and B/Yamagata/16/88-like (B/Yamagata), have co-circulated. In this study, one-step real-time reverse transcription-PCR (rRT-PCR) assays were developed to differentiate B/Victoria and B/Yamagata lineages. The assays were evaluated using in vitro transcribed control RNA, isolated viruses, and other respiratory pathogenic viruses, and were shown to have high sensitivity, good linearity (R2 = 0.99), and high specificity. Using the developed rRT-PCR assays, 169 clinical specimens collected between 2010 and 2013 were then tested, resulting in the identification of 20 clinical specimens as positive for influenza B virus. Of these, 14 and 6 samples were identified as positive for the B/Victoria and B/Yamagata lineages, respectively, whereas 149 samples were negative for the influenza B virus. The rRT-PCR assays were also examined using 20 clinical isolates from 20 influenza B virus-positive specimens, revealing that there was no discrepancy between the results from the rRT-PCR assays and the hemagglutination inhibition (HI) test, with the exception that one clinical isolate with different antigenicity could not be discriminated by the HI test. The present results suggest that these highly sensitive and specific assays are useful not only for diagnosing influenza viruses but also for their surveillance.
Collapse
|
16
|
Ramey AM, Poulson RL, González-Reiche AS, Perez DR, Stallknecht DE, Brown JD. Genomic characterization of H14 subtype Influenza A viruses in new world waterfowl and experimental infectivity in mallards (Anas platyrhynchos). PLoS One 2014; 9:e95620. [PMID: 24788792 PMCID: PMC4006863 DOI: 10.1371/journal.pone.0095620] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 03/28/2014] [Indexed: 11/18/2022] Open
Abstract
Recent repeated isolation of H14 hemagglutinin subtype influenza A viruses (IAVs) in the New World waterfowl provides evidence to suggest that host and/or geographic ranges for viruses of this subtype may be expanding. In this study, we used genomic analyses to gain inference on the origin and evolution of H14 viruses in New World waterfowl and conducted an experimental challenge study in mallards (Anas platyrhynchos) to evaluate pathogenicity, viral replication, and transmissibility of a representative viral strain in a natural host species. Genomic characterization of H14 subtype IAVs isolated from New World waterfowl, including three isolates sequenced specifically for this study, revealed high nucleotide identity among individual gene segments (e.g. ≥95% shared identity among H14 HA gene segments). In contrast, lower shared identity was observed among internal gene segments. Furthermore, multiple neuraminidase subtypes were observed for H14 IAVs isolated in the New World. Gene segments of H14 viruses isolated after 2010 shared ancestral genetic lineages with IAVs isolated from wild birds throughout North America. Thus, genomic characterization provided evidence for viral evolution in New World waterfowl through genetic drift and genetic shift since purported introduction from Eurasia. In the challenge study, no clinical disease or lesions were observed among mallards experimentally inoculated with A/blue-winged teal/Texas/AI13-1028/2013(H14N5) or exposed via contact with infected birds. Titers of viral shedding for mallards challenged with the H14N5 IAV were highest at two days post-inoculation (DPI); however shedding was detected up to nine DPI using cloacal swabs. The distribution of viral antigen among mallards infected with H14N5 IAV was largely restricted to enterocytes lining the villi in the lower intestinal tract and in the epithelium of the bursa of Fabricius. Characterization of the infectivity of A/blue-winged teal/Texas/AI13-1028/2013(H14N5) in mallards provides support for similarities in viral replication and shedding as compared to previously described waterfowl-adapted, low pathogenic IAV strains in ducks.
Collapse
Affiliation(s)
- Andrew M. Ramey
- US Geological Survey, Alaska Science Center, Anchorage, Alaska, United States of America
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, Department of Population Health, The University of Georgia, Athens, Georgia, United States of America
| | - Rebecca L. Poulson
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, Department of Population Health, The University of Georgia, Athens, Georgia, United States of America
| | - Ana S. González-Reiche
- Department of Veterinary Medicine, University of Maryland College Park, Virginia-Maryland Regional College of Veterinary Medicine, College Park, Maryland, United States of America
- Centro de Estudios en Salud, Universidad del Valle de Guatemala, Guatemala City, Guatemala
| | - Daniel R. Perez
- Department of Veterinary Medicine, University of Maryland College Park, Virginia-Maryland Regional College of Veterinary Medicine, College Park, Maryland, United States of America
| | - David E. Stallknecht
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, Department of Population Health, The University of Georgia, Athens, Georgia, United States of America
| | - Justin D. Brown
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, Department of Population Health, The University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
17
|
Kalvatchev Z, Draganov P, Kalvatchev N. Efficiency of Multiplex Polymerase Chain Reaction (M-PCR) for Detection and Molecular Analysis of Human Viruses. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.1080/13102818.2004.10817113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
18
|
Shankarappa R, Mullins JI. Inferring viral population structures using heteroduplex mobility and DNA sequence analyses. J Virol Methods 2013; 194:169-77. [PMID: 23994080 DOI: 10.1016/j.jviromet.2013.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 08/08/2013] [Accepted: 08/09/2013] [Indexed: 11/19/2022]
Abstract
Heteroduplex mobility (HMA) and tracking assays (HTA) are used to assess genetic relationships between DNA molecules. While distinguishing relationships between clonal or nearly clonal molecules is relatively straightforward, inferring population structures is more complex. To address this issue, HIV-1 quasispecies with varying levels of diversity were studied using both HTA and DNA sequencing. Viral diversity estimates and the temporal features of virus evolution were found to be generally concordant between HTA and DNA sequencing. In addition, the distribution of pairwise differences and the rates of virus divergence were similar between the two methods. These findings support the use of HTA to characterize variant populations of DNA and strengthen previous inferences concerning the evolution of HIV-1 over the course of infection.
Collapse
Affiliation(s)
- Raj Shankarappa
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98195-8070, United States
| | | |
Collapse
|
19
|
Ota S, Hisano Y, Muraki M, Hoshijima K, Dahlem TJ, Grunwald DJ, Okada Y, Kawahara A. Efficient identification of TALEN-mediated genome modifications using heteroduplex mobility assays. Genes Cells 2013; 18:450-8. [PMID: 23573916 DOI: 10.1111/gtc.12050] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 02/18/2013] [Indexed: 01/24/2023]
Abstract
The heteroduplex mobility assay (HMA) is widely used to characterize strain variants of human viruses. To determine whether it can detect small sequence differences in homologous templates, we constructed a series of deletion constructs (1-10 bp deletions) in the multiple cloning site (MCS) of pBluescript II. After PCR amplification of the MCS using a mixture of wild-type and one of the deletion constructs, the resulting PCR amplicons were electrophoresed using 15% polyacrylamide gels. Two types of heteroduplexes exhibited retarded electrophoretic migration compared with individual homoduplexes. Therefore, we applied this HMA to detect transcription activator-like effector nucleases (TALEN)-induced insertion and/or deletion (indel) mutations at an endogenous locus. We found that TALEN in vivo activity was easily estimated by the degree of multiple HMA profiles derived from TALEN-injected F0 embryos. Furthermore, TALEN-injected F0 founder fish produced several unique HMA profiles in F1 embryos. Sequence analysis confirmed that the different HMA profiles contained distinct indel mutations. Thus, HMA is a rapid and sensitive analytical method for the detection of the TALEN-mediated genome modifications.
Collapse
Affiliation(s)
- Satoshi Ota
- Laboratory for Cardiovascular Molecular Dynamics, Quantitative Biology Center, RIKEN, Furuedai 6-2-3, Suita, Osaka 565-0874, Japan
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Pecoraro HL, Spindel ME, Bennett S, Lunn KF, Landolt GA. Evaluation of virus isolation, one-step real-time reverse transcription polymerase chain reaction assay, and two rapid influenza diagnostic tests for detecting canine Influenza A virus H3N8 shedding in dogs. J Vet Diagn Invest 2013; 25:402-6. [PMID: 23536615 DOI: 10.1177/1040638713480500] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Sustained transmission of canine Influenza A virus (CIV) H3N8 among U.S. dogs underscores the threat influenza continues to pose to canine health. Because rapid and accurate detection of infection is critical to the diagnosis and control of CIV, the 2 main objectives of the current study were to estimate and compare the sensitivities of CIV testing methods on canine swab samples and to evaluate the performance of Flu Detect™ (Synbiotics Corp., Kansas City, MO) for detecting CIV nasal shedding in high-risk shelter dogs. To address the first objective, nasal and pharyngeal swab samples were collected from 124 shelter and household dogs seen by Colorado State University Veterinary Teaching Hospital clinicians for canine infectious respiratory disease between April 2006 and March 2007 and tested for CIV shedding using virus isolation, the rapid influenza diagnostic test Directigen Flu A+B™ (BD Diagnostic Systems, Sparks, MD), and real-time reverse transcription polymerase chain reaction (RT-PCR). For the second objective, 1,372 dogs with unknown respiratory health status were sampled from 6 U.S. shelters from December 2009 to November 2010. Samples were tested for presence of CIV using real-time RT-PCR and Flu Detect. Using a stochastic latent class modeling approach, the median sensitivities of virus isolation, rapid influenza diagnostic test, and real-time RT-PCR were 72%, 65%, and 95%, respectively. The Flu Detect test performed poorly for detecting CIV nasal shedding compared to real-time RT-PCR. In conclusion, the real-time RT-PCR has the highest sensitivity for detecting virus nasal shedding and can be used as a rapid diagnostic test for CIV.
Collapse
Affiliation(s)
- Heidi L Pecoraro
- Departments of Microbiology, Immunology, and Pathology, Colorado State University, 300 West Drake Road, Fort Collins, CO 80523, USA
| | | | | | | | | |
Collapse
|
21
|
Zhu N, Li P, Yu J, Li Y, Zhao J, Xia H, Tang S, Zhang Z, Kou Z, Yin S, Fan Z, Li T. Molecular characterization of influenza B viruses isolated in east-central China in 2009-2010. Virus Genes 2012; 46:28-38. [PMID: 23011776 DOI: 10.1007/s11262-012-0826-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 09/13/2012] [Indexed: 11/24/2022]
Abstract
The current circulating influenza B viruses can be divided into two major phylogenetic lineages: the Victoria and Yamagata lineages. We conducted a survey of influenza B viruses in Hubei and Zhejiang provinces during 2009-2010. Out of 341 throat swabs, 18 influenza B viruses were isolated. Five isolates were selected for genetic and phylogenetic analysis. The molecular analyses revealed that all the isolates had similar antigenic characteristics to B/Brisbane/60/2008. However, in the three viruses isolated from Zhejiang, a single asparagine to aspartic acid substitution in position 197 was observed, thereby eliminating the glycosylation at that site and possibly causing an antigenic change. None of the viruses had amino acid mutations at positions 116, 149, 152, 198, 222, 250, 291, and 402 of the neuraminidase (NA) gene, predicting that the viruses would still be sensitive to NA inhibitors. Phylogenetic analyses revealed that all five isolates were closely related to B/Brisbane/60/2008-the 2010 vaccine strain-and contained Victoria-like hemagglutinin and Yamagata-like NA genes, suggesting that reassortment may had occurred. In addition, similar phylogenetic patterns among the acidic polymerase, nucleoprotein and matrix protein genes, as well as between the basic polymerase 1 and basic polymerase 2 genes, were observed, suggesting possible functional interactions among these proteins. All the results highlighted the importance of molecular monitoring of influenza B viruses for reassortment and antigenic drift.
Collapse
Affiliation(s)
- Na Zhu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Because pigs are susceptible to both avian and human influenza viruses, genetic reassortment between avian, human, and/or swine influenza viruses in the pig host can lead to the generation of novel influenza A viruses (Ma et al. 2009). Since the first serological evidence of a swine influenza virus (SIV) infecting humans in 1958, sporadic cases have continued to occur. In recent years, case reports have been increasing, seemingly in concert with modern pig farming and the emergence of triple reassortant SIVs in swine. SIV infections in man generally are mild or subclinical, and often are not diagnosed; however, SIV infections can be quite serious in patients with underlying medical conditions. As of August 2010, 73 case reports of symptomatic human SIV infections have been documented in the medical literature or reported by health officials (excluding cases of the 2009 pandemic H1N1 influenza virus), of which 7 infections (10 %) resulted in death. While exposure to swine is often considered a risk factor for human SIV infections, 37 of 73 (51 %) reported cases had no known exposure to pigs; consequently, SIV may be crossing the species barrier via transmission routes yet to be acknowledged. In addition, human-to-human transmission was suspected in 10 of 34 (30 %) of the cases with epidemiological investigation. This chapter discusses the observations of illness and infections in humans, risk factors associated with infection, and methods for diagnosing human infections of SIV.
Collapse
|
23
|
Wille M, Robertson GJ, Whitney H, Bishop MA, Runstadler JA, Lang AS. Extensive geographic mosaicism in avian influenza viruses from gulls in the northern hemisphere. PLoS One 2011; 6:e20664. [PMID: 21697989 PMCID: PMC3115932 DOI: 10.1371/journal.pone.0020664] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 05/08/2011] [Indexed: 12/27/2022] Open
Abstract
Due to limited interaction of migratory birds between Eurasia and America, two independent avian influenza virus (AIV) gene pools have evolved. There is evidence of low frequency reassortment between these regions, which has major implications in global AIV dynamics. Indeed, all currently circulating lineages of the PB1 and PA segments in North America are of Eurasian origin. Large-scale analyses of intercontinental reassortment have shown that viruses isolated from Charadriiformes (gulls, terns, and shorebirds) are the major contributor of these outsider events. To clarify the role of gulls in AIV dynamics, specifically in movement of genes between geographic regions, we have sequenced six gull AIV isolated in Alaska and analyzed these along with 142 other available gull virus sequences. Basic investigations of host species and the locations and times of isolation reveal biases in the available sequence information. Despite these biases, our analyses reveal a high frequency of geographic reassortment in gull viruses isolated in America. This intercontinental gene mixing is not found in the viruses isolated from gulls in Eurasia. This study demonstrates that gulls are important as vectors for geographically reassorted viruses, particularly in America, and that more surveillance effort should be placed on this group of birds.
Collapse
Affiliation(s)
- Michelle Wille
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Gregory J. Robertson
- Wildlife Research Division, Environment Canada, Mount Pearl, Newfoundland, Canada
| | - Hugh Whitney
- Animal Health Division, Department of Natural Resources, St. John's, Newfoundland, Canada
| | - Mary Anne Bishop
- Prince William Sound Science Centre, Cordova, Alaska, United States of America
| | - Jonathan A. Runstadler
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, United States of America
| | - Andrew S. Lang
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| |
Collapse
|
24
|
Pearce JM, Reeves AB, Ramey AM, Hupp JW, Ip HS, Bertram M, Petrula MJ, Scotton BD, Trust KA, Meixell BW, Runstadler JA. Interspecific exchange of avian influenza virus genes in Alaska: the influence of trans-hemispheric migratory tendency and breeding ground sympatry. Mol Ecol 2011; 20:1015-25. [PMID: 21073586 PMCID: PMC3041836 DOI: 10.1111/j.1365-294x.2010.04908.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The movement and transmission of avian influenza viral strains via wild migratory birds may vary by host species as a result of migratory tendency and sympatry with other infected individuals. To examine the roles of host migratory tendency and species sympatry on the movement of Eurasian low-pathogenic avian influenza (LPAI) genes into North America, we characterized migratory patterns and LPAI viral genomic variation in mallards (Anas platyrhynchos) of Alaska in comparison with LPAI diversity of northern pintails (Anas acuta). A 50-year band-recovery data set suggests that unlike northern pintails, mallards rarely make trans-hemispheric migrations between Alaska and Eurasia. Concordantly, fewer (14.5%) of 62 LPAI isolates from mallards contained Eurasian gene segments compared to those from 97 northern pintails (35%), a species with greater inter-continental migratory tendency. Aerial survey and banding data suggest that mallards and northern pintails are largely sympatric throughout Alaska during the breeding season, promoting opportunities for interspecific transmission. Comparisons of full-genome isolates confirmed near-complete genetic homology (>99.5%) of seven viruses between mallards and northern pintails. This study found viral segments of Eurasian lineage at a higher frequency in mallards than previous studies, suggesting transmission from other avian species migrating inter-hemispherically or the common occurrence of endemic Alaskan viruses containing segments of Eurasian origin. We conclude that mallards are unlikely to transfer Asian-origin viruses directly to North America via Alaska but that they are likely infected with Asian-origin viruses via interspecific transfer from species with regular migrations to the Eastern Hemisphere.
Collapse
Affiliation(s)
- John M Pearce
- US Geological Survey, Alaska Science Center, 4210 University Drive, Anchorage, AK 99508, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Heil GL, McCarthy T, Yoon KJ, Liu S, Saad MD, Smith CB, Houck JA, Dawson ED, Rowlen KL, Gray GC. MChip, a low density microarray, differentiates among seasonal human H1N1, North American swine H1N1, and the 2009 pandemic H1N1. Influenza Other Respir Viruses 2011; 4:411-6. [PMID: 20958936 PMCID: PMC3825186 DOI: 10.1111/j.1750-2659.2010.00185.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND The MChip uses data from the hybridization of amplified viral RNA to 15 distinct oligonucleotides that target the influenza A matrix (M) gene segment. An artificial neural network (ANN) automates the interpretation of subtle differences in fluorescence intensity patterns from the microarray. The complete process from clinical specimen to identification including amplification of viral RNA can be completed in <8 hours for under US$10. OBJECTIVES The work presented here represents an effort to expand and test the capabilities of the MChip to differentiate influenza A/H1N1 of various species origin. METHODS The MChip ANN was trained to recognize fluorescence image patterns of a variety of known influenza A viruses, including examples of human H1N1, human H3N2, swine H1N1, 2009 pandemic influenza A H1N1, and a wide variety of avian, equine, canine, and swine influenza viruses. Robustness of the MChip ANN was evaluated using 296 blinded isolates. RESULTS Training of the ANN was expanded by the addition of 71 well-characterized influenza A isolates and yielded relatively high accuracy (little misclassification) in distinguishing unique H1N1 strains: nine human A/H1N1 (88·9% correct), 35 human A/H3N2 (97·1% correct), 31 North American swine A/H1N1 (80·6% correct), 14 2009 pandemic A/H1N1 (87·7% correct), and 23 negative samples (91·3% correct). Genetic diversity among the swine H1N1 isolates may have contributed to the lower success rate for these viruses. CONCLUSIONS The current study demonstrates the MChip has the capability to differentiate the genetic variations among influenza viruses with appropriate ANN training. Further selective enrichment of the ANN will improve its ability to rapidly and reliably characterize influenza viruses of unknown origin.
Collapse
Affiliation(s)
- Gary L Heil
- Emerging Pathogens Institute and College of Public Health and Health Professions, The University of Florida, Gainesville, FL 32611, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Wille M, Robertson GJ, Whitney H, Ojkic D, Lang AS. Reassortment of American and Eurasian genes in an influenza A virus isolated from a great black-backed gull (Larus marinus), a species demonstrated to move between these regions. Arch Virol 2010; 156:107-15. [PMID: 21053031 DOI: 10.1007/s00705-010-0839-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Accepted: 10/14/2010] [Indexed: 11/24/2022]
Abstract
The primary hosts for influenza A viruses are waterfowl, although gulls and shorebirds are also important in global avian influenza dynamics. Avian influenza virus genes are separated phylogenetically into two geographic clades, American and Eurasian, which is caused by the geographic separation of the host species between these two regions. We surveyed a gregarious and cosmopolitan species, the Great Black-backed Gull (Larus marinus), in Newfoundland, Canada, for the presence of avian influenza viruses. We have isolated and determined the complete genome sequence of an H13N2 virus, A/Great Black-backed Gull/Newfoundland/296/2008(H13N2), from one of these birds. Phylogenetic analysis revealed that this virus contained two genes in the American gull clade (PB1, HA), two genes in the American avian clade (PA, NA), and four genes in the Eurasian gull clade (PB2, NP, M, NS). We analyzed bird band recovery information and found the first evidence of trans-Atlantic migration from Newfoundland to Europe (UK, Spain and Portugal) for this species. Thus, great black-backed gulls could be important for movement of avian influenza viruses across the Atlantic Ocean and within North America.
Collapse
Affiliation(s)
- Michelle Wille
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| | | | | | | | | |
Collapse
|
27
|
Zhao J, Tang S, Storhoff J, Marla S, Bao YP, Wang X, Wong EY, Ragupathy V, Ye Z, Hewlett IK. Multiplexed, rapid detection of H5N1 using a PCR-free nanoparticle-based genomic microarray assay. BMC Biotechnol 2010; 10:74. [PMID: 20942949 PMCID: PMC2964543 DOI: 10.1186/1472-6750-10-74] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 10/13/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND For more than a decade there has been increasing interest in the use of nanotechnology and microarray platforms for diagnostic applications. In this report, we describe a rapid and simple gold nanoparticle (NP)-based genomic microarray assay for specific identification of avian influenza virus H5N1 and its discrimination from other major influenza A virus strains (H1N1, H3N2). RESULTS Capture and intermediate oligonucleotides were designed based on the consensus sequences of the matrix (M) gene of H1N1, H3N2 and H5N1 viruses, and sequences specific for the hemaglutinin (HA) and neuraminidase (NA) genes of the H5N1 virus. Viral RNA was detected within 2.5 hours using capture-target-intermediate oligonucleotide hybridization and gold NP-mediated silver staining in the absence of RNA fragmentation, target amplification, and enzymatic reactions. The lower limit of detection (LOD) of the assay was less than 100 fM for purified PCR fragments and 103 TCID50 units for H5N1 viral RNA. CONCLUSIONS The NP-based microarray assay was able to detect and distinguish H5N1 sequences from those of major influenza A viruses (H1N1, H3N2). The new method described here may be useful for simultaneous detection and subtyping of major influenza A viruses.
Collapse
Affiliation(s)
- Jiangqin Zhao
- Lab of Molecular Virology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Ramey AM, Pearce JM, Flint PL, Ip HS, Derksen DV, Franson JC, Petrula MJ, Scotton BD, Sowl KM, Wege ML, Trust KA. Intercontinental reassortment and genomic variation of low pathogenic avian influenza viruses isolated from northern pintails (Anas acuta) in Alaska: Examining the evidence through space and time. Virology 2010; 401:179-89. [DOI: 10.1016/j.virol.2010.02.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 01/20/2010] [Accepted: 02/04/2010] [Indexed: 11/27/2022]
|
29
|
Lekcharoensuk P, Nanakorn J, Wajjwalku W, Webby R, Chumsing W. First whole genome characterization of swine influenza virus subtype H3N2 in Thailand. Vet Microbiol 2010; 145:230-44. [PMID: 20447778 DOI: 10.1016/j.vetmic.2010.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 04/06/2010] [Accepted: 04/09/2010] [Indexed: 11/18/2022]
Abstract
H3N2 swine influenza viruses (SIV) were first detected in Asia shortly after the 1968 pandemic emerged in humans. Subsequently, human H3N2 viruses have sporadically reappeared in swine. In Thailand, a human-like H3N2 SIV was reported in 1978 although the genetic sequence of this virus is unknown. In this study, we undertook cross sectional syndromic surveillance in pigs in four provinces in Thailand. Seven genetically similar H3N2 viruses were isolated. A representative, A/SW/Thailand/KU5.1/04, was fully sequenced and shown to contain genes from human-like influenza viruses and North American and European SIV. The results restate that transmission of influenza A virus among human and swine populations is common and that genes from both American and Eurasian SIV lineages cocirculate in Thailand.
Collapse
Affiliation(s)
- Porntippa Lekcharoensuk
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, 50 Paholyothin Road, Bangkok, Thailand.
| | | | | | | | | |
Collapse
|
30
|
Chander Y, Jindal N, Stallknecht DE, Goyal SM. Full length sequencing of all nine subtypes of the neuraminidase gene of influenza A viruses using subtype specific primer sets. J Virol Methods 2010; 165:116-20. [PMID: 20109495 PMCID: PMC11369775 DOI: 10.1016/j.jviromet.2010.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2009] [Revised: 01/04/2010] [Accepted: 01/18/2010] [Indexed: 11/27/2022]
Abstract
An RT-PCR based method was developed using subtype specific overlapping primers to obtain full length amplification of neuraminidase (NA) gene from all subtypes (N1-N9) of influenza A viruses. This method was validated using reference strains of avian influenza viruses (AIV) (N1-N9), human influenza viruses (N1 and N2), and swine influenza viruses (N1-N3). Amplification of the NA gene was obtained with all viruses tested. Additionally, 200 field isolates of AIV from wild birds were tested by this method and the NA gene was amplified in all isolates. The NA subtype of all 200 isolates was determined by further sequencing of the amplified NA genes and all sequences were submitted to GenBank. The method described in this paper can be used to determine subtype of influenza isolates as well as their evolution and mutations if any, in the NA gene.
Collapse
Affiliation(s)
- Yogesh Chander
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota 55108
| | - Naresh Jindal
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota 55108
| | - David E. Stallknecht
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia Athens, GA 30602
| | - Sagar M. Goyal
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota 55108
| |
Collapse
|
31
|
Mueller M, Renzullo S, Brooks R, Ruggli N, Hofmann MA. Antigenic characterization of recombinant hemagglutinin proteins derived from different avian influenza virus subtypes. PLoS One 2010; 5:e9097. [PMID: 20140098 PMCID: PMC2816723 DOI: 10.1371/journal.pone.0009097] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Accepted: 01/19/2010] [Indexed: 01/05/2023] Open
Abstract
Since the advent of highly pathogenic variants of avian influenza virus (HPAIV), the main focus of avian influenza research has been the characterization and detection of HPAIV hemagglutinin (HA) from H5 and H7 subtypes. However, due to the high mutation and reassortation rate of influenza viruses, in theory any influenza strain may acquire increased pathogenicity irrespective of its subtype. A comprehensive antigenic characterization of influenza viruses encompassing all 16 HA and 9 neuraminidase subtypes will provide information useful for the design of differential diagnostic tools, and possibly, vaccines. We have expressed recombinant HA proteins from 3 different influenza virus HA subtypes in the baculovirus system. These proteins were used to generate polyclonal rabbit antisera, which were subsequently employed in epitope scanning analysis using peptide libraries spanning the entire HA. Here, we report the identification and characterization of linear, HA subtype-specific as well as inter subtype-conserved epitopes along the HA proteins. Selected subtype-specific epitopes were shown to be suitable for the differentiation of anti-HA antibodies in an ELISA.
Collapse
Affiliation(s)
- Matthias Mueller
- Institute of Virology and Immunoprophylaxis (IVI), Mittelhaeusern, Switzerland.
| | | | | | | | | |
Collapse
|
32
|
Li X, Qi X, Miao L, Wang Y, Liu F, Gu H, Lu S, Yang Y, Liu F. Detection and subtyping of influenza A virus based on a short oligonucleotide microarray. Diagn Microbiol Infect Dis 2009; 65:261-70. [PMID: 19733996 DOI: 10.1016/j.diagmicrobio.2009.07.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Revised: 07/02/2009] [Accepted: 07/03/2009] [Indexed: 01/07/2023]
Abstract
We report the design and characterization of a microarray with 46 short virus-specific oligonucleotides for detecting influenza A virus of 5 subtypes: H1N1, H1N2, H3N2, H5N1, and H9N2. A unique combination of 3 specific modifications was introduced into the microarray assay: (1) short probes of 19 to 27 nucleotides, (2) simple amplification of full-length hemagglutinin and neuraminidase cDNAs with universal primers, and (3) Klenow-mediated labeling and further amplification of the samples before hybridization. The assay correctly and specifically detected and subtyped 11 different influenza A isolates from human, avian, and swine species representing the 5 subtypes. When tested with 225 clinical samples, 20 were detected to be positive using our microarray-based assay, whereas only 10 were positive by the conventional culture method. The entire analysis was completed within 7 h. Thus, these modifications result in a specific, sensitive, and rapid microarray assay and may be used for constructing microarrays for the detection of all influenza subtypes and strains.
Collapse
Affiliation(s)
- Xihan Li
- Institute of Virology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, China
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Genetic microheterogeneity of emerging H275Y influenza virus A (H1N1) in Toronto, Ontario, Canada from the 2007–2008 respiratory season. J Clin Virol 2009; 45:142-5. [DOI: 10.1016/j.jcv.2009.04.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 03/13/2009] [Accepted: 04/20/2009] [Indexed: 11/23/2022]
|
34
|
Pearce JM, Ramey AM, Flint PL, Koehler AV, Fleskes JP, Franson JC, Hall JS, Derksen DV, Ip HS. Avian influenza at both ends of a migratory flyway: characterizing viral genomic diversity to optimize surveillance plans for North America. Evol Appl 2009; 2:457-68. [PMID: 25567891 PMCID: PMC3352445 DOI: 10.1111/j.1752-4571.2009.00071.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Accepted: 03/20/2009] [Indexed: 11/26/2022] Open
Abstract
Although continental populations of avian influenza viruses are genetically distinct, transcontinental reassortment in low pathogenic avian influenza (LPAI) viruses has been detected in migratory birds. Thus, genomic analyses of LPAI viruses could serve as an approach to prioritize species and regions targeted by North American surveillance activities for foreign origin highly pathogenic avian influenza (HPAI). To assess the applicability of this approach, we conducted a phylogenetic and population genetic analysis of 68 viral genomes isolated from the northern pintail (Anas acuta) at opposite ends of the Pacific migratory flyway in North America. We found limited evidence for Asian LPAI lineages on wintering areas used by northern pintails in California in contrast to a higher frequency on breeding locales of Alaska. Our results indicate that the number of Asian LPAI lineages observed in Alaskan northern pintails, and the nucleotide composition of LPAI lineages, is not maintained through fall migration. Accordingly, our data indicate that surveillance of Pacific Flyway northern pintails to detect foreign avian influenza viruses would be most effective in Alaska. North American surveillance plans could be optimized through an analysis of LPAI genomics from species that demonstrate evolutionary linkages with European or Asian lineages and in regions that have overlapping migratory flyways with areas of HPAI outbreaks.
Collapse
Affiliation(s)
- John M Pearce
- Alaska Science Center, U.S. Geological Survey Anchorage, AK, USA
| | - Andrew M Ramey
- Alaska Science Center, U.S. Geological Survey Anchorage, AK, USA
| | - Paul L Flint
- Alaska Science Center, U.S. Geological Survey Anchorage, AK, USA
| | - Anson V Koehler
- Alaska Science Center, U.S. Geological Survey Anchorage, AK, USA
| | - Joseph P Fleskes
- Western Ecological Research Center, U.S. Geological Survey Dixon, CA, USA
| | | | - Jeffrey S Hall
- National Wildlife Health Center, U.S. Geological Survey Madison, WI, USA
| | - Dirk V Derksen
- Alaska Science Center, U.S. Geological Survey Anchorage, AK, USA
| | - Hon S Ip
- National Wildlife Health Center, U.S. Geological Survey Madison, WI, USA
| |
Collapse
|
35
|
Sreta D, Kedkovid R, Tuamsang S, Kitikoon P, Thanawongnuwech R. Pathogenesis of swine influenza virus (Thai isolates) in weanling pigs: an experimental trial. Virol J 2009; 6:34. [PMID: 19317918 PMCID: PMC2678088 DOI: 10.1186/1743-422x-6-34] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Accepted: 03/25/2009] [Indexed: 01/12/2023] Open
Abstract
Background The objective of this study is to investigate the pathogenesis of swine influenza virus (SIV) subtype H1N1 and H3N2 (Thai isolates) in 22-day-old SPF pigs. Results The study found that all pigs in the infected groups developed typical signs of flu-like symptoms on 1–4 days post- infection (dpi). The H1N1-infected pigs had greater lung lesion scores than those of the H3N2-infected pigs. Histopathological lesions related to swine influenza-induced lesions consisting of epithelial cells damage, airway plugging and peribronchial and perivascular mononuclear cell infiltration were present in both infected groups. Immunofluorescence and immunohistochemistry using nucleoprotein specific monoclonal antibodies revealed positive staining cells in lung sections of both infected groups at 2 and 4 dpi. Virus shedding was detected at 2 dpi from both infected groups as demonstrated by RT-PCR and virus isolation. Conclusion The results demonstrated that both SIV subtypes were able to induce flu-like symptoms and lung lesions in weanling pigs. However the severity of the diseases with regards to lung lesions both gross and microscopic lesions was greater in the H1N1-infected pigs. Based on phylogenetic analysis, haemagglutinin gene of subtype H1N1 from Thailand clustered with the classical H1 SIV sequences and neuraminidase gene clustered with virus of avian origin, whereas, both genes of H3N2 subtype clustered with H3N2 human-like SIV from the 1970s.
Collapse
|
36
|
Huang Y, Tang H, Duffy S, Hong Y, Norman S, Ghosh M, He J, Bose M, Henrickson KJ, Fan J, Kraft AJ, Weisburg WG, Mather EL. Multiplex assay for simultaneously typing and subtyping influenza viruses by use of an electronic microarray. J Clin Microbiol 2009; 47:390-6. [PMID: 19073867 PMCID: PMC2643674 DOI: 10.1128/jcm.01807-08] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Accepted: 12/01/2008] [Indexed: 11/20/2022] Open
Abstract
We report on the use of an electronic microarray to simultaneously type influenza A and B viruses and to distinguish influenza A virus subtypes H1N1 and H3N2 from the potentially pandemic avian virus subtype H5N1. The assay targets seven genes: the H1, H3, H5, N1, and N2 genes of influenza A virus; the matrix protein M1 gene of influenza A virus; and the nonstructural protein (NS) gene of influenza B virus. By combining a two-step reverse transcription-multiplex PCR with typing and subtyping on the electronic microarray, the assay achieved an analytical sensitivity of 10(2) to 10(3) copies of transcripts per reaction for each of the genes. The assay correctly typed and subtyped 15 different influenza virus isolates, including two influenza B virus, five A/H1N1, six A/H3N2, and two A/H5N1 isolates. In addition, the assay correctly identified 8 out of 10 diluted, archived avian influenza virus specimens with complete typing and subtyping information and 2 specimens with partial subtyping information. In a study of 146 human clinical specimens that had previously been shown to be positive for influenza virus or another respiratory virus, the assay showed a clinical sensitivity of 96% and a clinical specificity of 100%. The assay is a rapid, accurate, user-friendly method for simultaneously typing and subtyping influenza viruses.
Collapse
MESH Headings
- Genotype
- Humans
- Influenza A Virus, H1N1 Subtype/classification
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/isolation & purification
- Influenza A Virus, H3N2 Subtype/classification
- Influenza A Virus, H3N2 Subtype/genetics
- Influenza A Virus, H3N2 Subtype/isolation & purification
- Influenza A Virus, H5N1 Subtype/classification
- Influenza A Virus, H5N1 Subtype/genetics
- Influenza A Virus, H5N1 Subtype/isolation & purification
- Influenza B virus/classification
- Influenza B virus/genetics
- Influenza B virus/isolation & purification
- Microarray Analysis/methods
- RNA, Viral/genetics
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Sensitivity and Specificity
- Viral Proteins/genetics
Collapse
|
37
|
Koehler AV, Pearce JM, Flint PL, Franson JC, Ip HS. Genetic evidence of intercontinental movement of avian influenza in a migratory bird: the northern pintail (Anas acuta). Mol Ecol 2009; 17:4754-62. [PMID: 19140989 DOI: 10.1111/j.1365-294x.2008.03953.x] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The role of migratory birds in the movement of the highly pathogenic (HP) avian influenza H5N1 remains a subject of debate. Testing hypotheses regarding intercontinental movement of low pathogenic avian influenza (LPAI) viruses will help evaluate the potential that wild birds could carry Asian-origin strains of HP avian influenza to North America during migration. Previous North American assessments of LPAI genetic variation have found few Asian reassortment events. Here, we present results from whole-genome analyses of LPAI isolates collected in Alaska from the northern pintail (Anas acuta), a species that migrates between North America and Asia. Phylogenetic analyses confirmed the genetic divergence between Asian and North American strains of LPAI, but also suggested inter-continental virus exchange and at a higher frequency than previously documented. In 38 isolates from Alaska, nearly half (44.7%) had at least one gene segment more closely related to Asian than to North American strains of LPAI. Additionally, sequences of several Asian LPAI isolates from GenBank clustered more closely with North American northern pintail isolates than with other Asian origin viruses. Our data support the role of wild birds in the intercontinental transfer of influenza viruses, and reveal a higher degree of transfer in Alaska than elsewhere in North America.
Collapse
Affiliation(s)
- Anson V Koehler
- Alaska Science Center, US Geological Survey, 4210 University Drive, Anchorage, Alaska 99508, USA
| | | | | | | | | |
Collapse
|
38
|
Genotyping Arrays. MICROARRAYS 2009. [PMCID: PMC7123720 DOI: 10.1007/978-0-387-72719-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Although the most common use of DNA microarrays is gene expression profiling, microarrays are also used for many other applications, including genotyping, resequencing, SNP analysis, and DNA methylation assays. Here we describe genotyping arrays for Influenza A subtype identification and for upper respiratory pathogen diagnostics using standard hybridization techniques and we also describe resequencing, SNP, and methylation assays using an enzyme-based strategy [25, 26].
Collapse
|
39
|
Eshaghi A, Blair J, Burton L, Choi KW, De Lima C, Duncan C, Guyard C, Higgins R, Lombos E, Low DE, Mazzulli T, Drews SJ. Characterization of an influenza A and influenza B co-infection of a patient in a long-term care facility with co-circulating influenza A and influenza B. Int J Infect Dis 2008; 13:e127-8. [PMID: 18849179 DOI: 10.1016/j.ijid.2008.06.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Accepted: 06/08/2008] [Indexed: 10/21/2022] Open
|
40
|
Phylogenetic characterization of H5N1 highly pathogenic avian influenza viruses isolated in Switzerland in 2006. Virus Genes 2008; 37:407-13. [PMID: 18787938 DOI: 10.1007/s11262-008-0285-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Accepted: 08/28/2008] [Indexed: 10/21/2022]
Abstract
In the winter 2005/2006 H5N1 highly pathogenic avian influenza virus (HPAIV) reached Western Europe and caused numerous deaths primarily in migratory water birds. Between February and April 2006 34 cases of H5N1 HPAIV-infected dead water fowl were identified in Switzerland, almost exclusively occurring in the Lake Constance area, a large overwintering area for migratory birds in the eastern part of the country. In total, 13 of these virus isolates were genetically characterized in the present study by full-length nucleotide sequence analysis of the hemagglutinin and neuraminidase-coding region. All viruses could be confirmed as HPAIV based on the amino acid sequence of their hemagglutinin cleavage site. Phylogenetic analysis revealed that all the virus isolates were highly similar to each other and to other H5N1 strains found in neighboring countries. All analyzed Swiss virus isolates belonged to the influenza virus subclade 2.2.1.
Collapse
|
41
|
Lee CS, Kang BK, Kim HK, Park SJ, Park BK, Jung K, Song DS. Phylogenetic analysis of swine influenza viruses recently isolated in Korea. Virus Genes 2008; 37:168-76. [PMID: 18574682 DOI: 10.1007/s11262-008-0251-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Accepted: 06/09/2008] [Indexed: 11/27/2022]
Abstract
Several influenza A viral subtypes were isolated from pigs during a severe outbreak of respiratory disease in Korea during 2005 and 2006. They included a classical swine H1N1 subtype, two swine-human-avian triple-recombinant H1N2 subtypes, and a swine-human-avian triple-recombinant H3N2 subtype. In the current study, genetic characterization to determine the probable origin of these recent isolates was carried out for the first time. Phylogenetic analysis indicated that all the recent Korean isolates of H1N1, H1N2, and H3N2 influenza are closely related to viruses from the United States. Serologic and genetic analysis indicated that the Korean H1N2 viral subtypes were introduced directly from the United States, and did not arise from recombination between Korean H1N1 and H3N2. We suggest that the H1N1, H1N2, and H3N2 viral subtypes that were isolated from the Korean swine population originated in North America, and that these viruses are currently circulating in the Korean swine population.
Collapse
Affiliation(s)
- C S Lee
- Research Unit, Green Cross Veterinary Products, 227-5, Kugal-dong, Kiheung-gu, Yongin, 449-903, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
42
|
Gray GC, McCarthy T, Capuano AW, Setterquist SF, Olsen CW, Alavanja MC. Swine workers and swine influenza virus infections. Emerg Infect Dis 2008; 13:1871-8. [PMID: 18258038 PMCID: PMC2876739 DOI: 10.3201/eid1312.061323] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Swine workers and their spouses are at markedly increased risk of acquiring swine influenza virus infections. In 2004, 803 rural Iowans from the Agricultural Health Study were enrolled in a 2-year prospective study of zoonotic influenza transmission. Demographic and occupational exposure data from enrollment, 12-month, and 24-month follow-up encounters were examined for association with evidence of previous and incident influenza virus infections. When proportional odds modeling with multivariable adjustment was used, upon enrollment, swine-exposed participants (odds ratio [OR] 54.9, 95% confidence interval [CI] 13.0–232.6) and their nonswine-exposed spouses (OR 28.2, 95% CI 6.1–130.1) were found to have an increased odds of elevated antibody level to swine influenza (H1N1) virus compared with 79 nonexposed University of Iowa personnel. Further evidence of occupational swine influenza virus infections was observed through self-reported influenza-like illness data, comparisons of enrollment and follow-up serum samples, and the isolation of a reassortant swine influenza (H1N1) virus from an ill swine farmer. Study data suggest that swine workers and their nonswine-exposed spouses are at increased risk of zoonotic influenza virus infections.
Collapse
Affiliation(s)
- Gregory C Gray
- University of Iowa College of Public Health, Iowa City, Iowa, USA.
| | | | | | | | | | | |
Collapse
|
43
|
Townsend MB, Smagala JA, Dawson ED, Deyde V, Gubareva L, Klimov AI, Kuchta RD, Rowlen KL. Detection of adamantane-resistant influenza on a microarray. J Clin Virol 2008; 42:117-23. [PMID: 18299250 DOI: 10.1016/j.jcv.2007.12.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Revised: 11/30/2007] [Accepted: 12/27/2007] [Indexed: 11/28/2022]
Abstract
BACKGROUND Influenza A has the ability to rapidly mutate and become resistant to the commonly prescribed influenza therapeutics, thereby complicating treatment decisions. OBJECTIVE To design a cost-effective low-density microarray for use in detection of influenza resistance to the adamantanes. STUDY DESIGN We have taken advantage of functional genomics and microarray technology to design a DNA microarray that can detect the two most common mutations in the M2 protein associated with adamantane resistance, V27A and S31N. RESULTS In a blind study of 22 influenza isolates, the antiviral resistance-chip (AVR-Chip) had a success rate of 95% for detecting these mutations. Microarray data from a larger set of samples were further analyzed using an artificial neural network and resulted in a correct identification rate of 94% for influenza virus samples that had V27A and S31N mutations. CONCLUSIONS The AVR-Chip provided a method for rapidly screening influenza viruses for adamantane sensitivity, and the general approach could be easily extended to detect resistance to other chemotherapeutics.
Collapse
Affiliation(s)
- Michael B Townsend
- Department of Chemistry and Biochemistry, The University of Colorado at Boulder, UCB #215, Boulder, CO 80309, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
de Mendonça MCL, de Amorim Ferreira AM, dos Santos MGM, de Barros JJF, von Hubinger MG, dos Santos Silva Couceiro JN. Heteroduplex mobility assay and single-stranded conformation polymorphism analysis as methodologies for detecting variants of human erythroviruses. J Virol Methods 2008; 148:40-7. [DOI: 10.1016/j.jviromet.2007.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Revised: 09/20/2007] [Accepted: 10/10/2007] [Indexed: 11/16/2022]
|
45
|
Rapid differentiation of influenza A virus subtypes and genetic screening for virus variants by high-resolution melting analysis. J Clin Microbiol 2008; 46:1090-7. [PMID: 18174299 DOI: 10.1128/jcm.02015-07] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We assessed the use of high-resolution melting (HRM) analysis for the rapid identification of influenza A virus subtypes and the detection of newly emerging virus variants. The viral matrix gene was amplified by LightCycler real-time reverse transcription-PCR (RT-PCR) in the presence of the LCGreen I fluorescent dye. Upon optimization of the assay conditions, all the major influenza A virus subtypes, including H1N1, H3N2, H5N1, H7N3, and H9N2, were amplifiable by this method and had a PCR product length of 179 bp. Real-time RT-PCR of in vitro-transcribed H3N2 RNA revealed a standard curve for quantification with a linear range (correlation coefficient = 0.9935) across at least 8 log units of RNA concentrations and a detection limit of 10(3) copies of viral RNA. We performed HRM analysis of the PCR products with the HR-1 instrument and used the melting profiles as molecular fingerprints for virus subtyping. The virus subtypes were identified from the high-resolution derivative plot obtained by heteroduplex formation between the PCR products of the viral isolates tested and those of the reference viral isolates. The melting profiles were consistent with minimal interassay variability. Hence, an HRM database and a working protocol were established for the identification of these five influenza A virus subtypes. When this protocol was used to test 21 clinical influenza A virus isolates, the results were comparable to those obtained by RT-PCR with hemagglutinin-specific primer sets. Sequence variants of the clinical isolates (n = 4) were also revealed by our HRM analytical scheme. This assay requires no multiplexing or hybridization probes and provides a new approach for influenza A virus subtyping and genetic screening of virus variants in a clinical virology laboratory.
Collapse
|
46
|
Lodes MJ, Suciu D, Wilmoth JL, Ross M, Munro S, Dix K, Bernards K, Stöver AG, Quintana M, Iihoshi N, Lyon WJ, Danley DL, McShea A. Identification of upper respiratory tract pathogens using electrochemical detection on an oligonucleotide microarray. PLoS One 2007; 2:e924. [PMID: 17895966 PMCID: PMC1976596 DOI: 10.1371/journal.pone.0000924] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Accepted: 08/31/2007] [Indexed: 11/19/2022] Open
Abstract
Bacterial and viral upper respiratory infections (URI) produce highly variable clinical symptoms that cannot be used to identify the etiologic agent. Proper treatment, however, depends on correct identification of the pathogen involved as antibiotics provide little or no benefit with viral infections. Here we describe a rapid and sensitive genotyping assay and microarray for URI identification using standard amplification and hybridization techniques, with electrochemical detection (ECD) on a semiconductor-based oligonucleotide microarray. The assay was developed to detect four bacterial pathogens (Bordetella pertussis, Streptococcus pyogenes, Chlamydia pneumoniae and Mycoplasma pneumoniae) and 9 viral pathogens (adenovirus 4, coronavirus OC43, 229E and HK, influenza A and B, parainfluinza types 1, 2, and 3 and respiratory syncytial virus. This new platform forms the basis for a fully automated diagnostics system that is very flexible and can be customized to suit different or additional pathogens. Multiple probes on a flexible platform allow one to test probes empirically and then select highly reactive probes for further iterative evaluation. Because ECD uses an enzymatic reaction to create electrical signals that can be read directly from the array, there is no need for image analysis or for expensive and delicate optical scanning equipment. We show assay sensitivity and specificity that are excellent for a multiplexed format.
Collapse
MESH Headings
- Adenoviridae/genetics
- Adenoviridae/isolation & purification
- Bacterial Infections/diagnosis
- Bacterial Infections/microbiology
- Bordetella pertussis/genetics
- Bordetella pertussis/isolation & purification
- Chlamydophila pneumoniae/genetics
- Chlamydophila pneumoniae/isolation & purification
- Coronavirus 229E, Human/genetics
- Coronavirus 229E, Human/isolation & purification
- Coronavirus OC43, Human/genetics
- Coronavirus OC43, Human/isolation & purification
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Viral/chemistry
- DNA, Viral/genetics
- Electrochemistry/methods
- Humans
- Influenza A virus/genetics
- Influenza A virus/isolation & purification
- Influenza B virus/genetics
- Influenza B virus/isolation & purification
- Mycoplasma pneumoniae/genetics
- Mycoplasma pneumoniae/isolation & purification
- Oligonucleotide Array Sequence Analysis/methods
- Parainfluenza Virus 1, Human/genetics
- Parainfluenza Virus 1, Human/isolation & purification
- Parainfluenza Virus 2, Human/genetics
- Parainfluenza Virus 2, Human/isolation & purification
- Parainfluenza Virus 3, Human/genetics
- Parainfluenza Virus 3, Human/isolation & purification
- Polymerase Chain Reaction
- Reproducibility of Results
- Respiratory Syncytial Viruses/genetics
- Respiratory Syncytial Viruses/isolation & purification
- Respiratory System/microbiology
- Respiratory System/virology
- Sensitivity and Specificity
- Sequence Analysis, DNA
- Streptococcus pyogenes/genetics
- Streptococcus pyogenes/isolation & purification
- Virus Diseases/diagnosis
- Virus Diseases/virology
Collapse
|
47
|
Moore CL, Smagala JA, Smith CB, Dawson ED, Cox NJ, Kuchta RD, Rowlen KL. Evaluation of MChip with historic subtype H1N1 influenza A viruses, including the 1918 "Spanish Flu" strain. J Clin Microbiol 2007; 45:3807-10. [PMID: 17855577 PMCID: PMC2168478 DOI: 10.1128/jcm.01089-07] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The robustness of a recently developed diagnostic microarray for influenza, the MChip, was evaluated with 16 historic subtype H1N1 influenza A viruses (A/H1N1), including A/Brevig Mission/1/1918. The matrix gene segments from all 16 viruses were successfully detected on the array. An artificial neural network trained with temporally related A/H1N1 viruses identified A/Brevig Mission/1/1918 as influenza virus A/H1N1 with 94% probability.
Collapse
Affiliation(s)
- Chad L Moore
- Department of Chemistry and Biochemistry, UCB 215, University of Colorado at Boulder, Boulder, CO 80309, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Gramer MR, Lee JH, Choi YK, Goyal SM, Joo HS. Serologic and genetic characterization of North American H3N2 swine influenza A viruses. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2007; 71:201-6. [PMID: 17695595 PMCID: PMC1899866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The H3N2 subtype of influenza A viruses isolated from pigs in the United States and Canada has shown both genetic and antigenic diversity. The objective of this study was to determine the serologic and genetic characteristics of contemporary strains of these viruses. Genetic analysis of 18 reference strains and 8 selected strains demonstrated differences in 1% to 9% of the nucleotides of the hemagglutinin (HA) gene. Phylogenetic analysis of the HA gene revealed 3 genetic clusters, as well as divergence of cluster III viruses from a cluster III prototype virus (A/Swine/Illinois/21587/99). By means of 1-way cross-hemagglutination inhibition with antiserum against 5 field isolates and 3 vaccine viruses, most of 97 isolates tested could be placed in 1 of 3 serogroups. The several isolates that did not react with any antiserum were in genetic cluster III, which suggests that continuous antigenic drift in cluster III may have resulted in virus variants. The efficacy of commercial vaccines against these virus variants should be evaluated with vaccination and challenge studies.
Collapse
Affiliation(s)
- Marie René Gramer
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, 1333 Gortner Avenue, St. Paul, Minnesota 55108, USA.
| | | | | | | | | |
Collapse
|
49
|
Dankbar DM, Dawson ED, Mehlmann M, Moore CL, Smagala JA, Shaw MW, Cox NJ, Kuchta RD, Rowlen KL. Diagnostic microarray for influenza B viruses. Anal Chem 2007; 79:2084-90. [PMID: 17326602 PMCID: PMC2518629 DOI: 10.1021/ac061960s] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The importance of global influenza surveillance using simple and rapid diagnostics has been frequently highlighted. For influenza type B, the need exists for discrimination between the two currently circulating major lineages, represented by virus strains B/Victoria/2/87 and B/Yamagata/16/88, as only one of these lineages is represented in seasonal influenza vaccines. Here, the development and characterization of a low-density DNA microarray (designated BChip) designed to detect and identify the two influenza B lineages is presented. The assay involved multiplex nucleic acid amplification and microarray hybridization of viral RNA. Detection and lineage identification was achieved in less than 8 h. In a study of 62 influenza B virus samples from 19 countries, dating from 1945 to 2005, as well as 5 negative control samples, the assay exhibited 97% sensitivity and 100% specificity. Furthermore, application of a trained artificial neural network to the pattern of relative fluorescence signals resulted in correct lineage assignment for 94% of 50 applicable influenza B viruses, with no false assignments.
Collapse
Affiliation(s)
- Daniela M. Dankbar
- University of Colorado at Boulder, Department of Chemistry and Biochemistry, UCB 215, Boulder, CO 80309, USA
| | - Erica D. Dawson
- University of Colorado at Boulder, Department of Chemistry and Biochemistry, UCB 215, Boulder, CO 80309, USA
| | - Martin Mehlmann
- University of Colorado at Boulder, Department of Chemistry and Biochemistry, UCB 215, Boulder, CO 80309, USA
| | - Chad L. Moore
- University of Colorado at Boulder, Department of Chemistry and Biochemistry, UCB 215, Boulder, CO 80309, USA
| | - James A. Smagala
- University of Colorado at Boulder, Department of Chemistry and Biochemistry, UCB 215, Boulder, CO 80309, USA
| | - Michael W. Shaw
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30333
| | - Nancy J. Cox
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30333
| | - Robert D. Kuchta
- University of Colorado at Boulder, Department of Chemistry and Biochemistry, UCB 215, Boulder, CO 80309, USA
| | - Kathy L. Rowlen
- University of Colorado at Boulder, Department of Chemistry and Biochemistry, UCB 215, Boulder, CO 80309, USA
- InDevR, LLC, 2100 Central Ave., Boulder, CO 80301
- * Author to whom correspondence should be addressed. ; Phone: +1-303-402-9100
| |
Collapse
|
50
|
Song DS, Lee CS, Jung K, Kang BK, Oh JS, Yoon YD, Lee JH, Park BK. Isolation and phylogenetic analysis of H1N1 swine influenza virus isolated in Korea. Virus Res 2006; 125:98-103. [PMID: 17174433 DOI: 10.1016/j.virusres.2006.11.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Revised: 11/07/2006] [Accepted: 11/17/2006] [Indexed: 11/28/2022]
Abstract
A swine influenza H1N1 virus was isolated from a pig during a severe outbreak of respiratory disease in Korea. All genes of the H1N1 isolate, including hemagglutinin (HA), neuraminidase (NA), matrix (M), nucleoprotein (NP), non-structural (NS), PA, PB1 and PB2, were of swine origin. Also, all these genes showed a close phylogenic relationship with those of H1N1 viruses previously isolated from pigs in the United States. These results suggest that North American swine influenza virus has actually been transmitted to pigs in Korea.
Collapse
Affiliation(s)
- D S Song
- Research Unit, Green Cross Veterinary Products, Yong-In, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|