1
|
Mataracı-Kara E, Damar-Çelik D, Özbek-Çelik B. The in vitro synergistic and antibiofilm activity of Ceftazidime/avibactam against Achromobacter species recovered from respiratory samples of cystic fibrosis patients. Eur J Clin Microbiol Infect Dis 2025; 44:587-596. [PMID: 39702543 DOI: 10.1007/s10096-024-05017-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024]
Abstract
PURPOSE Achromobacter spp. may form biofilm in patients' respiratory tracts and cause serious infections. This research examined the bactericidal and synergistic effects of ceftazidime/avibactam (CZA) alone and in combination with different antibiotics against Achromobacter spp. METHODS MICs of 52 Achromobacter spp. were determined by broth microdilution. In-vitro time-kill curve experiments assessed CZA's bactericidal and synergistic properties alone and in combination with other antibiotics. Moreover, the antibiofilm activity of CZA alone or in combination with the antibiotics was assessed with using microplate method. RESULTS Based on MIC90 values, CZA exhibited four times greater in-vitro activity against tested strains than ceftazidime. The most effective agent was meropenem, with a 92% susceptibility level on the tested strains. On the other hand, ciprofloxacin was found to be bactericidal at both 1 × and 4xMIC concentrations. CZA, chloramphenicol and meropenem were observed to have bactericidal effects alone at 4xMIC concentrations against the tested isolates. CZA + CS and CZA + MEM showed synergy in three out of five and two out of five strains tested at 1xMIC, respectively. Furthermore, the pairing of CZA with colistin, CZA with meropenem and CZA with ciprofloxacin exhibited a synergistic impact at 4xMIC. Moreover, combination therapy CZA with the tested antibiotics showed reduced biofilm formation in a concentration-dependent manner at 24 h. CONCLUSION The outcomes of this research also suggest that CZA plus colistin, meropenem, or ciprofloxacin were more productive against Achromobacter strains. To our knowledge, this is the first article to evaluate the synergistic and antibiofilm activities of CZA alone or in combination with different agents against Achromobacter species.
Collapse
Affiliation(s)
- Emel Mataracı-Kara
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Istanbul University, 34116, Beyazit-Istanbul, Turkey.
| | - Damla Damar-Çelik
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Istanbul University, 34116, Beyazit-Istanbul, Turkey
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Marmara University, Başıbüyük-Istanbul, Turkey
| | - Berna Özbek-Çelik
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Istanbul University, 34116, Beyazit-Istanbul, Turkey
| |
Collapse
|
2
|
Dhakshna Murthi K, Naik S, Arumugam SL, J M, Kv L. Emergence of Achromobacter xylosoxidans Bacteremia in a Tertiary Care Center: A Case Report and Literature Review. Cureus 2024; 16:e68084. [PMID: 39347123 PMCID: PMC11437518 DOI: 10.7759/cureus.68084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/29/2024] [Indexed: 10/01/2024] Open
Abstract
Achromobacter xylosoxidans (A. xylosoxidans) is an opportunistic pathogen that is responsible for various nosocomial and community-acquired infections. It is often found in patients with cystic fibrosis or chronic lung diseases. Here, a 70-year-old female patient presented to an emergency department with complaints of diffuse abdominal pain and distension, on and off giddiness, and generalized body pain for one month with a known case of diabetes and hypertension. The patient had no history of nausea, vomiting, constipation/loose stools, or fever at the time of arrival. Then, the patient was admitted with a provisional diagnosis of incisional hernia. However, the patient developed a fever after she had undergone surgery for an incisional hernia. The blood culture reveals the growth of A. xylosoxidans. The patient responded well to treatment with intravenous antibiotics piperacillin/tazobactam and meropenem for five days. The literature on bacteremia caused by A. xylosoxidans in incisional hernia patients is reviewed in this study, along with the distinct antimicrobial susceptibility pattern.
Collapse
Affiliation(s)
| | - Swetha Naik
- Microbiology, SRM Medical College Hospital and Research Centre, Kanchipuram, IND
| | | | - Manonmoney J
- Microbiology, SRM Medical College Hospital and Research Centre, Kanchipuram, IND
| | - Leela Kv
- Microbiology, SRM Medical College Hospital and Research Centre, Kanchipuram, IND
| |
Collapse
|
3
|
Sallam AM, Abou-Souliman I, Reyer H, Wimmers K, Rabee AE. New insights into the genetic predisposition of brucellosis and its effect on the gut and vaginal microbiota in goats. Sci Rep 2023; 13:20086. [PMID: 37973848 PMCID: PMC10654701 DOI: 10.1038/s41598-023-46997-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 11/07/2023] [Indexed: 11/19/2023] Open
Abstract
Goats contribute significantly to the global food security and industry. They constitute a main supplier of meat and milk for large proportions of people in Egypt and worldwide. Brucellosis is a zoonotic infectious disease that causes a significant economic loss in animal production. A case-control genome-wide association analysis (GWAS) was conducted using the infectious status of the animal as a phenotype. The does that showed abortion during the last third period of pregnancy and which were positive to both rose bengal plate and serum tube agglutination tests, were considered as cases. Otherwise, they were considered as controls. All animals were genotyped using the Illumina 65KSNP BeadChip. Additionally, the diversity and composition of vaginal and fecal microbiota in cases and controls were investigated using PCR-amplicone sequencing of the V4 region of 16S rDNA. After applying quality control criteria, 35,818 markers and 66 does were available for the GWAS test. The GWAS revealed a significantly associated SNP (P = 5.01 × 10-7) located on Caprine chromosome 15 at 29 megabases. Four other markers surpassed the proposed threshold (P = 2.5 × 10-5). Additionally, fourteen genomic regions accounted for more than 0.1% of the variance explained by all genome windows. Corresponding markers were located within or in close vicinity to several candidate genes, such as ARRB1, RELT, ATG16L2, IGSF21, UBR4, ULK1, DCN, MAPB1, NAIP, CD26, IFIH1, NDFIP2, DOK4, MAF, IL2RB, USP18, ARID5A, ZAP70, CNTN5, PIK3AP1, DNTT, BLNK, and NHLRC3. These genes play important roles in the regulation of immune responses to the infections through several biological pathways. Similar vaginal bacterial community was observed in both cases and controls while the fecal bacterial composition and diversity differed between the groups (P < 0.05). Faeces from the control does showed a higher relative abundance of the phylum Bacteroidota compared to cases (P < 0.05), while the latter showed more Firmicutes, Spirochaetota, Planctomycetota, and Proteobacteria. On the genus level, the control does exhibited higher abundances of Rikenellaceae RC9 gut group and Christensenellaceae R-7 group (P < 0.05), while the infected does revealed higher Bacteroides, Alistipes, and Prevotellaceae UCG-003 (P < 0.05). This information increases our understanding of the genetics of the susceptibility to Brucella in goats and may be useful in breeding programs and selection schemes that aim at controlling the disease in livestock.
Collapse
Affiliation(s)
- Ahmed M Sallam
- Animal and Poultry Breeding Department, Desert Research Center, Cairo, Egypt.
| | | | - Henry Reyer
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Klaus Wimmers
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Alaa Emara Rabee
- Animal and Poultry Nutrition Department, Desert Research Center, Cairo, Egypt
| |
Collapse
|
4
|
Kar M, Singh R, Tejan N, Jamwal A, Dubey A, Chaudhary R, Sahu C, Patel SS, Kumari P, Ghar M. One year experience of Achromobacter bacteremia at a tertiary care hospital in Northern India. Access Microbiol 2023; 5:000588.v3. [PMID: 37841106 PMCID: PMC10569658 DOI: 10.1099/acmi.0.000588.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 08/18/2023] [Indexed: 10/17/2023] Open
Abstract
Introduction Achromobacter is a Gram-negative, motile, obligate aerobic and non-fermentative bacterium. It is an emerging pathogen in the hospital environment as it is frequently found in various solutions. Hypothesis/Gap Statement Information about the incidence and risk factors of Achromobacter bacteremia from India is limited. Aim We conducted this study to identify the risk factors and underlying conditions predisposing to bacteremia by Achromobacter spp. and analyse the antibiotic resistance pattern of the isolates. Methodology We performed a retrospective observational study where automated blood cultures positive for Achromobacter spp. were assessed for clinical characteristics and antibiotic susceptibility patterns from January 2022 to December 2022 in the microbiology laboratory of a tertiary care centre in Northern India. Results A total of 14 cases (14/2435, 0.57 %) of Achromobacter spp. were identified from bloodstream infections in one year. The mean age of the patients was 37.59±23.17 years with a male predominance (8/14, 57.1 %). All patients were managed on intravenous antibiotics and intravenous access as peripheral line catheters and only 5(5/14, 35.7 %) patients were managed on central line catheters. The isolates were found highly susceptible to ticarcillin-clavulanic acid (14/14, 100.0 %) followed by fluoroquinolones (12/14, 85.72 %) and trimethoprim-sulphamethoxazole (12/14, 85.72 %). Only 57.14 % (8/14, 57.14 %) of the patients were susceptible to piperacillin-tazobactam. The all-cause 40 day mortality was observed in 35.7 % (5/14, 35.7 %) with two deaths that were directly attributable to sepsis. Conclusion This study provides insight into the incidence of Achromobacter bacteremia at our centre and the necessary antibiotic therapy to combat it.
Collapse
Affiliation(s)
- Mitra Kar
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh-226014, India
| | - Romya Singh
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh-226014, India
| | - Nidhi Tejan
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh-226014, India
| | - Ashima Jamwal
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh-226014, India
| | - Akanksha Dubey
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh-226014, India
| | - Radhika Chaudhary
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh-226014, India
| | - Chinmoy Sahu
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh-226014, India
| | - Sangram Singh Patel
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh-226014, India
| | - Pooja Kumari
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh-226014, India
| | - Malay Ghar
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh-226014, India
| |
Collapse
|
5
|
Shirakawa KT, Sala FA, Miyachiro MM, Job V, Trindade DM, Dessen A. Architecture and genomic arrangement of the MurE-MurF bacterial cell wall biosynthesis complex. Proc Natl Acad Sci U S A 2023; 120:e2219540120. [PMID: 37186837 PMCID: PMC10214165 DOI: 10.1073/pnas.2219540120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
Peptidoglycan (PG) is a central component of the bacterial cell wall, and the disruption of its biosynthetic pathway has been a successful antibacterial strategy for decades. PG biosynthesis is initiated in the cytoplasm through sequential reactions catalyzed by Mur enzymes that have been suggested to associate into a multimembered complex. This idea is supported by the observation that in many eubacteria, mur genes are present in a single operon within the well conserved dcw cluster, and in some cases, pairs of mur genes are fused to encode a single, chimeric polypeptide. We performed a vast genomic analysis using >140 bacterial genomes and mapped Mur chimeras in numerous phyla, with Proteobacteria carrying the highest number. MurE-MurF, the most prevalent chimera, exists in forms that are either directly associated or separated by a linker. The crystal structure of the MurE-MurF chimera from Bordetella pertussis reveals a head-to-tail, elongated architecture supported by an interconnecting hydrophobic patch that stabilizes the positions of the two proteins. Fluorescence polarization assays reveal that MurE-MurF interacts with other Mur ligases via its central domains with KDs in the high nanomolar range, backing the existence of a Mur complex in the cytoplasm. These data support the idea of stronger evolutionary constraints on gene order when encoded proteins are intended for association, establish a link between Mur ligase interaction, complex assembly and genome evolution, and shed light on regulatory mechanisms of protein expression and stability in pathways of critical importance for bacterial survival.
Collapse
Affiliation(s)
- Karina T. Shirakawa
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo13084-971, Brazil
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, CEP Campinas, São Paulo13083-862, Brazil
| | - Fernanda Angélica Sala
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo13084-971, Brazil
| | - Mayara M. Miyachiro
- Univ. Grenoble Alpes, CNRS, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Structurale, Bacterial Pathogenesis Group, GrenobleF-38044, France
| | - Viviana Job
- Univ. Grenoble Alpes, CNRS, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Structurale, Bacterial Pathogenesis Group, GrenobleF-38044, France
| | - Daniel Maragno Trindade
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo13084-971, Brazil
| | - Andréa Dessen
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo13084-971, Brazil
- Univ. Grenoble Alpes, CNRS, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Structurale, Bacterial Pathogenesis Group, GrenobleF-38044, France
| |
Collapse
|
6
|
Milinic T, McElvaney OJ, Goss CH. Diagnosis and Management of Cystic Fibrosis Exacerbations. Semin Respir Crit Care Med 2023; 44:225-241. [PMID: 36746183 PMCID: PMC10131792 DOI: 10.1055/s-0042-1760250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
With the improving survival of cystic fibrosis (CF) patients and the advent of highly effective cystic fibrosis transmembrane conductance regulator (CFTR) therapy, the clinical spectrum of this complex multisystem disease continues to evolve. One of the most important clinical events for patients with CF in the course of this disease is acute pulmonary exacerbation (PEx). Clinical and microbial epidemiology studies of CF PEx continue to provide important insight into the disease course, prognosis, and complications. This work has now led to several large-scale clinical trials designed to clarify the treatment paradigm for CF PEx. The primary goal of this review is to provide a summary and update of the pathophysiology, clinical and microbial epidemiology, outcome and treatment of CF PEx, biomarkers for exacerbation, and the impact of highly effective modulator therapy on these events moving forward.
Collapse
Affiliation(s)
- Tijana Milinic
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington
| | - Oliver J McElvaney
- Cysic Fibrosis Therapeutics Development Network Coordinating Center, Seattle Children's Research Institute, Seattle, Washington
| | - Christopher H Goss
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington
- Cysic Fibrosis Therapeutics Development Network Coordinating Center, Seattle Children's Research Institute, Seattle, Washington
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington
| |
Collapse
|
7
|
Siddiqui T, Patel SS, Ghoshal U, Sahu C. Clinicomicrobiological Profile of Infections by Achromobacter: An Emerging Nosocomial Pathogen in Indian Hospitals. Int J Appl Basic Med Res 2023; 13:59-63. [PMID: 37614834 PMCID: PMC10443449 DOI: 10.4103/ijabmr.ijabmr_520_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/16/2023] [Accepted: 04/17/2023] [Indexed: 08/25/2023] Open
Abstract
Background Achromobacter causes opportunistic nosocomial infections in immunocompromised patients with high mortality. It is underreported as it is often misidentified by conventional microbiological methods. Aims The aim of the study is to access the clinicomicrobiological profile and antibiogram of Achromobacter spp. from clinical isolates. Materials and Methods It is an observational study done from July 2020 to December 2021 in our hospital. All nonduplicate isolates of Achromobacter from blood and respiratory samples were initially identified with VITEK-2 GN card system and further confirmed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Antibiogram and treatment outcomes were also studied. Results Achromobacter spp. was isolated from 14 patients. Blood samples yielded most isolates (71.4%; n = 10) followed by tracheal aspirate and bronchoalveolar lavage fluid. Bacteremia followed by pneumonia was the most common clinical manifestation of Achromobacter infection. All the isolates were identified as A. xylosoxidans denitrificans and showed 100% susceptibility to minocycline and piperacillin-tazobactam. Diabetes mellitus and malignancy were the most common underlying condition in these patients. A favorable outcome was seen in 78.6% of the individuals with timely institution of antibiotics and proper diagnosis. Conclusion Infections due to Achromobacter are on the rise in developing countries like India. Resistance to many classes of antimicrobials makes its treatment more challenging therefore it should always be guided by antibiograms. The present study highlights the significance of this rare bacterium in patients with malignancies in India and advocates greater vigilance toward appropriate identification of this organism.
Collapse
Affiliation(s)
- Tasneem Siddiqui
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Sangram Singh Patel
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Ujjala Ghoshal
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Chinmoy Sahu
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| |
Collapse
|
8
|
Achromobacter spp. prevalence and adaptation in cystic fibrosis lung infection. Microbiol Res 2022; 263:127140. [DOI: 10.1016/j.micres.2022.127140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/11/2022] [Accepted: 07/20/2022] [Indexed: 11/30/2022]
|
9
|
Ciuca IM, Dediu M, Popin D, Pop LL, Tamas LA, Pilut CN, Almajan Guta B, Popa ZL. Antibiotherapy in Children with Cystic Fibrosis—An Extensive Review. CHILDREN 2022; 9:children9081258. [PMID: 36010149 PMCID: PMC9406924 DOI: 10.3390/children9081258] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/14/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022]
Abstract
In cystic fibrosis (CF), the respiratory disease is the main factor that influences the outcome and the prognosis of patients, bacterial infections being responsible for severe exacerbations. The etiology is often multi-microbial and with resistant strains. The aim of this paper is to present current existing antibiotherapy solutions for CF-associated infections in order to offer a reliable support for individual, targeted, and specific treatment. The inclusion criteria were studies about antibiotherapy in CF pediatric patients. Studies involving adult patients or those with only in vitro results were excluded. The information sources were all articles published until December 2021, in PubMed and ScienceDirect. A total of 74 studies were included, with a total number of 26,979 patients aged between 0–18 years. We approached each pathogen individual, with their specific treatment, comparing treatment solutions proposed by different studies. Preservation of lung function is the main goal of therapy in CF, because once parenchyma is lost, it cannot be recovered. Early personalized intervention and prevention of infection with reputable germs is of paramount importance, even if is an asymmetrical challenge. This research received no external funding.
Collapse
Affiliation(s)
- Ioana Mihaiela Ciuca
- Pediatric Department, University of Medicine and Pharmacy “Victor Babes” Timisoara, 2 Eftimie Murgu Square, 300041 Timisoara, Romania
- Pediatric Pulmonology Unit, Clinical County Hospital Timisoara, Evlia Celebi 1-3, 300226 Timisoara, Romania
| | - Mihaela Dediu
- Pediatric Department, University of Medicine and Pharmacy “Victor Babes” Timisoara, 2 Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Diana Popin
- Pediatric Pulmonology Unit, Clinical County Hospital Timisoara, Evlia Celebi 1-3, 300226 Timisoara, Romania
| | - Liviu Laurentiu Pop
- Pediatric Department, University of Medicine and Pharmacy “Victor Babes” Timisoara, 2 Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Liviu Athos Tamas
- Biochemistry Department, University of Medicine and Pharmacy “Victor Babes” Timisoara, 2 Eftimie Murgu Square, 300041 Timisoara, Romania
- Correspondence: ; Tel.: +40-744-764737
| | - Ciprian Nicolae Pilut
- Microbiology Department, University of Medicine and Pharmacy “Victor Babes” Timisoara, 2 Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Bogdan Almajan Guta
- Kinesiotherapy and Special Motricity Department, West University of Timisoara, 4 Vasile Parvan bld., 300223 Timisoara, Romania
| | - Zoran Laurentiu Popa
- Department of Obstetrics and Gynecology, University of Medicine and Pharmacy “Victor Babes” Timisoara, 2 Eftimie Murgu Square, 300041 Timisoara, Romania
| |
Collapse
|
10
|
Green HD, Jones AM. Managing Pulmonary Infection in Adults With Cystic Fibrosis: Adult Cystic Fibrosis Series. Chest 2022; 162:66-75. [PMID: 35167860 DOI: 10.1016/j.chest.2022.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 02/04/2022] [Accepted: 02/04/2022] [Indexed: 12/17/2022] Open
Abstract
Cystic fibrosis (CF) is characterized by chronic airway infection and progressive respiratory decline. Historically, a narrow spectrum of bacterial pathogens was believed to comprise the bulk of respiratory infections in CF, with Haemophilus influenzae and Staphylococcus aureus dominating childhood infections, and Pseudomonas aeruginosa or, less commonly, a member of the Burkholderia cepacia complex becoming the dominant infecting organism in adulthood. Today, the landscape is changing for airway infection in CF. The prevalence of "less typical" gram-negative bacterial infections are rising due to a number of factors: the CF population is aging; new therapies are being introduced; antibiotic usage is increasing; diagnostic tests are evolving; and taxonomic changes are being made as new bacterial species are being discovered. Less is known about the clinical relevance and evidence for treatment strategies for many of the other lower prevalence organisms that are encountered in CF. The aim of this article was to discuss the current evidence and recommended strategies for treating airway infection in CF, focusing on bacterial infections.
Collapse
Affiliation(s)
- Heather D Green
- Manchester Adult Cystic Fibrosis Centre, Manchester University NHS Foundation Trust, Manchester, England
| | - Andrew M Jones
- Manchester Adult Cystic Fibrosis Centre, Manchester University NHS Foundation Trust, Manchester, England; Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, England.
| |
Collapse
|
11
|
Chalhoub H, Kampmeier S, Kahl BC, Van Bambeke F. Role of Efflux in Antibiotic Resistance of Achromobacter xylosoxidans and Achromobacter insuavis Isolates From Patients With Cystic Fibrosis. Front Microbiol 2022; 13:762307. [PMID: 35418957 PMCID: PMC8996194 DOI: 10.3389/fmicb.2022.762307] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 02/07/2022] [Indexed: 01/22/2023] Open
Abstract
Achromobacter genus (including Achromobacter xylosoxidans, the most prevalent Achromobacter species in patients with cystic fibrosis) is poorly susceptible to most conventional antibiotics. Contribution of efflux by AxyABM, AxyXY-OprZ, and AxyEF-OprN and of target mutations were studied in clinical isolates of A. xylosoxidans and Achromobacter insuavis. Forty-one isolates longitudinally collected from 21 patients with CF were studied by whole-genome sequencing (WGS)-typing, determination of minimum inhibitory concentrations (MICs) of β-lactams, aminoglycosides, colistin, azithromycin, ciprofloxacin, chloramphenicol, and doxycycline, and expression (quantitative RT-PCR) and function (measure of the uptake of a fluorescent substrate) of efflux pumps. WGS-based typing resulted in 10 clusters comprising 2 or 3 isolates and 20 singletons. The efflux activity was high in strains with elevated MICs for amikacin or azithromycin. This work sheds a new light on the impact of efflux and target mutations in resistance of Achromobacter to several drugs.
Collapse
Affiliation(s)
- Hussein Chalhoub
- Pharmacologie Cellulaire et Moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | | | - Barbara C Kahl
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Françoise Van Bambeke
- Pharmacologie Cellulaire et Moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
12
|
Beauruelle C, Lamoureux C, Mashi A, Ramel S, Le Bihan J, Ropars T, Dirou A, Banerjee A, Tandé D, Le Bars H, Héry-Arnaud G. In Vitro Activity of 22 Antibiotics against Achromobacter Isolates from People with Cystic Fibrosis. Are There New Therapeutic Options? Microorganisms 2021; 9:microorganisms9122473. [PMID: 34946075 PMCID: PMC8703882 DOI: 10.3390/microorganisms9122473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/22/2021] [Accepted: 11/26/2021] [Indexed: 11/24/2022] Open
Abstract
Bacteria belonging to the genus Achromobacter are increasingly isolated from respiratory samples of people with cystic fibrosis (PWCF). The management of this multidrug-resistant genus is challenging and characterised by a lack of international recommendations, therapeutic guidelines and data concerning antibiotic susceptibility, especially concerning the newer antibiotics. The objective of this study was to describe the antibiotic susceptibility of Achromobacter isolates from PWCF, including susceptibility to new antibiotics. The minimum inhibitory concentrations (MICs) of 22 antibiotics were determined for a panel of 23 Achromobacter isolates from 19 respiratory samples of PWCF. Two microdilution MIC plates were used: EUMDROXF® plate (Sensititre) and Micronaut-S Pseudomonas MIC® plate (Merlin) and completed by a third method if necessary (E-test® or UMIC®). Among usual antimicrobial agents, the most active was imipenem (70% susceptibility). Trimethoprim-sulfamethoxazole, piperacillin and tigecycline (65%, 56% and 52% susceptibility, respectively) were still useful for the treatment of Achromobacter infections. Among new therapeutic options, β-lactams combined with a β-lactamase-inhibitor did not bring benefits compared to β-lactam alone. On the other hand, cefiderocol appeared as a promising therapeutic alternative for managing Achromobacter infections in PWCF. This study provides the first results on the susceptibility of clinical Achromobacter isolates concerning new antibiotics. More microbiological and clinical data are required to establish the optimal treatment of Achromobacter infections.
Collapse
Affiliation(s)
- Clémence Beauruelle
- University Brest, INSERM, EFS, UMR 1078, GGB, 29200 Brest, France; (C.L.); (G.H.-A.)
- Department of Bacteriology, Virology, Hospital Hygiene, and Parasitology-Mycology, Brest University Hospital, 29200 Brest, France; (A.M.); (D.T.); (H.L.B.)
- Correspondence: ; Tel.:+332-98-14-51-05
| | - Claudie Lamoureux
- University Brest, INSERM, EFS, UMR 1078, GGB, 29200 Brest, France; (C.L.); (G.H.-A.)
- Department of Bacteriology, Virology, Hospital Hygiene, and Parasitology-Mycology, Brest University Hospital, 29200 Brest, France; (A.M.); (D.T.); (H.L.B.)
| | - Arsid Mashi
- Department of Bacteriology, Virology, Hospital Hygiene, and Parasitology-Mycology, Brest University Hospital, 29200 Brest, France; (A.M.); (D.T.); (H.L.B.)
| | - Sophie Ramel
- Centre de Ressources et de Compétences de la Mucoviscidose, Fondation Ildys, Presqu’île de Perharidy, 29680 Roscoff, France; (S.R.); (J.L.B.); (T.R.); (A.D.); (A.B.)
| | - Jean Le Bihan
- Centre de Ressources et de Compétences de la Mucoviscidose, Fondation Ildys, Presqu’île de Perharidy, 29680 Roscoff, France; (S.R.); (J.L.B.); (T.R.); (A.D.); (A.B.)
| | - Thomas Ropars
- Centre de Ressources et de Compétences de la Mucoviscidose, Fondation Ildys, Presqu’île de Perharidy, 29680 Roscoff, France; (S.R.); (J.L.B.); (T.R.); (A.D.); (A.B.)
| | - Anne Dirou
- Centre de Ressources et de Compétences de la Mucoviscidose, Fondation Ildys, Presqu’île de Perharidy, 29680 Roscoff, France; (S.R.); (J.L.B.); (T.R.); (A.D.); (A.B.)
| | - Anandadev Banerjee
- Centre de Ressources et de Compétences de la Mucoviscidose, Fondation Ildys, Presqu’île de Perharidy, 29680 Roscoff, France; (S.R.); (J.L.B.); (T.R.); (A.D.); (A.B.)
| | - Didier Tandé
- Department of Bacteriology, Virology, Hospital Hygiene, and Parasitology-Mycology, Brest University Hospital, 29200 Brest, France; (A.M.); (D.T.); (H.L.B.)
| | - Hervé Le Bars
- Department of Bacteriology, Virology, Hospital Hygiene, and Parasitology-Mycology, Brest University Hospital, 29200 Brest, France; (A.M.); (D.T.); (H.L.B.)
| | - Geneviève Héry-Arnaud
- University Brest, INSERM, EFS, UMR 1078, GGB, 29200 Brest, France; (C.L.); (G.H.-A.)
- Department of Bacteriology, Virology, Hospital Hygiene, and Parasitology-Mycology, Brest University Hospital, 29200 Brest, France; (A.M.); (D.T.); (H.L.B.)
| |
Collapse
|
13
|
Isler B, Kidd TJ, Stewart AG, Harris P, Paterson DL. Achromobacter Infections and Treatment Options. Antimicrob Agents Chemother 2020; 64:e01025-20. [PMID: 32816734 PMCID: PMC7577122 DOI: 10.1128/aac.01025-20] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Achromobacter is a genus of nonfermenting Gram-negative bacteria under order Burkholderiales Although primarily isolated from respiratory tract of people with cystic fibrosis, Achromobacter spp. can cause a broad range of infections in hosts with other underlying conditions. Their rare occurrence and ever-changing taxonomy hinder defining their clinical features, risk factors for acquisition and adverse outcomes, and optimal treatment. Achromobacter spp. are intrinsically resistant to several antibiotics (e.g., most cephalosporins, aztreonam, and aminoglycosides), and are increasingly acquiring resistance to carbapenems. Carbapenem resistance is mainly caused by multidrug efflux pumps and metallo-β-lactamases, which are not expected to be overcome by new β-lactamase inhibitors. Among the other new antibiotics, cefiderocol, and eravacycline were used as salvage therapy for a limited number of patients with Achromobacter infections. In this article, we aim to give an overview of the antimicrobial resistance in Achromobacter species, highlighting the possible place of new antibiotics in their treatment.
Collapse
Affiliation(s)
- Burcu Isler
- University of Queensland, Faculty of Medicine, UQ Center for Clinical Research, Brisbane, Australia
| | - Timothy J Kidd
- Central Microbiology, Pathology Queensland, Royal Brisbane and Women's Hospital, Brisbane, Australia
- University of Queensland, Faculty of Science, School of Chemistry and Molecular Biosciences, Brisbane, Australia
| | - Adam G Stewart
- University of Queensland, Faculty of Medicine, UQ Center for Clinical Research, Brisbane, Australia
- Infectious Diseases Unit, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Patrick Harris
- University of Queensland, Faculty of Medicine, UQ Center for Clinical Research, Brisbane, Australia
- Central Microbiology, Pathology Queensland, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - David L Paterson
- University of Queensland, Faculty of Medicine, UQ Center for Clinical Research, Brisbane, Australia
- Infectious Diseases Unit, Royal Brisbane and Women's Hospital, Brisbane, Australia
| |
Collapse
|
14
|
Longitudinal Surveillance and Combination Antimicrobial Susceptibility Testing of Multidrug-Resistant Achromobacter Species from Cystic Fibrosis Patients. Antimicrob Agents Chemother 2020; 64:AAC.01467-20. [PMID: 32816722 DOI: 10.1128/aac.01467-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 08/07/2020] [Indexed: 01/16/2023] Open
Abstract
Achromobacter spp. are recognized as emerging pathogens in patients with cystic fibrosis (CF). Though recent works have established species-level identification using nrdA sequencing, there is a dearth in knowledge relating to species-level antimicrobial susceptibility patterns and antimicrobial combinations, which hampers the use of optimal antimicrobial combinations for the treatment of chronic infections. The aims of this study were to (i) identify at species-level referred Achromobacter isolates, (ii) describe species-level antimicrobial susceptibility profiles, and (iii) determine the most promising antimicrobial combination for chronic Achromobacter infections. A total of 112 multidrug-resistant (MDR) Achromobacter species isolates from 39 patients were identified using nrdA sequencing. Antimicrobial susceptibility and combination testing were carried out using the Etest method. We detected six species of Achromobacter and found that Achromobacter xylosoxidans was the most prevalent species. Interestingly, sequence analysis showed it was responsible for persistent infection (18/28 patients), followed by Achromobacter ruhlandii (2/3 patients). Piperacillin-tazobactam (70.27%) and co-trimoxazole (69.72%) were the most active antimicrobials. Differences were observed in species-level susceptibility to ceftazidime, carbapenems, ticarcillin-clavulanate, and tetracycline. Antimicrobial combinations with co-trimoxazole or tobramycin demonstrate the best synergy, while co-trimoxazole gave the best susceptibility breakpoint index values. This study enriches the understanding of MDR Achromobacter spp. epidemiology and confirms prevalence and chronic colonization of A. xylosoxidans in CF lungs. It presents in vitro data to support the efficacy of new combinations for use in the treatment of chronic Achromobacter infections.
Collapse
|
15
|
Qadri M, Short S, Gast K, Hernandez J, Wong ACN. Microbiome Innovation in Agriculture: Development of Microbial Based Tools for Insect Pest Management. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.547751] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
16
|
Comparative in vitro activities of meropenem in combination with colistin, levofloxacin, or chloramphenicol against Achromobacter xylosoxidans strains isolated from patients with cystic fibrosis. J Glob Antimicrob Resist 2020; 22:713-717. [PMID: 32534046 DOI: 10.1016/j.jgar.2020.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/25/2020] [Accepted: 06/01/2020] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVES Achromobacter xylosoxidans is an emerging pathogen in cystic fibrosis (CF). Relatively little is known about its clinical impact and optimal management. In the present study, the in vitro bactericidal activities of meropenem, either alone or in combination with colistin, levofloxacin, or chloramphenicol, were assessed using A. xylosoxidans strains isolated from CF patients. The synergistic interactions of these combinations were also investigated. METHODS Minimal inhibitory concentrations (MICs) were determined by microbroth dilution. Bactericidal and synergistic effects of the tested antibiotic combinations were assessed by using the time-kill curve technique. RESULTS Based on the time-kill curves, we found that meropenem-colistin combinations have bactericidal and synergistic activities for 24 h against A. xylosoxidans strains, both at 1 × MIC and 4 × MIC. Although synergistic interactions were seen with meropenem-levofloxacin combinations, no bactericidal interactions were observed. Additionally, the meropenem-chloramphenicol combinations were found to be neither bactericidal nor synergistic. No antagonism was observed with any combination tested. CONCLUSIONS This study's findings could have important implications for empirical or combination antimicrobial therapy with tested antibiotics.
Collapse
|
17
|
Draft Genome Sequence of an Unusually Multidrug-Resistant Strain of Achromobacter xylosoxidans from a Blood Isolate. Microbiol Resour Announc 2020; 9:9/22/e00194-20. [PMID: 32467264 PMCID: PMC7256251 DOI: 10.1128/mra.00194-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Achromobacter xylosoxidans strain DN2019 was isolated from blood of a septicemia patient. We describe the draft genome and antibiotic susceptibility of this strain. Achromobacter xylosoxidans strain DN2019 was isolated from blood of a septicemia patient. We describe the draft genome and antibiotic susceptibility of this strain.
Collapse
|
18
|
Özbek-Çelik B, Damar-Çelik D, Nørskov-Lauritsen N. Post-antibiotic Effect of Various Antibiotics against <i>Achromobacter xylosoxidans</i> Strains Isolated from Patients with Cystic Fibrosis. JOURNAL OF CLINICAL AND EXPERIMENTAL INVESTIGATIONS 2020. [DOI: 10.5799/jcei/8294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
19
|
Abstract
With the improving survival of cystic fibrosis (CF) patients and the advent of highly effective cystic fibrosis transmembrane conductance regulator therapy, the clinical spectrum of this complex multisystem disease continues to evolve. One of the most important clinical events for patients with CF in the course of this disease is an acute pulmonary exacerbation. Clinical and microbial epidemiology studies of CF pulmonary exacerbations continue to provide important insight into the disease course, prognosis, and complications. This work has now led to a number of large scale clinical trials with the goal of improving the treatment paradigm for CF pulmonary exacerbation. The primary goal of this review is to provide a summary of the pathophysiology, the clinical epidemiology, microbial epidemiology, outcome and the treatment of CF pulmonary exacerbation.
Collapse
Affiliation(s)
- Christopher H Goss
- CFF Therapeutics Development Network Coordinating Center, Department of Pediatrics, Seattle Children's Research Institute, Seattle, Washington.,Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine and Pediatrics, University of Washington School of Medicine, Seattle, Washington
| |
Collapse
|
20
|
Hwang CH, Kim WJ, Jwa HY, Song SH. Community-acquired Achromobacter xylosoxidans infection presenting as a cavitary lung disease in an immunocompetent patient. Yeungnam Univ J Med 2019; 37:54-58. [PMID: 31661759 PMCID: PMC6986962 DOI: 10.12701/yujm.2019.00276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/02/2019] [Indexed: 11/16/2022] Open
Abstract
Achromobacter xylosoxidans is a gram-negative bacterium that can oxidize xylose. It is commonly found in contaminated soil and water but does not normally infect immunocompetent humans. We report a case of a cavitary lung lesion associated with community-acquired A. xylosoxidans infection, which mimicked pulmonary tuberculosis or lung cancer in an immunocompetent man. The patient was hospitalized due to hemoptysis, and chest computed tomography (CT) revealed a cavitary lesion in the superior segment of the left lower lobe. We performed bronchoscopy and bronchial washing, and subsequent bacterial cultures excluded pulmonary tuberculosis and identified A. xylosoxidans. We performed antibiotic sensitivity testing and treated the patient with a 6-week course of amoxicillin/clavulanate. After 2 months, follow-up chest CT revealed complete resolution of the cavitary lesion.
Collapse
Affiliation(s)
- Chan Hee Hwang
- Republic of Korea Defence Intelligence Command, Anyang, Korea
| | - Woo Jin Kim
- Department of Laboratory Medicine, Cheju Halla General Hospital, Jeju, Korea
| | - Hye Young Jwa
- Department of Internal Medicine, Cheju Halla General Hospital, Jeju, Korea
| | - Sung Heon Song
- Department of Internal Medicine, Cheju Halla General Hospital, Jeju, Korea
| |
Collapse
|
21
|
Bates AS, Natarajan M, Reddy RV. Achromobacter xylosoxidans in idiopathic cystic bronchiectasis. BMJ Case Rep 2018; 11:11/1/e211610. [PMID: 30567079 DOI: 10.1136/bcr-2015-211610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
This is the first case in the English language describing Achromobacter xylosoxidans in a patient with idiopathic bronchiectasis. A 66-year-old man with bronchiectasis presented with shortness of breath to the emergency department of our institution, a district hospital in the UK. His medications included long-term supplemental oxygen therapy and prophylactic azithromycin. Following 2 days admission to the respiratory unit, his saturations significantly deteriorated, and the patient was admitted to intensive care with type II respiratory failure. Following a week of intubation and ventilation, multidrug resistant A. xylosoxidans was isolated from the tracheal aspiration secretions. The patient recovered after receiving targeted intravenous antimicrobial therapy.
Collapse
|
22
|
|
23
|
Proteomic identification of Axc, a novel beta-lactamase with carbapenemase activity in a meropenem-resistant clinical isolate of Achromobacter xylosoxidans. Sci Rep 2018; 8:8181. [PMID: 29802257 PMCID: PMC5970244 DOI: 10.1038/s41598-018-26079-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 05/04/2018] [Indexed: 01/24/2023] Open
Abstract
The development of antibiotic resistance during treatment is a threat to patients and their environment. Insight in the mechanisms of resistance development is important for appropriate therapy and infection control. Here, we describe how through the application of mass spectrometry-based proteomics, a novel beta-lactamase Axc was identified as an indicator of acquired carbapenem resistance in a clinical isolate of Achromobacter xylosoxidans. Comparative proteomic analysis of consecutively collected susceptible and resistant isolates from the same patient revealed that high Axc protein levels were only observed in the resistant isolate. Heterologous expression of Axc in Escherichia coli significantly increased the resistance towards carbapenems. Importantly, direct Axc mediated hydrolysis of imipenem was demonstrated using pH shift assays and 1H-NMR, confirming Axc as a legitimate carbapenemase. Whole genome sequencing revealed that the susceptible and resistant isolates were remarkably similar. Together these findings provide a molecular context for the fast development of meropenem resistance in A. xylosoxidans during treatment and demonstrate the use of mass spectrometric techniques in identifying novel resistance determinants.
Collapse
|
24
|
Jo J, Cortez KL, Cornell WC, Price-Whelan A, Dietrich LEP. An orphan cbb3-type cytochrome oxidase subunit supports Pseudomonas aeruginosa biofilm growth and virulence. eLife 2017; 6:e30205. [PMID: 29160206 PMCID: PMC5697931 DOI: 10.7554/elife.30205] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/22/2017] [Indexed: 12/17/2022] Open
Abstract
Hypoxia is a common challenge faced by bacteria during associations with hosts due in part to the formation of densely packed communities (biofilms). cbb3-type cytochrome c oxidases, which catalyze the terminal step in respiration and have a high affinity for oxygen, have been linked to bacterial pathogenesis. The pseudomonads are unusual in that they often contain multiple full and partial (i.e. 'orphan') operons for cbb3-type oxidases and oxidase subunits. Here, we describe a unique role for the orphan catalytic subunit CcoN4 in colony biofilm development and respiration in the opportunistic pathogen Pseudomonas aeruginosa PA14. We also show that CcoN4 contributes to the reduction of phenazines, antibiotics that support redox balancing for cells in biofilms, and to virulence in a Caenorhabditis elegans model of infection. These results highlight the relevance of the colony biofilm model to pathogenicity and underscore the potential of cbb3-type oxidases as therapeutic targets.
Collapse
Affiliation(s)
- Jeanyoung Jo
- Department of Biological SciencesColumbia UniversityNew YorkUnited States
| | - Krista L Cortez
- Department of Biological SciencesColumbia UniversityNew YorkUnited States
| | | | - Alexa Price-Whelan
- Department of Biological SciencesColumbia UniversityNew YorkUnited States
| | - Lars EP Dietrich
- Department of Biological SciencesColumbia UniversityNew YorkUnited States
| |
Collapse
|
25
|
Ha DT, Dang TQ, Tran NV, Pham TNT, Nguyen ND, Nguyen TV. Development and validation of a prognostic model for predicting 30-day mortality risk in medical patients in emergency department (ED). Sci Rep 2017; 7:46474. [PMID: 28401961 PMCID: PMC5388874 DOI: 10.1038/srep46474] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 03/20/2017] [Indexed: 12/03/2022] Open
Abstract
The primary aim of this prospective study is to develop and validate a new prognostic model for predicting the risk of mortality in Emergency Department (ED) patients. The study involved 1765 patients in the development cohort and 1728 in the validation cohort. The main outcome was mortality up to 30 days after admission. Potential risk factors included clinical characteristics, vital signs, and routine haematological and biochemistry tests. The Bayesian Model Averaging method within the Cox’s regression model was used to identify independent risk factors for mortality. In the development cohort, the incidence of 30-day mortality was 9.8%, and the following factors were associated with a greater risk of mortality: male gender, increased respiratory rate and serum urea, decreased peripheral oxygen saturation and serum albumin, lower Glasgow Coma Score, and admission to intensive care unit. The area under the receiver operating characteristic curve for the model with the listed factors was 0.871 (95% CI, 0.844–0.898) in the development cohort and 0.783 (95% CI, 0.743–0.823) in the validation cohort. Calibration analysis found a close agreement between predicted and observed mortality risk. We conclude that the risk of mortality among ED patients could be accurately predicted by using common clinical signs and biochemical tests.
Collapse
Affiliation(s)
- Duc T Ha
- Intensive Care Unit, National Hospital of Can Tho, Vietnam.,Research Center for Genetics and Reproductive Health, School of Medicine, Vietnam National University, Ho Chi Minh City, Vietnam.,Van Phuoc Mekong Hospital, Can Tho, Vietnam
| | - Tam Q Dang
- Intensive Care Unit, National Hospital of Can Tho, Vietnam
| | - Ngoc V Tran
- Department of Internal Medicine, University of Medicine and Pharmacy in Ho Chi Minh City, Vietnam
| | - Thao N T Pham
- Department of Intensive Care Medicine, Emergency Medicine and Clinical Toxicology, University of Medicine and Pharmacy in Ho Chi Minh City, Vietnam.,Intensive Care Unit, Cho Ray Hospital, Ho Chi Minh City, Vietnam
| | | | - Tuan V Nguyen
- Ton Duc Thang University, Ho Chi Minh City, Vietnam.,Garvan Institute of Medical Research, Sydney, Australia.,School of Public Health and Community Medicine, University of New South Wales, Sydney, Australia.,Centre for Health Technologies, University of Technology, Sydney, Australia
| |
Collapse
|
26
|
Jeukens J, Freschi L, Vincent AT, Emond-Rheault JG, Kukavica-Ibrulj I, Charette SJ, Levesque RC. A Pan-Genomic Approach to Understand the Basis of Host Adaptation in Achromobacter. Genome Biol Evol 2017; 9:1030-1046. [PMID: 28383665 PMCID: PMC5405338 DOI: 10.1093/gbe/evx061] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2017] [Indexed: 12/13/2022] Open
Abstract
Over the past decade, there has been a rising interest in Achromobacter sp., an emerging opportunistic pathogen responsible for nosocomial and cystic fibrosis lung infections. Species of this genus are ubiquitous in the environment, can outcompete resident microbiota, and are resistant to commonly used disinfectants as well as antibiotics. Nevertheless, the Achromobacter genus suffers from difficulties in diagnosis, unresolved taxonomy and limited understanding of how it adapts to the cystic fibrosis lung, not to mention other host environments. The goals of this first genus-wide comparative genomics study were to clarify the taxonomy of this genus and identify genomic features associated with pathogenicity and host adaptation. This was done with a widely applicable approach based on pan-genome analysis. First, using all publicly available genomes, a combination of phylogenetic analysis based on 1,780 conserved genes with average nucleotide identity and accessory genome composition allowed the identification of a largely clinical lineage composed of Achromobacter xylosoxidans, Achromobacter insuavis, Achromobacter dolens, and Achromobacter ruhlandii. Within this lineage, we identified 35 positively selected genes involved in metabolism, regulation and efflux-mediated antibiotic resistance. Second, resistome analysis showed that this clinical lineage carried additional antibiotic resistance genes compared with other isolates. Finally, we identified putative mobile elements that contribute 53% of the genus's resistome and support horizontal gene transfer between Achromobacter and other ecologically similar genera. This study provides strong phylogenetic and pan-genomic bases to motivate further research on Achromobacter, and contributes to the understanding of opportunistic pathogen evolution.
Collapse
Affiliation(s)
- Julie Jeukens
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| | - Luca Freschi
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| | - Antony T Vincent
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada.,Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Quebec City, Quebec, Canada.,Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Quebec City, Quebec, Canada
| | | | - Irena Kukavica-Ibrulj
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| | - Steve J Charette
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada.,Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Quebec City, Quebec, Canada.,Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Quebec City, Quebec, Canada
| | - Roger C Levesque
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
27
|
Impact of High Diversity of Achromobacter Populations within Cystic Fibrosis Sputum Samples on Antimicrobial Susceptibility Testing. J Clin Microbiol 2016; 55:206-215. [PMID: 27807149 DOI: 10.1128/jcm.01843-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 10/25/2016] [Indexed: 01/31/2023] Open
Abstract
Chronic colonization by opportunistic environmental bacteria is frequent in the airways of cystic fibrosis (CF) patients. Studies of Pseudomonas aeruginosa evolution during persistence have highlighted the emergence of pathoadaptive genotypes and phenotypes, leading to complex and diversified inpatient colonizing populations also observed at the intraspecimen level. Such diversity, including heterogeneity in resistance profiles, has been considered an adaptive strategy devoted to host persistence. Longitudinal genomic diversity has been shown for the emergent opportunistic pathogen Achromobacter, but phenotypic and genomic diversity has not yet been studied within a simple CF sputum sample. Here, we studied the genomic diversity and antimicrobial resistance heterogeneity of 132 Achromobacter species strains (8 to 27 strains of identical or distinct colonial morphotypes per specimen) recovered from the sputum samples of 9 chronically colonized CF patients. We highlighted the high within-sample and within-morphotype diversity of antimicrobial resistance (disk diffusion) and genomic (pulsed-field gel electrophoresis) profiles. No sputum sample included strains with identical pulsotypes or antibiotic susceptibility patterns. Differences in clinical categorization were observed for the 9 patients and concerned 3 to 11 antibiotics, including antibiotics recommended for use against Achromobacter Within-sample antimicrobial resistance heterogeneity, not predictable from colonial morphology, suggested that it may represent a selective advantage against antibiotics in an Achromobacter persisting population and potentially compromise the antibiotic management of CF airway infections.
Collapse
|
28
|
Lopes SP, Carvalho DT, Pereira MO, Azevedo NF. Discriminating typical and atypical cystic fibrosis-related bacteria by multiplex PNA-FISH. Biotechnol Bioeng 2016; 114:355-367. [PMID: 27571488 DOI: 10.1002/bit.26085] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/15/2016] [Accepted: 08/22/2016] [Indexed: 12/22/2022]
Abstract
This study aims to report the development of peptide nucleic acid (PNA) probes to specifically detect the cystic fibrosis (CF)-associated traditional and atypical species Pseudomonas aeruginosa and Inquilinus limosus, respectively. PNA probes were designed in silico, developed and tested in smears prepared in phosphate-buffer saline (PBS), and in artificial sputum medium (ASM). A multiplex fluorescent in situ hybridization (FISH) approach using the designed probes was further validated in artificially contaminated clinical sputum samples and also applied in polymicrobial 24 h-old biofilms involving P. aeruginosa, I. limosus, and other CF-related bacteria. Both probes showed high predictive and experimental specificities and sensitivities. The multiplex PNA-FISH assay, associated with non-specific staining, was successfully adapted in the clinical samples and in biofilms of CF-related bacteria, allowing differentiating the community members and inferring about microbial-microbial interactions within the consortia. This study revealed the great potential of PNA-FISH as a diagnostic tool to discriminate between classical and less common CF-associated bacteria, being suitable to further describe species-dependent prevention strategies and deliver more effective target control therapeutics. Biotechnol. Bioeng. 2017;114: 355-367. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Susana P Lopes
- Centre of Biological Engineering, LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Daniel T Carvalho
- LEPABE, Faculty of Engineering, Department of Chemical Engineering, University of Porto, Porto, Portugal
| | - Maria O Pereira
- Centre of Biological Engineering, LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Nuno F Azevedo
- LEPABE, Faculty of Engineering, Department of Chemical Engineering, University of Porto, Porto, Portugal
| |
Collapse
|
29
|
Stobbelaar K, Van Hoorenbeeck K, Lequesne M, De Dooy J, Ho E, Vlieghe E, Ieven M, Verhulst S. Sepsis Caused by Achromobacter Xylosoxidans in a Child with Cystic Fibrosis and Severe Lung Disease. AMERICAN JOURNAL OF CASE REPORTS 2016; 17:562-6. [PMID: 27498677 PMCID: PMC4978211 DOI: 10.12659/ajcr.896577] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Patient: Female, 10 Final Diagnosis: Sepsis Symptoms: Fever • hypotension • not tollerating enteral feeds • respiratory deterioration Medication: — Clinical Procedure: IV antibiotics • lungtransplantion Specialty: Pediatrics and Neonatology
Collapse
Affiliation(s)
- Kim Stobbelaar
- Department of Pediatric Pulmonology, Antwerp University Hospital, Edegem, Belgium
| | - Kim Van Hoorenbeeck
- Department of Pediatric Pulmonology, Antwerp University Hospital, Edegem, Belgium
| | - Monique Lequesne
- Department of Pediatric Pulmonology, Antwerp University Hospital, Edegem, Belgium
| | - Jozef De Dooy
- Department of Pediatric Intensive Care, Antwerp University Hospital, Edegem, Belgium
| | - Erwin Ho
- Department of Microbiology, Antwerp University Hospital, Edegem, Belgium
| | - Erika Vlieghe
- Department of Microbiology, Antwerp University Hospital, Edegem, Belgium
| | - Margaretha Ieven
- Department of Microbiology, Antwerp University Hospital, Edegem, Belgium
| | - Stijn Verhulst
- Department of Pediatric Pulmonology, Antwerp University Hospital, Edegem, Belgium
| |
Collapse
|
30
|
Firmida MC, Pereira RHV, Silva EASR, Marques EA, Lopes AJ. Clinical impact of Achromobacter xylosoxidans colonization/infection in patients with cystic fibrosis. Braz J Med Biol Res 2016; 49:e5097. [PMID: 26909788 PMCID: PMC4792508 DOI: 10.1590/1414-431x20155097] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 12/17/2015] [Indexed: 12/20/2022] Open
Abstract
The rate of diagnosis of colonization/infection of the airways with
Achromobacter xylosoxidans has increased in cystic fibrosis
patients, but its clinical significance is still controversial. This retrospective,
case-control study aimed to evaluate the clinical impact of A.
xylosoxidans colonization/infection in cystic fibrosis patients.
Individuals who were chronically colonized/infected (n=10), intermittently
colonized/infected (n=15), and never colonized/infected with A.
xylosoxidans (n=18) were retrospectively evaluated during two
periods that were 2 years apart. Demographic characteristics, clinical data, lung
function, and chronic bacterial co-colonization data were evaluated. Of the total
study population, 87% were pediatric patients and 65.1% were female. Individuals
chronically colonized/infected with A. xylosoxidans had decreased
forced expiratory volume in 1 s (51.7% in the chronic colonization/infection group
vs 82.7% in the intermittent colonization/infection group
vs 76% in the never colonized/infected group). Compared with the
other two groups, the rate of co-colonization with methicillin-resistant
Staphylococcus aureus was higher in individuals chronically
colonized/infected with A. xylosoxidans (P=0.002).
Changes in lung function over 2 years in the three groups were not significant,
although a trend toward a greater decrease in lung function was observed in the
chronically colonized/infected group. Compared with the other two groups, there was a
greater number of annual hospitalizations in patients chronically colonized/infected
with A. xylosoxidans (P=0.033). In cystic fibrosis patients, there
was an increased frequency of A. xylosoxidans colonization/infection
in children, and lung function was reduced in patients who were chronically
colonized/infected with A. xylosoxidans. Additionally, there were no
differences in clinical outcomes during the 2-year period, except for an increased
number of hospitalizations in patients with A. xylosoxidans.
Collapse
Affiliation(s)
- M C Firmida
- Programa de Pós-Graduação em Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - R H V Pereira
- Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - E A S R Silva
- Laboratório de Bacteriologia, Hospital Universitário Pedro Ernesto, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - E A Marques
- Programa de Pós-Graduação em Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - A J Lopes
- Programa de Pós-Graduação em Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
31
|
Characterization of the transcriptome of Achromobacter sp. HZ01 with the outstanding hydrocarbon-degrading ability. Gene 2016; 584:185-94. [PMID: 26915487 DOI: 10.1016/j.gene.2016.02.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 01/24/2016] [Accepted: 02/20/2016] [Indexed: 12/19/2022]
Abstract
Microbial remediation has become one of the most important strategies for eliminating petroleum pollutants. Revealing the transcript maps of microorganisms with the hydrocarbon-degrading ability contributes to enhance the degradation of hydrocarbons and further improve the effectiveness of bioremediation. In this study, we characterized the transcriptome of hydrocarbon-degrading Achromobacter sp. HZ01 after petroleum treatment for 16h. A total of 38,706,280 and 38,954,413 clean reads were obtained by RNA-seq for the petroleum-treated group and control, respectively. By an effective de novo assembly, 3597 unigenes were obtained, including 3485 annotated transcripts. Petroleum treatment had significantly influenced the transcriptional profile of strain HZ01, involving 742 differentially expressed genes. A part of genes were activated to exert specific physiological functions, whereas more genes were down-regulated including specific genes related to cell motility, genes associated with glycometabolism, and genes coding for ribosomal proteins. Identification of genes related to petroleum degradation revealed that the fatty acid metabolic pathway and a part of monooxygenases and dehydrogenases were activated, whereas the TCA cycle was inactive. Additionally, terminal oxidation might be a major aerobic pathway for the degradation of n-alkanes in strain HZ01. The newly obtained data contribute to better understand the gene expression profiles of hydrocarbon-degrading microorganisms after petroleum treatment, to further investigate the genetic characteristics of strain HZ01 and other related species and to develop cost-effective and eco-friendly strategies for remediation of crude oil-polluted environments.
Collapse
|
32
|
Bador J, Neuwirth C, Liszczynski P, Mézier MC, Chrétiennot M, Grenot E, Chapuis A, de Curraize C, Amoureux L. Distribution of innate efflux-mediated aminoglycoside resistance among different Achromobacter species. New Microbes New Infect 2015; 10:1-5. [PMID: 26904200 PMCID: PMC4726742 DOI: 10.1016/j.nmni.2015.11.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 11/27/2015] [Accepted: 11/27/2015] [Indexed: 11/21/2022] Open
Abstract
Achromobacter spp. are emerging respiratory pathogens in cystic fibrosis patients. Since 2013 the genus Achromobacter includes 15 species for which innate antibiotic resistance is unknown. Previously the AxyXY-OprZ efflux system has been described to confer aminoglycoside (AG) resistance in A. xylosoxidans. Nevertheless, some Achromobacter spp. strains are susceptible to AG. This study including 49 Achromobacter isolates reveals that AG resistance is correlated with different Achromobacter spp. It is noteworthy that the axyXY-oprZ operon is detected only in AG-resistant species, including the most frequently encountered in cystic fibrosis patients: A. xylosoxidans, A. ruhlandii, A. dolens and A. insuavis.
Collapse
Affiliation(s)
| | - C. Neuwirth
- Corresponding author: C. Neuwirth, Laboratoire de Bactériologie, Hôpital Universitaire, Plateau technique de Biologie, BP 37013, 21070 Dijon, Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Complete Genome Sequence of Achromobacter xylosoxidans MN001, a Cystic Fibrosis Airway Isolate. GENOME ANNOUNCEMENTS 2015; 3:3/4/e00947-15. [PMID: 26294635 PMCID: PMC4543513 DOI: 10.1128/genomea.00947-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The genome of Achromobacter xylosoxidans MN001, a strain isolated from sputum derived from an adult cystic fibrosis patient, was sequenced using combined single-molecule real-time and Illumina sequencing. Assembly of the complete genome resulted in a 5,876,039-bp chromosome, representing the smallest A. xylosoxidans genome sequenced to date.
Collapse
|
34
|
Parkins MD, Floto RA. Emerging bacterial pathogens and changing concepts of bacterial pathogenesis in cystic fibrosis. J Cyst Fibros 2015; 14:293-304. [PMID: 25881770 DOI: 10.1016/j.jcf.2015.03.012] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 03/21/2015] [Accepted: 03/22/2015] [Indexed: 12/22/2022]
Abstract
Chronic suppurative lower airway infection is a hallmark feature of cystic fibrosis (CF). Decades of experience in clinical microbiology have enabled the development of improved technologies and approaches for the cultivation and identification of microorganisms from sputum. It is increasingly apparent that the microbial constituents of the lower airways in CF exist in a dynamic state. Indeed, while changes in prevalence of various pathogens occur through ageing, differences exist in successive cohorts of patients and between clinics, regions and countries. Classical pathogens such as Pseudomonas aeruginosa, Burkholderia cepacia complex and Staphylococcus aureus are increasingly being supplemented with new and emerging organisms rarely observed in other areas of medicine. Moreover, it is now recognized that common oropharyngeal organisms, previously presumed to be benign colonizers may contribute to disease progression. As infection remains the leading cause of morbidity and mortality in CF, an understanding of the epidemiology, risk factors for acquisition and natural history of infection including interactions between colonizing bacteria is required. Unified approaches to the study and determination of pathogen status are similarly needed. Furthermore, experienced and evidence-based treatment data is necessary to optimize outcomes for individuals with CF.
Collapse
Affiliation(s)
- Michael D Parkins
- Department of Medicine, The University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; Microbiology, Immunology and Infectious Diseases, The University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada.
| | - R Andres Floto
- Cambridge Institute for Medical Research, University of Cambridge, Papworth Hospital, Cambridge CB23 3RE, UK; Cambridge Centre for Lung Infection, Papworth Hospital, Cambridge CB23 3RE, UK.
| |
Collapse
|
35
|
Tugcu D, Turel O, Aydogan G, Akcay A, Salcioglu Z, Akici F, Sen H, Demirkaya M, Taskin N, Gurler N. Successful treatment of multiresistant Achromobacter xylosoxidans bacteremia in a child with acute myeloid leukemia. Ann Saudi Med 2015; 35:168-9. [PMID: 26336026 PMCID: PMC6074130 DOI: 10.5144/0256-4947.2015.168] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Achromobacter xylosoxidans is an aerobic gram-negative bacillus and important cause of bacteremia in immunocompromised patients. We describe a leukemia pediatric patient with severe neutropenia who developed bacteremia with A xylosoxidans resistant to multiple antibiotics, and treated the patient with tigecycline and piperacillin-tazobactam in addition to supportive medications.
Collapse
Affiliation(s)
- Deniz Tugcu
- Dr Deniz Tugcu, Kanuni Sultan Suleyman Training and Research Hospital, Department of Pediatric Haematology- Oncology, Turgut Özal Cd. No:1 Halkal, Küçükçekmece, Istanbul 34306, Turkey, T: +90 532 2860318, F: + 0212 571 47 90,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Dalhoff A. Pharmacokinetics and pharmacodynamics of aerosolized antibacterial agents in chronically infected cystic fibrosis patients. Clin Microbiol Rev 2014; 27:753-82. [PMID: 25278574 PMCID: PMC4187638 DOI: 10.1128/cmr.00022-14] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bacteria adapt to growth in lungs of patients with cystic fibrosis (CF) by selection of heterogeneously resistant variants that are not detected by conventional susceptibility testing but are selected for rapidly during antibacterial treatment. Therefore, total bacterial counts and antibiotic susceptibilities are misleading indicators of infection and are not helpful as guides for therapy decisions or efficacy endpoints. High drug concentrations delivered by aerosol may maximize efficacy, as decreased drug susceptibilities of the pathogens are compensated for by high target site concentrations. However, reductions of the bacterial load in sputum and improvements in lung function were within the same ranges following aerosolized and conventional therapies. Furthermore, the use of conventional pharmacokinetic/pharmacodynamic (PK/PD) surrogates correlating pharmacokinetics in serum with clinical cure and presumed or proven eradication of the pathogen as a basis for PK/PD investigations in CF patients is irrelevant, as minimization of systemic exposure is one of the main objectives of aerosolized therapy; in addition, bacterial pathogens cannot be eradicated, and chronic infection cannot be cured. Consequently, conventional PK/PD surrogates are not applicable to CF patients. It is nonetheless obvious that systemic exposure of patients, with all its sequelae, is minimized and that the burden of oral treatment for CF patients suffering from chronic infections is reduced.
Collapse
Affiliation(s)
- Axel Dalhoff
- University Medical Center Schleswig-Holstein, Institute for Infection Medicine, Kiel, Germany
| |
Collapse
|
37
|
Roy P. Pulmonary Infection Caused by Achromobacter xylosoxidans in a Patient with Carcinoma of Epiglottis: A Rare Case. J Clin Diagn Res 2014; 8:DD01-2. [PMID: 24995184 DOI: 10.7860/jcdr/2014/7940.4329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 03/13/2014] [Indexed: 11/24/2022]
Abstract
Achromobacter xylosoxidans is an aerobic, motile, oxidase and catalase positive, non-fermenting, gram negative bacillus. It is an opportunistic pathogen which is responsible for various nosocomial and community-acquired infections. However, there are only very few reports of pulmonary infections caused by this bacterium in cancer patients. We are presenting a case of a patient with carcinoma of epiglottis, who developed pulmonary infection caused by Achromobacter xylosoxidans. According to the available literature, this is the first case of pulmonary infection caused by Achromobacter xylosoxidans, which was detected in a cancer patient in India. Since Achromobacter xylosoxidans demonstrates resistance to many classes of antimicrobials, vigilant and efficient microbiological work-ups and surveillances are needed, to diagnose infections caused by this rare pathogen in clinical settings.
Collapse
Affiliation(s)
- Priyamvada Roy
- Senior Resident, Department of Microbiology, Laboratory Medicine, Delhi State Cancer Institute , Delhi, India
| |
Collapse
|
38
|
Rafael AE, Keshavamurthy S, Sepulveda E, Miranda CC, Okamoto T, Pettersson GB. Intracardiac abscess with cutaneous fistula secondary to ventricular septal defect repair simulating sternal wound infection. Tex Heart Inst J 2014; 41:324-6. [PMID: 24955054 DOI: 10.14503/thij-13-3199] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cutaneous fistula as a clinical presentation of intracardiac abscess of the right side is such an unusual occurrence that it has not until now been reported in the English-language medical literature. We present a rare case of right-sided infective endocarditis caused by Achromobacter xylosoxidans in which recurrent infection presented as sternal wound discharge. The infection was found to have an intracardiac origin and was successfully managed by radical débridement on cardiopulmonary bypass.
Collapse
Affiliation(s)
- Aldo Elmer Rafael
- Department of Thoracic and Cardiovascular Surgery, Cleveland Clinic Foundation, Cleveland, Ohio 44195
| | - Suresh Keshavamurthy
- Department of Thoracic and Cardiovascular Surgery, Cleveland Clinic Foundation, Cleveland, Ohio 44195
| | - Edgardo Sepulveda
- Department of Thoracic and Cardiovascular Surgery, Cleveland Clinic Foundation, Cleveland, Ohio 44195
| | - Cyndee Cruz Miranda
- Department of Thoracic and Cardiovascular Surgery, Cleveland Clinic Foundation, Cleveland, Ohio 44195
| | - Toshihiro Okamoto
- Department of Thoracic and Cardiovascular Surgery, Cleveland Clinic Foundation, Cleveland, Ohio 44195
| | - Gosta Bengt Pettersson
- Department of Thoracic and Cardiovascular Surgery, Cleveland Clinic Foundation, Cleveland, Ohio 44195
| |
Collapse
|
39
|
Kirkby S, Novak K, McCoy K. Update on antibiotics for infection control in cystic fibrosis. Expert Rev Anti Infect Ther 2014; 7:967-80. [DOI: 10.1586/eri.09.82] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
40
|
Complete genome sequence of the cystic fibrosis pathogen Achromobacter xylosoxidans NH44784-1996 complies with important pathogenic phenotypes. PLoS One 2013; 8:e68484. [PMID: 23894309 PMCID: PMC3718787 DOI: 10.1371/journal.pone.0068484] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 05/29/2013] [Indexed: 01/23/2023] Open
Abstract
Achromobacter xylosoxidans is an environmental opportunistic pathogen, which infects an increasing number of immunocompromised patients. In this study we combined genomic analysis of a clinical isolated A. xylosoxidans strain with phenotypic investigations of its important pathogenic features. We present a complete assembly of the genome of A. xylosoxidans NH44784-1996, an isolate from a cystic fibrosis patient obtained in 1996. The genome of A. xylosoxidans NH44784-1996 contains approximately 7 million base pairs with 6390 potential protein-coding sequences. We identified several features that render it an opportunistic human pathogen, We found genes involved in anaerobic growth and the pgaABCD operon encoding the biofilm adhesin poly-β-1,6-N-acetyl-D-glucosamin. Furthermore, the genome contains a range of antibiotic resistance genes coding efflux pump systems and antibiotic modifying enzymes. In vitro studies of A. xylosoxidans NH44784-1996 confirmed the genomic evidence for its ability to form biofilms, anaerobic growth via denitrification, and resistance to a broad range of antibiotics. Our investigation enables further studies of the functionality of important identified genes contributing to the pathogenicity of A. xylosoxidans and thereby improves our understanding and ability to treat this emerging pathogen.
Collapse
|
41
|
Hansen CR, Pressler T, Ridderberg W, Johansen HK, Skov M. Achromobacter species in cystic fibrosis: cross-infection caused by indirect patient-to-patient contact. J Cyst Fibros 2013; 12:609-15. [PMID: 23769270 DOI: 10.1016/j.jcf.2013.05.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 04/26/2013] [Accepted: 05/09/2013] [Indexed: 01/23/2023]
Abstract
BACKGROUND AND METHODS Achromobacter species leads to chronic infection in an increasing number of CF patients. We report 2 cases of Achromobacter ruhlandii cross-infection between patients after well-described indirect contact. RESULTS Both cases were young, stable, CF patients without chronic infections and with normal FEV1, but experienced clinical deterioration after visits to the home of a CF patient with A. ruhlandii infection and after sharing facilities with an A. ruhlandii infected CF patient on a skiing vacation, respectively. Both cases became positive for A. ruhlandii in airway secretions and were colonized with A. ruhlandii in their sinuses. Aggressive, long-term antibiotic treatment led to clinical stability. One of the cases developed chronic A. ruhlandii infection. CONCLUSION A. species can cause cross-infection even after a short period of indirect contact between infected and non-infected CF patients. Patients should be followed closely for several months before the possibility of cross-infection is ruled out.
Collapse
Affiliation(s)
- C R Hansen
- Department of Pediatrics, Copenhagen CF Centre, University Hospital Rigshospitalet, Copenhagen, Denmark.
| | | | | | | | | |
Collapse
|
42
|
Jain K, Smyth AR. Current dilemmas in antimicrobial therapy in cystic fibrosis. Expert Rev Respir Med 2013; 6:407-22. [PMID: 22971066 DOI: 10.1586/ers.12.39] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The majority of cystic fibrosis (CF)-related morbidity and mortality is caused by pulmonary damage due to recurrent and chronic infections. Considerable improvements in the survival of individuals with CF have been achieved in recent decades, some of which may be due to better management of common pathogens such as Staphylococcus aureus and Pseudomonas aeruginosa. While the search continues for the optimal approach for prophylaxis, eradication and maintenance treatment of infections, there are several unanswered questions, posing dilemmas related to various therapeutic choices. Microbes pose additional challenges by adapting to CF lungs and developing treatment resistance. Several new, highly antimicrobial-resistant pathogens have emerged. Their pathogenic role in the progression of CF lung disease is not yet clear and effective treatment approaches have not been defined. There is an urgent need for well-designed comparative clinical trials of new antibiotic strategies.
Collapse
Affiliation(s)
- Kamini Jain
- School of Clinical Sciences, University of Nottingham, Nottingham, UK
| | | |
Collapse
|
43
|
Lambiase A, Del Pezzo M, Cerbone D, Raia V, Rossano F, Catania MR. Rapid identification of Burkholderia cepacia complex species recovered from cystic fibrosis patients using matrix-assisted laser desorption ionization time-of-flight mass spectrometry. J Microbiol Methods 2012. [PMID: 23201483 DOI: 10.1016/j.mimet.2012.11.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The aim of this study was to establish the identification ability of matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) for bacteria of Burkholderia cepacia complex (Bcc) and to compare these results with those obtained by a molecular method (PCR-RFLP). A total of 57 isolates was used in the study. Isolates were collected from 31 patients attending the Regional Cystic Fibrosis Unit from January 2001 to December 2005. For phenotypic identification, both automated and manual systems were used. Using mass spectrometry, we identified all 57 isolates, previously identified by molecular method. Of these, 28 isolates were identified as B. cenocepacia, although not differentiated further into lineages. Moreover, other isolates were identified as B. cepacia (12 isolates), B. stabilis (12 isolates), and B. vietnamiensis (5 isolates). Our data indicate a good correlation between the two approaches.
Collapse
Affiliation(s)
- Antonietta Lambiase
- Department of Cellular and Molecular Biology and Pathology Luigi Califano, Medicine School, University Federico II, Naples, Italy.
| | | | | | | | | | | |
Collapse
|
44
|
Innate aminoglycoside resistance of Achromobacter xylosoxidans is due to AxyXY-OprZ, an RND-type multidrug efflux pump. Antimicrob Agents Chemother 2012; 57:603-5. [PMID: 23089757 DOI: 10.1128/aac.01243-12] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Achromobacter xylosoxidans is an innately multidrug-resistant pathogen which is emerging in cystic fibrosis (CF) patients. We characterized a new resistance-nodulation-cell division (RND)-type multidrug efflux pump, AxyXY-OprZ. This system is responsible for the intrinsic high-level resistance of A. xylosoxidans to aminoglycosides (tobramycin, amikacin, and gentamicin). Furthermore, it can extrude cefepime, carbapenems, some fluoroquinolones, tetracyclines, and erythromycin. Some of the AxyXY-OprZ substrates are major components widely used to treat pulmonary infections in CF patients.
Collapse
|
45
|
First description of an RND-type multidrug efflux pump in Achromobacter xylosoxidans, AxyABM. Antimicrob Agents Chemother 2011; 55:4912-4. [PMID: 21807978 DOI: 10.1128/aac.00341-11] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Achromobacter xylosoxidans is an emerging pathogen in cystic fibrosis patients. The multidrug resistance of these bacteria remains poorly understood. We have characterized in a clinical strain the first resistance-nodulation-cell division (RND)-type multidrug efflux pump in this species: AxyABM. The inactivation of the transporter component axyB gene led to decreased MICs of cephalosporins (except cefepime), aztreonam, nalidixic acid, fluoroquinolones, and chloramphenicol.
Collapse
|
46
|
Achromobacter xylosoxidans infection presenting as a pulmonary nodule mimicking cancer. J Clin Microbiol 2011; 49:2751-4. [PMID: 21593259 DOI: 10.1128/jcm.02571-10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Achromobacter xylosoxidans is typically isolated from pulmonary sources, presenting as pneumonia in immunosuppressed individuals. We describe a novel clinical presentation of A. xylosoxidans infection presenting as multiple spiculated, pulmonary nodules mimicking cancer for which the patient underwent a wedge resection of the lung for diagnosis and staging of presumptive cancer.
Collapse
|
47
|
Bittar F, Rolain JM. Detection and accurate identification of new or emerging bacteria in cystic fibrosis patients. Clin Microbiol Infect 2011; 16:809-20. [PMID: 20880410 DOI: 10.1111/j.1469-0691.2010.03236.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Respiratory infections remain a major threat to cystic fibrosis (CF) patients. The detection and correct identification of the bacteria implicated in these infections is critical for the therapeutic management of patients. The traditional methods of culture and phenotypic identification of bacteria lack both sensitivity and specificity because many bacteria can be missed and/or misidentified. Molecular analyses have recently emerged as useful means to resolve these problems, including molecular methods for accurate identification or detection of bacteria and molecular methods for evaluation of microbial diversity. These recent molecular technologies have increased the list of new and/or emerging pathogens and epidemic strains associated with CF patients. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of intact cells has also emerged recently as a powerful and rapid method for the routine identification of bacteria in clinical microbiology laboratories and will certainly represent the method of choice also for the routine identification of bacteria in the context of CF. Finally, recent data derived from molecular culture-independent analyses indicate the presence of a previously underestimated, complex microbial community in sputa from CF patients. Interestingly, full genome sequencing of some bacteria frequently recovered from CF patients has highlighted the fact that the lungs of CF patients are hotspots for lateral gene transfer and the adaptation of these ecosystems to a specific chronic condition.
Collapse
Affiliation(s)
- F Bittar
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, CNRS-IRD, UMR 6236, Faculté de Médecine et de Pharmacie, Université de la Méditerranée, Marseille Cedex 05, France
| | | |
Collapse
|
48
|
Achromobacter xylosoxidans respiratory tract infection in cystic fibrosis patients. Eur J Clin Microbiol Infect Dis 2011; 30:973-80. [PMID: 21279730 PMCID: PMC3132409 DOI: 10.1007/s10096-011-1182-5] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Accepted: 01/17/2011] [Indexed: 11/27/2022]
Abstract
The aims of this study were to evaluate the frequency of Achromobacter xylosoxidans infection in a cohort of cystic fibrosis patients, to investigate antimicrobial sensitivity, to establish possible clonal likeness among strains, and to address the clinical impact of this infection or colonization on the general outcome of these patients. The study was undertaken between January 2004 and December 2008 on 300 patients receiving care at the Regional Cystic Fibrosis Center of the Naples University "Federico II". Sputum samples were checked for bacterial identification. For DNA fingerprinting, pulsed-field gel electrophoresis (PFGE) was carried out. Fifty-three patients (17.6%) had at least one positive culture for A. xylosoxidans; of these, 6/53 (11.3%) patients were defined as chronically infected and all were co-colonized by Pseudomonas aeruginosa. Of the patients, 18.8% persistently carried multidrug-resistant isolates. Macrorestriction analysis showed the presence of seven major clusters. DNA fingerprinting also showed a genetic relationship among strains isolated from the same patients at different times. The results of DNA fingerprinting indicate evidence of bacterial clonal likeness among the enrolled infected patients. We found no significant differences in the forced expiratory volume in 1 s (FEV(1)) and body mass index (BMI) when comparing the case group of A. xylosoxidans chronically infected patients with the control group of P. aeruginosa chronically infected patients.
Collapse
|
49
|
Carbajal-Rodríguez I, Stöveken N, Satola B, Wübbeler JH, Steinbüchel A. Aerobic degradation of mercaptosuccinate by the gram-negative bacterium Variovorax paradoxus strain B4. J Bacteriol 2011; 193:527-39. [PMID: 21075928 PMCID: PMC3019817 DOI: 10.1128/jb.00793-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 10/29/2010] [Indexed: 11/20/2022] Open
Abstract
The Gram-negative bacterium Variovorax paradoxus strain B4 was isolated from soil under mesophilic and aerobic conditions to elucidate the so far unknown catabolism of mercaptosuccinate (MS). During growth with MS this strain released significant amounts of sulfate into the medium. Tn5::mob-induced mutagenesis was successfully employed and yielded nine independent mutants incapable of using MS as a carbon source. In six of these mutants, Tn5::mob insertions were mapped in a putative gene encoding a molybdenum (Mo) cofactor biosynthesis protein (moeA). In two further mutants the Tn5::mob insertion was mapped in the gene coding for a putative molybdopterin (MPT) oxidoreductase. In contrast to the wild type, these eight mutants also showed no growth on taurine. In another mutant a gene putatively encoding a 3-hydroxyacyl-coenzyme A dehydrogenase (paaH2) was disrupted by transposon insertion. Upon subcellular fractionation of wild-type cells cultivated with MS as sole carbon and sulfur source, MPT oxidoreductase activity was detected in only the cytoplasmic fraction. Cells grown with succinate, taurine, or gluconate as a sole carbon source exhibited no activity or much lower activity. MPT oxidoreductase activity in the cytoplasmic fraction of the Tn5::mob-induced mutant Icr6 was 3-fold lower in comparison to the wild type. Therefore, a new pathway for MS catabolism in V. paradoxus strain B4 is proposed: (i) MPT oxidoreductase catalyzes the conversion of MS first into sulfinosuccinate (a putative organo-sulfur compound composed of succinate and a sulfino group) and then into sulfosuccinate by successive transfer of oxygen atoms, (ii) sulfosuccinate is cleaved into oxaloacetate and sulfite, and (iii) sulfite is oxidized to sulfate.
Collapse
Affiliation(s)
- Irma Carbajal-Rodríguez
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany
| | - Nadine Stöveken
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany
| | - Barbara Satola
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany
| | - Jan Hendrik Wübbeler
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany
| | - Alexander Steinbüchel
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany
| |
Collapse
|
50
|
Abstract
Infection of the airways remains the primary cause of morbidity and mortality in persons with cystic fibrosis (CF). This review describes salient features of the epidemiologies of microbial species that are involved in respiratory tract infection in CF. The apparently expanding spectrum of species causing infection in CF and recent changes in the incidences and prevalences of infection due to specific bacterial, fungal, and viral species are described. The challenges inherent in tracking and interpreting rates of infection in this patient population are discussed.
Collapse
|