1
|
Jia J, Lu SE. Comparative Genome Analyses Provide Insight into the Antimicrobial Activity of Endophytic Burkholderia. Microorganisms 2024; 12:100. [PMID: 38257926 PMCID: PMC10821513 DOI: 10.3390/microorganisms12010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Endophytic bacteria are endosymbionts that colonize a portion of plants without harming the plant for at least a part of its life cycle. Bacterial endophytes play an essential role in promoting plant growth using multiple mechanisms. The genus Burkholderia is an important member among endophytes and encompasses bacterial species with high genetic versatility and adaptability. In this study, the endophytic characteristics of Burkholderia species are investigated via comparative genomic analyses of several endophytic Burkholderia strains with pathogenic Burkholderia strains. A group of bacterial genes was identified and predicted as the putative endophytic behavior genes of Burkholderia. Multiple antimicrobial biosynthesis genes were observed in these endophytic bacteria; however, certain important pathogenic and virulence genes were absent. The majority of resistome genes were distributed relatively evenly among the endophytic and pathogenic bacteria. All known types of secretion systems were found in the studied bacteria. This includes T3SS and T4SS, which were previously thought to be disproportionately represented in endophytes. Additionally, questionable CRISPR-Cas systems with an orphan CRISPR array were prevalent, suggesting that intact CRISPR-Cas systems may not exist in symbiotes of Burkholderia. This research not only sheds light on the antimicrobial activities that contribute to biocontrol but also expands our understanding of genomic variations in Burkholderia's endophytic and pathogenic bacteria.
Collapse
Affiliation(s)
| | - Shi-En Lu
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA;
| |
Collapse
|
2
|
Paulitsch F, Dos Reis FB, Hungria M. Twenty years of paradigm-breaking studies of taxonomy and symbiotic nitrogen fixation by beta-rhizobia, and indication of Brazil as a hotspot of Paraburkholderia diversity. Arch Microbiol 2021; 203:4785-4803. [PMID: 34245357 DOI: 10.1007/s00203-021-02466-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/11/2021] [Accepted: 06/25/2021] [Indexed: 10/20/2022]
Abstract
Twenty years ago, the first members of the genus Burkholderia capable of nodulating and fixing N2 during symbiosis with leguminous plants were reported. The discovery that β-proteobacteria could nodulate legumes represented a breakthrough event because, for over 100 years, it was thought that all rhizobia belonged exclusively to the α-Proteobacteria class. Over the past 20 years, efforts toward robust characterization of these bacteria with large-scale phylogenomic and taxonomic studies have led to the separation of clinically important and phytopathogenic members of Burkholderia from environmental ones, and the symbiotic nodulating species are now included in the genera Paraburkholderia and Trinickia. Paraburkholderia encompasses the vast majority of β-rhizobia and has been mostly found in South America and South Africa, presenting greater symbiotic affinity with native members of the families Mimosoideae and Papilionoideae, respectively. Being the main center of Mimosa spp. diversity, Brazil is also known as the center of symbiotic Paraburkholderia diversity. Of the 21 symbiotic Paraburkholderia species described to date, 11 have been isolated in Brazil, and others first isolated in different countries have also been found in this country. Additionally, besides the symbiotic N2-fixation capacity of some of its members, Paraburkholderia is considered rich in other beneficial interactions with plants and can promote growth through several direct and indirect mechanisms. Therefore, these bacteria can be considered biological resources employed as environmentally friendly alternatives that could reduce the agricultural dependence on agrochemical inputs.
Collapse
Affiliation(s)
- Fabiane Paulitsch
- Embrapa Soja, C.P. 231, Londrina, Paraná, 86001-970, Brazil.,Departamento de Microbiologia, Universidade Estadual de Londrina, C.P. 10011, Londrina, Paraná, 86057-970, Brazil.,Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, SBN, Quadra 2, Bloco L, Lote 06, Edifício Capes, Brasília, Distrito Federal, 70040-020, Brazil
| | | | - Mariangela Hungria
- Embrapa Soja, C.P. 231, Londrina, Paraná, 86001-970, Brazil. .,Departamento de Microbiologia, Universidade Estadual de Londrina, C.P. 10011, Londrina, Paraná, 86057-970, Brazil.
| |
Collapse
|
3
|
Seth-Smith HMB, Casanova C, Sommerstein R, Meinel DM, Abdelbary MMH, Blanc DS, Droz S, Führer U, Lienhard R, Lang C, Dubuis O, Schlegel M, Widmer A, Keller PM, Marschall J, Egli A. Phenotypic and Genomic Analyses of Burkholderia stabilis Clinical Contamination, Switzerland. Emerg Infect Dis 2020; 25:1084-1092. [PMID: 31107229 PMCID: PMC6537712 DOI: 10.3201/eid2506.172119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
A recent hospital outbreak related to premoistened gloves used to wash patients exposed the difficulties of defining Burkholderia species in clinical settings. The outbreak strain displayed key B. stabilis phenotypes, including the inability to grow at 42°C; we used whole-genome sequencing to confirm the pathogen was B. stabilis. The outbreak strain genome comprises 3 chromosomes and a plasmid, sharing an average nucleotide identity of 98.4% with B. stabilis ATCC27515 BAA-67, but with 13% novel coding sequences. The genome lacks identifiable virulence factors and has no apparent increase in encoded antimicrobial drug resistance, few insertion sequences, and few pseudogenes, suggesting this outbreak was an opportunistic infection by an environmental strain not adapted to human pathogenicity. The diversity among outbreak isolates (22 from patients and 16 from washing gloves) is only 6 single-nucleotide polymorphisms, although the genome remains plastic, with large elements stochastically lost from outbreak isolates.
Collapse
|
4
|
Hassan AA, Coutinho CP, Sá-Correia I. Burkholderia cepacia Complex Species Differ in the Frequency of Variation of the Lipopolysaccharide O-Antigen Expression During Cystic Fibrosis Chronic Respiratory Infection. Front Cell Infect Microbiol 2019; 9:273. [PMID: 31417878 PMCID: PMC6686744 DOI: 10.3389/fcimb.2019.00273] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/17/2019] [Indexed: 11/13/2022] Open
Abstract
Burkholderia cepacia complex (Bcc) bacteria can adapt to the lung environment of cystic fibrosis (CF) patients resulting in the emergence of a very difficult to eradicate heterogeneous population leading to chronic infections associated with rapid lung function loss and increased mortality. Among the important phenotypic modifications is the variation of the lipopolysaccharide (LPS) structure at level of the O-antigen (OAg) presence, influencing adherence, colonization and the ability to evade the host defense mechanisms. The present study was performed to understand whether the loss of OAg expression during CF infection can be considered a general phenomenon in different Bcc species favoring its chronicity. In fact, it is still not clear why different Bcc species/strains differ in their ability to persist in the CF lung and pathogenic potential. The systematic two-decade-retrospective-longitudinal-screening conducted covered 357 isolates retrieved from 19 chronically infected patients receiving care at a central hospital in Lisbon. The study involved 21 Bcc strains of six/seven Bcc species/lineages, frequently or rarely isolated from CF patients worldwide. Different strains/clonal variants obtained during infection gave rise to characteristic OAg-banding patterns. The two most prevalent and feared species, B. cenocepacia and B. multivorans, showed a tendency to lose the OAg along chronic infection. B. cenocepacia recA lineage IIIA strains known to lead to particularly destructive infections exhibit the most frequent OAg loss, compared with lineage IIIB. The switch frequency increased with the duration of infection and the level of lung function deterioration. For the first time, it is shown that the rarely found B. cepacia and B. contaminans, whose representation in the cohort of patients examined is abnormally high, keep the OAg even during 10- or 15-year infections. Data from co-infections with different Bcc species reinforced these conclusions. Concerning the two other rarely found species examined, B. stabilis exhibited a stable OAg expression phenotype over the infection period while for the single clone of the more distantly related B. dolosa species, the OAg-chain was absent from the beginning of the 5.5-year infection until the patient dead. This work reinforces the relevance attributed to the OAg-expression switch suggesting marked differences in the various Bcc species.
Collapse
Affiliation(s)
- A. Amir Hassan
- iBB - Institute for Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Carla P. Coutinho
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Isabel Sá-Correia
- iBB - Institute for Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
5
|
Seth-Smith HM, Casanova C, Sommerstein R, Meinel DM, Abdelbary MM, Blanc DS, Droz S, Führer U, Lienhard R, Lang C, Dubuis O, Schlegel M, Widmer A, Keller PM, Marschall J, Egli A. Phenotypic and Genomic Analyses of Burkholderia stabilisClinical Contamination, Switzerland. Emerg Infect Dis 2019. [DOI: 10.3201/eid2406.172119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
6
|
Su X, Shi Y, Li R, Lu ZN, Zou X, Wu JX, Han ZG. Application of qPCR assays based on haloacids transporter gene dehp2 for discrimination of Burkholderia and Paraburkholderia. BMC Microbiol 2019; 19:36. [PMID: 30744555 PMCID: PMC6371555 DOI: 10.1186/s12866-019-1411-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/31/2019] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND A major facilitator superfamily transporter Dehp2 was recently shown to be playing an important role in transport and biodegradation of haloacids in Paraburkholderia caribensis MBA4, and Dehp2 is phylogenetically conserved in Burkholderia sensu lato. RESULTS We designed both Burkholderia sensu stricto-specific and Paraburkholderia-specific qPCR assays based on dehp2 and 16S rRNA, and validated the qPCR assays in 12 bacterial strains. The qPCR assays could detect single species of Burkholderia sensu stricto or Paraburkholderia with high sensitivity and discriminate them in mixtures with high specificity over a wide dynamic range of relative concentrations. At relatively lower cost compared with sequencing-based approach, the qPCR assays will facilitate discrimination of Burkholderia sensu stricto and Paraburkholderia in a large number of samples. CONCLUSIONS For the first time, we report the utilization of a haloacids transporter gene for discriminative purpose in Burkholderia sensu lato. This enables not only quick decision on proper handling of putative pathogenic samples in Burkholderia sensu stricto group but also future exploitation of relevant species in Paraburkholderia group for haloacids biodegradation purposes.
Collapse
Affiliation(s)
- Xianbin Su
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Shi
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ruihong Li
- Shanghai Quality Safety Centre of Agricultural Products, Shanghai, China
| | - Zhao-Ning Lu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xin Zou
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiao-Xiang Wu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ze-Guang Han
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
7
|
Lee C, Lee HH, Mannaa M, Kim N, Park J, Kim J, Seo YS. Genomics-based Sensitive and Specific Novel Primers for Simultaneous Detection of Burkholderia glumae and Burkholderia gladioli in Rice Seeds. THE PLANT PATHOLOGY JOURNAL 2018; 34:490-498. [PMID: 30588222 PMCID: PMC6305179 DOI: 10.5423/ppj.oa.07.2018.0136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/25/2018] [Accepted: 08/28/2018] [Indexed: 06/09/2023]
Abstract
Panicle blight and seed rot disease caused mainly by Burkholderia glumae and Burkholderia gladioli is threatening rice cultivation worldwide. The bacteria have been reported as seed-borne pathogens from rice. Accurate detection of both pathogens on the seeds is very important for limiting the disease dissemination. Novel primer pairs targeting specific molecular markers were developed for the robust detection of B. glumae and B. gladioli. The designed primers were specific in detecting the target species with no apparent crossreactions with other related Burkholderia species at the expected product size. Both primer pairs displayed a high degree of sensitivity for detection of B. glumae and B. gladioli separately in monoplex PCR or simultaneously in duplex PCR from both extracted gDNA and directly preheated bacterial cell suspensions. Limit of detection was as low as 0.1 ng of gDNA of both species and 3.86 × 102 cells for B. glumae and 5.85 × 102 cells for B. gladioli. On inoculated rice seeds, the designed primers could separately or simultaneously detect B. glumae and B. gladioli with a detection limit as low as 1.86 × 103 cells per rice seed for B. glumae and 1.04 × 104 cells per rice seed of B. gladioli. The novel primers maybe valuable as a more sensitive, specific, and robust tool for the efficient simultaneous detection of B. glumae and B. gladioli on rice seeds, which is important in combating rice panicle blight and seed rot by early detection and confirmation of the dissemination of pathogen-free rice seeds.
Collapse
Affiliation(s)
| | | | | | - Namgyu Kim
- Department of Microbiology, Pusan National University, Busan 46241,
Korea
| | - Jungwook Park
- Department of Microbiology, Pusan National University, Busan 46241,
Korea
| | - Juyun Kim
- Department of Microbiology, Pusan National University, Busan 46241,
Korea
| | - Young-Su Seo
- Department of Microbiology, Pusan National University, Busan 46241,
Korea
| |
Collapse
|
8
|
Burkholderia cepacia complex in cystic fibrosis in a Brazilian reference center. Med Microbiol Immunol 2017; 206:447-461. [DOI: 10.1007/s00430-017-0521-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 09/21/2017] [Indexed: 10/18/2022]
|
9
|
Ong KS, Aw YK, Lee LH, Yule CM, Cheow YL, Lee SM. Burkholderia paludis sp. nov., an Antibiotic-Siderophore Producing Novel Burkholderia cepacia Complex Species, Isolated from Malaysian Tropical Peat Swamp Soil. Front Microbiol 2016; 7:2046. [PMID: 28066367 PMCID: PMC5174137 DOI: 10.3389/fmicb.2016.02046] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 12/06/2016] [Indexed: 11/25/2022] Open
Abstract
A novel Gram negative rod-shaped bacterium, designated strain MSh1T, was isolated from Southeast Pahang tropical peat swamp forest soil in Malaysia and characterized using a polyphasic taxonomy approach. The predominant cellular fatty acids (>10.0%) were C16:0 (31.7%), C17:0 cyclo (26.6%), and C19:0 cyclo ω8c (16.1%). The polar lipids detected were phosphatidylglycerol, phosphatidylethanolamine, and diphosphatidylglycerol. The predominant ubiquinone was Q-8. This revealed that strain MSh1T belongs to the genus Burkholderia. The type strain MSh1T can be differentiated from other Burkholderia cepacia complex (Bcc) species by phylogenetic analysis of 16S rRNA gene sequence, multilocus sequence analysis (MLSA), average nucleotide identity (ANI) and biochemical tests. DNA-DNA relatedness values between strain MSh1T and closely related type strains were below the 70% threshold value. Based on this polyphasic study of MSh1T, it can be concluded that this strain represents a novel species within the Bcc, for which the name Burkholderia paludis sp. nov. is proposed. The type strain is MSh1T (= DSM 100703T = MCCC 1K01245T). The dichloromethane extract of MSh1T exhibited antimicrobial activity against four Gram positive bacteria (Enterococcus faecalis ATCC 29212, E. faecalis ATCC 700802, Staphylococcus aureus ATCC 29213, S. aureus ATCC 700699) and a Gram negative bacteria (Escherichia coli ATCC 25922). Further purification work has led to the isolation of Compound 1, pyochelin. Pyochelin demonstrated antimicrobial activity against four S. aureus strains and three E. faecalis strains with MIC-values of 3.13 μg/ml and 6.26 μg/ml, respectively. SEM analysis showed that the cellular morphology of E. faecalis ATCC 700802 was not affected by pyochelin; suggesting that it might target the intracellular components. Pyochelin, a siderophore with antimicrobial activity might be useful in treating bacterial infections caused by S. aureus and E. faecalis, however further work has to be done.
Collapse
Affiliation(s)
- Kuan Shion Ong
- School of Science, Monash University MalaysiaBandar Sunway, Malaysia
- Tropical Medicine and Biology Multidisciplinary Platform, Monash University MalaysiaBandar Sunway, Malaysia
| | - Yoong Kit Aw
- School of Science, Monash University MalaysiaBandar Sunway, Malaysia
- Tropical Medicine and Biology Multidisciplinary Platform, Monash University MalaysiaBandar Sunway, Malaysia
| | - Learn Han Lee
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia
- Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University PhayaoPhayao, Thailand
| | - Catherine M. Yule
- School of Science, Monash University MalaysiaBandar Sunway, Malaysia
- Tropical Medicine and Biology Multidisciplinary Platform, Monash University MalaysiaBandar Sunway, Malaysia
| | - Yuen Lin Cheow
- School of Science, Monash University MalaysiaBandar Sunway, Malaysia
| | - Sui Mae Lee
- School of Science, Monash University MalaysiaBandar Sunway, Malaysia
- Tropical Medicine and Biology Multidisciplinary Platform, Monash University MalaysiaBandar Sunway, Malaysia
| |
Collapse
|
10
|
Complete Genome Sequences for Three Chromosomes of the Burkholderia stabilis Type Strain (ATCC BAA-67). GENOME ANNOUNCEMENTS 2016; 4:4/6/e01294-16. [PMID: 27856590 PMCID: PMC5114382 DOI: 10.1128/genomea.01294-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report here the complete annotated genome sequence of the Burkholderia stabilis type strain ATCC BAA-67. There were three circular chromosomes with a combined size of 8,527,947 bp and G+C composition of 66.4%. These characteristics closely resemble the genomes of other sequenced members of the Burkholderia cepacia complex.
Collapse
|
11
|
Mahenthiralingam E, Vandamme P. Taxonomy and pathogenesis of the Burkholderia cepacia complex. Chron Respir Dis 2016; 2:209-17. [PMID: 16541604 DOI: 10.1191/1479972305cd053ra] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Patients with cystic fibrosis (CF) are susceptible to chronic respiratory infection with a number of bacterial pathogens. The Burkholderia cepacia complex bacteria are problematic CF pathogens because (i) they are very resistant to antibiotics, making respiratory infection difficult to treat and eradicate; (ii) infection with these bacteria is associated with high mortality in CF; (iii) they may spread from one CF patient to another, leading to considerable problems for both patients and carers; and (iv) B. cepacia complex bacteria are difficult to identify and nine new species have now been found to constitute isolates originally identified as ‘B. cepacia’ based on their phenotypic properties. Here we review the changes that have occurred in the taxonomy of the B. cepacia complex and the pathogenic factors these bacteria possess. While the taxonomy of the B.cepacia complex has advanced considerably with the development of accurate methods for their identification, the pathogenic mechanisms employed by these CF pathogens are only just beginning to be explored at the molecular level. Several virulence factors have been defined for B. cenocepacia (the dominant CF pathogen within the complex); however, knowledge of the disease mechanisms employed by other B. cepacia complex species is limited. The recent determination of the complete genome sequences for several of the B. cepacia complex species should greatly enhance our ability to study these problematic CF pathogens.
Collapse
|
12
|
Lewis ERG, Torres AG. The art of persistence-the secrets to Burkholderia chronic infections. Pathog Dis 2016; 74:ftw070. [PMID: 27440810 DOI: 10.1093/femspd/ftw070] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2016] [Indexed: 12/11/2022] Open
Abstract
The Gram-negative proteobacteria genus Burkholderia encompasses multiple bacterial species that are pathogenic to humans and other vertebrates. Two pathogenic species of interest within this genus are Burkholderia pseudomallei (Bpm) and the B. cepacia complex (Bcc); the former is the causative agent of melioidosis in humans and other mammals, and the latter is associated with pneumonia in immunocompromised patients. One understudied and shared characteristic of these two pathogenic groups is their ability to persist and establish chronic infection within the host. In this review, we will explore the depth of knowledge about chronic infections caused by persistent Bpm and Bcc. We examine the host risk factors and immune responses associated with more severe chronic infections. We also discuss host adaptation and phenotypes associated with persistent Burkholderia species. Lastly, we survey how other intracellular bacteria associated with chronic infections are combatted and explore possible future applications to target Burkholderia Our goal is to highlight understudied areas that should be addressed for a more thorough understanding of chronic Burkholderia infections and how to combat them.
Collapse
Affiliation(s)
- Eric R G Lewis
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-1070, USA
| | - Alfredo G Torres
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-1070, USA Department of Pathology, Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 7555-1070, USA
| |
Collapse
|
13
|
Vonberg RP, Gastmeier P. Isolation of Infectious Cystic Fibrosis Patients: Results of a Systematic Review. Infect Control Hosp Epidemiol 2016; 26:401-9. [PMID: 15865277 DOI: 10.1086/502558] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractObjective:Respiratory tract infections significantly contribute to morbidity and mortality among cystic fibrosis (CF) patients. Therefore, pathogen transmission needs to be prevented. There are several guidelines for the care of CF patients, but no transparent systematic literature review has been published.Methods:We conducted a systematic literature review (January 1966 to September 2004) dealing with segregation of CF patients colonized withBurkholderia cepaciaspecies,Pandoraeaspecies,Pseudomonas aeruginosa, Stenotrophomonas maltophilia,orAlcaligenesspecies. Quality of studies was evaluated by taking patient population size, existence of control-patients, patient randomization, diagnostic approach, and bacteria typing methods into account.Results:One hundred ninety-nine studies were found. Evidence and quality of 102 publications were evaluated. In 99 publications, recommendations concerning segregation measures for infectious CF patients were determined including a total of 11,576 patients. No randomized, controlled trials had been conducted. Fifty of 56 authors strongly recommended isolation of CF patients infected withB. cepaciaorPandoraeaspecies. In 31 of 39 studies, interpatient spread ofPseudomonas aeruginosawas documented or had been brought to an end by isolation of patients. Only five studies had addressed S.maltophiliaorAlcaligenesspecies.Conclusions:Patients colonized withB. cepaciaorPandoraeaspecies are to be separated from noncolonized patients in single rooms. Patients harboring multidrug-resistantPseudomonas aeruginosa, S. maltophilia,orAlcaligenesspecies may not share a room with immunocompromised patients, in intensive care units, or with other CF patients anywhere in the hospital.
Collapse
Affiliation(s)
- Ralf-Peter Vonberg
- Institute for Medical Microbiology and Hospital Epidemiology, Medical School Hannover, Hannover, Germany.
| | | |
Collapse
|
14
|
Saiman L, Siegel JD, LiPuma JJ, Brown RF, Bryson EA, Chambers MJ, Downer VS, Fliege J, Hazle LA, Jain M, Marshall BC, O’Malley C, Pattee SR, Potter-Bynoe G, Reid S, Robinson KA, Sabadosa KA, Schmidt HJ, Tullis E, Webber J, Weber DJ. Infection Prevention and Control Guideline for Cystic Fibrosis: 2013 Update. Infect Control Hosp Epidemiol 2016; 35 Suppl 1:S1-S67. [DOI: 10.1086/676882] [Citation(s) in RCA: 270] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The 2013 Infection Prevention and Control (IP&C) Guideline for Cystic Fibrosis (CF) was commissioned by the CF Foundation as an update of the 2003 Infection Control Guideline for CF. During the past decade, new knowledge and new challenges provided the following rationale to develop updated IP&C strategies for this unique population:1.The need to integrate relevant recommendations from evidence-based guidelines published since 2003 into IP&C practices for CF. These included guidelines from the Centers for Disease Control and Prevention (CDC)/Healthcare Infection Control Practices Advisory Committee (HICPAC), the World Health Organization (WHO), and key professional societies, including the Infectious Diseases Society of America (IDSA) and the Society for Healthcare Epidemiology of America (SHEA). During the past decade, new evidence has led to a renewed emphasis on source containment of potential pathogens and the role played by the contaminated healthcare environment in the transmission of infectious agents. Furthermore, an increased understanding of the importance of the application of implementation science, monitoring adherence, and feedback principles has been shown to increase the effectiveness of IP&C guideline recommendations.2.Experience with emerging pathogens in the non-CF population has expanded our understanding of droplet transmission of respiratory pathogens and can inform IP&C strategies for CF. These pathogens include severe acute respiratory syndrome coronavirus and the 2009 influenza A H1N1. Lessons learned about preventing transmission of methicillin-resistantStaphylococcus aureus(MRSA) and multidrug-resistant gram-negative pathogens in non-CF patient populations also can inform IP&C strategies for CF.
Collapse
|
15
|
Frickmann H, Neubauer H, Loderstaedt U, Derschum H, Hagen RM. rpsU-based discrimination within the genus Burkholderia. Eur J Microbiol Immunol (Bp) 2014; 4:106-16. [PMID: 24883196 DOI: 10.1556/eujmi.4.2014.2.3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 04/08/2014] [Indexed: 11/19/2022] Open
Abstract
Sequencing of the gene rpsU reliably delineates saprophytic Burkholderia (B.) thailandensis from highly pathogenic B. mallei and B. pseudomallei. We analyzed the suitability of this technique for the delineation of the B. pseudomallei complex from other Burkholderia species. Both newly recorded and previously deposited sequences of well-characterized or reference strains (n = 84) of Azoarcus spp., B. ambifaria, B. anthina, B. caledonica, B. caribensis, B. caryophylli, B. cenocepacia, B. cepacia, B. cocovenenans, B. dolosa, B. fungorum, B. gladioli, B. glathei, B. glumae, B. graminis, B. hospita, B. kururensis, B. mallei, B. multivorans, B. phenazinium, B. phenoliruptrix, B. phymatum, B. phytofirmans, B. plantarii, B. pseudomallei, B. pyrrocinia, B. stabilis, B. thailandensis, B. ubonensis, B. vietnamiensis, B. xenovorans, not further defined Burkholderia spp., and the outliers Cupriavidus metallidurans, Laribacter hongkongensis, Pandorea norimbergensis, and Ralstonia pickettii were included in a multiple sequence analysis. Multiple sequence alignments led to the delineation of four major clusters, rpsU-I to rpsU-IV, with a sequence homology >92%. The B. pseudomallei complex formed the complex rpsU-II. Several Burkholderia species showed 100% sequence homology. This procedure is useful for the molecular confirmation or exclusion of glanders or melioidosis from primary patient material. Further discrimination within the Burkholderia genus requires other molecular approaches.
Collapse
|
16
|
Peeters C, Zlosnik JEA, Spilker T, Hird TJ, LiPuma JJ, Vandamme P. Burkholderia pseudomultivorans sp. nov., a novel Burkholderia cepacia complex species from human respiratory samples and the rhizosphere. Syst Appl Microbiol 2013; 36:483-9. [PMID: 23867250 DOI: 10.1016/j.syapm.2013.06.003] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 06/11/2013] [Accepted: 06/14/2013] [Indexed: 11/24/2022]
Abstract
Eleven Burkholderia cepacia-like isolates of human clinical and environmental origin were examined by a polyphasic approach including recA and 16S rRNA sequence analysis, multilocus sequence analysis (MLSA), DNA base content determination, fatty acid methyl ester analysis, and biochemical characterization. The results of this study demonstrate that these isolates represent a novel species within the B. cepacia complex (Bcc) for which we propose the name Burkholderia pseudomultivorans. The type strain is strain LMG 26883(T) (=CCUG 62895(T)). B. pseudomultivorans can be differentiated from other Bcc species by recA gene sequence analysis, MLSA, and several biochemical tests including growth at 42°C, acidification of sucrose and adonitol, lysine decarboxylase and β-galactosidase activity, and esculin hydrolysis.
Collapse
|
17
|
Phylogenetic analysis of burkholderia species by multilocus sequence analysis. Curr Microbiol 2013; 67:51-60. [PMID: 23404651 DOI: 10.1007/s00284-013-0330-9] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Accepted: 01/21/2013] [Indexed: 01/16/2023]
Abstract
Burkholderia comprises more than 60 species of environmental, clinical, and agro-biotechnological relevance. Previous phylogenetic analyses of 16S rRNA, recA, gyrB, rpoB, and acdS gene sequences as well as genome sequence comparisons of different Burkholderia species have revealed two major species clusters. In this study, we undertook a multilocus sequence analysis of 77 type and reference strains of Burkholderia using atpD, gltB, lepA, and recA genes in combination with the 16S rRNA gene sequence and employed maximum likelihood and neighbor-joining criteria to test this further. The phylogenetic analysis revealed, with high supporting values, distinct lineages within the genus Burkholderia. The two large groups were named A and B, whereas the B. rhizoxinica/B. endofungorum, and B. andropogonis groups consisted of two and one species, respectively. The group A encompasses several plant-associated and saprophytic bacterial species. The group B comprises the B. cepacia complex (opportunistic human pathogens), the B. pseudomallei subgroup, which includes both human and animal pathogens, and an assemblage of plant pathogenic species. The distinct lineages present in Burkholderia suggest that each group might represent a different genus. However, it will be necessary to analyze the full set of Burkholderia species and explore whether enough phenotypic features exist among the different clusters to propose that these groups should be considered separate genera.
Collapse
|
18
|
Choh LC, Ong GH, Vellasamy KM, Kalaiselvam K, Kang WT, Al-Maleki AR, Mariappan V, Vadivelu J. Burkholderia vaccines: are we moving forward? Front Cell Infect Microbiol 2013; 3:5. [PMID: 23386999 PMCID: PMC3564208 DOI: 10.3389/fcimb.2013.00005] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 01/20/2013] [Indexed: 11/29/2022] Open
Abstract
The genus Burkholderia consists of diverse species which includes both "friends" and "foes." Some of the "friendly" Burkholderia spp. are extensively used in the biotechnological and agricultural industry for bioremediation and biocontrol. However, several members of the genus including B. pseudomallei, B. mallei, and B. cepacia, are known to cause fatal disease in both humans and animals. B. pseudomallei and B. mallei are the causative agents of melioidosis and glanders, respectively, while B. cepacia infection is lethal to cystic fibrosis (CF) patients. Due to the high rate of infectivity and intrinsic resistance to many commonly used antibiotics, together with high mortality rate, B. mallei and B. pseudomallei are considered to be potential biological warfare agents. Treatments of the infections caused by these bacteria are often unsuccessful with frequent relapse of the infection. Thus, we are at a crucial stage of the need for Burkholderia vaccines. Although the search for a prophylactic therapy candidate continues, to date development of vaccines has not advanced beyond research to human clinical trials. In this article, we review the current research on development of safe vaccines with high efficacy against B. pseudomallei, B. mallei, and B. cepacia. It can be concluded that further research will enable elucidation of the potential benefits and risks of Burkholderia vaccines.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jamuna Vadivelu
- Department of Medical Microbiology, Faculty of Medicine, University of MalayaKuala Lumpur, Malaysia
| |
Collapse
|
19
|
Characterization of ergothionase from Burkholderia sp. HME13 and its application to enzymatic quantification of ergothioneine. Appl Microbiol Biotechnol 2012; 97:5389-400. [DOI: 10.1007/s00253-012-4442-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 09/03/2012] [Accepted: 09/16/2012] [Indexed: 10/27/2022]
|
20
|
Identification, molecular characterisation and antimicrobial susceptibility of genomovars of the Burkholderia cepacia complex in Spain. Eur J Clin Microbiol Infect Dis 2012; 31:3385-96. [DOI: 10.1007/s10096-012-1707-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 07/16/2012] [Indexed: 12/01/2022]
|
21
|
Ligands of thermophilic ABC transporters encoded in a newly sequenced genomic region of Thermotoga maritima MSB8 screened by differential scanning fluorimetry. Appl Environ Microbiol 2011; 77:6395-9. [PMID: 21764944 DOI: 10.1128/aem.05418-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The chromosome of Thermotoga maritima strain MSB8 was found to have an 8,870-bp region that is not present in its published sequence. The isolate that was sequenced by The Institute for Genomic Research (TIGR) in 1999 is apparently a laboratory variant of the isolate deposited at the Deutsche Sammlung von Mikroorganismen und Zellkulturen (DSM 3109) in 1986. This newly sequenced region from the DSMZ culture was located between TM1848 (cbp, cellobiose phosphorylase) and TM1847 (the 3' end of a truncated ROK regulator). The new region contained seven genes: a beta glucosidase gene (bglA), three trehalose ABC transporter genes (treEFG), three xylose ABC transporter genes (xylE2F2K2), and the 5' end of a gene encoding the ROK regulator TM1847. We present a new differential scanning fluorimetry method using a low pH that was necessary to screen potential ligands of these exceptionally thermostable periplasmic substrate-binding proteins. This method showed that trehalose, sucrose, and glucose stabilized TreE, and their binding was confirmed by measuring changes in intrinsic fluorescence upon ligand binding. Binding constants of 0.024 μM, 0.300 μM, and 56.78 μM at 60°C, respectively, were measured. XylE2 ligands were similarly determined and xylose, glucose, and fucose bound with K(d) (dissociation constant) values of 0.042 μM, 0.059 μM, and 1.436 μM, respectively. Since there is no discernible phenotypic difference between the TIGR isolate and the DSMZ isolate despite the variance in their genomes, we propose that they be called genomovars: T. maritima MSB8 genomovar TIGR and T. maritima MSB8 genomovar DSM 3109, respectively.
Collapse
|
22
|
Vandamme P, Dawyndt P. Classification and identification of the Burkholderia cepacia complex: Past, present and future. Syst Appl Microbiol 2011; 34:87-95. [DOI: 10.1016/j.syapm.2010.10.002] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2010] [Revised: 10/20/2010] [Accepted: 10/24/2010] [Indexed: 11/24/2022]
|
23
|
Costello A, Herbert G, Fabunmi L, Schaffer K, Kavanagh KA, Caraher EM, Callaghan M, McClean S. Virulence of an emerging respiratory pathogen, genus Pandoraea, in vivo and its interactions with lung epithelial cells. J Med Microbiol 2010; 60:289-299. [PMID: 21127160 DOI: 10.1099/jmm.0.022657-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pandoraea species have emerged as opportunistic pathogens among cystic fibrosis (CF) and non-CF patients. Pandoraea pulmonicola is the predominant Pandoraea species among Irish CF patients. The objective of this study was to investigate the pathogenicity and potential mechanisms of virulence of Irish P. pulmonicola isolates and strains from other Pandoraea species. Three patients from whom the P. pulmonicola isolates were isolated have since died. The in vivo virulence of these and other Pandoraea strains was examined by determining the ability to kill Galleria mellonella larvae. The P. pulmonicola strains generally were the most virulent of the species tested, with three showing a comparable or greater level of virulence in vivo relative to another CF pathogen, Burkholderia cenocepacia, whilst strains from two other species, Pandoraea apista and Pandoraea pnomenusa, were considerably less virulent. For all Pandoraea species, whole cells were required for larval killing, as cell-free supernatants had little effect on larval survival. Overall, invasive Pandoraea strains showed comparable invasion of two independent lung epithelial cell lines, irrespective of whether they had a CF phenotype. Pandoraea strains were also capable of translocation across polarized lung epithelial cell monolayers. Although protease secretion was a common characteristic across the genus, it is unlikely to be involved in pathogenesis. In conclusion, whilst multiple mechanisms of pathogenicity may exist across the genus Pandoraea, it appears that lung cell invasion and translocation contribute to the virulence of P. pulmonicola strains.
Collapse
Affiliation(s)
- Anne Costello
- Centre of Applied Science for Health, ITT Dublin, Tallaght, Dublin 24, Ireland.,Centre of Microbial Host Interactions, ITT Dublin, Tallaght, Dublin 24, Ireland
| | - Gillian Herbert
- Centre of Microbial Host Interactions, ITT Dublin, Tallaght, Dublin 24, Ireland
| | - Lydia Fabunmi
- Centre of Microbial Host Interactions, ITT Dublin, Tallaght, Dublin 24, Ireland
| | - Kirsten Schaffer
- Department of Microbiology, St Vincent's University Hospital, Elm Park, Dublin, Ireland
| | - Kevin A Kavanagh
- Department of Biology, National University of Ireland, Maynooth, Co. Kildare, Ireland
| | - Emma M Caraher
- Centre of Applied Science for Health, ITT Dublin, Tallaght, Dublin 24, Ireland.,Centre of Microbial Host Interactions, ITT Dublin, Tallaght, Dublin 24, Ireland
| | - Máire Callaghan
- Centre of Applied Science for Health, ITT Dublin, Tallaght, Dublin 24, Ireland.,Centre of Microbial Host Interactions, ITT Dublin, Tallaght, Dublin 24, Ireland
| | - Siobhán McClean
- Centre of Applied Science for Health, ITT Dublin, Tallaght, Dublin 24, Ireland.,Centre of Microbial Host Interactions, ITT Dublin, Tallaght, Dublin 24, Ireland
| |
Collapse
|
24
|
Diversity of Burkholderia cepacia complex from the Moso bamboo (Phyllostachys edulis) rhizhosphere soil. Curr Microbiol 2010; 62:650-8. [PMID: 20882285 DOI: 10.1007/s00284-010-9758-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Accepted: 09/02/2010] [Indexed: 01/08/2023]
Abstract
The purpose of this study was to determine the existence of Burkholderia cepacia complex (Bcc) at species level and the predominant species in the environment of moso bamboo plantations in Hangzhou, China. A total of 423 isolates were recovered from moso bamboo rhizhosphere soil samples of three sites on the selective medium during 2007-2008. Isolates were identified by Bcc-specific PCR assays, followed by recA-restriction fragment length polymorphism assays, species-specific PCR analysis, recA gene sequencing, multilocus sequence typing (MLST) scheme, and BOX-PCR fingerprinting for genomic diversity. Out of 423 isolates, 278 isolates were assigned to the following Bcc species, eight B. stabilis, 26 B. anthina, 193 B. pyrrocinia, and 51 B. arboris, which indicated B. pyrrocinia as the most dominant species followed by B. arboris. Moreover, false positives were observed in certain isolates of B. arboris while performing species-specific PCR test. Furthermore, the results of recA gene sequence similarity and MLST data demonstrated that nine isolates formed a single discrete cluster but were PCR negative to species-specific primers representing novel species may exist within the Bcc. In addition, BOX-PCR fingerprinting for all the Bcc isolates also showed the strain diversity. It is the first report of the existence of B. arboris and predominance of B. pyrrocinia in the moso bamboo environment.
Collapse
|
25
|
Burkholderia cepacia Complex: Emerging Multihost Pathogens Equipped with a Wide Range of Virulence Factors and Determinants. Int J Microbiol 2010; 2011. [PMID: 20811541 PMCID: PMC2929507 DOI: 10.1155/2011/607575] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 06/02/2010] [Indexed: 12/04/2022] Open
Abstract
The Burkholderia cepacia complex (Bcc) comprises at least 17 closely-related species of the β-proteobacteria subdivision, widely distributed in natural and man-made inhabitats. Bcc bacteria are endowed with an extraordinary metabolic diversity and emerged in the 1980s as life-threatening and difficult-to-treat pathogens among patients suffering from cystic fibrosis. More recently, these bacteria became recognized as a threat to hospitalized patients suffering from other diseases, in particular oncological patients. In the present paper, we review these and other traits of Bcc bacteria, as well as some of the strategies used to identify and validate the virulence factors and determinants used by these bacteria. The identification and characterization of these virulence factors is expected to lead to the design of novel therapeutic strategies to fight the infections caused by these emergent multidrug resistant human pathogens.
Collapse
|
26
|
Abstract
Infection of the airways remains the primary cause of morbidity and mortality in persons with cystic fibrosis (CF). This review describes salient features of the epidemiologies of microbial species that are involved in respiratory tract infection in CF. The apparently expanding spectrum of species causing infection in CF and recent changes in the incidences and prevalences of infection due to specific bacterial, fungal, and viral species are described. The challenges inherent in tracking and interpreting rates of infection in this patient population are discussed.
Collapse
|
27
|
Dalmastri C, Fiore A, Alisi C, Bevivino A, Tabacchioni S, Giuliano G, Sprocati AR, Segre L, Mahenthiralingam E, Chiarini L, Vandamme P. A rhizospheric Burkholderia cepacia complex population: genotypic and phenotypic diversity of Burkholderia cenocepacia and Burkholderia ambifaria. FEMS Microbiol Ecol 2009; 46:179-87. [PMID: 19719571 DOI: 10.1016/s0168-6496(03)00211-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The Burkholderia cepacia'complex' (Bcc) presently comprises nine species and genomovars. In order to acquire a better comprehension of the species and genomovar distribution and of the genetic diversity among environmental Bcc bacteria, a natural population of 60 bacterial isolates recovered from the rhizosphere of maize and belonging to the Bcc has been characterised to assess the exact taxonomic position, the genetic polymorphism and the metabolic profiles of isolates. The identification of the different species and genomovars was accomplished by a combination of techniques including sodium dodecyl sulfate-polyacrylamide gel electrophoresis of whole-cell proteins and recA-based restriction fragment length polymorphism analyses. The genetic diversity among Bcc isolates was analysed by means of the random amplified polymorphic DNA and amplified fragment length polymorphism techniques; the analysis of molecular variance method was applied to estimate the genetic differences among the various species and genomovars identified within the bacterial population. Metabolic profiles based on carbon source utilisation were obtained by means of the Biolog GN assay and analysed by means of cluster analysis. Forty-four strains were identified as B. ambifaria, 11 as B. cenocepacia recA lineage III-B, four as B. pyrrocinia, and one as B. cepacia genomovar I. Marked genetic differences were observed between B. cenocepacia and B. ambifaria, whereas limited differences were found between B. pyrrocinia and B. ambifaria and between B. pyrrocinia and B. cenocepacia. No significant differences (P>0.05) were observed between the mean genetic distances of isolates belonging to B. cenocepacia, B. ambifaria, and B. pyrrocinia. Phenotypic analyses revealed that all isolates tested were able to utilise more than 75% of substrates. The highest variability in the number of utilised substrates was found among B. cenocepacia isolates, whereas the lowest was found among B. ambifaria isolates. Cluster analysis of metabolic profiles revealed pronounced differences between B. cenocepacia and B. ambifaria; in contrast, B. pyrrocinia could not be clearly separated either from B. cenocepacia or from B. ambifaria.
Collapse
Affiliation(s)
- Claudia Dalmastri
- ENEA (Ente Nazionale per le Nuove Tecnologie, l'Energia e l'Ambiente) C.R. Casaccia, Unità Biotecnologie e Protezione della Salute e degli Ecosistemi, Via Anguillarese 301, 00060 S. Maria di Galeria, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Onofre-Lemus J, Hernández-Lucas I, Girard L, Caballero-Mellado J. ACC (1-aminocyclopropane-1-carboxylate) deaminase activity, a widespread trait in Burkholderia species, and its growth-promoting effect on tomato plants. Appl Environ Microbiol 2009; 75:6581-90. [PMID: 19700546 PMCID: PMC2765135 DOI: 10.1128/aem.01240-09] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2009] [Accepted: 08/13/2009] [Indexed: 11/20/2022] Open
Abstract
The genus Burkholderia includes pathogens of plants and animals and some human opportunistic pathogens, such as the Burkholderia cepacia complex (Bcc), but most species are nonpathogenic, plant associated, and rhizospheric or endophytic. Since rhizobacteria expressing ACC (1-aminocyclopropane-1-carboxylate) deaminase may enhance plant growth by lowering plant ethylene levels, in this work we investigated the presence of ACC deaminase activity and the acdS gene in 45 strains, most of which are plant associated, representing 20 well-known Burkholderia species. The results demonstrated that ACC deaminase activity is a widespread feature in the genus Burkholderia, since 18 species exhibited ACC deaminase activities in the range from 2 to 15 mumol of alpha-ketobutyrate/h/mg protein, which suggests that these species may be able to modulate ethylene levels and enhance plant growth. In these 18 Burkholderia species the acdS gene sequences were highly conserved (76 to 99% identity). Phylogenetic analysis of acdS gene sequences in Burkholderia showed tight clustering of the Bcc species, which were clearly distinct from diazotrophic plant-associated Burkholderia species. In addition, an acdS knockout mutant of the N(2)-fixing bacterium Burkholderia unamae MTl-641(T) and a transcriptional acdSp-gusA fusion constructed in this strain showed that ACC deaminase could play an important role in promotion of the growth of tomato plants. The widespread ACC deaminase activity in Burkholderia species and the common association of these species with plants suggest that this genus could be a major contributor to plant growth under natural conditions.
Collapse
Affiliation(s)
- Janette Onofre-Lemus
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Ap. Postal 565-A, Cuernavaca, Morelos, México
| | | | | | | |
Collapse
|
29
|
O'Grady EP, Viteri DF, Malott RJ, Sokol PA. Reciprocal regulation by the CepIR and CciIR quorum sensing systems in Burkholderia cenocepacia. BMC Genomics 2009; 10:441. [PMID: 19761612 PMCID: PMC2753556 DOI: 10.1186/1471-2164-10-441] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Accepted: 09/17/2009] [Indexed: 01/10/2023] Open
Abstract
Background Burkholderia cenocepacia belongs to a group of closely related organisms called the B. cepacia complex (Bcc) which are important opportunistic human pathogens. B. cenocepacia utilizes a mechanism of cell-cell communication called quorum sensing to control gene expression including genes involved in virulence. The B. cenocepacia quorum sensing network includes the CepIR and CciIR regulatory systems. Results Global gene expression profiles during growth in stationary phase were generated using microarrays of B. cenocepacia cepR, cciR and cepRcciIR mutants. This is the first time CciR was shown to be a global regulator of quorum sensing gene expression. CepR was primarily responsible for positive regulation of gene expression while CciR generally exerted negative gene regulation. Many of the genes that were regulated by both quorum sensing systems were reciprocally regulated by CepR and CciR. Microarray analysis of the cepRcciIR mutant suggested that CepR is positioned upstream of CciR in the quorum sensing hierarchy in B. cenocepacia. A comparison of CepIR-regulated genes identified in previous studies and in the current study showed a substantial amount of overlap validating the microarray approach. Several novel quorum sensing-controlled genes were confirmed using qRT-PCR or promoter::lux fusions. CepR and CciR inversely regulated flagellar-associated genes, the nematocidal protein AidA and a large gene cluster on Chromosome 3. CepR and CciR also regulated genes required for iron transport, synthesis of extracellular enzymes and surface appendages, resistance to oxidative stress, and phage-related genes. Conclusion For the first time, the influence of CciIR on global gene regulation in B. cenocepacia has been elucidated. Novel genes under the control of the CepIR and CciIR quorum sensing systems in B. cenocepacia have been identified. The two quorum sensing systems exert reciprocal regulation of many genes likely enabling fine-tuned control of quorum sensing gene expression in B. cenocepacia strains carrying the cenocepacia island.
Collapse
Affiliation(s)
- Eoin P O'Grady
- Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada.
| | | | | | | |
Collapse
|
30
|
A Burkholderia cenocepacia orphan LuxR homolog is involved in quorum-sensing regulation. J Bacteriol 2009; 191:2447-60. [PMID: 19201791 DOI: 10.1128/jb.01746-08] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Burkholderia cenocepacia utilizes quorum sensing to control gene expression, including the expression of genes involved in virulence. In addition to CepR and CciR, a third LuxR homolog, CepR2, was found to regulate gene expression and virulence factor production. All B. cenocepacia strains examined contained this orphan LuxR homolog, which was not associated with an adjacent N-acyl-homoserine lactone synthase gene. Expression of cepR2 was negatively autoregulated and was negatively regulated by CciR in strain K56-2. Microarray analysis and quantitative reverse transcription-PCR determined that CepR2 did not influence expression of cepIR or cciIR. However, in strain K56-2, CepR2 negatively regulated expression of several known quorum-sensing-controlled genes, including genes encoding zinc metalloproteases. CepR2 exerted positive and negative regulation on genes on three chromosomes, including strong negative regulation of a gene cluster located adjacent to cepR2. In strain H111, which lacks the CciIR quorum-sensing system, CepR2 positively regulated pyochelin production by controlling transcription of one of the operons required for the biosynthesis of the siderophore in an N-acyl-homoserine lactone-independent manner. CepR2 activation of a luxI promoter was demonstrated in a heterologous Escherichia coli host, providing further evidence that CepR2 can function in the absence of signaling molecules. This study demonstrates that the orphan LuxR homolog CepR2 contributes to the quorum-sensing regulatory network in two distinct strains of B. cenocepacia.
Collapse
|
31
|
Goudie AD, Lynch KH, Seed KD, Stothard P, Shrivastava S, Wishart DS, Dennis JJ. Genomic sequence and activity of KS10, a transposable phage of the Burkholderia cepacia complex. BMC Genomics 2008; 9:615. [PMID: 19094239 PMCID: PMC2628397 DOI: 10.1186/1471-2164-9-615] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Accepted: 12/18/2008] [Indexed: 11/29/2022] Open
Abstract
Background The Burkholderia cepacia complex (BCC) is a versatile group of Gram negative organisms that can be found throughout the environment in sources such as soil, water, and plants. While BCC bacteria can be involved in beneficial interactions with plants, they are also considered opportunistic pathogens, specifically in patients with cystic fibrosis and chronic granulomatous disease. These organisms also exhibit resistance to many antibiotics, making conventional treatment often unsuccessful. KS10 was isolated as a prophage of B. cenocepacia K56-2, a clinically relevant strain of the BCC. Our objective was to sequence the genome of this phage and also determine if this prophage encoded any virulence determinants. Results KS10 is a 37,635 base pairs (bp) transposable phage of the opportunistic pathogen Burkholderia cenocepacia. Genome sequence analysis and annotation of this phage reveals that KS10 shows the closest sequence homology to Mu and BcepMu. KS10 was found to be a prophage in three different strains of B. cenocepacia, including strains K56-2, J2315, and C5424, and seven tested clinical isolates of B. cenocepacia, but no other BCC species. A survey of 23 strains and 20 clinical isolates of the BCC revealed that KS10 is able to form plaques on lawns of B. ambifaria LMG 19467, B. cenocepacia PC184, and B. stabilis LMG 18870. Conclusion KS10 is a novel phage with a genomic organization that differs from most phages in that its capsid genes are not aligned into one module but rather separated by approximately 11 kb, giving evidence of one or more prior genetic rearrangements. There were no potential virulence factors identified in KS10, though many hypothetical proteins were identified with no known function.
Collapse
Affiliation(s)
- Amanda D Goudie
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| | | | | | | | | | | | | |
Collapse
|
32
|
Vanlaere E, Lipuma JJ, Baldwin A, Henry D, De Brandt E, Mahenthiralingam E, Speert D, Dowson C, Vandamme P. Burkholderia latens sp. nov., Burkholderia diffusa sp. nov., Burkholderia arboris sp. nov., Burkholderia seminalis sp. nov. and Burkholderia metallica sp. nov., novel species within the Burkholderia cepacia complex. Int J Syst Evol Microbiol 2008; 58:1580-90. [PMID: 18599699 DOI: 10.1099/ijs.0.65634-0] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The taxonomic position of five recA gene clusters of Burkholderia cepacia complex (Bcc) isolates was determined using a polyphasic taxonomic approach. The levels of 16S rRNA and recA gene sequence similarity, multilocus sequence typing (MLST) data and the intermediate DNA-DNA binding values demonstrated that these five clusters represented five novel species within the Bcc. Biochemical identification of these species is difficult, as is the case for most Bcc species. However, identification of these novel species can be accomplished through recA gene sequence analysis, MLST and BOX-PCR profiling and by recA RFLP analysis. For diagnostic laboratories, recA gene sequence analysis offers the best combination of accuracy and simplicity. Based on these results, we propose five novel Bcc species, Burkholderia latens sp. nov. (type strain FIRENZE 3(T) =LMG 24064(T) =CCUG 54555(T)), Burkholderia diffusa sp. nov. (type strain AU1075(T) =LMG 24065(T) =CCUG 54558(T)), Burkholderia arboris sp. nov. (type strain ES0263A(T) =LMG 24066(T) =CCUG 54561(T)), Burkholderia seminalis sp. nov. (type strain AU0475(T) =LMG 24067(T) =CCUG 54564(T)) and Burkholderia metallica sp. nov. (type strain AU0553(T) =LMG 24068(T) =CCUG 54567(T)). In the present study, we also demonstrate that Burkholderia ubonensis should be considered a member of the Bcc.
Collapse
Affiliation(s)
- Elke Vanlaere
- Laboratorium voor Microbiologie, Universiteit Gent, K. L. Ledeganckstraat 35, B-9000 Gent, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Muter O, Versilovskis A, Scherbaka R, Grube M, Zarina D. Effect of plant extract on the degradation of nitroaromatic compounds by soil microorganisms. J Ind Microbiol Biotechnol 2008; 35:1539-43. [PMID: 18712534 DOI: 10.1007/s10295-008-0455-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2008] [Accepted: 07/30/2008] [Indexed: 11/29/2022]
Abstract
Remediation of soils contaminated by nitroaromatic compounds and nitramines, i.e. explosives, is known as very important, complicated, and rapidly developing area of biotechnology. A search for optimal growth conditions for soil bacteria is of a great importance in order to isolate various xenobiotic degraders. Bacteria consortium A43 was isolated from soils contaminated with explosives. In the presence of carbohydrate and plant extract, an addition of TNT to the solidified minimal medium stimulated the growth of the tested bacteria, as compared to other bacteria consortium isolated from the same soils. Reducing sugars as carbohydrates, and cabbage leaf extract as a plant extract were used in these experiments. Cultivation of the A43 in liquid medium of the same content showed that addition of cabbage leaf extract alone to medium is much more efficient for TNT degradation by growing biomass as compared to addition of carbohydrate alone.
Collapse
Affiliation(s)
- Olga Muter
- Institute of Microbiology and Biotechnology, University of Latvia, 4 Kronvalda blvd., Riga, 1586, Latvia.
| | | | | | | | | |
Collapse
|
34
|
Mahenthiralingam E, Baldwin A, Dowson C. Burkholderia cepacia complex bacteria: opportunistic pathogens with important natural biology. J Appl Microbiol 2008; 104:1539-51. [DOI: 10.1111/j.1365-2672.2007.03706.x] [Citation(s) in RCA: 290] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
35
|
Compant S, Nowak J, Coenye T, Clément C, Ait Barka E. Diversity and occurrence of Burkholderia spp. in the natural environment. FEMS Microbiol Rev 2008; 32:607-26. [PMID: 18422616 DOI: 10.1111/j.1574-6976.2008.00113.x] [Citation(s) in RCA: 261] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Both in natural and in managed ecosystems, bacteria are common inhabitants of the phytosphere and the internal tissues of plants. Probably the most diverse and environmentally adaptable plant-associated bacteria belong to the genus Burkholderia. This genus is well-known for its human, animal and plant pathogenic members, including the Burkholderia cepacia complex. However, it also contains species and strains that are beneficial to plants and can be potentially exploited in biotechnological processes. Here we present an overview of plant-associated Burkholderia spp. with special emphasis on beneficial plant-Burkholderia interactions. A discussion of the potential for utilization of stable plant-Burkholderia spp. associations in the development of low-input cropping systems is also provided.
Collapse
Affiliation(s)
- Stéphane Compant
- Unité de Recherche Vignes et Vins de Champagne, UFR Sciences, Université de Reims Champagne-Ardenne, Reims, France
| | | | | | | | | |
Collapse
|
36
|
Drevinek P, Baldwin A, Dowson CG, Mahenthiralingam E. Diversity of the parB and repA genes of the Burkholderia cepacia complex and their utility for rapid identification of Burkholderia cenocepacia. BMC Microbiol 2008; 8:44. [PMID: 18328098 PMCID: PMC2324101 DOI: 10.1186/1471-2180-8-44] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Accepted: 03/07/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Burkholderia cenocepacia is the most prominent species of the B. cepacia complex (Bcc), a group of nine closely related and difficult to identify bacteria that cause serious infections in patients with cystic fibrosis. Despite its clinical relevance, identification of B. cenocepacia as a single species is unavailable, as it splits by a widely used recA gene-based PCR identification method into discrete phylogenetic subgroups IIIA, IIIB, IIIC and IIID. With the aim of identifying gene targets suitable for unified detection of B. cenocepacia strains, we examined sequence polymorphisms in the repA and parB genes. These essential genes are involved in the replication and partitioning of bacterial replicons, hence we also had the opportunity for the first time to investigate the evolution of the multireplicon (three chromosome) structure of Bcc genomes. RESULTS Alignment of the repA and parB genes from publicly available Bcc genome sequences enabled the design of primers for their amplification and sequence analysis. Multilocus sequencing typing, a highly discriminatory method for Bcc species and strain discrimination, was used to select strains of unique sequence types (STs) that spanned the known Bcc genetic diversity. Sequence datasets of repA (83 isolates, 67 STs) and parB (120 isolates, 95 STs) genes from the second chromosome were aligned and examined phylogenetically to identify polymorphisms suitable for identification of B. cenocepacia. In contrast to parB, the Bcc repA sequences demonstrated distinct clustering of B. cenocepacia from other species, which enabled the design a species-specific multiplex PCR. The novel single-reaction B. cenocepacia detection method was tested on a panel of 142 different Bcc strains (142 STs) and distinguished recA groups IIIA, IIIB and IIID, from all other Bcc members with 100% sensitivity and 93% specificity. CONCLUSION The repA-based multiplex PCR is a useful aid to the rapid identification of the most clinically relevant B. cenocepacia recA subgroups IIIA, IIIB and IIID. Phylogenetic analysis of repA and parB genes demonstrated that acquisition of the second and third replicons of Bcc genomes occurred prior to their differentiation into discrete species and that the sharing of replicons across species had not occurred.
Collapse
Affiliation(s)
- Pavel Drevinek
- Cardiff School of Biosciences, Cardiff University, Cardiff, CF10 3TL, UK.
| | | | | | | |
Collapse
|
37
|
Dalmastri C, Baldwin A, Tabacchioni S, Bevivino A, Mahenthiralingam E, Chiarini L, Dowson C. Investigating Burkholderia cepacia complex populations recovered from Italian maize rhizosphere by multilocus sequence typing. Environ Microbiol 2008; 9:1632-9. [PMID: 17564598 DOI: 10.1111/j.1462-2920.2007.01273.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Burkholderia cepacia complex (BCC) comprises at least nine closely related species of abundant environmental microorganisms. Some of these species are highly spread in the rhizosphere of several crop plants, particularly of maize; additionally, as opportunistic pathogens, strains of the BCC are capable of colonizing humans. We have developed and validated a multilocus sequence typing (MLST) scheme for the BCC. Although widely applied to understand the epidemiology of bacterial pathogens, MLST has seen limited application to the population analysis of species residing in the natural environment; we describe its novel application to BCC populations within maize rhizospheres. 115 BCC isolates were recovered from the roots of different maize cultivars from three different Italian regions over a 9-year period (1994-2002). A total of 44 sequence types (STs) were found of which 41 were novel when compared with existing MLST data which encompassed a global database of 1000 clinical and environmental strains representing nearly 400 STs. In this study of rhizosphere isolates approximately 2.5 isolates per ST was found, comparable to that found for the whole BCC population. Multilocus sequence typing also resolved inaccuracies associated with previous identification of the maize isolates based on recA gene restriction fragment length polymorphims and species-specific polymerase chain reaction. The 115 maize isolates comprised the following BCC species groups, B. ambifaria (39%), BCC6 (29%), BCC5 (10%), B. pyrrocinia (8%), B. cenocepacia IIIB (7%) and B. cepacia (6%), with BCC5 and BCC6 potentially constituting novel species groups within the complex. Closely related clonal complexes of strains were identified within B. cepacia, B. cenocepacia IIIB, BCC5 and BCC6, with one of the BCC5 clonal complexes being distributed across all three sampling sites. Overall, our analysis demonstrates that the maize rhizosphere harbours a massive diversity of novel BCC STs, so that their addition to our global MLST database increased the ST diversity by 10%.
Collapse
Affiliation(s)
- Claudia Dalmastri
- ENEA C. R. Casaccia - Department of Biotechnologies, Protection of Health and Ecosystems, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
38
|
Development of Galleria mellonella as an alternative infection model for the Burkholderia cepacia complex. Infect Immun 2008; 76:1267-75. [PMID: 18195031 DOI: 10.1128/iai.01249-07] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Burkholderia is an important bacterial genus with a complex taxonomy that contains species of both ecological and pathogenic importance, including nine closely related species collectively termed the Burkholderia cepacia complex (BCC). In order to more thoroughly investigate the virulence of this bacterial complex of microorganisms, alternative infection models would be useful. To this end, we have adapted and developed the use of the Galleria mellonella wax moth larvae as a host for examining BCC infections. The experimental conditions affecting the BCC killing of the "wax worm" were optimized. BCC virulence levels were determined using 50% lethal doses, and differences were observed between both species and strains of the BCC. The BCC pathogenicity trends obtained compare favorably with results acquired using other published alternative infection models, as well as mammalian infection models. In addition, BCC killing activity was determined by directly measuring relative bacterial loads in three different BCC strains, thus demonstrating innate differences in BCC strain virulence. Finally, genetically mutated BCC strains were compared to a wild-type BCC strain in order to show concomitant reduction of BCC virulence and increased wax worm survival. For experimentation examining the virulent properties of the BCC, the wax worm has proven to be a useful alternative infection model.
Collapse
|
39
|
Falsafi T, Valizadeh N, Najafi M, Ehsani A, Khani A, Landarani Z, Falahi Z. Culture of Helicobacter pylori from stool samples in children. Can J Microbiol 2007; 53:411-6. [PMID: 17538651 DOI: 10.1139/w06-144] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We evaluated two protocols for isolation of Helicobacter pylori in stool from biopsied and nonbiopsied children. Twenty-three child patients whose presumptive positivity or negativity was diagnosed by endoscopy and a rapid urease test at site were used to compare biopsy-based tests with stool-based tests (H. pylori stool antigen test and stool culture). Their gastric activity and bacterial density were graded by the updated Sydney system. Biopsy and stool specimens were cultured on Campy-blood and Belo horizonte agar plates after enrichment in selective Campy-Thio medium. To compare two stool culture protocols, stools from 20 nonbiopsied children were tested by the HpSA test and cultured either as above or after treatment with cholestyramine. Grown colonies were screened by Gram staining, slide agglutination using anti-H. pylori monoclonal IgG; positive isolates were tested by biochemical tests and polymerase chain reaction for H. pylori-specific ureA gene. Coccoid H. pylori was isolated in stool samples from the biopsied patients whose bacterial density was two to four in histology. Their oxidase was slightly positive but became positive after two subcultures, while additional biochemical tests confirmed the isolation of H. pylori. Similar coccoid but oxidase positive H. pylori was isolated from three nonbiopsied children with the protocol of cholestyramine treatment only. The density of bacteria in the stomach may influence the recovery of H. pylori from stool; inactivation of bile with cholestyramine improves the yield in culture and favors isolation of an enhanced metabolic form of bacteria.
Collapse
Affiliation(s)
- Tahereh Falsafi
- Department of Biology Microbiology, Azzahra University, 1993891176 Tehran, Iran.
| | | | | | | | | | | | | |
Collapse
|
40
|
Menard A, de los Santos PE, Graindorge A, Cournoyer B. Architecture of Burkholderia cepacia complex sigma70 gene family: evidence of alternative primary and clade-specific factors, and genomic instability. BMC Genomics 2007; 8:308. [PMID: 17784948 PMCID: PMC2194791 DOI: 10.1186/1471-2164-8-308] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Accepted: 09/04/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Burkholderia cepacia complex (Bcc) groups bacterial species with beneficial properties that can improve crop yields or remediate polluted sites but can also lead to dramatic human clinical outcomes among cystic fibrosis (CF) or immuno-compromised individuals. Genome-wide regulatory processes of gene expression could explain parts of this bacterial duality. Transcriptional sigma70 factors are components of these processes. They allow the reversible binding of the DNA-dependent RNA polymerase to form the holoenzyme that will lead to mRNA synthesis from a DNA promoter region. Bcc genome-wide analyses were performed to investigate the major evolutionary trends taking place in the sigma70 family of these bacteria. RESULTS Twenty sigma70 paralogous genes were detected in the Burkholderia cenocepacia strain J2315 (Bcen-J2315) genome, of which 14 were of the ECF (extracytoplasmic function) group. Non-ECF paralogs were related to primary (rpoD), alternative primary, stationary phase (rpoS), flagellin biosynthesis (fliA), and heat shock (rpoH) factors. The number of sigma70 genetic determinants among this genome was of 2,86 per Mb. This number is lower than the one of Pseudomonas aeruginosa, a species found in similar habitats including CF lungs. These two bacterial groups showed strikingly different sigma70 family architectures, with only three ECF paralogs in common (fecI-like, pvdS and algU). Bcen-J2315 sigma70 paralogs showed clade-specific distributions. Some paralogs appeared limited to the ET12 epidemic clone (ecfA2), particular Bcc species (sigI), the Burkholderia genus (ecfJ, ecfF, and sigJ), certain proteobacterial groups (ecfA1, ecfC, ecfD, ecfE, ecfG, ecfL, ecfM and rpoS), or were broadly distributed in the eubacteria (ecfI, ecfK, ecfH, ecfB, and rpoD-, rpoH-, fliA-like genes). Genomic instability of this gene family was driven by chromosomal inversion (ecfA2), recent duplication events (ecfA and RpoD), localized (ecfG) and large scale deletions (sigI, sigJ, ecfC, ecfH, and ecfK), and a phage integration event (ecfE). CONCLUSION The Bcc sigma70 gene family was found to be under strong selective pressures that could lead to acquisition/deletion, and duplication events modifying its architecture. Comparative analysis of Bcc and Pseudomonas aeruginosa sigma70 gene families revealed distinct evolutionary strategies, with the Bcc having selected several alternative primary factors, something not recorded among P. aeruginosa and only previously reported to occur among the actinobacteria.
Collapse
Affiliation(s)
- Aymeric Menard
- Université de Lyon, Lyon, France
- Research group on «Bacterial Opportunistic Pathogens and Environment», UMR5557 Ecologie Microbienne, Université Lyon 1, CNRS, and Ecole Nationale Vétérinaire de Lyon, France
| | - Paulina Estrada de los Santos
- Université de Lyon, Lyon, France
- Research group on «Bacterial Opportunistic Pathogens and Environment», UMR5557 Ecologie Microbienne, Université Lyon 1, CNRS, and Ecole Nationale Vétérinaire de Lyon, France
| | - Arnault Graindorge
- Université de Lyon, Lyon, France
- Research group on «Bacterial Opportunistic Pathogens and Environment», UMR5557 Ecologie Microbienne, Université Lyon 1, CNRS, and Ecole Nationale Vétérinaire de Lyon, France
| | - Benoit Cournoyer
- Université de Lyon, Lyon, France
- Research group on «Bacterial Opportunistic Pathogens and Environment», UMR5557 Ecologie Microbienne, Université Lyon 1, CNRS, and Ecole Nationale Vétérinaire de Lyon, France
- UMR CNRS 5557 Ecologie Microbienne, Mendel Bldg., 5floor, Université Lyon 1, 69622 Villeurbanne Cedex, France
| |
Collapse
|
41
|
Baldwin A, Mahenthiralingam E, Drevinek P, Vandamme P, Govan JR, Waine DJ, LiPuma JJ, Chiarini L, Dalmastri C, Henry DA, Speert DP, Honeybourne D, Maiden MCJ, Dowson CG. Environmental Burkholderia cepacia complex isolates in human infections. Emerg Infect Dis 2007; 13:458-61. [PMID: 17552100 PMCID: PMC2725883 DOI: 10.3201/eid1303.060403] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Members of the Burkholderia cepacia complex (Bcc), found in many environments, are associated with clinical infections. Examining diverse species and strains from different environments with multilocus sequence typing, we identified >20% of 381 clinical isolates as indistinguishable from those in the environment. This finding links the natural environment with the emergence of many Bcc infections.
Collapse
Affiliation(s)
- Adam Baldwin
- Warwick University, Coventry, Wales, United Kingdom
| | | | | | | | - John R. Govan
- University of Edinburgh Medical School, Edinburgh, Scotland, United Kingdom
| | | | - John J. LiPuma
- University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Luigi Chiarini
- Ente per le Nuove Tecnologie l’Energia e l’Ambiente Casaccia, Rome, Italy
| | - Claudia Dalmastri
- Ente per le Nuove Tecnologie l’Energia e l’Ambiente Casaccia, Rome, Italy
| | - Deborah A. Henry
- University of British Columbia, Vancouver, British Columbia, Canada
| | - David P. Speert
- University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | |
Collapse
|
42
|
Govan JRW, Brown AR, Jones AM. Evolving epidemiology of Pseudomonas aeruginosa and the Burkholderia cepacia complex in cystic fibrosis lung infection. Future Microbiol 2007; 2:153-64. [PMID: 17661652 DOI: 10.2217/17460913.2.2.153] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The morbidity and mortality of patients with cystic fibrosis (CF) is primarily determined by chronic and debilitating lung infections caused by a surprisingly narrow spectrum of bacterial pathogens. Pseudomonas aeruginosa is by far the most prevalent life-threatening CF pathogen. In the absence of aggressive early therapy, it infects the majority of adult patients and determines long-term survival. The epidemiology of CF pulmonary infections continues to evolve. Amongst the most recent CF pathogens to have emerged are a group of closely related bacteria, known as the Burkholderia cepacia complex. These organisms are a particular challenge due to inherent antibiotic resistance, the potential for patient-to-patient spread, and the risk of ‘cepacia syndrome’, a rapid fulminating pneumonia sometimes accompanied by bacteremia. Strict cross-infection control was prompted by early epidemiological experience of the B. cepacia complex and is essential in the management of all CF pathogens.
Collapse
Affiliation(s)
- John R W Govan
- University of Edinburgh, Cystic Fibrosis Group, Centre for Infectious Diseases, Edinburgh, UK.
| | | | | |
Collapse
|
43
|
Lee YA, Chan CW. Molecular Typing and Presence of Genetic Markers Among Strains of Banana Finger-Tip Rot Pathogen, Burkholderia cenocepacia, in Taiwan. PHYTOPATHOLOGY 2007; 97:195-201. [PMID: 18944375 DOI: 10.1094/phyto-97-2-0195] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
ABSTRACT Burkholderia cenocepacia (genomovar III of B. cepacia complex), the causal agent of banana finger-tip rot, is a common plant-associated bacterium but also an important opportunistic pathogen of humans. To better understand the nature of B. cenocepacia from banana, the genetic variation among B. cenocepacia isolates from various banana-growing regions in southern Taiwan was examined. Forty-four serial isolates recovered from diseased banana stigmata from three banana-growing regions during the periods ranging from 2002 to 2004 were investigated. All B. cenocepacia isolates picked from quinate-yeast extract tetracycline-polymyxin semiselective medium could cause onion maceration and were polymerase chain reaction (PCR) positive for bcscV, which is a type III secretion gene present in all members of the B. cepacia complex except B. cepacia (formerly genomovar I). Genetic diversity was assessed using recA PCR restriction fragment length polymorphism, recA nucleotide sequence analysis, and pulsed-field gel electrophoresis assays. The assays revealed the genetic variability among the isolates and also allowed us to trace the relationship among isolates. The isolates all were assigned to genomovar III and consisted of two groups, A and B, which corresponded to recA lineage IIIA and IIIB. The group B strains were separated into B1 and B2 subgroups and the B1 strains were further divided into distinct lineages. The B1 strains were the most frequently detected and occurred in all regions tested. There was no significant difference between strains from each subgroup in the virulence on banana fingers of cv. Cavendish. PCR assays were further used to determine whether B. cenocepacia from banana contained the cable pilus subunit gene (cblA), IS1356, and B. cepacia epidemic strain marker (BCESM), which are DNA markers associated with epidemic B. cepacia clinic strains. The results indicated that cblA and IS1356 were absent but the BCESM was found in all isolates. The present study revealed that banana is a natural reservoir of genetically diversified B. cenocepacia strains.
Collapse
|
44
|
Mahenthiralingam E, Baldwin A, Drevinek P, Vanlaere E, Vandamme P, LiPuma JJ, Dowson CG. Multilocus sequence typing breathes life into a microbial metagenome. PLoS One 2006; 1:e17. [PMID: 17183643 PMCID: PMC1762331 DOI: 10.1371/journal.pone.0000017] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Accepted: 09/18/2006] [Indexed: 11/19/2022] Open
Abstract
Shot-gun sequencing of DNA isolated from the environment and the assembly of metagenomes from the resulting data has considerably advanced the study of microbial diversity. However, the subsequent matching of these hypothetical metagenomes to cultivable microorganisms is a limitation of such cultivation-independent methods of population analysis. Using a nucleotide sequence-based genetic typing method, multilocus sequence typing, we were able for the first time to match clonal cultivable isolates to a published and controversial bacterial metagenome, Burkholderia SAR-1, which derived from analysis of the Sargasso Sea. The matching cultivable isolates were all associated with infection and geographically widely distributed; taxonomic analysis demonstrated they were members of Burkholderia cepacia complex Group K. Comparison of the Burkholderia SAR-1 metagenome to closely related B. cepacia complex genomes indicated that it was greater than 98% intact in terms of conserved genes, and it also shared complete sequence identity with the cultivable isolates at random loci beyond the genes sampled by the multilocus sequence typing. Two features of the extant cultivable clones support the argument that the Burkholderia SAR-1 sequence may have been a contaminant in the original metagenomic survey: (i) their growth in conditions reflective of sea water was poor, suggesting the ocean was not their preferred habitat, and (ii) several of the matching isolates were epidemiologically linked to outbreaks of infection that resulted from contaminated medical devices or products, indicating an adaptive fitness of this bacterial strain towards contamination-associated environments. The ability to match identical cultivable strains of bacteria to a hypothetical metagenome is a unique feature of nucleotide sequence-based microbial typing methods; such matching would not have been possible with more traditional methods of genetic typing, such as those based on pattern matching of genomic restriction fragments or amplified DNA fragments. Overall, we have taken the first steps in moving the status of the Burkholderia SAR-1 metagenome from a hypothetical entity towards the basis for life of cultivable strains that may now be analysed in conjunction with the assembled metagenomic sequence data by the wider scientific community.
Collapse
|
45
|
Lo Cascio G, Bonora MG, Zorzi A, Mortani E, Tessitore N, Loschiavo C, Lupo A, Solbiati M, Fontana R. A napkin-associated outbreak of Burkholderia cenocepacia bacteraemia in haemodialysis patients. J Hosp Infect 2006; 64:56-62. [PMID: 16859809 DOI: 10.1016/j.jhin.2006.04.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2005] [Accepted: 04/13/2006] [Indexed: 11/20/2022]
Abstract
This article reports a catheter-related outbreak of bacteraemia involving 38 patients in two haemodialysis units in Verona. Burkholderia cepacia complex strains were isolated from human blood and from an individually wrapped disinfection napkin that was contained in a commercially available, sterile dressing kit used to handle central venous catheters. Micro-organisms isolated from blood cultures and from the napkin were identified by standard procedures and confirmed as B. cenocepacia (genomovar III) by molecular analysis. Using pulsed-field gel electrophoresis analysis, the clinical isolates were indistinguishable or closely related to the B. cenocepacia isolated from the napkin. In conclusion, this study found that a contaminated commercial napkin soaked in quaternary ammonium, even when quality certified, was the source of infection.
Collapse
Affiliation(s)
- G Lo Cascio
- Dipartimento di Patologia, Sezione di Microbiologia, Università di Verona, Verona, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Krejcí E, Kroppenstedt RM. Differentiation of species combined into the Burkholderia cepacia complex and related taxa on the basis of their fatty acid patterns. J Clin Microbiol 2006; 44:1159-64. [PMID: 16517920 PMCID: PMC1393087 DOI: 10.1128/jcm.44.3.1159-1164.2006] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Using the established commercial system Sherlock (MIDI, Inc.), cellular fatty acid methyl ester analysis for differentiation among Burkholderia cepacia complex species was proven. The identification key based on the diagnostic fatty acids is able to discern phenotypically related Ralstonia pickettii and Pandoraea spp. and further distinguish Burkholderia pyrrocinia, Burkholderia ambifaria, and Burkholderia vietnamiensis.
Collapse
Affiliation(s)
- Eva Krejcí
- Institute of Public Health, Centre for Microbiology, Parasitology and Immunology, Partyzánské nám. 7, 702 00 Ostrava, Czech Republic.
| | | |
Collapse
|
47
|
Blaha D, Prigent-Combaret C, Mirza MS, Moënne-Loccoz Y. Phylogeny of the 1-aminocyclopropane-1-carboxylic acid deaminase-encoding gene acdS in phytobeneficial and pathogenic Proteobacteria and relation with strain biogeography. FEMS Microbiol Ecol 2006; 56:455-70. [PMID: 16689877 DOI: 10.1111/j.1574-6941.2006.00082.x] [Citation(s) in RCA: 207] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Deamination of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) is a key plant-beneficial trait found in plant growth-promoting rhizobacteria (PGPR) and phytosymbiotic bacteria, but the diversity of the corresponding gene (acdS) is poorly documented. Here, acdS sequences were obtained by screening putative ACC deaminase sequences listed in databases, based on phylogenetic properties and key residues. In addition, acdS was sought in 71 proteobacterial strains by PCR amplification and/or hybridization using colony dot blots. The presence of acdS was confirmed in established AcdS+ bacteria and evidenced noticeably in Azospirillum (previously reported as AcdS-), in 10 species of Burkholderia and six Burkholderia cepacia genomovars (which included PGPR, phytopathogens and opportunistic human pathogens), and in five Agrobacterium genomovars. The occurrence of acdS in true and opportunistic pathogens raises new questions concerning their ecology in plant-associated habitats. Many (but not all) acdS+ bacteria displayed ACC deaminase activity in vitro, including two Burkholderia clinical isolates. Phylogenetic analysis of partial acdS and deduced AcdS sequences evidenced three main phylogenetic clusters, each gathering pathogens and plant-beneficial strains of contrasting geographic and habitat origins. The acdS phylogenetic tree was only partly congruent with the rrs tree. Two clusters gathered both Betaprotobacteria and Gammaproteobacteria, suggesting extensive horizontal transfers of acdS, noticeably between plant-associated Proteobacteria.
Collapse
Affiliation(s)
- Didier Blaha
- UMR CNRS 5557 Ecologie Microbienne, Université Claude Bernard, Villeurbanne, France
| | | | | | | |
Collapse
|
48
|
Vonberg RP, Häußler S, Vandamme P, Steinmetz I. Identification of Burkholderia cepacia complex pathogens by rapid-cycle PCR with fluorescent hybridization probes. J Med Microbiol 2006; 55:721-727. [PMID: 16687590 DOI: 10.1099/jmm.0.46457-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Members of the Burkholderia cepacia complex are important bacterial pathogens in cystic fibrosis (CF) patients. The B. cepacia complex currently consists of nine genetic subgroups (genomovars) of different epidemiological relevance and possibly of different pathogenic potential in humans. In this study, a new approach was developed for the rapid identification of B. cepacia genomovar I, Burkholderia multivorans (genomovar II), Burkholderia cenocepacia (lineage III-A and III-B), Burkholderia stabilis (genomovar IV) and Burkholderia vietnamiensis (genomovar V), which cause the large majority of infections in CF patients. The method was based on the detection of differences in the recA gene sequence by using rapid-cycle PCR and genomovar-specific fluorescence resonance energy transfer (FRET) probes. The genomovar status of all 39 B. cepacia complex strains tested (genomovars I–V) was identified by melting-curve analysis. Each FRET probe produced a specific fluorescence signal only with the respective genomovar, and not with other B. cepacia complex strains and Burkholderia spp. The identification system was easy to handle and revealed B. cepacia complex genomovar I–V status from culture isolates within about 1 h.
Collapse
Affiliation(s)
- Ralf-Peter Vonberg
- Institute of Medical Microbiology and Hospital Epidemiology, Medical School Hannover, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Susanne Häußler
- Department of Cell Biology, German Research Center for Biotechnology, Braunschweig, Germany
- Institute of Medical Microbiology and Hospital Epidemiology, Medical School Hannover, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Peter Vandamme
- Laboratorium voor Mikrobiologie, Universiteit Gent, Belgium
| | - Ivo Steinmetz
- Friedrich Loeffler Institute of Medical Microbiology, Ernst Moritz Arndt University Greifswald, Germany
- Institute of Medical Microbiology and Hospital Epidemiology, Medical School Hannover, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| |
Collapse
|
49
|
Chiarini L, Bevivino A, Dalmastri C, Tabacchioni S, Visca P. Burkholderia cepacia complex species: health hazards and biotechnological potential. Trends Microbiol 2006; 14:277-86. [PMID: 16684604 DOI: 10.1016/j.tim.2006.04.006] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Revised: 03/20/2006] [Accepted: 04/21/2006] [Indexed: 10/24/2022]
Abstract
The Burkholderia cepacia complex is a group of nine closely related bacterial species that have useful properties in the natural environment as plant pest antagonists, plant growth promoters and degradative agents of toxic substances. Because these species are human opportunistic pathogens, especially in cystic fibrosis patients, biotechnological applications that involve environmental releases have been severely restricted. Recent progress in understanding the taxonomy, epidemiology and ecology of the B. cepacia complex species has unravelled considerable variability in their pathogenicity and ecological properties, which has set the basis for a reassessment of the risk posed by individual species to human health.
Collapse
Affiliation(s)
- Luigi Chiarini
- Department of Biotechnology, Protection of Health and Ecosystems, C.R. Casaccia, ENEA, 00060 Rome, Italy.
| | | | | | | | | |
Collapse
|
50
|
Pirone L, Chiarini L, Dalmastri C, Bevivino A, Tabacchioni S. Detection of cultured and uncultured Burkholderia cepacia complex bacteria naturally occurring in the maize rhizosphere. Environ Microbiol 2006; 7:1734-42. [PMID: 16232288 DOI: 10.1111/j.1462-2920.2005.00897.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The species composition of a Burkholderia cepacia complex population naturally occurring in the maize rhizosphere was investigated by using both culture-dependent and culture-independent methods. B. cepacia complex isolates were recovered from maize root slurry on the two selective media Pseudomonas cepacia azelaic acid tryptamine (PCAT) and trypan blue tetracycline (TB-T) and subjected to identification by a combination of restriction fragment length polymorphism (RFLP) analysis and species-specific polymerase chain reaction (PCR) tests of the recA gene. DNA extracted directly from root slurry was examined by means of nested PCR to amplify recA gene with species-specific B. cepacia complex primers and to obtain a library of PCR amplified recA genes. Using the culture-dependent method the species Burkholderia cepacia, Burkholderia cenocepacia, Burkholderia ambifaria and Burkholderia pyrrocinia were identified, whereas using the culture-independent method also the species Burkholderia vietnamiensis was detected. The latter method also allowed us to highlight a higher diversity within the B. cenocepacia species. In fact, by using the culture-independent method the species B. cenocepacia recA lineages IIIA and IIID besides B. cenocepacia recA lineage IIIB were detected. Moreover, higher heterogeneity of recA RFLP patterns was observed among clones assigned to the species B. cenocepacia than among B. cenocepacia isolates from selective media.
Collapse
Affiliation(s)
- Luisa Pirone
- ENEA (Ente Nazionale per le Nuove Tecnologie, l'Energia e l'Ambiente) C.R. Casaccia, UTS Biotecnologie - Protezione della Salute e degli Ecosistemi, Sezione Genetica e Genomica, Via Anguillarese 301, 00060 S. Maria di Galeria, Rome, Italy
| | | | | | | | | |
Collapse
|